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Rough set theory and belief function theory, two popular mathematical frameworks for 
uncertainty representation, have been widely applied in different settings and contexts. 
Despite different origins and mathematical foundations, the fundamental concepts of the 
two formalisms (i.e., approximations in rough set theory, belief and plausibility functions 
in belief function theory) are closely related. In this survey article, we review the most 
relevant contributions studying the links between these two uncertainty representation 
formalisms. In particular, we discuss the theoretical relationships connecting the two 
approaches, as well as their applications in knowledge representation and machine 
learning. Special attention is paid to the combined use of these formalisms as a way of 
dealing with imprecise and uncertain information. The aim of this work is, thus, to provide 
a focused picture of these two important fields, discuss some known results and point to 
relevant future research directions.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many mathematical formalisms to represent and manage uncertainty have been proposed and studied in the literature, 
starting from probability theory and including, among others, imprecise probabilities [4,102], fuzzy set theory [122], possi-
bility theory [123], rough set theory [64] and belief functions [22,74]. These latter two, that is, rough set theory and belief 
function theory, represent particularly important examples.

Rough set theory, originally proposed by Pawlak [64], is a set-theoretic uncertainty model that allows one to study dif-
ferent forms of uncertainty (including: indiscernibility, granularity and ambiguity), as induced by a relation among objects 
of interest representing their mutual indiscernibility (i.e., equality, similarity). By contrast, belief function theory, first intro-
duced by Dempster [22] and then formalized by Shafer [74], is a framework for representing and reasoning with uncertain 
information based on non-additive measures, which can be seen as an extension of set theory and probability theory [28].

Despite having had more or less orthogonal developments, the formalisms of rough set theory and belief functions 
are strongly related. Indeed, a theoretical relationship between the two formalisms was already noted by Pawlak [65], 
and further studied during the following years [46,88,106,117,126], leading to potential applications (mainly driven by the 
translation of properties and tools from belief functions to rough sets), especially in the fields of knowledge representation 
and machine learning.
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In this survey article, we present a review of the most relevant contributions at the intersection of rough set and belief 
function theories focusing, in particular, on the theoretical contributions linking these two formalisms, as well as on the 
applications (both theoretical and practical) of such results in the areas of knowledge representation and machine learn-
ing. With respect to knowledge representation, we highlight the contributions providing theoretical links and relationships 
among the mathematical formalisms of rough set and belief function theories, as well as results highlighting the combined 
use of the two theories to represent uncertain data. From the machine learning viewpoint, we highlight the most rele-
vant contributions providing a direct application of the above mentioned theoretical results, with special emphasis on the 
applications of the two formalisms to clustering and learning from uncertain or imprecise data.

The rest of the paper is structured as follows. In Section 2 we quickly review the basics of belief function and rough 
set theories. In Section 3 we recall the main theoretical relationships among the two formalisms and their application to 
knowledge representation. In particular, in Section 3.1 we discuss results related to Pawlak’s rough set model, in Section 3.2
we consider the extensions of the previous results to more general rough set models, while in Section 3.3 we discuss the 
use of rough sets and belief functions to model uncertain and imprecise data. In Section 4 we focus on applications in 
Machine Learning: in particular, the relationships between evidential and rough set-based clustering models are discussed 
in Section 4.1, where we also provide new results on the link between credal partitions and three-way clustering. In Sec-
tions 4.2 and 4.3, we discuss applications to the management of data affected by uncertainty, respectively, in the conditional 
and decision attributes.

2. Background

In this section, we provide the necessary background material on belief functions and rough sets. In particular, we recall 
the basic notions of belief function theory in Section 2.1, including the definition of belief and plausibility functions, the 
relationship of the model with other uncertainty representation frameworks, the definitions of the main combination and 
transformation methods, as well as the basic concepts concerning the application of belief function theory to decision-
making and clustering. In Section 2.2, we first introduce Pawlak’s classical rough set model and its main extensions; we 
then summarize the applications of rough set theory in feature selection and classification, as well as the basic concepts on 
rough clustering and related soft clustering models.

2.1. Basic notions on belief functions

Belief function theory (also referred to as Dempster-Shafer theory or evidence theory) is a general mathematical frame-
work for uncertainty representation and management, first proposed by Dempster and Shafer [22,74] (see also [28] for a 
recent introduction to belief function theory). Formally, we have the following definitions.

Definition 2.1. Let X be a finite set and 2X the corresponding power set. A basic belief assignment (bba) is a function m :
2X �→ [0, 1] s.t. 

∑
A∈2X m(A) = 1. If m(∅) �= 0, then we say that the bba is unnormalized.

Starting from a bba, we can define two other set functions, namely the belief and plausibility functions:

Definition 2.2. Let m be a bba. Then, the belief and plausibility functions, Bel : 2X �→ [0, 1] and Pl : 2X �→ [0, 1] are defined, 
respectively, as:

Bel(A) =
∑

B:∅�=B⊆A

m(B) (1)

Pl(A) =
∑

B:B∩A �=∅
m(B). (2)

It is easy to observe that Bel and Pl are dual of each other, that is Bel(A) = 1 − m(∅) − Pl(Ac) and Pl(A) = 1 − m(∅) −
Bel(Ac). Given a bba, we can define the collection of focal sets Fm = {A ∈ 2X : m(A) �= 0}, i.e., the sets for which the basic 
belief assignment is greater than 0. If m(A) = 1 for some A ⊆ X , then m is said to be logical.

Example 2.1. Let X = {a, b, c} and let m : 2X �→ [0, 1] be a bba defined by m({a}) = 0.1, m({b}) = 0.2, m({b, c}) = 0.3 and 
m(X) = 0.4. The focal sets of m are Fm = {{a}, {b}, {b, c}, X}. Then, taking for example A = {a, c}, we can compute the belief 
Bel(A) = 0.1, and plausibility Pl(A) = 0.8.

Given two bbas, m1 and m2, we can define their combination (also, orthogonal sum) through the so-called Dempster’s 
rule of combination, namely:

m1 ⊕ m2(A) = 1

1 −K(m1,m2)

∑
m1(B) · m2(C), (3)
B,C :B∩C=A
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where K(m1, m2) = ∑
A,B:A∩B=∅ m1(A) · m2(B) is the conflict between m1 and m2. If K(m1, m2) = 1, then the combination 

m1 ⊕ m2 is undefined. The rule of combination ⊕ assumes that both sources of information m1, m2 can be considered as 
reliable. This assumption is weakened in the disjunctive rule [23,85], which only assumes that at least one of the two bbas 
is reliable:

m1 ©∪ m2(A) =
∑

B,C :B∪C=A

m1(B) · m2(C). (4)

Example 2.2. Consider the bba defined in Example 2.1, and let m′ be defined as m′({a, c}) = 0.6 and m(X) = 0.4. Then, m∗ =
m ⊕ m′ is defined as m∗({a}) = 0.11, m∗({b}) = 0.09, m∗({c}) = 0.21, m∗({a, c}) = 0.27, m∗({b, c}) = 0.14 and m∗(X) = 0.18. 
On the other hand, m† = m ©∪ m′ is defined as m†({a, c}) = 0.06 and m†(X) = 0.94.

Discussing the connections of belief function theory with other uncertainty representation formalisms, we recall that if 
the focal sets are all singletons, then m is said to be Bayesian: in this case, m is equivalent to a probability distribution and, 
for each A ⊆ X , it holds that Bel(A) = Pl(A). In this sense, belief function theory can be understood as a generalization 
of probability theory. Indeed, if m1 is a Bayesian bba and m2 is logical, it can be easily seen that the result of m1 ⊕ m2 is 
equivalent to probabilistic conditioning.

Furthermore, it can also be shown that belief functions are related to imprecise probabilities. Indeed, any belief function 
Bel (and the corresponding bba m) can be uniquely associated to the (convex) set of probabilities that dominate (i.e., are 
point-wise greater than) Bel. Namely,

P(m) = {P : ∀A ⊆ X, P (A) ≥ Bel(A)}. (5)

Thus, in the particular case where Bel is Bayesian, the set Pm contains exactly Bel as unique element.
If, on the other hand, the focal sets are nested (i.e. for each A, B ∈ Fm , either A ⊆ B or B ⊆ A) then m is said to be 

consonant, and it can be shown that Bel is a necessity measure and Pl is a possibility measure [28]. Thus, belief function 
theory can also be understood as a generalization of possibility theory [123]. However, we note that the two theories differ 
in their semantics and in certain formal aspects [37]. In particular, Dempster’s rule (3) does not preserve consonance and 
is, therefore, not compatible with possibility theory.

Starting from a bba m, we can define mappings that transform m into a probability distribution. In particular, the pignistic 
probability [83,85], P Betm , based on m is defined as:

P Betm (x) =
∑

A:x∈A

m(A)

|A| , (6)

for all x ∈ X . Similarly, the plausibility probability function [75,101], P Plm , is defined as:

P Plm(x) = Pl({x})∑
y∈X Pl({y}) . (7)

Example 2.3. Let m be the bba defined in Example 2.1. Then P Betm (a) = 0.23̄, P Betm (b) = 0.483̄ and P Betm (c) = 0.283̄. On 
the other hand, P Plm (a) = 0.24, P Plm (b) = 0.43 and P Plm (c) = 0.33.

The two transformations generally yield different results and satisfy different properties. For example, it has been 
shown that the plausibility transform is the only probabilistic transformation of belief functions compatible with Demp-
ster’s rule [19], in the sense that

P Plm1⊕m2
= P Plm1

⊗ P Plm2
, (8)

where, for any two probability distribution P1, P2, the orthogonal product is defined as:

P1 ⊗ P2(x) = P1(x) · P2(x)∑
x∈X P1(x) · P2(x)

.

On the other hand, the pignistic transform is the only transformation from belief functions to probability distributions which 
is linear [84], i.e.,

P Bet = αP Betm + (1 − α)P Betm (9)
αm1+(1−α)m2 1 2
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Table 1
An example of utility matrix.

F
D

1 2 3

1 1 0 0
2 0 1 0
3 0 0 1

Table 2
An example of extended utility matrix.

