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We show that ground state solutions to the nonlinear, fractional problem

(—A)Yu+V(z)u= f(z,u) in 2,

u=0 in RV \ £,
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1 Introduction

The aim of this paper is to analyze the asymptotic behavior of least-energy solutions to the
fractional Schrédinger problem

{(—A)Su +V(2)u= f(z,u)  in g2, (1.1)

u=0 in RV \ 12,
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in a bounded domain 2 C RY. We recall that the fractional laplacian is defined as a singular
integral via the formula

o . u(z) — u(y)
(=4)%u(z) = C(N,s) lim B () mdy

with

1 B 1 —cos(
O3] o e G0

This formal definition needs of course a function space in which problem (1.1) becomes meaningful:
we will come to this issue in 2.

Several models have appeared in recent years that involve the use of the fractional laplacian.
We only mention elasticity, turbulence, porous media flow, image processing, wave propagation
in heterogeneous high contrast media, and stochastic models: see [1,8,9,13].

Instead of fizing the value of the parameter s € (0, 1), we will start from the well-known identity
(see [7, Proposition 4.4])

lim (—A)%u = —Au, u € CPRY),

s—1—

and investigate the convergence properties of solutions to (1.1) as s — 1. In view of the previous
limit, it is somehow natural to conjecture that solutions to (1.1) converge to solutions of the
problem

{—Au +V(z)u= f(z,u) in 0 (1.2)

u=20 in RV \ £2.

We do not know if this conjecture is indeed correct with this degree of generality, but we will
prove that this happens — up to a subsequence — for least-energy solutions. Our result extends
the very recent analysis of Biccari et al. (see [2]) in the linear case for the Poisson problem to
the semilinear case. See also [4].

We collect our assumptions.
(N) N>3,1/2<s<1;
(£2) 2 c RY is bounded domain with continuous boundary 942;
(V) Ve L*®°(2) and infp V' > 0;

(F1) f: 2 xR — R is a Carathéodory function, namely f(-,u) is measurable for any u € R and
. . 2N
f(z,-) is continuous for a.e. z € 2. Moreover there numbers are C' > 0 and p € (2, m)
such that

|f(z,u)] <O+ [uff™)
for u € R and a.e. z € £2.

(F2) f(z,u) =o(u) as u — 0, uniformly with respect to x € 2.



(F3) limjy— 400 Flew) — | o6 uniformly with respect to x € 2, where F(z,u) = [y f(z,s)ds.

u2

(F4) The function R\ {0} > u — f(z,u)/u is strictly increasing on (—o0,0) and on (0, c0), for
a.e. T € {2

Remark 1.1. Tt follows from (F1) and (F2) that for every € > 0 there is C: > 0 such that
|f (@, u)| < elul + CelulP™!

for every u € R and a.e z € {2. Furthermore, assumption (F4) implies the validity of the
inequality

flx,u)u > 2F (x,u)

for every u € R and a.e. x € (2.

We can now state our main result.

Theorem 1.2. Suppose that assumptions (N), (12), (V), (F1)-(F4) hold. For 1/2 < s <1, let
us € H3(12) be a ground state solution of problem (1.1). Then, there is a sequence {sp}n C (1/2,1)
such that s, — 1 asn — +o0o and us, converges in L*(£2) to a ground state solution ug € HE(§2)
of the problem (1.2).

Remark 1.3. Actually, see Corollary 4.3, it follows that us, converges to ug in L”(§2) for every
2N

Remark 1.4. Unlike in [2], we cannot expect a convergence of the family {us}s as s — 17, since

solutions to (1.2) are not unique, in general.

The paper is organized as follows. The second section contains a short introduction into fractional
Sobolev spaces and the variational setting. In the third section we give the sketch of the proof of
existence of ground states to (1.1). The fourth section is devoted to the proof of Theorem 1.2.

2 The variational setting

In this section we collect the basic tools from the theory of fractional Sobolev spaces we will need
to prove our results. For a thorough discussion, we refer to [7, 10] and to the references therein.

We define a Sobolev space on (2 as

|u(z) — u(y)|?

