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1 Introduction

Singularity theorems [1, 2] demonstrate that, within the framework of standard classical
general relativity, singular black holes are unavoidably formed as the end-state of gravita-
tional collapse [3]. Observational tests of black hole spacetimes coming from the detection
of gravitational waves emitted by binary black hole mergers [4–8] are so far in perfect agree-
ment with the predictions of classical general relativity. Nonetheless, there is still room
for alternatives to the classical black holes of general relativity [9, 10], a consideration that
becomes more pertinent given that it is reasonable to assume that singularities will be
tamed once quantum gravity effects are taken into account [11, 12].

A conservative approach consists of replacing the singularity with a regular core, with-
out necessarily introducing substantial long-range modifications to the geometry [13]. Reg-
ular black holes emerge in several approaches to quantum gravity such as asymptotic
safety [14, 15] and loop quantum gravity [16, 17], while they have also been proposed as
an agnostic framework to address Hawking’s information paradox [18, 19].

It can be shown that regular black holes, even when they are non-rotating, possess
an inner horizon besides the more conventional trapping horizon [11–13]. It is known that
inner horizons in general relativity are generically unstable under small perturbations and
give rise to the so called mass-inflation instability [20–22], a fact which is not necessarily
problematic given that general relativistic black holes are known to be singular. On the
other hand, this opens to the possibility that the inner horizons of regular black holes are
also unstable. If confirmed, this would make their physical justification less straightforward,
while at the same time it would call for increased theoretical efforts to produce consistent
regular models.

In fact, such inner-core instabilities have been derived in the context of a particular
model of regular black hole [23, 24]. Recently, we produced arguments supporting the
generic conclusion that regular black hole cores are unstable [25]. While the latter analysis
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captures the main physical ingredients, it considers a somewhat idealized scenario consisting
of two non-interacting null shells on top of a static background. In contrast to these
results, a recent work [26] — which is based on a single perturbing null shell, and takes
the backreaction of the metric into account — extends Ori’s work for Reissner-Nordström
black holes [21] to regular spacetimes and claims that regular black holes have stable cores.
This claim contradicts the result found under the same assumptions for the specific regular
black hole considered in the appendix of [23].

The aim of the present work is to clarify the issue of regular black hole instabilities,
by a reanalysis of the contradictory results in [25] and [26]. In particular, we revisit the
extension of Ori’s model to a generic spherically symmetric metric. By expressing the
equations of motion in terms of the Misner-Sharp mass, which is a physically motivated
quantity [27, 28], we are able to derive a key equation for its evolution in terms of the
initial perturbation. We conduct both an analytical and a numerical study, and we show
that a generic regular black hole has an unstable core. Therefore, our work makes the
conclusions of [25] robust, while in contrast it rejects the claims in [26].

The paper is organized as follows. In section 2 we present an extended version of Ori’s
perturbation model to generic spherically symmetric metrics, and we derive the equation
governing the growth of the Misner-Sharp mass. In section 3 we show how this equation
generically predicts an indefinite growth for both singular and regular black holes, and
we discuss the functional form of the growth rate. In section 4 we numerically solve the
differential equations governing the growth of instability for several specific black hole
spacetimes, showing that the solutions are in agreement with the analytical treatment.
In section 5 we analyze how the presence of a non-zero cosmological constant affects the
conclusions of the previous sections. Concluding remarks are made in section 6.