F
D

1 2 3

1 1 0 0
2 0 1 0
3 0 0 1
{1,2} 0.75 0.75 0
{1,3} 0.75 0 0.75
{2,3} 0 0.75 0.75
{1,2,3} 0.67 0.67 0.67

2.1.1. Decision-making with belief functions
In this section, we recall some basic concepts of decision-making based on belief function theory [24]. Assume D =

{d1, . . . , dn} is a set of states of nature or classes, and F = { f1, ..., fk} is a set of acts. In the following, we assume that 
F ⊆ 2D , where f ∈ F with | f | > 1 represents a partial classification (or, partial assignment). We consider a utility function 
U : D × F �→ [0, 1], where the entry U (d, f ) corresponds to the utility of selecting act f when the true class is d. We will 
assume that, for each d ∈ D , U (d, {d}) = k, and, for d′ �= d, U (d, {d}) > U (d, {d′}). The information about the utility function 
can be expressed in matrix notation, as shown in the following example.

Example 2.4. Let D = {1, 2, 3} and F = {1, 2, 3}. Then, Table 1 represents the utility function defined by U (d, d) = 1 and, for 
d′ �= d, U (d, d′) = 0.

Starting from a basic utility function U : D × D �→ [0, 1], if we want to consider also the utility of partial assignments 
U has to be extended to D × 2D . Various ways for doing so have been considered in the literature: Campagner et al. [10]
considered an approach based on arbitrary anti-tone functions, while Ma et al. [57] considered an approach based on 
Ordered Weighted Average (OWA) operators [110]. According to this latter approach, having fixed the utility function for 
the singleton acts, the extended utility function is controlled by a single parameter α, called imprecision tolerance, which 
interpolates between the maximum and the minimum OWA operators (see [57] for further details).

Example 2.5. Starting from Table 1, we want to extend the corresponding utility function to D × 2D . Assume that we adopt 
the OWA-based approach and set α = 0.75 (thus, we consider the OWA operator which is half-way between the maximum 
and the average), then the extended utility function is represented in Table 2.

In any case, as long as d ∈ f , it must hold that U (d, f ) ≥ 1
| f | (otherwise, a rational decision-making agent would always 

prefer choosing a precise act at random, rather than a partial assignment).
Assume, then, that the knowledge of a decision-making agent is expressed through a bba m : 2D �→ [0, 1] on the power 

set of the classifications. In the standard decision-theoretic setting, a preference among acts can be determined by means 
of the expected utility criterion. Different generalizations of this criterion to the setting of belief function theory [24] have 
been considered, here we recall the following:

– Lower Expected Utility: E( f ) = ∑
B⊆2D m(B) mind∈B U (d, f );

– Upper Expected Utility: E( f ) = ∑
B⊆2D m(B) maxd∈B U (d, f );

– Hurwicz Expected Utility: Eβ( f ) = βE( f ) + (1 − β)E( f ), with β ∈ [0, 1]

Each of these criteria determines a total preorder over the acts: namely, given an expected utility function E among 
{E, E, Eβ}, f1 ≥ f2 iff E( f1) ≥ E( f2). A decision rule can then be obtained by selecting (one of) the acts with maximal 
expected utility.

Example 2.6. Consider the utility function given in Table 2 and let m be the bba defined by m(1) = 0.2, m({1, 3}) = 0.4, 
m({2, 3}) = 0.2, m(D) = 0.2. Based on the lower and upper expected utility criteria we get that:

– E(1) = 0.2, E(1) = 0.8;
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– E(2) = 0, E(2) = 0.4;
– E(3) = 0, E(3) = 0.8;
– E({1, 2}) = 0.15, E({1, 2}) = 0.75;
– E({1, 3}) = 0.45, E({1, 3}) = 0.75;
– E({2, 3}) = 0.15, E({2, 3}) = 0.75;
– E(D) = 0.67, E(D) = 0.67;

So, according to the lower expected utility criterion we have:

D > {1,3} > 1 > {1,2} = {2,3} > 2 = 3

while, based on the upper expected utility criterion we have:

1 = 3 > {1,2} = {1,3} = {2,3} > D > 2

Thus, according to the Hurwicz expected utility criterion we get that 1 is the optimal act as long as β ≤ 2
9 , while if β > 2

9
the optimal act is D (i.e., the most imprecise classification).

2.1.2. Evidential clustering
In this section we recall the basic definitions of evidential clustering. Let X = {x1, . . . , xN } be a set of objects, and 

C = {c1, ..., cn} a set of clusters. Then, a credal partition [34] is a collection of bbas {mx}x∈X , where for each x it holds that 
mx : 2C �→ [0, 1] and 

∑
A∈2C mx(A) = 1. If for some x ∈ X it holds that mx(∅) �= 0, then we say that the credal partition is 

unnormalized. Irrespective of the specific evidential algorithm used (see e.g. [3,25,27,31,34,51,59,60,127], or also the recent 
review [30]), the main goal of evidential clustering models is to induce a credal partition from the data [29]. This credal 
partition can be interpreted as a soft clustering of the data, i.e., the bbas represent the uncertain assignment of the objects 
to the clusters.

Example 2.7. Let X = {x1, . . . , x5} and C = {c1, c2, c2}. Then, an example of evidential clustering is the following:

– mx1 ({c1}) = 1;
– mx2 ({c1}) = 0.8, mx2 (C) = 0.2;
– mx3 ({c2, c3}) = 1;
– mx4 ({c2}) = 1;
– mx5 ({c3}) = 0.4, mx5 (C) = 0.6.

It has been shown [29] that evidential clustering is a very general framework, extending other clustering approaches, 
obviously including hard clustering, but also many other soft clustering approaches like fuzzy clustering [7], rough clustering
(see Section 2.2.3) and possibilistic clustering [49]. In Section 4.1, we will explore the relationships among evidential clustering 
and rough clustering, as well as related approaches.

2.2. Basic notion on rough sets

The classical model of rough set theory, first defined by Pawlak [64], is based on the study of so-called information tables, 
namely:

Definition 2.3 ([64,66]). An information table is a tuple S = (X, Att, V , F ) where X is a finite set of objects, Att is a finite set 
of attributes, V = ∪a∈Att Va where Va is the set of values of attribute a and |Va| > 1, F is a function mapping objects and 
attributes to values, that is F : X × A �→ V .

A decision table is an information table where the attributes are divided into two groups C ∪ D , with C condition attributes, 
which represent the covariates or predictors, and D decision attributes, which represent the target features.

Example 2.8. An example of decision table is given in Table 3, where condition attributes are {Temperature, Pressure, 
Headache, Muscle Pain} and the decision attribute is Disease.

Given an information (or decision) table, the most basic notion in rough set theory is that of an indiscernibility relation 
IB with respect to a set of attributes B ⊆ Att . Such a relation intuitively represents the fact two distinct objects may be 
indistinguishable as a consequence of the chosen representation language (i.e., the selected set of attributes B). Thus, this 
can be formally defined as

∀x, y ∈ X, xIB y iff ∀a ∈ B, F (x,a) = F (y,a).
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Table 3
Example of decision table.

Patient Temperature Pressure Headache Muscle Pain Disease

p1 very high 2 yes yes A
p2 high 3 no yes B
p3 normal 1 yes no NO
p4 high 2 yes yes NO
p5 high 2 yes yes A

This relation is an equivalence one, which partitions X into equivalence classes [x]B that constitute granules of information. 
Due to lack of knowledge, we are not able to distinguish objects inside the granules, thus, it can happen that not all subsets 
of X can be precisely characterized in terms of the available attributes B .

Example 2.9. Let us consider the table in Example 2.8 and let

B = {Pressure, Headache}.
Then, we have three equivalence classes: {p1, p4, p5}, {p2} and {p3}. The set of patients {p1, p2} cannot be completely 
characterized, in the sense that it is not the union of equivalence classes. That is to say, the two attributes in B are not 
sufficient to describe the two patients p1 and p2.

However, any set H ⊆ X can be approximated by a lower and an upper approximation. Intuitively, the lower approx-
imation L(H) of a set H collects all objects which are surely contained in H : that is, L(H) contains all objects whose 
equivalence class is inside H . On the other hand, the upper approximation U (H) collects all objects which are compatible 
with H : that is, U (H) contains all objects whose equivalence class is not disjoint from H . Formally, the two approximations 
can be defined as

LB(H) = {x : [x]B ⊆ H}, (10a)

U B(H) = {x : [x]B ∩ H �= ∅}. (10b)

The pair (LB(H), U B(H)) is called a rough set.1

Clearly, we have L(H) ⊆ H ⊆ U (H), which justifies the names lower/upper approximations. Moreover, the boundary is 
defined as the collection of objects belonging to the upper approximation but not to the lower approximation, i.e., Bnd(H) =
U (H) \ L(H), while the exterior is the collection of objects not belonging to the upper approximation: E(H) = U c(H). The 
interpretation attached to these regions is that the objects in the lower approximation surely belong to H , the objects in the 
exterior surely do not belong to H and the objects in the boundary possibly belong to H . Hence, the boundary represents 
the uncertainty on the domain we are describing due to the insufficient ability of the attributes to discern among objects.

Other forms of imprecision arise in decision tables, when considering the decision attributes D . Indeed, it may happen 
that two objects with same conditions have different decision. In this case the decision table is said to be non-deterministic, 
and it is useful to introduce the generalized decision. Assume for simplicity that we have a single decision attribute, that is 
D = {d}. Then, the generalized decision for an object x, based on the attribute set B ⊆ Att , is the set of all decisions that 
have been associated to objects that are B-indiscernible from x, that is they have the same values as x on all attributes in 
B . Formally, the generalized decision is defined as:

δB(x) = {i ∈ Vd : ∃y ∈ X s.t. F (y,d) = i and xIB y},
that is, for a given set of conditions, it collects all the possible decisions.

Example 2.10. The generalized decision of Table 3 with respect to the whole collection of condition attributes is δ(x1) = {A}, 
δ(x2) = {B}, δ(x3) = {N O }, δ(x4) = δ(x5) = {A, N O }.

Thus, in a non-deterministic situation, only a subset of objects can be precisely classified. These objects form the so-
called positive region of the decision table, defined as

P O S B(X,d) =
⋃
x∈X

LB([x]{d}) = {x ∈ X : |δB(x)| = 1}. (11)

1 Notice that sometimes with rough set it is meant a set H which cannot be described by means of the equivalence classes, in contrast with an exact set
K such that LB (K ) = K = U B (K ) [16].
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Example 2.11. Let us consider objects p4, p5 in Table 3. Clearly, using the available symptoms (the condition attributes), 
we are not able to distinguish them, but on the other hand it is known that they have a different disease (the decision 
attribute). The positive region captures this uncertainty by not considering p4 and p5. Indeed, once fixed X = {p1, . . . , p5}
and Att the set of all condition attributes, we have P O S Att(X, d) = {p1, p2, p3}.