‘.T _ y’N+28

H(0) = {u € LX) | -

dx dy < —i—oo} ,
endowed with the norm
’2

u(r) — u(y)

2 2 ‘
- dz d
lullzrs o) = llullz2(0) + /QXQ o — y[N+2s ray

Furthermore, H§(f2) is the closure of C§°(§2) with respect to the H*({2)-norm.



Definition 2.1. For 0 < s < 1, we define X°({2) as the set of all measurable functions
u: RY — R such that the restriction of u to {2 lies in L?(£2) and the map

u(z) — u(y)

RY x RY 5 (z,y) — -
[z —y[27*
belongs to L?(Q), where
Q= (RY x RY)\ (92° x 2°)
and £2¢ = RN \ 2. We also define
X3(2) = {ue X*(2) [u=0ae nRV\2}.

It is well know, see [10, Lemma 1.24], that X*(£2) C H*({2) with a continuous embedding, and
that

X$(02) = {ue H*(2) | u=0on 0.

Since we assume that (2 has a continuous boundary 92, C§°(£2) is dense in X§(£2) (see
[10, Theorem 2.6]), so that actually X§(£2) = Hj(§2) for such a domain (2. For u € X§(£2), an
equivalent norm of w is (see [10, Proposition 1.18])

2

L2(RN)

lulegiay = lulfao) + | (—2)34|
More explicitly, for every u € X§(£2),

2

Ju(@) — u(y)l? _ 5/2
/RNXIRN |z — y|N+2s dudy = C(N,s) H(_ ) u’L2(RN)’
where
s(1—s)
N =
CIN:) = TN BG)
dn
A(N7 5) - /RN—l (1 + ‘n|2)(N+25)/2’
1 —cost
Lemma 2.2. For every u € H'(RY), there results
: Avs2 |1 _ 2
Jim [|(=2)2u o) = IVl
Proof. From [7, Proposition 3.6], we know that
2
a0 [ ) ut)
[ sy = =7 fov o — gz W

From [7, Remark 4.3], we know that

. |u(z) —u(y)® _ WN-1 2
Jm (-9 /RNXRN o=y @y = S5 IVullza@y)



Therefore, recalling [7, Corollary 4.2],

. . C(N,s) |u(z) — u(y)|?
8/2 _ ’ _
S]_lgl_ H ’ L2(RN) sl_lgl_ 2(1 _ 8) ((1 8) /RNXRN ‘x — y‘N-I—Qs dx dy
1 AN wny—1 2 2
= Qwn_1 2N HVU”L2(RN) = HVUHL2(RN)-
O
On X§(£2) we introduce a new norm
2. s/2 s
Jull =] (=272 +/ oyl dr, ue X3(12), (2.1)
which is, under (V), equivalent to || - || xs(). Similarly we introduce the norm on H}(92) by
putting
]2 ::/ Vul? + V()i dr, ue HH(). (2.2)
9]
Corollary 2.3. For every u € H}(£2) we have
i (Julls = [Ju]-
-1
The following convergence result will be used in the sequel.
Lemma 2.4. For every ¢ € C§°(£2), there results
lim [[(=4)%¢ = (=2)¢l 2oy = 0.
s—1
Proof. We notice that
I(=2)%0 = (=)l 12y < (= D)0 = (~D)llany = [Fo (11> - Ie12) 2(9)))|
() = (RY) 3 L2(RN)
128 1 .12) 4
<11 =1 ) 2] e

where C' > 0 is a constant, independent of s, that depends on the definition of the Fourier
transform F. It is now easy to conclude, since the Fourier transform of a test function is a
rapidly decreasing function. O

We will use the following embedding result.

Theorem 2.5 ([10]). If £2 has a continuous boundary 012, then the embedding X§(§2) C L¥(£2)

is compact for every 1 < v < 2%, where 25 = 2N/(N — 2s).

We will need some precise information on the embedding constant for fractional Sobolev spaces.
Theorem 2.6 ([0]). Let N > 2s and 2% = 2N/(N — 2s). Then
T N-—2s

( ) S| || (—2)*/2

]2 2 ®N) S W

ullZagn) (2.3)

for every u € H*(RN), where S denotes the N-dimensional unit sphere and |S| its surface area.



