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1 Mathematical models for equilibrium problems

Equilibrium problems play a central role in the study of complex and competitive systems. There are many

classic examples both in Engineering Science (equilibrium problems in a traffic network), and in economics

(for example, oligopolistic market equilibrium). Many variational formulations of these problems have been

presented in recent years.

Variational inequalities and Minty variational inequalities are two very useful tools in the study of equi-

librium solutions and their stability.

Definition 1.1. For a closed convex set K ⊆ Rn and a vector function F : K → Rn, a simple

variational inequality of Stampacchia-type SVI(F,K) consists in determining a vector x∗ ∈ K, such that

〈F (x∗), x− x∗〉 ≥ 0, ∀ x ∈ K,

where 〈·, ·〉 denotes the inner product in Rn; the associated Minty variational inequality MVI(F,K) consists

of determining a vector x∗ ∈ K, such that

〈F (x), x∗ − x〉 ≤ 0, ∀ x ∈ K.

The Minty Lemma establishes relationships between the solutions to SVI(F,K) and the solutions to

MVI(F,K).

Theorem 1.1. (Minty Lemma) Let the operator F : K → Rn be given, where K ⊆ Rn is a closed convex

set. Then the following statements hold:

(i) if F is continuous on K, then each solution to MVI(F,K) is a solution to SVI(F,K);

(ii) if F is pseudomonotone on K1, then each solution to SVI(F,K) is a solution to MVI(F,K).

∗This paper has been published in ournal of Optimization Theory and Applications, vol. 113 (2002), pp. 567–582.
†Department of Applied Mathematics, University of Pisa, Pisa, Italy.
1That is, 〈F (y), x− y〉 ≥ 0 =⇒ 〈F (x), x− y〉 ≥ 0 ∀ x, y ∈ K.
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More recently, two dynamical models for equilibrium problems based on projection operators have been

proposed: one is known as locally projected dynamical system (Refs. 1-3), and the other as globally projected

dynamical system (Refs 4-5). In this paper we study the relationships among the equilibrium points of these

dynamical systems and the solutions of an associated variational inequality. Furthermore stability analysis

of their solutions is provided.

We now introduce the definition of a locally projected dynamical system with respect to a closed and

convex set K and a continuous vector field F defined on an open set containing K.

Given x ∈ K and v ∈ Rn, we define the projection of the vector v at x (with respect to K) by

ΠK(x, v) = lim
δ→0

(PK(x+ δv)− x)/δ,

where PK is defined as:

PK(x) = arg min
z∈K
‖x− z‖.

Remark 1.1. The above defined projection ΠK(x, v) defined above is equivalent to the Euclidean projection

of v on the tangent cone to K at x. To see this, let us introduce the normal cone to K at x:

NK(x) = {y ∈ Rn : 〈y, x′ − x〉 ≤ 0, ∀ x′ ∈ K},

and the set

n(x) = {γ ∈ Rn : ‖γ‖ = 1, γ ∈ NK(x)}.

We denote the boundary and interior of K by ∂K and intK, respectively. The following geometric interpre-

tation of ΠK is well known (Ref. 6):

(i) if x ∈ intK, then ΠK(x, v) = v;

(ii) if x ∈ ∂K and max
n∈n(x)

〈v, n〉 ≤ 0, then ΠK(x, v) = v;

(iii) if x ∈ ∂K and max
n∈n(x)

〈v, n〉 > 0, then ΠK(x, v) = v − 〈v, n∗(x)〉n∗(x), where

n∗(x) = arg max
n∈n(x)

〈v, n〉.

Therefore we have ΠK(x, v) = PTK(x)(v), where TK(x) denotes the tangent cone to K at x.

Definition 1.2. We define the locally projected dynamical system as the following ordinary differential

equation LPDS(F,K)

ẋ = ΠK(x,−F (x)),

where K is a closed convex set and F is a continuous vector field defined on K.