Finally, the Coefficient of Dependence of a decision d, given a set of attributes B ⊆ Att represents the relative size of the 
positive region, thus providing a numeric representation of the granularity of the indiscernibility relation. This is defined as:

Dip(B,d) = |P O S B(X,d)|
|X | . (12)

2.2.1. Rough sets: generalizations
Several generalizations of the basic rough set model have been introduced in the literature [111,112]. They are moti-

vated by applications, e.g., to weaken the requirement of equivalence when generating the approximations, or by theoretical 
consideration. For instance, by interpreting the approximations as operators in a modal logic, we can obtain in a straight-
forward manner several new rough set models [113]. In the following, we recall the models that are the most relevant to 
the forthcoming discussion.

Generalized relation The classical model recalled in Section 2.2 is based on an equivalence relation, i.e. a reflexive, symmetric 
and transitive relation. By weakening or getting rid of some of these properties we obtain generalized models [48,113,128]. 
Particularly interesting are similarity (reflexive and symmetric) relations [99], which can account for not exactly equal 
instances but similar ones. For instance, we can group objects with at least 80% of equal attributes or we can impose that 
two objects are similar if their distance (on a set of numerical features) is less than a fixed threshold. Moreover, dominance 
(reflexive and transitive) relations give rise to the so-called Dominance Based Rough Set approach (DRSA) [82], which can 
handle ordinal attributes. In general, given any binary relation R ⊆ X × X , the granule associated to x ∈ X is defined as 
R(x) = {y ∈ X : (x, y) ∈ R}. Thus, R(x) collects all objects that are R-related to x. Then, lower and upper approximation 
operators L, U : 2X �→ 2X are defined as:

L(H) = {x ∈ X : R(x) ⊆ H}, (13)

U (H) = {x ∈ X : R(x) ∩ H �= ∅}. (14)

Interval rough sets Interval structures (also called interval algebras) represent another possible generalization of the classical 
model [104]. In interval rough sets, which are directly inspired by the multi-valued mapping in Dempster’s original study 
of belief functions [22], the approximation operators (i.e., the lower and upper approximations) are determined by a multi-
valued mapping between two universe sets, or, equivalently, by a compatibility relation on the same two universes. Namely, 
let X, Y be two sets and R ⊆ X × Y be a binary relation. Relation R defines a multi-valued mapping r : X �→ 2Y s.t., for each 
x ∈ X , r(x) = {y ∈ Y : (x, y) ∈ R}. Approximation operators L, U : 2Y �→ 2X can then be defined as:

L(H) = {x ∈ X : r(x) ⊆ H},
U (H) = {x ∈ X : r(x) ∩ H �= ∅},

where H ⊆ Y . Usually, it is required that relation R is at least serial, in order to be consistent with models of rough sets 
based on generalized relations. In particular, it is easy to observe that the interval rough set model extends the model based 
on generalized relations: in particular, generalized relation models coincide with interval rough sets when the two universe 
sets are the same, i.e. X = Y (in which case R is a binary relation on X).

Approximation spaces An approximation space [15,14] is an abstraction of the environment of rough set theory. Basically, 
the granulation of the universe is given for granted and it is the starting point, instead of being built from data. It is no 
longer necessarily a partition, but it can be a covering or a partial covering, or even a more complex structure. Generally, it 
comes with a set of axioms that the granules or the induced approximations should satisfy.

Definition 2.4. An approximation space is a pair (X, G(X)), where G(X) is a granulation of the universe, i.e., a collection of 
sets

G(X) = {G(x) : x ∈ X},
such that 

⋃
x∈X G(x) = X .
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Obviously, the approximation space and generalized relation models are related. Indeed, the neighborhood generated by 
any relation forms a granulation. In the particular case where the approximation space is generated by a binary relation R , 
we will denote it as (X, R).

While approximation spaces represent a generalization of information tables, the same idea can be applied to generalize 
decision tables instead:

Definition 2.5. A decision approximation space is a triple (X, G(X), D(X)), where (X, G(X)) is an approximation space and 
D(X) is a partition of X into decision classes. That is, D(X) = {X1, ..., Xd}, where the decision classes X1, . . . Xd are pairwise 
disjoint and cover X .

Compared to approximation spaces, in decision approximation spaces only the sets corresponding to the decision classes 
are deemed relevant.

Several definitions of approximation have been studied on approximation spaces. Only considering covering-based 
rough sets (i.e., approximation space models in which the granulation is a covering), more than 30 approximations are 
known [115]. In the following, we will not assume a particular definition of approximation, but we will require that the 
approximation operators satisfy the following three axioms:

(R1) L(Hc) = [U (H)]c ;
(R2) L(H) ⊆ X ;
(R3) If H ⊆ K then L(H) ⊆ L(K ).

Fuzzy rough sets Fuzzy rough sets [38] represent another possible generalization of the Pawlak’s equivalence relation-based 
model. In the Fuzzy Rough Set model, the relation R is assumed to be a fuzzy relation, that is a function R : X × Y �→ [0, 1], 
and then the triple F = (X, Y , R) is called a fuzzy approximation space. Since X and Y are allowed to be different, fuzzy 
approximation spaces can be understood as a generalization of the previously described Interval Rough Set model. Based 
on a fuzzy approximation space F , the lower and upper approximations of any fuzzy set H : Y �→ [0, 1] can be defined 
as [107,108]:

L(H)(x) =
∧
y∈Y

(R(x, y) =⇒ H(y)) (15)

U (H)(x) = ¬L(¬H)(x) (16)

where =⇒ is a fuzzy implication, ∧ is a t-norm and ¬ is a negation operator. For each fuzzy set H , the pair (L(H), U (H))

is called a fuzzy rough set. Fuzzy rough sets keep many relevant properties of classical rough set models, and have been 
subject to a rich theoretical development in the recent years. Though we do not provide further details in this sense, as 
such a topic could be the subject of another review due to its scope, we refer the interested reader to [21,100,107,108] for 
further details and developments. As a final note, we remark that the notion of fuzzy rough sets generalizes the definition 
of an interval rough set. Indeed, if H is a crisp set (i.e., for all x ∈ X , H(x) ∈ {0, 1}) and R is a crisp relation, then the two 
definitions coincide.

2.2.2. Feature selection and classification
Feature selection in rough set theory is based on the central notion of reduct. A reduct of a set of attributes (that is, 

features) is a subset of attributes that conveys the same information as the whole set, specifically, the same equivalence 
relation in the basic rough set model. Thus, a reduct can help in understanding which feature is relevant and which not 
and, as such, to perform feature selection and dimensionality reduction.

Definition 2.6 (Reduct in information table). Given an information table, a set of attributes B1 is a reduct of B2, with B1 ⊆ B2
if:

(R1) xIB1 y =⇒ xIB2 y, i.e. the set of attributes B1 gives an indiscernibility relation R which is the same as (or finer than) 
the one given by B2;

(R2) A minimality condition holds: �C ⊂ B1 s.t. C satisfies condition (R1).

In general, multiple reducts may exist, but it can happen that some attributes belong to all the reducts. This set of 
attributes is named the core and it represents the set of indispensable features. We can thus divide the features in three 
categories: indispensable (the core), important but dispensable (belonging to some reducts but not to the core), useless 
(not belonging to any reduct). However, this clear-cut distinction may not be satisfying in many situations, where we may 
tolerate some error and thus define a grade of dispensability or otherwise stated importance of the different features. This 
leads to what are called approximate reducts [63]. Let us remark the following points on reducts:
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– Computing the shortest reduct is a N P - hard problem, while computing the set of all reducts is a N P N P -hard prob-
lem [79,98]. Hence, several heuristic and approximation algorithms have been proposed to address the problem of 
finding reducts, see, e.g., the surveys [6,90].

– Several generalized definitions have been given, in particular in cases of inconsistent [125] and incomplete data [50]. 
For a recent survey, see [43].

When the available information is in the form of a decision table, reducts can be defined in different ways, e.g., based 
on the generalized decision, or on the positive region:

Definition 2.7 (Reduct in decision table - generalized decision). Given a decision table, a set of attributes B1 is a reduct of B2, 
with B1 ⊆ B2, if

(RG1) B1 and B2 generate the same generalized decision: for all objects x ∈ X , δB1 (x) = δB2 (x);
(RG2) Minimality: �C ⊂ B1 s.t. δC = δB1 = δB2 .

Definition 2.8 (Reduct in decision table - positive region). Given a decision table, a set of attributes B1 is a reduct of B2, with 
B1 ⊆ B2, if

(RP1) Dip(B1, d) = Dip(B2, d);
(RP2) Minimality: �C ⊂ B1 such that Dip(C, d) = Dip(B1, d).

Example 2.12. Consider the decision table given in Table 3. The set of attributes R = {T emperature, Pressure} is a gen-
eralized decision-based reduct of Att . Indeed, for Att we have that δAtt([p1]Att = {p1}) = {A}, δAtt([p2]Att = {p2}) =
{B}, δAtt([p3]Att = {p3}) = {N O }, δAtt([p4]Att = {p4, p5}) = {N O , A}. The same equivalences can be shown to hold also for R . 
More generally, it can be shown that the only other reduct is {T emperature, Headache}. Thus, in particular, the core is equal 
to {T emperature}.

The same conclusion also holds for positive region-based reducts. Indeed, the positive region determined by Att is 
P O S Att(X, d) = {p1, p2, p3}. Thus, the set of attributes R = {T emperature, Pressure} is a reduct, since P O S R(X, d) =
P O S Att(X, d) = {p1, p2, p3}. Similarly, the set {T emperature, Headache} is also a reduct and thus, also in this case, the 
core is equal to {T emperature}.

Many other definitions of a reduct exist [43,81]: the relationships among these different models have recently been 
explored in [81].

Finally, we note that reducts can be useful not only for feature selection but also to perform classification [6,86]. In-
deed, classification rules can be deduced from a reduct. Let us consider a reduct R = {a1, a2, . . . , an}. Then, for any object 
equivalence class [x]R , we can define the rule

If (a1 = F (x, a1)) and . . . and (an = F (x, an)) then d ∈ δR(x).

Intuitively, such a rule can be used for classifying new objects: if the new object x to be classified fits the pattern 
described by the antecedent of a given rule (i.e., x belongs to some equivalence class [y]R , where R is a reduct), then its 
decision should be one of those in the associated generalized decision (i.e., the correct classification for x lies in δR(y)).