Lemma 2.7. Let N >3 and q € [2,2N/(N —1)]. Then there exists a constant C = C(N,q) > 0
such that, for every s € [1/2,1] and every u € X§(£2), we have

2
[ull La(y < C(N, q)||(—A)* ul| 2Ny
Proof. Since I' is a continuous function on the interval {%, %} which does not contain
non-positive integers, the constant

I .

in (2.3) is bounded from above independently of s € [1/2,1]. Therefore inequality (2.3) holds
true with a constant independent of s. Since obviously

lull 2@y < llullxs (o)

for every u € X§(£2), we can fix any ¢ € [2,2N/(N — 1)] and interpolate:

1 _ & n 1-— ﬁs.
2 2%
Explicitly,
2N — q(N — 2s)
Vs =
2sq
and
795 _'195 —Us
lellzaoy < ullZ3g lulllz, < CON, @)= [ullxg(o.

Since the function s — ¥, is continuous in the interval [1/2, 1], the proof is complete. ]

Remark 2.8. Tt follows from the previous proof that the same result is true for any s € [sg, 1],
with sp € (0,1) fixed.

Definition 2.9. A weak solution to problem (1.1) is a function u € X§({2) such that

(=AY 2u | (=8) ) + [ V@upde = [ [ u)pda
for every ¢ € X§(12).

Weak solutions are therefore critical points of the associated energy functional Js: X;(f2) — R
defined by

1

1
Ts(u) = 3 H(—A)SuHiz(RN) +5 /Q V(x)u® dx — /QF(:v,u) d.

We recall also the definition of a weak solution in the local case.

Definition 2.10. A weak solution to problem (1.2) is a function u € H}(£2) such that
/ Vu-Vedx —I—/ V(z)updr = / fz,u)pdx
2 Q Q

for every ¢ € H}(£2).



For the local problem (1.2) we put J: Hi(2) — R

1

T(u) = f/ Vul? + V(2)u? do — / Flz, u) da. (2.4)

2 Jn 0

Recalling the notation (2.1) and (2.2), we can rewrite our functionals in the form
1
Tuw) = 3l = [ Fla,wde, we X3(2)
0

T(u) = %||u”2 - /QF(:E,u) de, ue HY(Q).

3 Existence of ground states
We define the so-called Nehari manifolds

Ny = {u € X5(2) \ {0} | Ti(u)(u) = 0}
and

N = {u € Hy(2)\ {0} | T'(u)(u) = 0}.

Definition 3.1. A ground state of (1.1) is any minimum point of 75 constrained on N;. Similarly,
a ground state of (1.2) is any minimum point of J constrained on N.

To proceed, we show that ground states actually exist.

Proposition 3.2. For every s € (0,1], there exists a ground state solution us € Ny to (1.1).
Moreover

Ts(us) = sup Js(tv) > 0. (3.1)

inf
vEXF(2)\{0} t>0
Proof. The proof is rather standard, so we will present a sketch and refer the reader to [3,11,12]
for the details. Consider 0 < s < 1. It follows from our assumptions that the Nehari manifold
N is homeomorphic to the unit sphere S in X§(£2). The homeomorphism my: Sy — N is
given by

ms(u) = tyu,

where t,, > 0 is the unique positive number such that t,u € N,. The inverse ms_lz N, = 8, is
given by m; 1 (u) = u/||ul|s. Moreover Jsoms: Ss — R is still of class C'!. Then there is a Palais-
Smale sequence {v,}, C Ss for J o mg. Moreover, we can show that the sequence {uy}, C N
given by wu, := mg(v,) is a bounded Palais-Smale sequence for Js such that J(u,) — cs, where
¢s :=infpr, Js > 0. Since X§(£2) is compactly embedded into L”(£2) for every 2 < v < 2%, see
Theorem 2.5, it is easy to check that {u, }, converges strongly (up to a subsequence) in L"({2)
to a function u # 0 such that J;(u) = 0. Finally, the properties of F' yield

1 1
JTs(u) = §||u||§ — /QF(:L’,U) dr < l&r_r}lirg {2||un\|§ — /QF(z,un) d:n} = liminf Js(u,) = ¢s.

n—-+00

The proof for the case s = 1 is similar. O



4 Non-local to local transition
For any s € (1/2,1) we define
Cs 1= 1}\1/1{]9 > 0.
Similarly, we put also
= i/r\l/fj > 0.
For any v € X§(£2)\ {0} we let t5(v) > 0 be the unique positive real number such that ts(v) € Nj.
Then we put ms(v) := ts(v)v (see the proof of Proposition 3.2).