Remark 1.2. In the definition of LPDS(F,K) we consider the projection on K of the vector field −F
because we will characterize the steady points of LPDS(F,K) with the solutions of the variational inequality

SVI(F,K), moreover some particular conditions on F will be useful to the stability analysis of LPDS(F,K).

We note that the right-hand side of the previous ordinary differential equation coincides with −F (x) in

the interior of K and it can be discontinuous on the boundary of K. Therefore, we need to define what is

meant by a solution to an ordinary differential equation with a discontinuous right-hand side.
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Definition 1.3. We say that the function x : [0,+∞)→ K is a solution to the equation LPDS(F,K) if x is

absolutely continuous and if

ẋ(t) = ΠK(x(t),−F (x(t))),

for all t ≥ 0 save on a set of Lebesgue measure zero.

We recall the fundamental theorem about LPDS (Ref. 1).

Theorem 1.2. Assume that K is a convex polyhedron. If F is linearly bounded, namely there exists a

constant M > 0 such that

‖F (x)‖ ≤M (1 + ‖x‖), ∀ x ∈ K,

and also

〈F (x)− F (y), x− y〉 ≤M ‖x− y‖2, ∀ x, y ∈ K,

then

(i) for any x0 ∈ K, there exists a unique solution x0(t) to LPDS(F,K), such that x(0) = x0;

(ii) if xn → x0 as n→ +∞, then xn(t) converges to x0(t) uniformly on every compact set of [0,+∞).

Remark 1.3. We note that if the vector field F is Lipschitz continuous on K, then assumptions of Theo-

rem 1.2 hold.

We are interested in equilibrium points of LPDS(F,K) defined as follows: the vector x∗ ∈ K is an

equilibrium point of LPDS(F,K) if

ΠK(x∗,−F (x∗)) = 0.

We observe that x∗ is an equilibrium point if, once a solution of the LPDS(F,K) is at x∗, it will remain

at x∗ for all future times.

In the special case K = Rn, the LPDS(F,K) coincides with the classical autonomous dynamical system

DS(F)

ẋ = −F (x),

and its equilibrium points are the solutions to the system of nonlinear equations F (x) = 0.

The important relationship announced in Remark 1.2 between equilibrium points of LPDS and solutions

of SVI is given in the following known theorem, which we give the proof of for the sake of completeness.

Theorem 1.3. The equilibrium points of the LPDS(F,K) coincide with the solutions of SVI(F,K).

Proof. By Remark 1.2, a vector x∗ ∈ K is an equilibrium point of LPDS(F,K) if and only if PTK(x∗)(−F (x∗)) =

0, that is −F (x∗) ∈ NK(x∗), which is a well known characterization of the solutions to SVI(F,K). �

The second dynamical model is the so-called globally projected dynamical system described first in Ref.

4.

Definition 1.4. We define the globally projected dynamical system as the following ordinary differential

equation GPDS(F,K,α)

ẋ = PK(x− αF (x))− x,

where α is a positive constant.
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We note that the right-hand side of GPDS(F,K,α) is continuous on K and it can be different from −F (x)

even if x is an interior point to K. Hence the solutions of GPDS(F,K,α) and LPDS(F,K) are different in

general.

In the special case K = Rn, the GPDS(F,K,α) coincides with the classical autonomous dynamical system

DS(αF)

ẋ = −αF (x).

From ordinary differential equations theory we derive the following result about global existence and

uniqueness of solutions to GPDS(F,K,α). Another proof of this result can be found in Ref. 5.

Theorem 1.4. If F : Rn → Rn is locally Lipschitz continuous and linearly bounded, then for any x0 ∈ Rn
there exists a unique solution for GPDS(F,K,α) that is defined for all t ∈ R.

Proof. Let T (x) = PK(x− αF (x))− x, then for any x, y ∈ Rn one has

‖T (x)− T (y)‖ ≤ ‖PK(x− αF (x))− PK(y − αF (y))‖+ ‖x− y‖

≤ 2 ‖x− y‖+ α ‖F (x)− F (y)‖,

thus T is locally Lipschitz continuous in Rn. Moreover for any x ∈ Rn

‖T (x)‖ ≤ ‖PK(x− αF (x))− PK(x)‖+ ‖PK(x)− x‖
≤ α ‖F (x)‖+ ‖PK(x)− PK(0)‖+ ‖PK(0)− x‖
≤ αM (1 + ‖x‖) + 2 ‖x‖+ ‖PK(0)‖
= (2 + αM) ‖x‖+ αM + ‖PK(0)‖.