Example 2.13. Consider the decision table in Table 3. As shown in Example 2.12, the two reducts of the decision table are 
R1 = {T emperature, Pressure} and R2 = {T emperature, Headache}. Thus, R1 induces the following rules:

If T emperature = very high and Pressure = 2 then A
If T emperature = high and Pressure = 3 then B

If T emperature = normal and Pressure = 1 then N O
If T emperature = high and Pressure = 2 then A or N O

On the other hand, R2 induces the following set of rules:

If T emperature = very high and Headache = yes then A
If T emperature = high and Headache = no then B

If T emperature = normal and Headache = no then N O
If T emperature = high and Headache = yes then A or N O

2.2.3. Rough clustering
The concept of rough clustering [72] is a generalization of classical clustering, incorporating some of the principles of 

rough set theory. In this clustering model, each cluster c is approximated by a lower cluster l(c), i.e., the elements that 
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“certainly” belong to the cluster, and an upper cluster u(c), i.e., the elements that “possibly” belong to the cluster. Thus, 
rough clustering (similarly to evidential clustering reviewed in Section 2.1.2) is a soft clustering model, since the assignment 
of objects to clusters is not necessarily clear-cut.

Multiple rough clustering approaches have been considered in the literature [52,53,62,69,70,76,97], see also the section 
on clustering in the review by Bello and Falcon [6]. Nonetheless, the rough clustering model itself has been formalized by 
Lingras and Peters in [53], using the following three axioms:

(RC1) Any instance x belongs to at most one lower approximation:

∀x ∈ X, ∃〈l(c), u(c)〉 s.t. x ∈ l(c) ⇒ ∃!〈l(c), u(c)〉 s.t. x ∈ l(c);
(RC2) For each cluster, the lower approximation is contained in the upper one:

∀〈l(c), u(c)〉, l(c) ⊆ u(c);
(RC3) If an object x does not belong to any lower approximation, then it belongs to at least two upper approximations:

∀x ∈ X, �〈l(c), u(c)〉 s.t. x ∈ l(c) ⇒
∃〈l(ci), u(ci)〉, 〈l(c j), u(c j)〉, i �= j s.t. x ∈ u(ci), u(c j).

Example 2.14. Let X = {x1, ..., x5} and C = {c1, c2, c2}. Then l(c1) = {x1, x2}, u(c1) = {x1, x2, x3}, l(c2) = {x4}, u(c2) =
{x3, x4, x5} and l(c3) = ∅, u(c3) = {x5} is a rough clustering.

Yao et al. in [114] introduced interval–set clustering and Yu in [118] introduced three–way clustering. As in rough clus-
tering, in both interval–set clustering and three–way clustering (which are equivalent, from a formal point of view) each 
cluster c is approximated by a lower and an upper approximation [cl, cu]. However, they impose different conditions on the 
clusters:

(IC1) The lower approximation of any cluster cannot be empty: ∀c, cl �= ∅;
(IC2) The upper approximations are a covering of the universe: 

⋃
c cu = X ;

(IC3) All lower approximations are disjoint: ∀i, j, i �= j ⇒ ci
l ∩ c j

l = ∅.

Example 2.15. Let X = {x1, ..., x5} and C = {c1, c2, c2}. Consider the rough clustering defined in Example 2.14. Then, the latter 
one is not a three-way clustering, since l(c3) = ∅. On the other hand, consider c1

l = {x1, x2}, c1
u = {x1, x2, x3}, c2

l = c2
u = {x4}

and c3
l = c3

u = {x5}. Then, this is a three-way clustering. Notice, however, that this is not a rough clustering: indeed x3

belongs only to a single boundary set, namely c1
u .

The two sets of axioms are related. Indeed, obviously, IC3 is equivalent to axiom RC1. Also, it can be easily seen that ax-
ioms IC1, IC2, IC3 imply axiom RC2 while, conversely, axioms RC1, RC2, RC3 imply axiom IC2. However, the two systems 
are not equivalent. Indeed, rough clustering allows lower approximations to be empty (and in this case, the corresponding 
objects are required to belong to at least two upper approximations), which is not allowed in three–way clustering due to 
axiom IC1. On the other hand, three–way (and interval–set) clustering allows objects to be in only one upper approxima-
tion, which is not allowed in rough clustering due to axiom RC3. Nonetheless, in [11], it has been shown that any three–way 
clustering can be represented as an equivalent rough clustering by including a noise cluster, i.e., a cluster to which the ob-
ject that belong to only a single upper approximation is assigned. For recent work on interval-set and three-way clustering 
see [1,2,103,119–121], as well as the section on clustering in the recent review by Campagner et al. [9].

3. Knowledge representation

In this section, we review the most relevant results concerning the theoretical relationship between rough set belief 
function theories, focusing, in particular, on the knowledge representation aspect of these two frameworks. In Section 3.1 we 
recall the basic results relating Pawlak’s rough set model with belief functions, while in Section 3.2 we consider extensions 
of these results to more general rough set models. Finally, in Section 3.3, we consider knowledge representation models that 
combine rough sets and belief functions to represent uncertain and imprecise data.

3.1. Pawlak rough sets

The link between Pawlak rough sets and belief functions is evident from their definitions, and it was already recognized 
in the first years after Pawlak seminal work on rough sets. Indeed, in the introduction of “Rough sets and probability” [65], 
we can read:
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the inner and outer probabilities considered in this paper may be viewed as a special case of lower and upper probabil-
ities introduced by Dempster and as a special case of Shafer’s belief theory.

Formally, given the lower and upper approximations, defined as in Pawlak’s rough set model, we can define a pair of 
belief and plausibility functions, as stated in the following proposition.

Proposition 3.1 ([77]). Let L, U be the lower and upper approximations induced by an equivalence relation, according to (10), on a 
universe X. Then, for all H ⊆ X,

Bel(H) = |L(H)|
|X | , (17a)

Pl(H) = |U (H)|
|X | (17b)

are a pair of dual belief and plausibility functions. The corresponding bba is:

m(H) =
{ |H|

|X | if H is an equivalence class

0 otherwise.
. (18)

Conversely, given a pair of belief and plausibility functions we can give the conditions in order to obtain a pair of lower 
and upper approximations.

Proposition 3.2 ([117]). Let Bel and Pl be a belief and plausibility functions satisfying the following two conditions:

1. The set of focal elements forms a partition;
2. m(H) = |H |

|X | for every focal set H.

Then, there exists an equivalence relation R such that the derived lower and upper approximations satisfy (17). More precisely, R is 
defined as:

R = {(x, y) ∈ X2 : ∃H ∈ Fm s.t. x, y ∈ H}.

Example 3.1. Consider the decision table given in Table 3, and let B = {Headache, Pressure}. Then, the equivalence classes 
are [p1]B = {p1}, [p2]B = {p2}, [p3]B = {p3} and [p4]B = {p4, p5}. Thus, B determines the mass function mB s.t. mB({p1}) =
mB({p2}) = mB({p3}) = 1

5 and mB({p4, p5}) = 2
5 . If we let H = {p1, p2, p4}, it holds that Bel(H) = 2

5 and Pl(H) = 4
5 .

The interpretation of the relation between, on the one hand, the lower/upper approximations L, U and, on the other 
hand, the belief/plausibility functions Bel, Pl is particularly intuitive when we consider a decision table. In this setting [78], 
the following result holds:

Proposition 3.3 ([78]). Let S = (X, Att, d, V , F ) be a decision table, let B ⊆ Att and let δB be the generalized decision defined by B. 
Denote with Xi = {x ∈ X : F (x, d) = i} the decision class corresponding to decision i. Then, we can define a bba mB

S : 2Vd �→ [0, 1], s.t. 
∀� ⊆ Vd:

mB
S (�) = |{x ∈ X : δB(x) = �}|

|X | (19a)

BelB
S (�) = |L(

⋃
i∈� Xi)|
|X | (19b)

PlB
S (�) = |U (

⋃
i∈� Xi)|
|X | (19c)

Thus, the belief (resp., plausibility) of a set of decision values can be interpreted naturally as the probability of its lower 
(resp., upper) approximation, while the bba can be naturally interpreted as assigning to each possible set of decision values 
the corresponding probability (or, frequency). Furthermore, the authors of [78] also show an interesting relationship between 
Dempster’s rule of aggregation and the independent product of two decision tables defined as follows:

Definition 3.1. Let S1 = (X1, Att1, d1, V 1, F1), S2 = (X2, Att2, d2, V 2, F2) be two decision tables. The independent product 
S1 � S2 is defined as the decision table S = (X, Att, d) given by:
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(i) X = (X1 × X2) \ (X1 ⊗ X2);
(ii) d((x1, x2)) = δAtt1 (x1) ∩ δAtt2 (x2);

(iii) Att = Att1 + Att2 = (Att1 × {1}) ∪ (Att2 × {2});
(iv) V = V 1 ∪ V 2;
(v) For (a, i) ∈ Att and (x1, x2) ∈ X , F ((x1, x2), (a, i)) = Fi(xi, a)

where X1 ⊗ X2 = {(x1, x2) ∈ X1 × X2 : δAtt1 (x1) ∩ δAtt2 (x2) = ∅}.

Under the definition given above, the bba obtained from the independent product of two decision tables is shown in 
[78] to be equivalent to the Dempster combination of the corresponding bbas. That is, the following result holds:

Proposition 3.4 ([78]). Let S1, S2 be two decision tables. Then:

mS1�S2 = mS1 ⊗ mS2 .

This result implies that, intuitively, Dempster’s rule of combination (at least when restricted to bbas that can arise from 
Pawlak’s rough sets, that is bbas for which the collection of focal sets is a partition) can be interpreted as an operation of 
combination on the underlying sources of information (that is, the decision tables).

Remarks and prospects About the interpretation of the link shown above, Pawlak stated [67]:

Rough set theory is objective − for a given information table, qualities of corresponding approximations are computed. 
On the other hand, the Dempster-Shafer theory is subjective − it is assumed that values of belief (or plausibility) are 
given by an expert.