2 Generalized Ori model

In [21] Ori developed a model to describe the dynamical evolution in the neighborhood of
the inner horizon of a Reissner-Nordström black hole under linear perturbations, in order
to explicitly analyze the singularity generated by the well-known mass-inflation instability.
Ori’s model can be easily generalized to any (singular or non-singular) spacetime with a
metric of the form

ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2 . (2.1)
Most of the derivation can be worked out only using the parameterization f(v, r) =
1 − 2M(v, r)/r in terms of the Misner-Sharp mass M(v, r). At this point in the dis-
cussion we do not need to assume any specific functional form for the Misner-Sharp mass,
but only that its radial dependence is such that the geometry contains an inner horizon:
this is equivalent to assuming that f(v, r) has an even number of zeroes, and that all its
dependence on v enters through a single-variable function m(v) such that

M(v, r) = M(m(v), r), (2.2)

and m(v) coincides with the value of the Misner-Sharp mass at large values of r, namely

m(v) = lim
r→+∞

M(v, r). (2.3)
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Figure 1. Relevant sections of the Penrose diagram of a regular black hole. The shell Σ divides
the spacetime in two regions R− and R+. H denotes the event horizon while C denotes the
Cauchy horizon.

Well-known examples include the Vaidya-Reissner-Nordström spacetime in which
M(m(v), r) = m(v)− e2/2r, or the Hayward spacetime in which M(m(v), r) =
m(v)r3/(r3 + 2m(v)`2) [19].

Following [21], we now consider a dynamical model of a null shell Σ which divides the
black hole into two subregions R− and R+, such that R− is on the same side of I −, as
shown by the Penrose diagram in figure 1. Therefore we can parametrize R− by the same
advanced null coordinate v− of I −, while we shall choose a distinct null coordinate v+
to parametrize R+. By continuity, the radial coordinate r is the same on both regions,
while the mass function m(v) depends on the region, so that we shall distinguish m−(v−)
and m+(v+).

It can be shown that the matching conditions imply that both v− and v+ can be
expressed on Σ in terms of a single affine coordinate λ [29]. We will define λ in such a way
that it is negative and λ → 0 when v− → ∞. Additionally, the radius of the shell can be
expressed as a function R(λ) of the affine parameter.

The functional form of m−(v−) is dictated by Price’s law [30, 31] to be

m−(v−) = m0 + δm = m0 −
β

vp−
, p ≥ 11 , (2.4)

where m0 = m−(v → ∞). When v− → ∞, the shell crosses the corresponding inner
horizon at r0, which is implicitly defined by

lim
λ→0

R = r0 , (2.5a)

lim
λ→0

f−(λ,R) = 0 . (2.5b)
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Here R ≡ R(λ) is the radius of the shell and f−(λ,R) ≡ f(M(m−(λ), R), R). It is conve-
nient to define the surface gravity in R− at λ = 0 as

κ0 = 1
2 lim
λ→0

∂f−(λ, r)
∂r

∣∣∣∣
r=R(λ)

. (2.6)

We now set up the basic ingredients for the discussion of the generalized Ori model.
It can be shown that the matching conditions on Σ in eqs. (7)–(9) of [21] generalize,
respectively, to

ziR
′ = R

2 f i(vi, R) , (2.7a)

vi(λ) =
∫ λ

dλ
R

zi
, (2.7b)

zi(λ) = Zi + 1
2

∫ λ

dλ

(
f i(λ,R) +R

∂f i
∂r

(λ,R)
)
, (2.7c)

where zi = R/vi
′, the index i takes two values + and − (for the two regions R+ and R−,

respectively), and a prime denotes differentiation with respect to λ. The quantity Zi is
an integration constant, while we omitted a similar integration constant in (2.7b) because
it is irrelevant. These equations are valid on both sides of the ingoing null shell. Now, in
region R−, we can expand eq. (2.7c) around λ = 0 to obtain

z−(λ) = Z− − r0|κ0|λ+ O(λ2) . (2.8)

However, given that limλ→0 v− =∞, it follows from eq. (2.7b) that Z− = 0, otherwise v−
would tend to a constant proportional to 1/Z−. Hereafter, for simplicity, we will use v in
place of v−; therefore

v(λ) = − 1
|κ0|

ln |λ|+ O(λ0) . (2.9)