Lemma 4.1. There results

limsupcs < c.
s—1—

Proof. Take u € H}(£2) C X§(§2) as a ground state solution of (1.2), in particular u € N and
J(u) = ¢, where J is given by (2.4). Consider the function ms(u) € Ns. Obviously

cs < Ts(mg(u)).

Hence

lim sup ¢ < lim sup Js(ms(u)) = lim sup {Js(ms(u)) - ;jsl(ms(u))}

s—1— s—1— s—1—

= limsup {; /Q flz,mg(u))ms(u) — 2F (x, ms(u)) dm} .

s—1—

Recall that ms(u) = tsu for some real numbers t5 > 0. Suppose by contradiction that ts — +o0
as s — 17. Then, in view of the Nehari identity

ts
w2 = /f Wy dm>2/ ;uf 2 dz — +oo,

but the left-hand side stays bounded (see Corollary 2.3). Hence (t5)s is bounded. Take any
convergent subsequence (ts,) of (ts), i.e. ts, — to as n — +o00. Obviously tp > 0. We will show
that to # 0. Indeed, suppose that tg = 0, i.e. t5, — 0. Then, in view of the Nehari identity

f x tsnu
ts, U

lullg, =

By Corollary 2.3, |[ul|?. — [lul|* > 0. Hence, in view of (F2),

t
lull? + o(1) /f“; 0% 2 4w s 0,
sp U

a contradiction. Hence tg > 0. Again, by Corollary 2.3,

2 ull2, = tllull* as n — 4oo.



Moreover, in view of Remark 1.1,
[ (@, ts,u)ts,ul < et [ul? + Cet? |ul? < C(luf® + [ul”)
for some constant C' > 0, independent of n. In view of the Lebesgue’s convergence theorem
/Qf(x,tsnu)tsnuda: — /Qf(a:,tou)toudx.
Thus the limit ¢y satisfies

ﬂMPzéf@%@mmm

Taking the Nehari identity into account we see that tg = 1. Hence t; — 1 as s — 17. Repeating
the same argument we see that

1 1
lim sup {/ fz,mg(u))ms(u) — 2F(x,m5(u))dx} = 7/ flz,w)u — 2F (z,u) dz
s—1- (2J0 2 Je
=J(u)=c
and the proof is completed. O
Lemma 4.2. There exists a constant M > 0 such that
Jusll L2y + llus|ls < M
for every s € (1/2,1).

Proof. Note that [lus||12(0) < Cllus||s, for some C' > 0 independent of s. So it is enough to show
that |lus|ls < M. Suppose by contradiction that

|lus|ls = +o0 ass— 1.

Put vy := -, Then llvslls = 1, so [5, Corollary 7] implies that vs — v in L?(£2) for some
vo € H}(£2). From Lemma 2.7 {vs}s is bounded in L%(Q). Take any v € (2, %) and by

the interpolation inequality

||lvs — UOHLV(Q) < lvs — v0||7£2 ||lvs — U0||17279N —0 ass—1",
(£2) 2L
LN—I(”)

where ¥ € (0,1) is chosen so that % = g + L5*. Hence vy — vg in L¥(£2) for all 2 < v < 4]\2[]_\[1

N—-1
In particular, we can choose a sequence {vs, }, such that vs, () — vo(x) for a.e. = € 2. Note

that, from Lemma 4.1, we know that {Js, (us, ) }n is bounded. We will consider two cases.

e Suppose that vgp = 0. Fix any ¢t > 0. By (3.1) we obtain

2
Ts, (us, ) > Ts, ( usn) =Js, (tvs,) = % —/ F(x,tvug,) dx.
(9]

[[s, 51

From Remark 1.1 we see that
| Pl@,ton,) dw < et [Fa(a) + Ce?lvn () = O

Hence, for any t > 0

2
\7Sn<u5n) 2 % +0(1)7

which is a contradiction with the boundedness of {7, (us, ) }n-



e Suppose that vy # 0, i.e. |suppvg| > 0. Note that for a.e. x € supp vy we have
|us,, (2)] = llus, [|s, [vs,, ()| = +o00.