This comment highlights how the rough set-theoretic approach, at least as originally conceived by Pawlak, can be under-
stood as being of value only insofar as it is directly linked with, and grounded on, the available data, which should guide 
the application of the theory in practical scenarios. This is contrasted with Dempster-Shafer theory, in which knowledge 
(as represented by a belief/plausibility function) is elicited by a human expert (hence, subjective). Although this comment 
is correct in highlighting the fact that rough sets and belief functions may have different interpretations and semantics, it 
neglects the fact that, in practical applications, belief functions are not necessarily expert-elicited but can also be computed 
from the data (in the same way as reducts or decision rules in rough set theory). In this sense, the equivalences in [77,117]
can be interpreted as a way to compute belief and plausibility functions based on available data, by means of rough set 
theory. This semantics has been considered, e.g., also in [47,78] where the authors also provide an interpretation of the 
Dempster’s rule of combination, in terms of a combination operator on information tables which is conceptually similar to 
a join between relations (in the sense of relational algebra). Despite these interesting links and interpretations, we believe 
that further research should be devoted at understanding the relationship between other fundamental concepts in belief 
function theory (such as, e.g., other combination rules, marginalization, vacuous extension, etc.) and Pawlak’s rough set 
model.

3.2. Generalized rough sets

Starting from the initial results regarding the connection between Pawlak’s model and belief functions, similar results 
have also been explored for generalized rough set models.

Proposition 3.5 ([117]). Let us consider an approximation space (X, R), where R is at least a serial relation, with the lower and upper 
approximation defined according to (13)-(14). Then, a pair of dual belief and plausibility functions can be defined as in (17). The 
corresponding bba is defined as

m(H) = |{x ∈ X : R(x) = H}|
|X | . (20)

So, to any serial relation corresponds a belief assignment such that the mass can assume only rational values. Indeed, 
the converse of the above proposition exactly confirms this relationship.

Proposition 3.6 ([117]). Let Bel and Pl be a belief and plausibility such that for all subsets H ⊆ X, m(H) is a rational number with 
denominator |X |. Then, there exists a serial relation R such that the derived lower and upper approximations satisfy (17). In particular, 
we can define

R(x) = {y ∈ X : ∃H ∈ Fm s.t. {x, y} ⊆ H}.
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More recently, Zhang et al. [126] also showed that the properties of the relation R uniquely determine the properties of 
the collection F of focal sets for the corresponding belief function, and vice-versa. Namely, the following result holds:

Proposition 3.7 ([126]). Let (X, R) be an approximation space, with R being at least serial, and let F be the collection of focal sets 
determined by the belief function induced by (X, R) according to (17). Then:

– R is symmetric iff ∃φ : X �→F s.t. ∀x, y ∈ X, x ∈ φ(y) iff y ∈ φ(x);
– R is transitive iff ∃φ : X �→F s.t. ∀x, y ∈ X, x ∈ φ(y) =⇒ φ(x) ⊆ φ(y);
– R is reflexive iff ∃φ : X �→F s.t. ∀x ∈ X, x ∈ φ(x).

In order to consider any rational number, we have to take into account interval rough sets. Indeed, in this case, similar 
propositions as the previous ones can be obtained by substituting the approximations obtained by a serial relation with the 
ones obtained by a relation in interval rough sets. Namely, the following result holds:

Proposition 3.8 ([117]). Let (X, Y , R) be an interval structure, with R ⊆ X × Y being at least a serial relation. Then a pair of dual 
belief and plausibility functions can be defined as in (17).

As in the previous cases, also the converse result holds, namely:

Proposition 3.9. Let Bel and Pl be a belief and plausibility functions such that, for each subset H ⊆ X, m(H) is a rational number. 
Then, there exists an interval structure (X, Y , R) such that the derived lower and upper approximations satisfy (17). In particular, 
assume that there exists a mapping � : X �→ 2Y and a probability distribution P on X s.t. for all A ⊆ Y ,

m(A) =
∑

x∈X :�(x)=A

P (x).

Then, the compatibility relation R can be defined by (x, y) ∈ R ⇐⇒ y ∈ �(x).

As already noted in Section 2.2.1, this relationship is not particularly surprising, since the definition of interval rough sets 
has been directly inspired by belief function theory [22]. The same results have also been extended to general continuous 
belief function by means of random information systems [109], in which a probability distribution P on the objects (or, on 
the σ -algebra determined by the given relation) is also given.

More recently, Tan et al. [89] also investigated the relationship between general approximation spaces and belief func-
tions.

Definition 3.2. Let (X, G(X)) be an approximation space. Given an element a ∈ X , we define:

– The approximated set of a as the collection of sets for which a belongs to the corresponding lower approximation, that is 
G(a) = {A ⊆ X : a ∈ L(A)};

– The minimal approximated set of a as the collection of sets, within the approximated set of a, for which no subset is also 
in the approximated set of a. That is, MG (x) = {A ∈ G(a) : ∀B ∈ G(a), B ⊆ A ⇒ B = A}.

For each set H , we then define j(H) = {x : H ∈ MG(x)}, that is j(H) is the set of all objects for which H is in the corre-
sponding minimal approximated set.

In case of an approximation space the following proposition can be proved.

Proposition 3.10 ([89]). Given an approximation space and a pair of lower-upper approximations on (X, G) satisfying properties 
(R1)–(R3),

1. We can define a basic belief assignment on the universe X as

m(H) =
{

0 j(H) = ∅
1

|X |
∑

x∈ j(H)
1

|MG (x)| otherwise;

2. ∀x, |MG(x)| = 1 iff ∀H ⊆ X, Bel(H) = |L(H)|
|X | and Pl(H) = |U (H)|

|X | .

In case of a decision approximation space, we need similar definitions as before, but referred to a decision class.

Definition 3.3. Let (X, G(X), D(X)) be a decision approximation space. Given an element a ∈ X , we define
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– The approximated set of a as the set G(a) = {A ⊆ X : a ∈ A, A ⊆ L(Xi) for some decision class Xi};
– The minimal approximated set of a as the set MG (x) = {A ∈ G(a) : ∀B ∈ {G}(a), B ⊆ A ⇒ B = A};
– j(H) = {x ∈ X : H ∈MG(x)}.

Then, the following result holds.

Proposition 3.11 ([89]). Given a decision approximation space and a pair lower-upper approximations on (X, G(X), D(X)) satisfying 
properties (R1)–(R3),

1. We can define a basic belief assignment on the universe X as

m(H) =
{

0 j(H) = ∅
1

|Pos|
∑

x∈ j(H)
1

|MG (x)| otherwise
;

2. For all decision class Xi , Bel(Xi) = |L(Xi)||Pos| and Pl(Xi) = |U (Xi)||Pos| .

Finally, the relationship between belief function theory and rough set theory has been explored also in the fuzzy setting, 
by drawing a connection between fuzzy rough set models [38,108] and fuzzy belief functions [8,56,26]. In particular, Wu et 
al. [108] proved that, given a fuzzy approximation space (X, Y , R) and a fuzzy set H , the lower and upper probabilities of 
H ,

P (H) =
∑
x∈X

L(H)(x) (21)

P (H) =
∑
x∈X

U (H)(x) (22)

are exactly the belief and plausibility of the fuzzy event H [8,26]. Furthermore, they show that Propositions 3.8, 3.10
and 3.11 similarly apply to the fuzzy case, and can also be extended to the case where X is infinite, by noting that 
P (H), P (H) are always, respectively, a fuzzy monotone Choquet capacity and a fuzzy alternating Choquet capacity of in-
finite order (hence, they always defined fuzzy belief and fuzzy plausibility functions). Furthermore, the results obtained by 
Wu et al. [108] have also been more recently extended to more general families of fuzzy approximation spaces, including 
fuzzy coverings [39].

Remarks and prospects In regard to the interpretation of these results, the same comments made for Pawlak rough sets 
hold. A particularly important direction of research is to determine in which cases (both practical and theoretical) the above 
mentioned relationships can be proved useful. So far, results in this sense have been proposed only for generalized relation 
models: for example, the relationship between similarity-based rough sets (i.e. rough set models in which the underlying 
relation is symmetric and reflexive) and belief functions has been studied in the setting of feature selection with missing 
or set-valued data (see Section 4.2). Similar relationships and practical applications for the more general results presented 
in this section have not been considered in the literature. Consequently, similarly to the case of Pawlak’s rough sets model, 
the semantics and usefulness of the presented results should be further clarified. Further, in this survey we only provided 
a short account of the results dealing with the fuzzy case: this is a necessary consequence of the broadness of this topic. 
Nonetheless, due to recent interest in this area, also from an application-oriented point of view (see, e.g., [26,55,41]), further 
work should be devoted at exploring this rich subject.

3.3. Uncertain decision tables

An uncertain decision table [93] is a decision table where the decision attribute is not exactly known and the uncertainty 
is expressed in the form of a belief basic assignment on the possible values.

Definition 3.4. An uncertain decision table (UDT) is a structure (X, Att ∪ {d}, V al, F , {mx}x∈X ), where (X, Att ∪ {d}, V al, F ) is 
a decision table according to Definition 2.3 and, for each x ∈ X , mx : 2V ald �→ [0, 1] is a basic belief assignment on the set of 
decision values.

Example 3.2. In Table 4, we illustrate an example of an UDT.

Due to this generalized definition, a new definition of decision classes is required. In [93], they are defined according to 
a tolerance (that is, similarity) relation based on the distance between two bbas. Given a decision value v ∈ V ald , let mv be 
a bba s.t. mv ({v}) = 1. Then, given a threshold θ , the θ -tolerance class Xv represents the collection of all objects x whose 
bba-valued decision is not too dissimilar from the bba associated to the decision v . Formally, this can be defined as
205



A. Campagner, D. Ciucci and T. Denœux International Journal of Approximate Reasoning 143 (2022) 192–215
Table 4
Uncertain decision table.

Patient Temperature Headache Disease

p1 very high yes m(A) = 0.8, m(B) = 0.05, 
m({A, B}) = 0.15

p2 high no m(B) = 0.7,m({A, B}) = 0.3
p3 normal no m(N O ) = 1
p4 high yes m(A) = 0.1, m(N O ) = 0.8, 

m({A, N O }) = 0.1
p5 high yes m(A) = 0.2, m(B) = 0.2, 

m(N O ) = 0.2, m({A, B, N O }) = 0.4

Xv = {x ∈ X : dist(mv ,mx) < 1 − θ},
where dist denotes Jousselme’s distance [45] defined as

dist(m1,m2) =
√

1

2
(‖−→m1‖2 + ‖−→m2‖2 − 2〈−→m1,

−→m1〉), (23)

with

〈−→m1,
−→m1〉 =

|2V ald |∑
i=1

|2V ald |∑
j=1

m1(Ai)m2(A j)
|Ai ∩ A j|
|Ai ∪ A j| , (24)

and Ai, A j ∈ 2V ald . In (24), the sum is over all the possible subsets of values that the decision attribute can assume.

