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Abstract

In this paper we investigate quasi equilibrium problems in a real Banach space under
the assumption of Brezis pseudomonotonicity of the function involved. To establish
existence results under weak coercivity conditions we replace the quasi equilibrium
problem with a sequence of penalized usual equilibrium problems. To deal with the
non compact framework, we apply a regularized version of the penalty method. The
particular case of set-valued quasi variational inequalities is also considered.
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1 Introduction

Given a nonempty set C and a bifunction f : C × C → R, the equilibrium problem (in the
sequel EP, for short) is defined as follows: find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C.

It seems that the earliest mathematical formulation of the problem above belongs to Nikaido
and Isoda [21]: they used it as an auxiliary problem to study the existence of solutions of
Nash equilibrium problem. The first existence results on (EP) date back to the seventies and
are attributed to Fan [14] and Brezis, Nirenberg and Stampacchia [6]. The term equilibrium
problem was coined by Muu and Oettli in 1992 ([20]), while in 1994 Blum and Oettli [5]
adopted this terminology perhaps because it is equivalent to find the equilibrium point of
several problems, namely, minimization problems, saddle point problems, Nash equilibrium
problems, variational inequality problems, fixed point problems, and so forth.

Related to (EP) in literature has been considered the so-called quasi equilibrium problem
(QEP, for short), that is an equilibrium problem with a constraint set depending on the
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current point. More precisely, given a set-valued map Φ : C ⇒ C, (QEP) requires to find a
point x ∈ Φ(x) such that

f(x, y) ≥ 0, ∀y ∈ Φ(x).

While there is an extensive literature on existence results, stability of the solutions, and
solution methods concerning equilibrium problems (for a recent survey see [4]), the inves-
tigation of quasi equilibrium problems, initially introduced by Mosco in 1976 (see [19]),
received some attention only quite recently. These problems arise from quasi variational
inequalities, which are well-known tools to model equilibria in several frameworks (see, for
instance, [16]). Quasi equilibrium problems showed to be of interest in various fields of
application, like, in particular, the generalized Nash equilibrium problems (see e.g. [1], [8]
and references therein).

Most of the results concerning (QEP) are stated in a finite-dimensional framework, on a
compact set C, and they involve generalized monotonicity assumptions on f together with
upper semicontinuity of the set-valued map Φ which describes the constraint, as well as
lower semicontinuity of this map with the additional assumption of the closedness of the
set of fixed points (see, for instance, [9]). In case of an unbounded set C, an additional
coercivity condition is required (for a recent result, see [12]).

In the literature, to prove existence results for (QEP) the key step goes through standard
fixed-point techniques. On the other hand, Konnov ([18]) proposed to apply in a finite-
dimensional setting a regularized version of the penalty method to establish existence results
for the general quasi equilibrium problem under weak coercivity conditions by replacing the
quasi equilibrium problem with a sequence of usual equilibrium problems.

We apply these techniques to (QEP) in real Banach spaces, under the assumption of
topological, or Brezis pseudomonotonicity of f and weak lower semicontinuity of the con-
straint map. Our approach does not require a priori properties of the fixed points, even if,
at least in the compact case, their existence is entailed by the assumptions of Φ (in case of
a separable Banach space, see Corollary 3.1 in [8]).

The paper is organized as follows. First, in Section 2 we describe the B-pseudomonotone
bifunctions and recall some well-known existence results concerning equilibrium problems.
Section 3 is devoted to the study of (EP) for the sum of bifunctions. In Section 4 we
prove existence results under B-pseudomonotonicity of the bifunction involved for a quasi
equilibrium problem by replacing it with a sequence of penalized and regularized (EP). In
particular, in Theorem 4 we prove an extension of Theorem 4.1 in [18] to infinite dimensional
spaces under a boundedness assumption on the equilibrium bifunction. Finally, in Section
5 we deal with set-valued quasi variational inequalities, providing a set-valued version of
Theorem 4.4 in [16].