It follows that T is also linearly bounded; therefore for every x0 ∈ Rn there is a unique solution x(t) of

GPDS(F,K,α) defined on R with x(0) = x0. �

As in LPDS(F,K), a solution to GPDS(F,K,α) starting from a point in K has to remain in K. The proof

of this fact is given in Ref. 5 but the correctness of such a proof is, in our opinion, not easily checkable.

Theorem 1.5. If F is locally Lipschitz continuous then for any x0 ∈ K the solution x(t) to GPDS(F,K,α),

defined in a neighborhood I of 0, is such that x(t) ∈ K for any t ∈ I.

Proof. First we prove that if x(t) is any solution of GPDS(F,K,α), defined in [a, b] with x(t) /∈ K for all

t ∈ [a, b], then the distance d(x(t),K) between x(t) and K is decreasing in t.

Let t0 ∈ [a, b] and B be the open ball with center PK(x(t0)) and radius ‖PK(x(t0)) − x(t0)‖. Since

x(t0) /∈ K then

〈ẋ(t0), PK(x(t0))− x(t0)〉 > 0.

Thus, there exists δ(t0) > 0 small enough such that

x(t) /∈ B, ∀ t ∈ (t0 − δ(t0), t0),

x(t) ∈ B, ∀ t ∈ (t0, t0 + δ(t0)),

that is
d(x(t),K) > d(x(t0),K), ∀ t ∈ (t0 − δ(t0), t0),

d(x(t),K) < d(x(t0),K), ∀ t ∈ (t0, t0 + δ(t0)).

We consider t1, ..., tn ∈ [a, b] such that [a, b] ∈
n⋃
i=1

(ti − δ(ti), ti + δ(ti)), hence, using the previous property

for each interval (ti − δ(ti), ti + δ(ti)), we obtain

d(x(s1),K) > d(x(s2),K),
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if a ≤ s1 < s2 ≤ b, namely d(x(t),K) is decreasing in t.

Now let x(t) be the solution of GPDS(F,K,α) with x(0) = x0 ∈ K. We suppose by contradiction that

there are t′, t′′ ∈ I such that x(t′) ∈ K and x(t) /∈ K for all t ∈ (t′, t′′). Then we have d(x(t′),K) = 0 and

d(x(t),K) is positive and decreasing for all t ∈ (t′, t′′), but this is impossible because the distance d(x(t),K)

is continuous in t. Therefore x(t) ∈ K for all t ∈ I. �

The equilibrium points of GPDS(F,K,α) are naturally defined as follows: a vector x∗ ∈ K is an equilibrium

point of GPDS(F,K,α) if

PK(x∗ − αF (x∗))− x∗ = 0.

It is well known that x∗ ∈ K is a solution to SVI(F,K) if and only if for any α > 0 one has

x∗ = PK(x∗ − αF (x∗)).

Therefore the equilibrium points of the GPDS(F,K,α) also coincide with the solutions to SVI(F,K), although

the solutions to LPDS(F,K) and GPDS(F,K,α), as observed, do not coincide in general.

2 Stability Analysis

In this section we analyze the stability of equilibrium points to locally and globally projected dynamical

systems, namely we wish to answer this question: if a solution starts near an equilibrium, will it stay close

to it forever? We will assume the property of existence and uniqueness of solutions to locally and globally

projected dynamical systems. In the following we will use monotonicity properties of vector field F .

We recall now the most important stability concepts for a classical dynamical system DS(F). We will use

B(x, r) to denote the open ball with center x and radius r.

Definition 2.1.