Example 3.3. Consider the UDT defined in Example 3.2. Then, if we select θ = 0.75, the θ -tolerance classes are defined as: 
X A = {p1}, XB = {p2}, and XN O = {p3, p4}.

In order to compute the approximations, we first need to combine the bbas inside each equivalence class defined on 
the condition attributes. In [93], averaging is proposed for performing this operation. Denote the equivalence class defined 
according to a set B of condition attributes as [x]B and the aggregated bbas as m[x]B . Then, the lower approximation of the 
tolerance class Xv collects all the objects for which the equivalence class is surely contained in Xv and, furthermore, the 
corresponding averaged bba is not too dissimilar from the bba associated to v . Thus, for each decision class Xv , the lower 
approximation is defined as

L(Xv) = {x ∈ X : [x]B ⊆ Xv and dist(mv ,m[x]B ) ≤ 1 − θ}. (25)

The definition of the upper approximation is unchanged. As we show in Section 4.3, the notion of UDT and the above 
definitions of approximations have been used by Lingras et al. [93–95] to perform feature selection and classification based 
on uncertain (in particular, evidential) data.

Example 3.4. Let C = {Headache}. Then, m[p1]C = (mp1 + mp4 + mp5 )/3 and, for the decision classes, it holds that:

– m[p1]C (A) = 0.67;
– m[p1]C (B) = 0.08;
– m[p1]C ({A, B}) = 0.05;
– m[p1]C (N O ) = 0.33;
– m[p1]C ({A, N O }) = 0.03;
– m[p1]C ({A, B, N O }) = 0.13.

On the other hand, m[p2]C = (mp2 + mp3 )/2, with:

– m[p2]C (B) = 0.35;
– m[p2]C ({A, B} = 0.15;
– m[p2]C (N O ) = 0.5.

Therefore L(X A) = L(XB) = L(XN O ) = ∅, while U (X A) = {p1, p4, p5}, U (XB) = {p2, p3} and U (XN O ) = X .

A related, but different, approach to the representation and management of uncertain decision tables using rough sets 
and belief functions was also considered in [13]. In this work, the authors consider a specific form of UDT, in which the 
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decision attribute is set-valued: this implies that the bbas attached to the objects are logical (i.e., they have a single focal 
set). Based on these definitions, for each equivalence class [x]B induced by a set of attributes B ⊆ Att , we can define a bba 
whose mass values are simply the relative frequency of each set of decisions, namely

m[x]B (A) = |{y ∈ [x]B : my(A) = 1}|
|[x]B | . (26)

The authors, however, do not provide a generalization of the approximations, focusing on the problem of finding reducts.

Remarks and prospects Interestingly, the definition of approximations in [93] is based on the average combination rule [61]
to combine the bbas of the instances in a given equivalence class, rather than Dempster’s rule. This alternative rule of 
combination is also coherent with the semantics of belief functions (indeed, the average of belief functions is still a belief 
function) and has the effect that the aggregation is always possible, even when two bbas are in conflict. For this reason, 
the authors suggest that averaging may be better suited to this context than Dempster’s rule. Nonetheless, we believe that 
further research could be devoted to exploring different notions of approximations based on other aggregation operators, 
such as Dempster’s rule or the disjunctive rule (4), which could be useful to account for possible inconsistencies in the UDT. 
Similarly, further research could investigate how the approximation defined in (25) changes if we consider different distance 
functions among bbas [45].

4. Applications to machine learning

In this section, we discuss the relationships between belief function and rough set theories in the field of Machine 
Learning, focusing on applications in which the two formalisms, and particularly the theoretical results shown in Section 3, 
have been related or combined to solve relevant uncertainty representation or management problems. In Section 4.1, we 
discuss the connections between rough clustering (and related formalisms, such as three-way clustering) and evidential 
clustering: we first discuss known results about the relationship between rough and evidential clustering, and we provide 
an original result extending the previously mentioned connection to three-way clustering. In Section 4.2, we focus on the 
use of rough set and belief function theories to model uncertainty and data missingness in the covariates, studying, in 
particular, the problem of feature selection. Finally, in Section 4.3, we continue the review of work related to UDTs (see 
Section 3.3), focusing on the problems of feature selection and rule induction.

4.1. Clustering

As highlighted in Section 2.1.2, evidential clustering [29] is based on the concept of a credal partition, in which each 
object xi is assigned a mass function mi describing an uncertain assignment to clusters. It can easily be seen that rough 
clustering can be understood as a special case of evidential clustering. Indeed, we have the following result:

Theorem 4.1 ([29]). To each evidential clustering where all mass functions are logical (i.e., ∀x ∈ X, ∃A ∈ 2C s.t. mx(A) = 1) cor-
responds a unique rough clustering. Vice-versa, to each rough clustering corresponds a unique evidential clustering where all mass 
functions are logical and normalized (i.e., ∀x ∈ X, ∃A ∈ 2C \ {∅} s.t. mx(A) = 1).

More generally, given any evidential clustering, we can obtain from it a rough clustering. For example, a particularly 
simple approach to perform such a transformation is to apply the maximum mass rule [29]. That is, for each object x, we take 
the set of clusters A to which the bba mx assigns maximal mass. Then, we say that x is in the upper cluster of every cluster 
in A: if, furthermore, |A| ≤ 1, then we also say that x is in the lower cluster of A. Formally, we define Ax = arg maxA m(A). 
Then, if Ax = {c}, set x ∈ l(c). Otherwise, for each c ∈ Ax , set x ∈ u(c) \ l(c). Finally, all x s.t. Ax = ∅ are assigned to the lower 
cluster of a noise cluster (thus, in general the rough clustering may have one additional cluster as compared to the starting 
evidential clustering).

Example 4.1. Consider the credal partition M = {mx1 , ..., mx5} introduced in Example 2.7. Applying the maximum mass 
rule, we obtain the following rough clustering: l(c1) = {x1, x2}, u(c1) = {x1, x2, x5}, l(c2) = {x4}, u(c2) = {x3, x4, x5}, l(c3) =
∅, u(c3) = {x3, x5}. Consider, on the other hand, the rough clustering defined in Example 2.14. Then, this can equivalently be 
represented as the credal partition: mx1 ({c1}) = mx2 ({c1}) = 1, mx3({c1, c2}) = 1, mx4({c2}) = 1, mx5({c2, c3}) = 1.

However, several different criteria can be applied [24]: in the following example, we show that the decision-theoretic 
framework described in Section 2.1.1 can be used for this purpose.

Example 4.2. Consider the credal partition introduced in Example 2.7 and let D = {1, 2, 3}, where classification i corresponds 
to assigning an object to cluster ci . Let U be the utility function described in Table 2, corresponding to the OWA operator 
with imprecision tolerance α = 0.75. Suppose we select the lower expected utility criterion, then:
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– The optimal act for object x1 is 1, thus x1 ∈ l(c1);
– The optimal act for object x2 is 1, thus x2 ∈ l(c1);
– The optimal act for object x3 is {2, 3}, thus x3 ∈ u(c2) and x3 ∈ u(c3);
– The optimal act for object x4 is 2, thus x4 ∈ l(c2);
– The optimal act for object x5 is D , thus x5 ∈ u(c1), x5 ∈ u(c2) and x5 ∈ u(c3).

By contrast, the problem of finding a relationship between three-way clustering and evidential clustering, to our knowl-
edge, has not been previously studied in the literature. As previously noted, the axioms for rough and three-way clustering 
are in general incompatible, and this complication obviously arises also in the case of evidential clustering. Nonetheless, 
in [11], it has been shown that three-way clustering can be represented in terms of rough clustering by adding a so-called 
noise cluster. Based on this relationship, a correspondence between three-way clustering and evidential clustering can also 
be found. Namely, let C∗ = C ∪ {cη}, where cη represents a noise cluster. If C = {mx}x∈X is a credal partition where every 
bba mx is defined on C∗ , then we say that C is an extended credal partition. Then, the following result holds:

Theorem 4.2. Let C = {mx}x∈X be an extended credal partition satisfying the following conditions:

1. ∀x ∈ X, ∃Ax �= ∅ s.t. mx(Ax) = 1 and either Ax ⊆ C , or Ax = {c, cη} for some c ∈ C
2. ∀c ∈ C , ∃x ∈ X s.t. mx({c}) = 1

Then C corresponds to a unique three-way clustering. Conversely, if T is a three-way clustering, then there is a unique extended credal 
partition C corresponding to T .

Proof. If C satisfies the two conditions, then we can construct a three-way clustering TC as follows. First, if mx({c}) = 1, set 
x ∈ cl . Condition (2) guarantees that, for each cluster c, at least one such object exists. For any other object x, denote as Ax
the set defined as in condition (1). Then, if |Ax| > 1, with Ax ⊆ C , set x ∈ cu \ cl for all c ∈ Ax . Otherwise (i.e., Ax = {c, cη}
for some c ∈ C ), set x ∈ cu \ cl . The converse follows in a similar way. �

We note that the equivalence expressed in Theorem 4.2 and, more particularly, the transformation from a three-way 
clustering to the corresponding evidential clustering respects the semantics of belief function theory. Indeed, we can note 
that, for any given c ∈ C and x ∈ X , it holds that Belx({c}) = 1 iff x ∈ cl , and, similarly, Plx({c}) = 1 iff x ∈ cu .

Example 4.3. Consider the three-way clustering defined in Example 2.15. It is easy to see that this can be equivalently 
represented as the following extended evidential clustering: mx1 ({c1}) = mx2 ({c1}) = 1, mx3({c1, cη}) = 1, mx4({c2}) = 1, 
mx5 ({c3}) = 1.

In regard to methods for transforming a general evidential clustering to a three-way clustering, we note that the same 
techniques used for rough clustering cannot be directly used due to the differences between rough clustering and three-
way clustering. In particular, in three-way clustering we need to guarantee that, for each cluster c, at least one object 
x ∈ X belongs to the lower cluster cl . Nevertheless, we propose a relatively simple transformation criterion based on the 
decision-theoretic approach introduced in Section 2.1.1.