Notice that the derivation of (2.8) and (2.9) proceeded exactly as in reference [21]. Fur-
thermore, eq. (2.7a) in region R− can be written as a differential equation in v as

dR(v)
dv

= 1
2f−(m−(v), R(v)). (2.10)

We can perform a Taylor expansion of f− around the values m− = m0 and R = r0 in the
limit v →∞ to obtain

dδR(v)
dv

= −A
r0
δm(v)− |κ0|δR(v), (2.11)

where we have written R(v) =r0+δR(v) and A = ∂M−/∂m−|m−=m0,r=r0 , and we neglected
terms of order O(δm2, δmδR, δR2). Taking into account the functional form of δm(v) in
eq. (2.4), the general solution to the above differential equation is given by

δR(v) = c1e
−|κ0|v + Aβ

|κ0|r0vp

∞∑
k=0

[(p+ k − 1)!
(p− 1)!

1
|κ0|kvk

]

= Aβ

|κ0|r0vp

{
1 + p

|κ0|v
+ p(p+ 1)
|κ0|2v2 + O(v−3)

}
.

(2.12)
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Let us now consider the evolution of the metric functions in region R+ on its boundary
Σ, hence as functions of λ only (alternatively, v). One can manipulate eqs. (2.7a) and (2.7c)
for i = + to obtain

df+(λ,R)
dλ

= R′
∂f+(λ, r)

∂r

∣∣∣∣
r=R

+ R′′

R′
f+(λ,R), (2.13)

or equivalently, as a differential equation in v,

dM+(v,R)
dv

= R,v
∂M+(v, r)

∂r

∣∣∣∣
r=R
−
(
λ,vv
λ,v
− R,vv

R,v

)(
M+(v,R)− R

2

)

= R,v
∂M+(v, r)

∂r

∣∣∣∣
r=R

+
(
|κ0| −

p+ 1
v

+O(v−2)
)(

M+(v,R)− R

2

)
.

(2.14)

In the equation above the v subindices denote differentiation with respect to this variable.
This is the main equation that we derive in the paper. In the next section we are going to
comment its solutions and show that it predicts unstable cores for regular black holes.

3 Instability of regular black holes

In the case of Vaidya-Reissner-Nordström spacetime

∂M+(v, r)
∂r

∣∣∣∣
r=R

= e2

2R2 , (3.1)

so the first term of the right-hand side of eq. (2.14) does not depend on M+ and the
equation displays (exponentially) inflating solutions with leading behaviour

M+(v,R(v)) ∝ e|κ0|v

vp+1 . (3.2)

This is the solution obtained by Ori [21]. More generally, this result is recovered unchanged
for a wider family of geometries satisfying the linear ansatz M+(v, r) = g1(r)m+(v)+g2(r),
which includes for instance the Bardeen metric for a regular black hole [32].

However, if ∂M+/∂r is not linear in M+, the differential equation (2.14) becomes
nonlinear and the last term on the right-hand side may drive the evolution at late times,
thus modifying the exponential behavior associated with mass-inflation. Crucially, not
all the metrics of interest are covered by a linear ansatz. For instance, in the case
of a regular black hole described by the Hayward metric [19], the functional form of
M(m, r) = mr3/(r3 + 2m`2) implies that

∂M

∂r
= 6`2

r4 M
2. (3.3)

We will be more general and consider the case where ∂M+/∂r is polynomial in M+, i.e.,
∂M+/∂r ∝Mn

+. We then obtain

dM+(v,R(v))
dv

=
(
|κ0| −

p+ 1
v

+O
(
v−2

))(
M+(v,R(v))− r0

2

)
− γ

vp+1M
n
+ (v,R(v)) (3.4)
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for some given constants γ and n, which depend on the specific metric under consideration.
The behaviour of the solution depends on the sign of γ. It is possible to show that, for γ < 0,
M+(v,R(v)) diverges for a finite value of v. On the other hand, for γ > 0 we can solve this
differential equation in different regimes. At early times, the first term on the right-hand
side dominates the dynamics, and leads to an exponential growth of M+(v,R(v)), up to a
critical time v0 for which