(i) An equilibrium point x∗ of DS(F) is stable if for any ε > 0 there is a δ > 0 such that, for every

x0 ∈ B(x∗, δ) the solution x(t) of DS(F) with x(0) = x0 is defined and x(t) ∈ B(x∗, ε) for all t > 0.

(ii) A stable equilibrium point x∗ is asymptotically stable if there is a δ > 0 such that for every solution

x(t) with x(0) ∈ B(x∗, δ) one has lim
t→+∞

x(t) = x∗.

(iii) An equilibrium point x∗ is exponentially stable if there is a δ > 0 and constants a > 0 and C > 0

such that for every solution x(t) with x(0) ∈ B(x∗, δ) one has

‖x(t)− x∗‖ ≤ C ‖x(0)− x∗‖ exp(−at) ∀ t ≥ 0; (1)

x∗ is globally exponentially stable if (1) holds true for all solutions x(t) of DS(F).

(iv) An equilibrium point x∗ is a monotone attractor if there exists a δ > 0 such that for every

solution x(t) with x(0) ∈ B(x∗, δ), ‖x(t)−x∗‖ is a nonincreasing function of t; x∗ is a global monotone

attractor if ‖x(t) − x∗‖ is nonincreasing in t for all solutions x(t) of DS(F); x∗ is a strictly monotone

attractor if there exists a δ > 0 such that for every solution x(t) with x(0) ∈ B(x∗, δ), ‖x(t) − x∗‖ is

decreasing to zero in t; x∗ is a strictly global monotone attractor if ‖x(t)− x∗‖ is decreasing to zero in

t for all solutions x(t) of DS(F).
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Naturally the previous definitions, with suitable changes, hold even if we consider the equilibrium points

of a locally or globally projected dynamical system.

Obviously every monotone attractor is a stable equilibrium point, and there are easy examples of an

equilibrium that is stable but neither asymptotically stable nor monotone attractor.

For a dynamical system DS(F), if F is continuously differentiable, a classical method for stability analysis

of an equilibrium point x∗ is analyzing the eigenvalues of linear part of F at x∗. In particular an equilibrium

point x∗ of DS(F) is called a sink if all eigenvalues of the jacobian matrix JF (x∗) have positive real parts.

We recall the following nonlinear sink theorem.

Theorem 2.1. (Ref. 7) If x∗ is a sink of DS(F) then x∗ is exponentially stable.

We now present a necessary condition for a monotone attractor of DS(F).

Theorem 2.2. If x∗ is a monotone attractor for DS(F), then the Jacobian matrix JF (x∗) is positive

semidefinite.

Proof. Suppose that x∗ is a monotone attractor with respect to B(x∗, δ). Let x be an arbitrary point

in B(x∗, δ) and x(t) be the solution to DS(F) passing through x when t = 0, then the function D(t) =

‖x(t)− x∗‖2/2 is nonincreasing, hence Ḋ(t) ≤ 0 for all t ≥ 0, in particular

Ḋ(0) = 〈−F (x), x− x∗〉 ≤ 0.

Thus

〈F (x), x− x∗〉 ≥ 0, ∀ x ∈ B(x∗, δ).

Now we consider x ∈ B(x∗, δ) and x = x∗ + α (x− x∗) with α ∈ (0, 1). Since x∗ is an equilibrium point and

since F is continuously differentiable, we have

Fi(x) = 〈∇Fi(ξi), x− x∗〉, ∀ i = 1, . . . , n

where ξi belong to the segment [x, x∗]. Hence

0 ≤ 〈F (x), x− x∗〉 =

n∑
i=1

〈∇Fi(ξi), x− x∗〉(xi − x∗i ) =

= α2
n∑
i=1

〈∇Fi(ξi), x− x∗〉(xi − x∗i ), ∀ α ∈ (0, 1);

and thus we have
n∑
i=1

(xi − x∗i )〈∇Fi(ξi), x− x∗〉 ≥ 0, ∀ α ∈ (0, 1).