Basically, we initially set the imprecision tolerance degree α = 1: in this way all objects are assigned to the upper 
cluster of all clusters. Then, iteratively, we reduce the imprecision tolerance until we obtain an assignment that satisfies the 
constraints of three-way clustering: namely, we continue decreasing α as long as there is some cluster whose lower cluster 
is empty. This procedure is guaranteed to stop: in the worst case we reach α = 0, in which case we obtain a hard clustering 
(which, indeed, is a special case of three-way clustering).

We note that, following this procedure, it may happen that even with α = 0 some of the clusters end up being empty 
(i.e., the corresponding lower and upper clusters are both empty). Even though this situation is not problematic from a 
procedural perspective (i.e., the empty clusters can simply be removed), it may indicate that the original evidential clustering 
algorithm was not able to find a significant clustering structure. As a consequence, such a situation could suggest to apply 
again the clustering algorithm with different parameter settings (e.g., reducing the number of clusters).

Example 4.4. Consider the credal partition introduced in Example 2.7 and let D = {1, 2, 3}, where classification i corresponds 
to assigning an object to cluster ci . We have shown in Example 4.2 that the value α = 0.75 does not result in a three-way 
clustering, since the lower cluster of cluster c3 is empty. Thus, we need to select a value of α < 0.75. It can easily be shown 
that for α = 0.55 we obtain the following assignment:

– The optimal act for object x1 is 1, thus x1 ∈ c1
l ;

– The optimal act for object x2 is 1, thus x2 ∈ c1
l ;

– The optimal act for object x3 is {2, 3}, thus x3 ∈ c2
u and x3 ∈ c3

u ;
– The optimal act for object x4 is 2, thus x4 ∈ c2;
l
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– The optimal act for object x5 is 3, thus x5 ∈ c3
l .

Thus, in this case, we obtain a three-way clustering since all lower clusters are non-empty. Furthermore, the obtained three-
way clustering is not hard, since object x3 does not belong to any lower cluster. It can be easily shown that for any α > 0.55, 
object x5 is assigned to the upper cluster of all clusters. Thus, the above described procedure would stop at the optimal 
value α = 0.55.

Remarks and prospects Beyond the formal relationships shown above among evidential, rough and three-way clustering, the 
relative advantages and strengths of the different approaches have rarely been considered. Joshi and Lingras [44] showed, 
through a set of illustrative examples on simple toy datasets, that evidential clustering may be more effective at identifying 
outliers, due the increased flexibility of bbas. By contrast, the main advantage of rough clustering (and, by extension, three-
way clustering) is its simplicity [29,71]: rough clustering techniques are usually more computationally efficient, and also 
more interpretable (e.g., for visualization). Also, rough clustering was found to be more resistant than evidential clustering 
to the so-called curse of dimensionality [44]. Nonetheless, these comments being based on small toy datasets, we believe 
that future work should be devoted at comparing rough, three-way and evidential clustering from an empirical perspective 
on real-world datasets, both in terms of performance, and in terms of the possible relationship between rough partitions 
induced by rough (resp., three-way) clustering algorithms and the rough partitions obtained as approximations to an evi-
dential clustering. A particularly important problem, in this sense, regards the study and design of general evaluation criteria 
that can be used to compare different forms of soft clustering, such as those proposed in [11,33,35]. Evaluation criteria can 
be useful also for the purpose of transforming evidential clustering into rough (resp. three-way) clustering, and vice-versa: 
namely, given an evidential clustering one could select the rough (resp. three-way) clustering which is maximally similar to 
it. In particular, we believe that such criteria could be particularly useful for the case of three-way clustering: indeed, we 
remark that even though the procedure we proposed is conceptually simple, it can be computationally inefficient if imple-
mented naively. While binary search or search heuristics can be used to make searching for the optimal α more efficient, 
we believe that further research should be devoted at exploring alternative transformation strategies.

4.2. Uncertainty in the conditions: belief reducts

The correspondence between generalized relation-based rough set models and belief functions [117,126] has been ex-
ploited in the literature as a foundation for studying the problem of reduct search (i.e., feature selection) in the presence 
of missing or set-valued data [105]. The starting point, in this setting, is the possibility to define belief and plausibil-
ity functions from a similarity relation-based rough approximation. The similarity relation S is used to take into account 
missing values and partially specified values. Indeed, given an information table such that the condition attributes can be 
set-valued, and a subset of attributes B ⊆ Att , a similarity relation S can be easily defined by declaring two objects x, y ∈ X
to be B-similar when, for each attribute in B , the set values for the two objects are compatible (i.e., they are not disjoint). 
Formally:

S B = {(x, y) ∈ X × X : ∀a ∈ B, F (a, x) ∩ F (a, y) �= ∅}. (27)

Then, belief and plausibility reducts can be defined as follows.

Definition 4.1. Let B ⊆ Att a set of attributes, and S B the similarity relation defined by B as in Eq. (27). Let BelB , PlB be the 
corresponding belief and plausibility functions defined as in (17). Then, given two attribute subsets B1 ⊆ B2 ⊆ Att , B1 is a 
belief reduct of B2 if

1. For all similarity classes [x]S , BelB1([x]S) = BelB2 ([x]S);
2. A minimality condition holds: �C ⊂ B1 s.t. BelC ([x]S) = BelB1 ([x]S).

Given two attribute subsets B1 ⊆ B2 ⊆ Att , B1 is a plausibility reduct of B2 if

1. For all similarity classes [x]R , PlB1 ([x]S) = PlB2 ([x]S);
2. A minimality condition holds: �C ⊂ B1 s.t. PlC ([x]S) = PlB1 ([x]S ).

The following result holds:

Theorem 4.3 ([105]). B ⊆ Att is a reduct iff it is a belief reduct. Furthermore, if B ⊆ Att is a reduct then it is a plausibility reduct.

Interestingly, the converse of the second statement above in general does not hold. In case of a decision table, the 
following definition of reducts is given:

Definition 4.2. Given two attribute subsets B1 ⊆ B2 ⊆ Att , B1 is a relative belief reduct of B2 if
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Table 5
Example of decision table with set-valued conditions.

Patient Temperature Pressure Muscle Pain Disease

p1 {very high,high} 2 yes YES
p2 {normal, high} 1 no NO
p3 high {1, 2} yes NO
p4 high 2 {no, yes} YES

1. For all decision classes [x]d , BelB1([x]d) = BelB2 ([x]d);
2. A minimality condition holds: �C ⊂ B1 s.t. BelC ([x]d) = BelB1 ([x]d).

An attribute subset B1 ⊆ B2 ⊆ Att , A is a relative plausibility reduct of B2 if

1. For all decision classes [x]d , PlB1([x]d) = PlB2 ([x]d);
2. A minimality condition holds: �C ⊆ B1 s.t. PlC ([x]d) = PlB1 ([x]d).

Example 4.5. Consider the decision table given in Table 5. Define B = {T emperature, Headache} and let the decision attribute 
be d = {Disease}.

Then the similarity relation determined by B is

S B = {(p1, p3), (p1, p4), (p3, p4), (p2, p3)}sr,

where, given a relation R ⊆ X × X , Rsr represents the symmetric and reflexive closure of R . The similarity classes determined 
by S B are [p1]B = {p1, p3, p4}, [p2]B = {p2, p3}, [p3]B = {p1, p2, p3, p4} and [p4]B = {p1, p3, p4}. By contrast, the similarity 
relation determined by Att is

S Att = {(p1, p3), (p1, p4), (p3, p4)}sr .

The similarity classes determined by S Att are [p1]Att = {p1, p2, p3} and [p2]Att = {p2}. The partition determined by 
d is [p1]d = {p1, p4} and [p2]b = {p2, p3}. Thus, the similarity relation S B determines the bba mB({p1, p3, p4}) =
1/2, mB({p2, p3}) = 1/4 and mB(X) = 1/4. By contrast, the equivalence relation given by Att determines the bba 
mAtt({p1, p3, p4}) = 3/4 and mAtt({p2}) = 1/4. Since it holds that BelB({p1, p4}) = BelAtt({p1, p4}) = 0, BelB({p2, p3}) =
BelAtt({p2, p3}) = 1/4, we have that B is a relative belief reduct. Furthermore, since PlB({p1, p4}) = PlAtt({p1, p4}) = 3/4, 
PlB({p2, p3}) = PlAtt({p2, p3}) = 1, B is also a relative plausibility reduct.

In contrast to the case of reducts, for the case of relative reducts the following results hold:

Theorem 4.4. If the decision table is consistent, then B ⊆ Att is a relative reduct iff it is a relative belief reduct iff it is a relative 
plausibility reduct. If the decision table is not consistent, then B ⊆ Att is a relative reduct iff it is a relative plausibility reduct.

The results of [105] have been extended to other generalized rough set models. First, the same authors [109] consid-
ered the application of belief and plausibility reducts to random information systems, showing that Theorems 4.3 and 4.4
hold also in this setting. Furthermore, the extension to the case of continuous and interval-valued data has been widely 
studied [17,68,88], and it has been shown that the equivalence between belief and classical reducts holds also in these 
settings.

Considering different generalized relations, Du et al. [36] studied the case of dominance-based rough sets, in which the 
relation induced by the condition attributes is a dominance (i.e., reflexive and transitive) relation, showing that the above 
described methodology can also be applied to ordinal data. Similarly, Syau et al. [87] considered the extension to reflexive 
(but not necessarily symmetric) relations, in order to model two different types of missing values (don’t know vs doesn’t 
exist). While in all these models the definitions of belief and plausibility reducts are the same as in (4.1) and (4.2), it has 
not yet been shown whether Theorems 4.3 and 4.4 similarly hold. Finally, the definition of belief and plausibility reducts 
has also been extended to the fuzzy case by Yao et al. [116] and Zhang et al. [124]. Remarkably, in this latter setting it has 
been shown that the extension of Theorem 4.4 to fuzzy information tables and fuzzy approximation spaces holds.

Interestingly, a similar approach has also been proposed for the management of more general forms of uncertainty in 
the condition attributes. More in particular, Trabelsi et al. [91] studied the problem of reduct search where the uncertain 
condition attributes are expressed as bbas. In this case, which is inspired by the definition of tolerance relations used in 
UDTs (see Section 3.3), the similarity relation can be defined by declaring two objects to be B-similar if they have the same 
decision and, for each attribute in B the corresponding bbas for the two objects are not too distant. Formally, this can be 
defined as:

S B = {(x, y) ∈ X × X : d(x) �= d(y) ∧ ∀a ∈ B ⊆ Att,dist(ma
x,ma

y) < 1 − θ}, (28)
210



A. Campagner, D. Ciucci and T. Denœux International Journal of Approximate Reasoning 143 (2022) 192–215
where, for any object x ∈ X and attribute a ∈ Att , ma
x is the bba for x corresponding to attribute a, and the distance function 

is defined as in Eq. (23). We note that the obtained similarity relation is certainly symmetric and reflexive, but it is not, in 
general, guaranteed to be transitive.