Mn−1
+ (v0, R(v0))≈|κ0|

γ
vp+1

0 . (3.5)

From that point on, the first and the second term of the right-hand side become comparable
and the growth is polynomial rather than exponential,

Mn−1
+ (v,R(v)) ∝ vp+1, v � v0. (3.6)

As a concrete example, we consider Hayward’s metric and the relation (3.3), from which
it follows that

dM+(v,R(v))
dv

' |κ0|M+(v,R(v))− γ
M2

+(v,R(v))
vp+1 − r0|κ0|

2 , (3.7)

where the symbol ' means that we are neglecting subdominant terms in the v → ∞
limit, and

γ = 6pβ`2

|κ0|
r0(

2m0`2 + r3
0
)2 . (3.8)

By neglecting the last term on the right hand side, the solution of (3.7) is given by

M+(v,R(v))≈ e|κ0|vvp

c1vp − (−v)p|κ|p−1γΓ(−p,−|κ0|v) . (3.9)

Expanding the incomplete Gamma function at late times we obtain

M+(v,R(v))≈|κ0|
γ
vp+1, (3.10)

in perfect agreement with eq. (3.6). Therefore, at late times, the growth rate of the
instability is slowed down, and becomes polynomial rather than exponential.

In the next section, we are going to integrate the perturbative equations of motions
numerically for several regular black hole metrics usually considered in the literature. We
will show that, for all the metrics under consideration, M+ grows indefinitely with v. While
the functional form (exponential or polynomial) of the growth rate depends on the specific
form of the metric, the fact that inflation occurs appears to be a generic phenomenon.
Therefore, we find evidence that regular black holes have unstable cores; while, in principle,
we cannot exclude the existence of a fine-tuned metric avoiding this conclusion, we found
no concrete example of such behaviour and we expect it to be non-generic.

Before closing this section, we provide an argument for the fact that the transition
from the exponential to the polynomial growth of M+, when present, might occur beyond
the regime of validity of the linear analysis. For concreteness, we refer to Hayward’s metric.
If the corrections to the Schwarzschild metric come from quantum regularization effects,
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it is reasonable to expect that the regularization parameter satisfies ` � m0. Therefore,
from eqs. (3.8) and (3.10), we find that the transition occurs when

M+(v,R(v)) ≈ |κ0|2
(
2m0`

2 + r3
0
)2

r0`2
vp+1

0
6pβ

∼ m2
0
`

vp+1
0

6pβ ,
(3.11)

where we used r0 ∼ |κ0|−1 ∼ `. In turn, this implies

M+(v,R(v))
m0

∼ m0
`

vp+1
0

6pβ � 1 , (3.12)

namely, at the transition point the value of M+ is already exponentially large w.r.t. the
initial value m0. Let us stress that this argument reinforces the case for mass-inflation
as it argues that, in the situations of physical interest, the dominant behaviour will be
effectively exponential.

4 Numerical analysis

In this section, we provide explicit numerical solutions for the perturbative equations of
motion for several choices of the black hole metric which have been considered in the
literature. We can integrate eqs. (2.10) and (2.14) for the variables R(v) and M+(v,R(v)).
However, we will follow an alternative route and integrate the equations for the variables
R(v) and m+ (v). While the main advantage of the first method is the use of the physically
motivated Misner-Sharp mass as one of the variables, the second method will clarify some
subtleties that arise in the interpretation of the mass-inflation phenomenon when the metric
is expressed in terms of the unphysical variable m+(v).