2 Preliminaries on EP and B-pseudomonotone bifunctions

Let us recall a well-known existence result for (EP) that holds in the general setting of
Hausdorff topological vector spaces:
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Theorem 1. (see [6], Theorem 1) Let C be a nonempty, closed and convex subset of a
Hausdorff topological vector space E, and f : C × C → R be a bifunction satisfying the
following assumptions:

i. f(x, x) ≥ 0 for all x ∈ C;

ii. for every x ∈ C, the set {y ∈ C : f(x, y) < 0} is convex;

iii. for every y ∈ C, the function f(·, y) is upper semicontinuous on the intersection of C
with any finite dimensional subspace Z of E;

iv. whenever x, y ∈ C, xn ∈ C, xn → x and f(xn, (1 − t)x + ty) ≥ 0 for all t ∈ [0, 1] and
for all n, then f(x, y) ≥ 0;

v. there exists a compact subset K of E, and y0 ∈ K ∩C such that f(x, y0) < 0 for every
x ∈ C \K.

Then, there exists x ∈ C ∩K such that

f(x, y) ≥ 0 for all y ∈ C.

From now on we will assume E = X, with X real Banach space. In this framework, we
will introduce a coercivity condition weaker than condition v. in Theorem 1.

Let µ : X → R and Bµ(r) = {x ∈ X : µ(x) ≤ r}. The function µ is said to be coercive
with respect to C ⊆ X if

lim
‖x‖→+∞, x∈C

µ(x) = +∞.

This is trivially equivalent to say that Bµ(r) ∩ C is bounded for every r > infC µ.
Given a bifunction f : C × C → R, we will denote by (C) the following coercivity

condition:

(C) There exist a convex and lower semicontinuous function µ : X → R, which is coercive
with respect to the set C, and a number r ∈ R such that, for any point x ∈ C \ Bµ(r)
there is a point z ∈ C with

min{f(x, z), µ(z)− µ(x)} < 0 and max{f(x, z), µ(z)− µ(x)} ≤ 0.

Note that, if (C) is fulfilled for some r ∈ R, then it holds true for any ρ ≥ r.

Remark 1. i. It is easy to see that (C) weakens condition v. in Theorem 1. Indeed, set
µ(x) = ‖x‖ and r such that K ⊆ Bµ(r), z = y0 ∈ C ∩K. Then, for every x ∈ C \Bµ(r)
we have f(x, y0) < 0 and ‖z‖ = ‖y0‖ ≤ r < ‖x‖, and therefore (C) is fulfilled.

ii. If the bifunction f satisfies condition (C) over C for suitable µ and r, and for every
x ∈ C \Bµ(r) there exists z ∈ C such that f(x, z) < 0, then the solution set of (EP) is
contained in Bµ(r).
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Taking into account the previous discussion, we provide an existence result on un-
bounded sets. Despite the line of proof is often employed in literature, we insert it for the
reader’s convenience.

Theorem 2. Let C be a nonempty, closed and convex subset of a Banach space X and
f : C × C → R be a bifunction satisfying the following assumptions:

i. f(x, x) = 0 for all x ∈ C;

ii. f(x, ·) is convex for every x ∈ C;

iii. for every y ∈ C, the function f(·, y) is upper semicontinuous on the intersection of C
with any finite dimensional subspace Z of E;

iv. whenever x, y ∈ C, xn ∈ C, xn → x and f(xn, (1 − t)x + ty) ≥ 0 for all t ∈ [0, 1] and
for all n, then f(x, y) ≥ 0;

v. if C is unbounded, the coercivity condition (C) holds.

Then, (EP) is solvable, i.e. there exists x ∈ C such that

f(x, y) ≥ 0 for all y ∈ C.

Proof. If C is bounded, the assertion follows from Theorem 1. Let us suppose that C is
unbounded. We will show that there exists ρ ≥ r such that any solution xρ of (EP) on the
bounded set Bµ(ρ) ∩ C is indeed a solution on the whole set C.

Let us first note that r ≥ r(m), where r(m) = minC µ. Indeed, assume by contradiction
that r < r(m), i.e. C \Bµ(r) = C, and denote by x a solution of the (EP) on the nonempty
and bounded set Bµ(r(m))∩C. By applying the coercivity condition (C), with x = x, there
exists z ∈ C such that

min{f(x, z), µ(z)− µ(x)} < 0 and max{f(x, z), µ(z)− µ(x)} ≤ 0.