If α→ 0, then x→ x∗ and also ξi → x∗, for all i = 1, . . . , n. Hence

〈x− x∗, JF (x∗)(x− x∗)〉 ≥ 0,

and JF (x∗) is positive semidefinite. �

We remark that monotone attractors cannot be compared to asymptotically stable points. In the trivial

example
ẋ1 = −x1
ẋ2 = 0,
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x∗ = (0, 0) is a monotone attractor, but it is not asymptotically stable. Moreover if we consider

ẋ1 = −2x1 − x2
ẋ2 = 2x1,

x∗ = (0, 0) is a sink, thus it is exponentially stable and, in particular, asymptotically stable, because the

Jacobian matrix

JF (x∗) =

(
2 1

−2 0

)
has eigenvalues 1± i; but

〈x, JF (x∗)x〉 = x1(x2 − 2x1) � 0 ∀ x ∈ R2,

that is JF (x∗) is not positive semidefinite, and hence, by Theorem 2.2, x∗ is not a monotone attractor (see

Figure 1).

−2 −1 0 1 2

−2

−1

0

1

2

x
1

x
2

Figure 1: An asymptotically stable equilibrium point which is not a monotone attractor.

We continue by examining the stability of the equilibrium points of LPDS(F,K), which is the main

purpose of this paper. In the following theorem we characterize global monotone attractors of LPDS(F,K)

with solutions of Minty variational inequality MVI(F,K).

Theorem 2.3. A point x∗ ∈ K is solution to MVI(F,K) if and only if it is a global monotone attractor of

LPDS(F,K).

Proof. Since x∗ is a solution to MVI(F,K), then by the Minty lemma x∗ is also a solution of SVI(F,K) and

hence is an equilibrium point of LPDS(F,K). Let x(t) be an arbitrary solution of LPDS(F,K), then

the function D(t) = ‖x(t)−x∗‖ is absolutely continuous and for all t ≥ 0, save on a set of Lebesgue measure

zero, holds

Ḋ(t) = 〈x(t)− x∗,−F (x(t))〉/D(t)− β(x(t))〈x(t)− x∗, n∗(x(t))〉/D(t),

where

β(x(t)) ≥ 0 and n∗(x(t)) ∈ NK(x(t)).

Thus,

Ḋ(t) ≤ 〈−F (x(t)), x(t)− x∗〉/D(t) ≤ 0.
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Therefore if 0 ≤ t1 < t2 we have

D(t2)−D(t1) =

∫ t2

t1

Ḋ(t)dt ≤ 0.

That is, D(t) is non increasing and hence x∗ is a global monotone attractor of LPDS(F,K).

We now assume that x∗ ∈ K is a global monotone attractor. Let T be the smallest affine subspace

containing K and let S = T − x∗. Let x be an arbitrary point in the relative interior of K and let x(t) be

the solution of LPDS(F,K) such that x(0) = x. Since in a neighborhood of x in K, LPDS(F,K) coincides

with

ẋ = PS(−F (x)),

then x(t) is continuously differentiable in a neighborhood I of 0 and the function D(t) = ‖x(t) − x∗‖2/2 is

differentiable and non increasing on I, hence

Ḋ(t) ≤ 0 ∀ t ∈ I,

and in particular

0 ≥ Ḋ(0) = 〈−F (x), x− x∗〉 − 〈PS⊥(−F (x), x− x∗〉 = 〈F (x), x∗ − x〉.

Since the operator F is continuous then

〈F (x), x∗ − x〉 ≤ 0, ∀ x ∈ K,

that is x∗ is a solution of MVI(F,K). �

If we use the monotonicity property of vector field F we can prove directly some stability results for

LPDS(F,K) (see also Refs. 2-3).

Theorem 2.4. Suppose that x∗ is an equilibrium point to LPDS(F,K). Then

(i) if F is locally pseudomonotone at x∗ 2, then x∗ is a monotone attractor;

(ii) if F is locally strictly pseudomonotone at x∗, then x∗ is a strictly monotone attractor;

(iii) if F is locally strongly monotone at x∗, then x∗ is exponentially stable;

(iv) if F is pseudomonotone, strictly pseudomonotone, strongly monotone on K then, respectively, x∗ is

global monotone attractor, strictly global monotone attractor, globally exponentially stable.