An equation for m+(v) can be derived following the treatment in [26], apart for the
correction of a mistake, which explains the opposite conclusions we reach in our work. The
starting point is the junction condition at the shell Σ [29]

[Tµ νsµsν ] = 0, (4.1)

where Tµ ν is the effective stress energy tensor obtained by imposing Einstein’s equations
on both regions R{+,−} of the spacetime, and

sµ = (2/f±, 1, 0, 0) (4.2)

is the outgoing null normal to the shell. The relevant components of the stress energy
tensor are

Tv
v = −4πr2∂M

∂r
, (4.3a)

Tv
r = 4πr2∂M

∂v
, (4.3b)

Tr
r = −4πr2∂M

∂v
. (4.3c)
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metric M(v, r)

Reissner-Nordström m(v)− e2

2r

Hayward [19] m(v)r3

r3+2m(v)`2

Bardeen [32] m(v)r3

(r2+l2)3/2

Dymnikova [33] m(v)
(
1− e−r3/`2m(v)

)
Table 1. Black hole parametrizations used for the numerical integrations in section 4.

Then eq. (4.1) becomes

1
f2

+

∂M+(v+, r)
∂v+

∣∣∣∣∣
r=R(v+)

= 1
f2
−

∂M−(v−, r)
∂v−

∣∣∣∣∣
r=R(v−)

. (4.4)

We can eliminate the v+ dependence from this equation noting that, along a null trajectory,

dv+
dv−

= f−
f+

(4.5)

and expressing everything in terms of v ≡ v−

1
f+

∂M+
∂v

∣∣∣∣
r=R(v)

= 1
f−

∂M−
∂v

∣∣∣∣
r=R(v)

. (4.6)

Given that the evolution of m−(v) is dictated by (2.4) and that M+ is implicitly a function
of m+, the system of eqs. (4.6) and (2.10) can be solved in terms of m+(v) and R(v).
In ref. [26] eq. (4.6) was interpreted as if the partial derivatives in v are evaluated after
imposing r = R(v) on Σ. This is inconsistent with how (4.6) is derived and, crucially, it is
the reason why [26] reaches the conclusion that regular black holes have stable cores.

We shall now present some explicit examples of solutions for the metric coefficients
displayed in table 1. We will also show the corresponding evolution of M+, as deduced
from the solutions of m+.

Reissner-Nordström metric. First, as a sanity check, we integrate the system for the
Reissner-Nordström black hole, for which eq. (4.6) becomes

m′+(v)
R2 − 2Rm+(v) + e2 =

m′−(v)
R2 − 2Rm−(v) + e2 . (4.7)

The results of the numerical integration are plotted in figure 2. As expected, the system
develops a mass inflation instability and the Misner-Sharp mass diverges exponentially, see
figure 2 (right). At the same time, as it is also apparent from the functional form of the
metric, the functions m+ and f+ exhibit corresponding divergences, see figure 2 (left).

Hayward metric. The case of Hayward metric is less trivial. Indeed, as shown in figure 3
(left), the integration for m+ breaks down at a finite value of v, for which m+ diverges.
However, the integration can be continued from the opposite side of the discontinuity,
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Figure 2. Left: numerical evolution of the mass parameter m+ and of the metric functions f±
of a Reissner-Nordström black hole. Right: comparison between the numerical and the analytical
evolution of the Misner-Sharp mass M+. In both plots we have used the parameters β = 1, p = 12,
m0 = 10, e = 5 with the initial conditions R(v = 1) = 5 and m+(v = 1) = m0 + 1.

Figure 3. Left: numerical evolution of the mass parameter m+ and of the metric functions f± of
a Hayward regular black hole. Right: numerical evolution of the Misner-Sharp mass. In both plots
we picked the parameters β = 1, p = 12, m0 = 10, ` = 0.5 with the initial conditions R(v = 1) = 5
and m+(v = 1) = m0 + 1.

where m+ is negative and approaches m+ → −r3
0/(2`2) asymptotically for v →∞. We can

see from the form of the metric that the limiting value of m+ is such that M+ diverges, as
expected. While it might seem odd that the variable m+ has a discontinuity and becomes
negative, the reader should take in mind that m+ is not a physical variable and so this
behaviour is an artifact of the parametrization. On the other hand, the physical variable
M+ is well behaved, as shown in figure 3 (right). Indeed, M+ follows a first phase of
exponential expansion, followed by a phase of polynomial growth. This is in complete
agreement with the analysis of the previous section.