Hence, taking into account the boundedness of {J;, (us, )} and Fatou’s lemma,

Sn

1 F 1 F
o(1) = S nl — 7/ 7(36’2%”)1)? dr < — —/ 7@’2%”)@3 dx — —o0,
”uSn ||57L 2 0 usn " supp vo U "

again a contradiction.

Corollary 4.3. There is ug € Hi(£2) and a sequence {s,}n such that s, — 1~ and
us, — uog in LY(§2) asn — 400
forallv € 2,2N/(N —1)).
Proof. From Lemma 4.2 and [5, Corollary 7] we note that
us, — ug in L*(£2)

for some ug € H{(2) and sequence {s,},. In view of Lemma 2.7 there is a constant C' > 0
(independent of s) such that

s, g < Cllus, s,

—1(92)
In particular, {us, }, is bounded in L%(Q) Then for any v € (2,2N/(N — 1)) we have

limsup [|us, — uol|rv (o) < limsup ||us, — UO”%(Q)HUSH —ul' 2y =0,
n—+00 n—-+o00 LN=1(£2)

where ¥ € (0,1) is chosen so that

Lemma 4.4. The limit ug is a weak solution for (1.2).

Proof. Take any test function ¢ € C5°(RY) and note that by [14, Section 6] we have

[ A Ay pda = [, (- 2) e,
RN RN

Moreover

[ e aymode = [ uo-Apyda| =| [ e, -2y dn = [ uo(-Ap)do
RN RN 0 )

_ ‘ [ e (2776 = (=A9)) da+ [ (us, = u0)(~Ag) do

< usyllz2 () [(=4)" 0 = (=A0) | 2() + (=AP)L2() s, — wollL2(2) = 0.

10



Hence

lim (=AY 2, (=AY 2o da = /N uo(—Ap) dzx = / Vug - Vo dz.
R n

n—+oo JRN

Obviously

lim /V(az)usncpd:c:/ V(z)upp dx.
2

n—+oo J )
Take any measurable set £ C {2 and note that, taking into account Remark 1.1,
t/ |f (@, us, )¢l da < ellus, || 2o exEll L2 (2) + Cellus oo Xl Lo @) -

Hence the family {f(-, us, )@ }n is uniformly integrable on 2 and in view of the Vitali convergence
theorem

lim f(x,usn)apdx:/ f(z,uo)p de.
2 2

n—-+00

Therefore ug satisfies

/ Vuyg - Vgodm+/ umpdac—/ f(z,uo)pde,
i.e. ug is a weak solution to (1.2). O
Lemma 4.5. Since us € Ny there is (independent of s) constant p such that
luslls = p > 0.
Proof. Since ug € Ny, we can write by Remark 1.1
|wP/fmmm<mmz+mwmg
< C (eflusl2 + Celull?)

for a constant C' > 0 independent of s. Choosing £ > 0 small enough, we conclude that

a2 2= g = >0
O
Lemma 4.6. We have uy # 0 and therefore ug € N.
Proof. If ug = 0, then us, — 0 in L?({2) and in LP(£2). Then
o e, = /Qf(:c,u%)u% dz — 0,
a contradiction. O

Lemma 4.7. There results

liminfe,, > c.
n—-+oo

11



Proof. Since us, € N, , then by Corollary 4.3 we have

3}

liminf ¢g, = liminf J;, (us,) = liminf {jsn(usn) -
n——+o00 n——+o00 2

n—-+00

1
= lim inf {2/ f(x,usn)usn - ZF(.%', uSn) d.l‘}
2

n—-+o00

_ ;/Q Fu0)uo — 2F (2, ug) dz = T (ug) > ¢

O
Lemma 4.8. The function ug € H}(82) is a ground state solution to (1.2).
Proof. Note that, from Lemma 4.1 and 4.7 we have

lﬁguug Cs, > C2> lisnisllip Cs > I;Eigg Cs,, -
Hence lim,,— oo Cs,, exists and lim,_, 4o ¢s,, = ¢. From the proof of Lemma 4.7 we have
i, = ()

Thus J (up) = c. O
Proof of Theorem 1.2. The statement is a direct consequence of Corollary 4.3 and Lemma
4.8. O
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