Proof.

(i) If F is pseudomonotone on N(x∗) neighborhood of x∗, then by Theorem 1.3 and Minty lemma, x∗ is

solution of MVI(F,N(x∗)), and hence x∗ is a monotone attractor of LPDS(F,K).

(ii) We now assume that F is strictly pseudomonotone on N(x∗) and we define the continuous function φ

as follows:

φ(x) = 〈F (x), x− x∗〉 > 0, ∀ x ∈ N(x∗).

Now let us consider an arbitrary solution x(t) of LPDS(F,K) with x(0) ∈ N(x∗), then D(t) =

‖x(t)− x∗‖ is absolutely continuous and for all t ≥ 0, save on a set of Lebesgue measure zero, one has

Ḋ(t) ≤ 〈−F (x(t)), x(t)− x∗〉/D(t) < 0.

2that is, F is pseudomonotone on a neighborhood of x∗.
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Therefore if 0 ≤ t1 < t2 we have

D(t2)−D(t1) =

∫ t2

t1

Ḋ(t)dt < 0,

that isD(t) is decreasing and there is a lim
t→+∞

d(x(t)) = l ≥ 0. We prove l = 0. Suppose by contradiction

l > 0 and consider δ = ‖x(0)− x∗‖, then x(t) ∈ H = (B(x∗, δ)\B(x∗, l)) ∩K for all t ≥ 0. Since H is

a compact set, we have max
x∈H

φ(x)/‖x− x∗‖ = M < 0 and so

Ḋ(t) ≤ φ(x(t))/D(t) ≤M < 0.

This is impossible and thus x∗ is a strictly monotone attractor.

(iii) Suppose that F is strongly monotone on N(x∗) with constant η > 0. We consider an arbitrary

solution x(t) of LPDS(F,K) starting at x(0) ∈ N(x∗), then for all t ≥ 0, save on a set of Lebesgue

measure zero, one has

Ḋ(t) ≤ −〈F (x(t))− F (x∗), x(t)− x∗〉/‖x(t)− x∗‖ ≤ −η ‖x(t)− x∗‖,

therefore

Ḋ(t) ≤ −η D(t).

First we suppose that D(t) 6= 0 for all t > 0, then for any fixed t > 0 fixed, D(t) is absolutely

continuous on [0, t]. Since a log function is Lipschitz continuous on [D(t), D(0)], then log(D(t)) is

absolutely continuous on [0, t]. Therefore we obtain

log(D(t))− log(D(0)) =

∫ t

0

(Ḋ(t)/D(t))dt ≤ −η t,

and

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖exp(−η t),

that is x∗ is exponentially stable.

If there is some t0 > 0 with D(t0) = 0, then one has

‖x(t)− x∗‖ = 0, ∀ t ≥ t0.

Let C = exp(η t0). Since D(t) is decreasing on [0, t0] we have

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖ ≤ C ‖x(0)− x∗‖exp(−η t), ∀ t ≥ 0,

thus x∗ is exponentially stable.

(iv) If monotonicity conditions of F hold on K, then global stability results on x∗ hold.

�

We now present a stability theorem for LPDS(F,K) analogous to the nonlinear sink theorem; we assume

a stronger condition for F , that is the jacobian matrix JF (x∗) is positive definite, but we also obtain a

stronger result: x∗ is exponentially stable and is a strictly monotone attractor.

Theorem 2.5. Suppose that F : Rn → Rn is a C1 vector field and x∗ an equilibrium point to LPDS(F,K).