Since µ(z) ≥ µ(x), for every z ∈ C, we have that

f(x, z) < 0, µ(z) = µ(x),

thereby contradicting that x is a solution of (EP) on Bµ(r(m)) ∩ C.
In addition, let us show that given any ρ ≥ r, if there exists w ∈ Bµ(ρ) ∩ C such that

µ(w) < ρ and f(xρ, w) = 0, then xρ is a solution on C. By contradiction, suppose that
f(xρ, y) < 0 for some y ∈ C \ Bµ(ρ), and take xt = (1 − t)w + ty ∈ C. Then, by the
assumptions on f, we have

f(xρ, xt) ≤ (1− t)f(xρ, w) + tf(xρ, y) = tf(xρ, y) < 0, ∀t ∈ (0, 1). (1)

Since, for t positive and small enough,

µ(xt) ≤ (1− t)µ(w) + tµ(y) < ρ,
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we have that xt ∈ Bµ(ρ) for t small, and thus (1) is a contradiction.
Let us now consider the following two cases:

• µ(xρ) < ρ, for some ρ ≥ r. In this case, by taking w = xρ, since f(xρ, xρ) = 0, from the
argument above xρ is a solution on C.

• µ(xρ) = ρ, for every ρ ≥ r. Take any ρ > r. Then, xρ /∈ Bµ(r). By condition (C), and
taking x = xρ, we can easily see that the inequalities

f(xρ, z) < 0, and µ(z)− µ(xρ) = µ(z)− ρ ≤ 0

contradict that xρ is a solution on Bµ(ρ) ∩ C. Therefore,

f(xρ, z) = 0, and µ(z)− ρ < 0

hold true. Thus, taking w = z, again the argument above shows that xρ is a solution on
C.

In order to fruitfully apply Theorem 2, we look for sufficient conditions for a bifunction
f to satisfy condition iv.

Proposition 1. Let C ⊆ X be nonempty, closed and convex, and let f : C×C → R satisfy
the assumptions:

i. f(x, x) = 0 for every x ∈ C, and f is monotone (i.e., f(x, y) + f(y, x) ≤ 0 for every
x, y ∈ C);

ii. f(x, ·) is weakly sequentially lower semicontinuous and convex, for every x ∈ C;

iii. f is upper sign continuous, i.e., for every x, y ∈ C : f((1 − t)x + ty, y) ≥ 0 ∀t ∈ (0, 1)
implies f(x, y) ≥ 0 (see [2]).

Then f satisfies assumption iv. in Theorem 2.

Proof. Take any x, y ∈ C, {xn} ⊂ C with xn ⇀ x, such that f(xn, (1 − t)x + ty) ≥ 0 for
every n and for every t ∈ [0, 1]. We will show that f(x, y) ≥ 0. Set zt = (1− t)x+ ty. From
the monotonicity, we have that

f(zt, xn) ≤ −f(xn, zt),

and, by the weak sequential lower semicontinuity in the second variable,

f(zt, x) ≤ lim inf
n→+∞

f(zt, xn) ≤ lim inf
n→+∞

(−f(xn, zt)) = − lim sup
n→+∞

f(xn, zt) ≤ 0 ∀t ∈ [0, 1].

Then, by the convexity in the second variable,

f(zt, x) ≤ 0 = f(zt, zt) ≤ (1− t)f(zt, x) + tf(zt, y) ≤ tf(zt, y), ∀t ∈ (0, 1], (2)

and therefore
f(zt, y) ≥ 0, ∀t ∈ (0, 1].

By the upper sign continuity, this implies that f(x, y) ≥ 0.

5



Remark 2. A simple adjustment of the previous proof shows that the result holds also
in case the assumption of convexity in ii. is replaced by the weaker assumption of explicit
quasiconvexity, i.e. f(x, ·) is quasiconvex and semistrictly quasiconvex. In this case, starting
from (2), and by the quasiconvexity, it follows that

0 = f(zt, zt) ≤ max{f(zt, x), f(zt, y)}.

If f(zt′ , x) > f(zt′ , y) for some t′ ∈ (0, 1], then f(zt′ , x) = 0, f(zt′ , y) < 0, and, by the
semistrict quasiconvexity, f(zt′ , zt′) < 0, a contradiction. Thus, max{f(zt, x), f(zt, y)} =
f(zt, y) ≥ 0, for every t ∈ (0, 1], and the assertion follows again from the upper sign
continuity.