Then, reduct search can be performed through standard techniques based on the discernibility matrix [91], or through 
belief and plausibility reducts. We note, however, that the theoretical properties of these latter types of reducts have not 
yet been studied in this setting.

Remarks and prospects Even though reduct search is a practical task, due to its relation with feature selection, all the 
above mentioned contributions had a primarily theoretical focus. Indeed, none of the mentioned articles investigates the 
performance and efficacy of algorithms for searching reducts in real applications. Therefore, future work should be devoted 
at assessing the performance (in terms of reduct size, as well as classification accuracy) of the different notions of evidence 
theory-based reducts. In particular, it would be interesting to assess the practical implications of Theorems 4.3 and 4.4: 
namely, since plausibility (resp., relative belief) reducts do not coincide with standard reducts in information (resp., decision) 
tables, the application of these definitions to real data should be further evaluated. Finally, it would be interesting to evaluate 
whether Theorems 4.3 and 4.4 hold also for the more general similarity-based approaches proposed in [17,36,87,88], as well 
as in the bba-based approach proposed in [91].

4.3. Uncertainty in the decision: decision rules in UDT

Feature selection and rule induction tasks have also been studied in the context of UDTs (see Section 3.3). In particular, 
following the general reduction-rule process, Trabelsi et al. [93] propose the simplification of an UDT and generation of 
belief decision rules. So, as usual, the first step is reduct generation. The authors of [93] specifically consider the positive 
region-based reduct model, which is defined in the standard way according to (11) by using the lower approximation of 
(25). The definition of a reduct is not changed, i.e., it is the same as in Definition 2.8. In particular, to search for the reducts 
of an UDT (and hence perform feature selection), the same authors provide a heuristic algorithm based on a generalized 
definition of the discernibility matrix [94]. In [95,96], they also propose a parallel algorithm for application to big data.

Example 4.6. Consider the UDT defined in Example 3.2. Obviously, S1 = {Headache} is not a reduct, since P O S S1 (X, d) = ∅, 
while P O S Att(X, d) = {p1, p2, p3}. In the same way, S2 = {T emperature} is not a reduct, since P O S S2 (X, d) = {p1, p2}. Thus, 
the only reduct is the full set of features Att .

After performing feature reduction, decision rules can be induced. To do so, redundant objects and attribute values are 
eliminated. In particular, concerning objects, the bbas of objects that are in the same equivalence class (i.e., they have the 
same values for the reduced conditional attributes) are aggregated by means of the averaging combination rule. Decision 
rules can then be generated by reading directly in the simplified table the values of the condition attributes and the 
corresponding decision, in the form of the averaged bba on V alD . A major limitation of this definition of rules, is that 
their accuracy and performance cannot be easily evaluated, as the decision is represented in the form of a bba. For this 
reason, Trabelsi et al. propose [92,93] to convert the bba for each rule into a probability distribution, by means of the 
pignistic transform (6): accuracy can then be evaluated as a weighted average or by selecting the single decision with 
maximal probability.

Example 4.7. Consider the UDT defined in Table 4. In Example 4.6, we showed that Att is the only reduct. Thus, decision 
rules are in the form:

If T emperature = very high and Headache = yes then
m(A) = 0.8, m(B) = 0.05, m({A, B}) = 0.15

If T emperature = high and Headache = no then
m(B) = 0.7, m({A, B}) = 0.3

If T emperature = normal and Headache = no then m(N O ) = 1

If T emperature = high and Headache = yes then 
m(A) = 0.15, m(B) = 0.1, m(N O ) = 0.5, m({N O , A}) = 0.05, m({N O , A, B}) = 0.2

Based on [92,93], the decisions of the previous rules can be transformed into single-valued decisions by applying the 
pignistic transform and then selecting the value with maximum probability. The resulting rules are

If T emperature = very high and Headache = yes then A
If T emperature = high and Headache = no then B

If T emperature = normal and Headache = no then N O
If T emperature = high and Headache = yes then N O
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As previously mentioned in Section 3.3, a different approach to the definition of reducts and rules in UDT is taken in [13], 
based on the notion of an entropy reduct [80] and the generalized risk minimization [42] principle. In this setting, given a 
set of attributes B ⊆ Att the entropy of the reduced UDT is computed as

H(B) =
∑
[x]B

1

|[x]B | min
P∈P(m[x]B )

H(P ),

where m[x]B is the bba determined by the equivalence class of x as defined in (26), P(m[x]B ) is the set of probability 
measures compatible with m[x]B as defined in (5), and H(P ) = − 

∑
p p · log(p) is the Shannon entropy. Thus, for each 

equivalence class [x]B , a bba m[x]B is obtained and the entropy for this bba is simply computed as the lowest possible 
entropy for all probability distributions that are compatible with it. Then, B is said to be an entropy reduct if H(B) ≤ H(Att)
and the minimality condition (i.e., �D ⊂ B s.t. H(D) ≤ H(C)) holds.

After the reduct search, decision rules can be induced: in contrast to the rule induction procedure studied in [93], the 
approach proposed in [13] directly provides rules with single-valued decision, by using the maximum plausibility crite-
rion [24]. This approach to feature reduction was compared to state-of-the-art algorithms for feature selection on set-valued 
data, showing significant improvements on different datasets.

Remarks and prospects While the authors of [95] studied the performance of the discussed feature reduction and 
classification methods and reported promising empirical results, no comparison with other classifiers for evidential 
data [5,20,32,40,73] has so far been evaluated in the literature. Furthermore, similarly to the remarks in Section 3.3, also for 
the case of feature reduction and rule induction it would be interesting to evaluate the behavior and performance of differ-
ent aggregation as well decision rules. In respect to this latter aspect, while the authors of [95] considered only the pignistic 
transform, other decision-making criteria such as mentioned in Section 4.1 or disambiguation methods [42] should also be 
evaluated. A final remark regards the relationships among the methods for feature selection proposed in [93] and [13]. 
While this has not been previously evaluated, it is clear that the two approaches are not equivalent when applied to set-
valued data and may thus end up providing different results. Thus, future work should aim at studying possible conditions 
for the equivalence between the two approaches, as well as generalizations of the approach described in [12,13] to general 
bbas, and their comparison on real datasets.

5. Conclusion

In this article, we provided a survey of the literature on belief functions and rough sets. While our contribution is not 
intended to be systematic, we drew a map of the links and cross-fertilizations among these two different research com-
munities, so as to illustrate the most relevant relationships, their interpretation and semantics, as well as to highlight open 
problems, prospects and directions for future research. To this end, we reviewed the known theoretical results relating the 
rough set and belief function theories, as well as their applications to knowledge representation and machine learning. We 
hope that this paper will stimulate further research and investigations at the cross-road of the two research communities. 
To this purpose, we proposed some particularly relevant open problems related to each covered application, both of a the-
oretical as well as of an empirical or practical nature. In particular, to summarize, we recall and highlight the following 
relevant open issues:

– While the mathematical picture connecting the basic notions within rough set theory (i.e., approximations) and belief 
function theory (i.e., belief and plausibility functions) has been widely studied, the interpretation of these connections 
is much less clear and should be further investigated. Furthermore, the connections between other relevant concepts in 
the two theories (e.g., granule refinements or joins of decision tables in rough set theory, Dempster combination rule 
or coarsenings in belief function theory) should be explored.

– While the theoretical results for Pawlak and generalized relation models have been applied in practical problems (either 
in knowledge Representation or Machine Learning), the results for more general rough set models (e.g., interval rough 
sets or general approximation spaces) have not yet seen practical applications. Therefore, it would be interesting to 
further explore the applications of these results.

– In this review we only provided a brief introduction to the extension of the mentioned relationships between rough 
set theory and belief function theory to the fuzzy case, due to space constraints. Nonetheless, we believe that more 
research should be devoted at further exploring this important topic, as well as its possible applications.

– In our summary of theoretical results, we focused on a static picture of the relationship between rough set theory and 
belief function theory: namely, we assumed the information/decision tables and corresponding belief/plausibility func-
tions to be already given and fixed in time. Nonetheless, it could be interesting to study the relationships between these 
mathematical structures also in so-called dynamic or incremental settings, in which the available knowledge evolves and 
changes with time. Although this issue has been explored within rough set theory [6,18,54], we believe that further 
attention should be devoted at studying the connections between rough approximation and the corresponding be-
lief/plausibility functions in the dynamic setting.
212



A. Campagner, D. Ciucci and T. Denœux International Journal of Approximate Reasoning 143 (2022) 192–215
– The comparative performance and properties (e.g., with respect to interpretability or ease of visualization) of rough 
and evidential clustering algorithms should be further evaluated, by means of experiments on real-world benchmark 
datasets. To this end, a particularly interesting open problem regards the definition of appropriate clustering quality 
metrics that could be applied to evaluate different types of soft clustering [33].

– The practical performance of belief and plausibility reducts (see Section 4.2) has not yet been evaluated in experimental 
settings. Furthermore, several theoretical problems related to this approach remain open. These include finding theo-
retical conditions for equivalence between the two reduct definitions, the study of rule induction algorithms, as well as 
studying the properties of these definitions of reducts in the other generalized relation-based models that have been 
more recently considered in the literature [17,36,68,87,88,91].

– The relationships between two existing approaches for dealing with UDTs (see Sections 3.3 and 4.3) should be further 
studied, both in theoretical terms (e.g., when do the two approaches coincide? When they give different results?) and 
experimental ones. To this end, a particularly interesting open problem regards the extension of the approach proposed 
in [12,13] to general UDTs.

– Finally, while in this article we reviewed a broad and representative selection of possible applications of the links 
between rough sets and belief functions, obviously many others have been considered in the literature that could not 
be covered within the scope of this article. In particular, the connections between belief functions and rule induction 
in rough set theory seem to be particularly worthy of investigation: indeed, since rough set theory allows the induction 
of so-called non-deterministic rules [58] (i.e., rules in which either the consequent or antecedent are underspecified), it 
would be interesting to study the connections between quality measures for such rules (e.g., the support) and measures 
arising from belief function theory.
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