If the jacobian matrix JF (x∗) is positive definite, then x∗ is a strictly monotone attractor and exponentially

stable.
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Proof. By continuity there is a neighborhood N(x∗) of x∗ in K such that JF (x) is positive definite for all

x ∈ N(x∗). Hence there exists η > 0 such that

〈y, JF (x) y〉 ≥ η, ∀ x ∈ N(x∗), ∀ y s. t. ‖y‖ = 1,

and thus

〈y, JF (x) y〉 ≥ η ‖y‖2, ∀ x ∈ N(x∗), ∀ y ∈ Rn,

that is JF (x) is strongly positive definite on N(x∗). Therefore F is strongly monotone on N(x∗) (Ref. 8),

and by Theorem 2.4, x∗ is a strictly monotone attractor and exponentially stable. �

We go on now to study the stability of the solutions of GPDS(F,K,α). The first crucial remark is that

solutions to MVI(F,K) and the global monotone attractor of GPDS(F,K,α) do not coincide, as the following

example shows.

Example 2.1. Let F (x1, x2) = (x2,−x1) + [(x1 − 1)2 + x22 − 1]2(1, 1) and K = R2
+. The equilibrium point

x∗ = (0, 0) solves MVI(F,K) because

〈F (x), x〉 = [(x1 − 1)2 + x22 − 1]2(x1, x2) ≥ 0 ∀ x ∈ R2
+.

Nevertheless, we consider the semicircle A in K with center (1, 0) and radius 1, then for all x ∈ A we have

〈F (x), x〉 = 0 and ‖F (x)‖ = ‖x‖. Therefore for any fixed α > 0, there is x ∈ A close enough to x∗ such that

x− αF (x) /∈ K and hence

〈PK(x− αF (x))− x, x∗ − x〉 < 0.

Then the solution x(t) to GPDS(F,K,α) with x(0) = x goes away from x∗ in t within some a neighborhood

of 0, thus x∗ is not a monotone attractor for GPDS(F,K,α) for any fixed α > 0.

As for LPDS(F,K), we prove for GPDS(F,K,α) an analogous result when JF (x∗) is positive definite.

Theorem 2.6. Suppose that F : Rn → Rn is a C1 vector field, x∗ is an equilibrium point to GPDS(F,K,α).

If the jacobian matrix JF (x∗) is positive definite, then there exists α0 > 0 such that x∗ is a strictly monotone

attractor and exponentially stable for GPDS(F,K,α) for any α < α0.

Proof. By continuity, JF (x) is positive definite for all x in a neighborhood N(x∗) in K of x∗, thus JF (x)

is strongly positive definite on N(x∗) and F is strongly monotone on N(x∗) with some constant η > 0.

Moreover, ‖JF (x)‖ is bounded in N(x∗), hence F is Lipschitz continuous on N(x∗) with constant L > 0.

Therefore for all x ∈ N(x∗) the following holds:

‖PK(x− αF (x))− x∗‖2 =

= ‖PK(x− αF (x))− PK(x∗ − αF (x∗))‖2

≤ ‖x− x∗ − α (F (x)− F (x∗))‖2

= ‖x− x∗‖2 − 2α 〈F (x)− F (x∗), x− x∗〉+ α2 ‖F (x)− F (x∗)‖2

≤ (1− 2αη + α2 L2)‖x− x∗‖2.

Let α0 = 2η/L2 and 0 < α < α0. For any solution x(t) with x(0) ∈ N(x∗) we denote D(t) = ‖x(t)−x∗‖2/2,

10



thus we have
Ḋ(t) = 〈x(t)− x∗, PK(x(t)− αF (x(t)))− x(t)〉

= 〈x(t)− x∗, PK(x(t)− αF (x(t)))− x∗〉 − ‖x(t)− x∗‖2

≤ ‖x(t)− x∗‖ ‖PK(x(t)− αF (x(t)))− x∗‖ − ‖x(t)− x∗‖2

≤ (
√

1− 2αη + α2 L2 − 1) ‖x(t)− x∗‖2

= −2aD(t)

where a = 1−
√

1− 2αη + α2 L2 = 1−
√

1− L2α(α0 − α) > 0. Thus

‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖exp(−a t), ∀ t ≥ 0,

that is x∗ is exponentially stable. Moreover Ḋ(t) < 0 and lim
t→+∞

x(t) = x∗, hence x∗ is a strictly monotone

attractor as well. �
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