Bardeen metric. The functional form of the Bardeen metric is such that M+ is linear
in m+. Therefore, from the previous section, we expect an exponential inflation of M+.
This is validated by the numerical results in figure 4 (right). A direct comparison with
figure 2 also shows that m+ and f+ behave similarly to the Reissner-Nordström case.
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Figure 4. Left: numerical evolution of the mass parameter m+ and of the metric functions f± of
a Bardeen regular black hole. Right: numerical evolution of the Misner-Sharp mass. In both plots
we picked the parameters β = 1, p = 12, m0 = 10, ` = 1 with the initial conditions R(v = 1) = 5
and m+(v = 1) = m0 + 1.

Figure 5. Left: numerical evolution of the mass parameter m+ and of the metric functions f± of a
Dymnikova regular black hole. Right: numerical evolution of the Misner-Sharp mass. In both plots
we picked the parameters β = 1, p = 12, m0 = 10, ` = 0.5 with the initial conditions R(v = 1) = 5
and m+(v = 1) = m0 + 1.

Dynmikova metric. As our final example, we consider the regular black hole metric
proposed by Dymnikova [33]. Since in this case ∂M+/∂r is not a polynomial, we cannot
apply the reasoning of the previous section and we have no prior expectations. A direct
numerical integration (figure 5) shows that M+ diverges exponentially. On the other hand,
m+ presents a change-of-sign discontinuity analogous to the case of the Hayward metric
(figure 3). Again, we stress that this is an artifact of the parametrization.

5 Role of the cosmological constant

So far we ignored the role of the cosmological constant. Intuitively, this is justified by
the fact that core instabilities happen at the inner horizon, where the energy density is
Planckian and the role of the cosmological constant is completely negligible. However, in
the presence of a non-zero cosmological constant, Price’s law (2.4) is modified — it exhibits
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an exponential decay of the perturbations at late time [34, 35]

m−(v) = m0 + δm(v) = m0 − αe−ωIv, (5.1)

where ωI > 0 is the imaginary part of the least damped quasinormal mode of oscillation of
the black hole.

If the cosmological constant is small, the fall-off of the perturbations follow the poly-
nomial Price’s law of eq. (2.4) for a very long time and, therefore, the eventual exponential
fall-off in eq. (5.1) can be ignored. This is certainly the case in our universe, in which
therefore core instabilities will manifest well before the cosmological constant could play
any significant role.

For theoretical completeness, we investigate the scenario in which a non-zero cosmo-
logical constant does play a significant role, to inspect if it can be fine-tuned to suppress
the core instability. We parallel the discussion in sections 2 and 3. First, using (5.1), the
solution to eq. (2.10) becomes

δR(v) = c1e
−|κ0|v + Aα

r0(|κ0| − ωI)
e−ωIv (5.2)

where c1 is an integration constant. This, in turn, results in the following equation for the
evolution of M+

dM+(v,R(v))
dv

'−f+AαωIe
−ωIv

(
2|κ0|c1e

−|κ0|v+ 2ωIAαe−ωIv

r0(|κ0|−ωI)

)−1

+ f−
2
∂M+(v,r)

∂r

∣∣∣∣
r=R(v)

.