Another sufficient condition for iv., that will be intensively exploited in the sequel, relies
upon the following property of a bifunction f (see [15]):

Definition 1. Let C be a nonempty, closed and convex subset of X. A bifunction f :
C × C → R is said to be topologically, or Brezis pseudomotone (B-pseudomonotone, for
short) if for every xn ⇀ x in C such that lim infn→∞ f(xn, x) ≥ 0 it follows that

f(x, y) ≥ lim sup
n→∞

f(xn, y) ∀y ∈ C.

Remark 3. i. Note that if f(·, y) is either weakly sequentially upper semicontinuous, or
sequentially upper semicontinuous and of type S+, i.e.

xn ⇀ x and lim inf
n→∞

f(xn, x) ≥ 0⇒ xn → x,

(see [11]), then f is B-pseudomonotone.

ii. It is easy to prove that the sum of two B-pseudomonotone bifunctions, that are non-
positive on the diagonal, is B-pseudomonotone too (see Proposition 2.1 in [10]).

Proposition 2. Every B-pseudomonotone bifunction satisfies assumption iv. in Theorem
1 (with E = X), or 2.

Proof. Let x, y ∈ C, xn ∈ C, xn → x and f(xn, (1 − t)x + ty) ≥ 0 for all t ∈ [0, 1]; in
particular, f(xn, x) ≥ 0 and f(xn, y) ≥ 0. Then, lim infn→∞ f(xn, x) ≥ 0 and, since xn → x
implies that xn ⇀ x, by B-pseudomonotonicity f(x, y) ≥ lim supn→∞ f(xn, y) ≥ 0, for all
y ∈ C, that is f(x, y) ≥ 0.

Let us provide an interesting example showing that the assumptions in Proposition 1
do not imply B-pseudomonotonicity.

Example 1. Let f : [0, 1]× [0, 1]→ R be defined as follows:

f(x, y) =

{
x− y, x 6= 0

−2y, x = 0
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Easy computations show that the assumptions i.-iii. hold true. Take now the sequence
xn = 1

n → 0 (x = 0). From f(xn, x) = f(xn, 0) = 1
n , we have

lim inf
n→+∞

f(xn, 0) = lim
n→+∞

1

n
= 0.

Take now y = 1 : we have

f(0, 1) = −2 < −1 = lim
n→+∞

f

(
1

n
, 1

)
=

1

n
− 1 = lim sup

n→+∞
f

(
1

n
, 1

)
,

and therefore f is not B-pseudomonotone.

3 Equilibrium problems for the sum of bifunctions

In this short section existence results for equilibrium problems associated to a sum of
bifunctions are proved. While in case of monotone and generalized monotone bifunc-
tions some results in this framework can be found in [5], we will focus instead on the
B-pseudomonotonicity property of the bifunctions. We will show first an existence result in
case of a weakly compact set C, and then in case of C unbounded.

Proposition 3. Let C be a nonempty, convex and weakly compact subset of a Banach
space X, f, g : C × C → R bifunctions such that:

i. f(x, x) = 0, g(x, x) = 0 for all x ∈ C;

ii. f(x, ·), g(x, ·) are convex for every x ∈ C;

iii. the function f(·, y) is upper semicontinuous on the intersection of C with any finite
dimensional subspace Z of X, and g(·, y) is weakly sequentially upper semicontinuous,
for every y ∈ C;

iv. f is B-pseudomonotone.

Then, there exists x ∈ C such that

f(x, y) + g(x, y) ≥ 0 for all y ∈ C.

Proof. Let ϕ(x, y) = f(x, y) + g(x, y). Then, conditions i.-iii. of Theorem 1 are trivially
satisfied. Moreover, according to Remark 3, the B-pseudomonotonicity of ϕ follows from
the B-pseudomonotonicity of f, and therefore, via Proposition 2, condition iv. of Theorem
1 is fulfilled.

In case the set C is unbounded, in order to prove an existence result, we will assume
the following coercivity condition:
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(C′) there exists a convex and lower semicontinuous function µ : X → R which is coercive
with respect to the set C, and a positive number r such that, for any point x ∈ C \Bµ(r)
there is a point z ∈ C such that

g(x, z) ≤ 0, and

min{f(x, z), µ(z)− µ(x)} < 0 and max{f(x, z), µ(z)− µ(x)} ≤ 0.