(5.3)

It is convenient to analyze separately the cases |κ0| > ωI and |κ0| < ωI . When |κ0| > ωI
we have

dM+(v,R(v))
dv

'r0(|κ0| − ωI) (2M+(v,R(v))/r0 − 1)
2 + f−

2
∂M+(v, r)

∂r

∣∣∣∣
r=R(v)

. (5.4)

Following the same reasoning as in section 3, if ∂rM+ is linear in M+ then the last term
becomes subdominant and M+ grows exponentially with leading behaviour

M+(v,R(v)) ∝ e(|κ0|−ωI)v. (5.5)

This is analogous to eq. (3.2), in which the polynomial fall-off in v is replaced by the
exponential decay of (5.1). On the other hand, at variance with the flat case, if ∂rM+
is polynomial in M+, i.e., ∂rM+ ∝ Mn

+, we still find that the inflation is governed by an
exponential growth

M+(v,R(v)) ∝ eωIv/(n−1) . (5.6)

When |κ0| < ωI , eq. (5.4) becomes

dM+(v,R(v))
dv

'(2M+(v,R(v))/r0−1)
2|κ0|

Aαe−(ωI−|κ|0)v−2|κ0|e−|κ0|v ∂M+(v,r)
∂r

∣∣∣∣
r=R(v)

(5.7)

– 11 –



J
H
E
P
0
5
(
2
0
2
1
)
1
3
2

and we see that, irrespective of the specific form of the metric, the asymptotic behaviour
is regular. Thus, under this conditions, it might be theoretically possible to avoid mass-
inflation under linear perturbation (although, as we already explained, this is not going
to occur in our universe). Notice, however, that |κ0| < ωI is a property of the single
black hole under consideration and, in general, it will not be satisfied for all black holes
in a gravitational theory [36–41]; therefore, the avoidance of mass-inflation will not be a
generic feature.

6 Conclusions

In this paper, we have reanalyzed the issue of the inner horizon instability for regular black
hole spacetimes, in light of recent contradictory results [25, 26]. We extended Ori’s pertur-
bative model to a generic spherically symmetric spacetime, showing that mass inflation at
the inner horizon is a robust and very general prediction. In particular, while the occurrence
of mass-inflation might be obscured by the choice of parameterization, the phenomenon is
evident when the equations are expressed in terms of the Misner-Sharp mass.

We found that the Misner-Sharp mass always experiences a period of exponential
instability which can either go on indefinitely (e.g., with the Bardeen metric) or be followed
by a period of polynomial growth (e.g., with the Hayward metric). In both cases, the
growth does not stop. Additionally, we argued that the onset of the polynomial instability
is likely to occur when the approximation of linear perturbations has already broken down.
Therefore, exponential mass-inflation appears to be the leading instability mechanism of
regular black hole cores.

When a nonvanishing cosmological constant is allowed, we found that in principle the
inner core might become stable. However, this occurs case-by-case and it is not a generic
feature of the theory. Furthermore, even when the conditions for stability are realized,
they require the late-time tail of the perturbation (which is sensitive to the presence of the
cosmological constant) to be physically relevant, which is not going to be the case in our
universe due to the very small value of the cosmological constant.

We stress that the instability of the inner horizon does not necessarily imply the for-
mation of a physical singularity. What we have shown is that an initial linear perturbation
has a huge effect on the geometry and leads to an unbounded growth of the Misner-Sharp
mass. While in general relativity this usually implies the formation of a singularity, we
might expect that, in a full theory of quantum gravity, backreaction drives the geometry
to a different class of non-singular spacetimes [12, 42]. Therefore, in order to address the
endpoint of the inner core instability, a geometrical analysis is not informative enough.

A rigorous approach would require to specify the dynamical field equations of the the-
ory leading to the formation of regular black holes. Possible quantum gravity frameworks
explored in the literature are asymptotic safety and loop quantum gravity. Indeed, within
these theories, several studies have argued that the singularity of general relativistic black
holes is replaced by a nonsingular core with an inner horizon [14–17, 43, 44]. While certainly
a demanding task, we hope that our work serves as a stimulus for the quantum gravity
community to address the effects of nonperturbative backreaction on regular spacetimes in
a theoretically consistent framework.

– 12 –
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