Proposition 4. Let C be a nonempty, convex and closed subset of a Banach space X,
f, g : C×C → R bifunctions such that f(x, x) = g(x, x) = 0. Suppose that conditions ii.-iv.
of Proposition 3 are satisfied and that the coercivity condition (C′) holds. Then, there
exists x ∈ C such that

f(x, y) + g(x, y) ≥ 0 for all y ∈ C.

Proof. Note that the bifunction ϕ(x, y) = f(x, y) + g(x, y) does satisfy (C). Indeed, if
x ∈ C \Bµ(r), there exists z ∈ C such that

f(x, z) < 0 and µ(z) ≤ µ(x), or f(x, z) ≤ 0 and µ(z) < µ(x).

In both cases, since g(x, z) ≤ 0, we have that

min{f(x, z) + g(x, z), µ(z)− µ(x)} < 0 and max{f(x, z) + g(x, z), µ(z)− µ(x)} ≤ 0.

Thus, the assertion follows by Theorem 2 applied to the bifunction ϕ.

4 Existence results for quasi equilibrium problems

In this section we will deal with a quasi equilibrium problem in the framework of a real
Banach space X. More precisely, given a nonempty, closed and convex subset C of X, a
set-valued map Φ : C ⇒ C with nonempty, closed and convex values, and a bifunction
f : C × C → R such that f(x, x) = 0 for every x ∈ C, the quasi equilibrium problem
requires to find a point x ∈ Φ(x) such that

f(x, y) ≥ 0, ∀y ∈ Φ(x).

Unlike the standard approach, usually based on properties of the fixed points of the map
Φ, in the following we will provide an existence result for (QEP) via penalization.

From now on let P : C × C → R be a nonnegative bifunction such that P (x, y) = 0 if
and only if y ∈ Φ(x), and denote by (EPk), with k ∈ N, the following equilibrium problem:
find x ∈ C such that

f(x, y) + k(P (x, y)− P (x, x)) ≥ 0, ∀y ∈ C (EPk)

(see, for instance, [18]).
Let us recall the following notion for the continuity of a map:
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Definition 2. A set-valued map Φ : C ⇒ C is said to be weakly lower semicontinuous at
x ∈ C if for every xn ⇀ x, {xn} ⊂ C, and for every y ∈ Φ(x), there exists a subsequence
{xnk

} and yk ∈ Φ(xnk
) such that yk → y.

First of all, we state the following

Proposition 5. Suppose that (EPk) has a solution xk, and that x is a weak limit point of
{xk}. Under the following assumptions:

i. f is B-pseudomonotone;

ii. |f(z, y)− f(z, x)| ≤ h(z)||y− x||, for every x, y, z ∈ C, where h : C → R is positive and
bounded on bounded sets;

iii. t→ P (t, t) is weakly sequentially lower semicontinuous, for every t ∈ C;

iv. Φ is weakly lower semicontinuous at every x ∈ C,

x is a solution of (QEP).

Proof. Assume, without loss of generality, that xk ⇀ x. Let y be a point in Φ(x). Thus,
by Definition 2, again without loss of generality there exists {x̃k} with x̃k ∈ Φ(xk), and
x̃k → y. Then,

f(xk, x̃k)− kP (xk, xk) ≥ 0.

This implies that

0 ≤ P (xk, xk) ≤
1

k
f(xk, x̃k) ≤

1

k
h(xk)||xk − x̃k||.

If k → +∞, from the boundedness of h and iii., we get P (x, x) = 0, i.e. x ∈ Φ(x).
Let us now take a sequence {x̃k}, with x̃k ∈ Φ(xk), and x̃k → x. Since f(xk, x̃k) ≥ 0, we

get
0 ≤ f(xk, x̃k) = f(xk, x̃k) + f(xk, x)− f(xk, x) ≤ f(xk, x) + h(xk)||x̃k − x||

and therefore lim infk→+∞ f(xk, x) ≥ 0. From the B-pseudomonotonicity of f ,

f(x, y) ≥ lim sup
k→+∞

f(xk, y), ∀y ∈ Φ(x). (3)

For any y ∈ Φ(x), take yk ∈ Φ(xk), yk → y. Then,

0 ≤ f(xk, yk) = f(xk, yk) + f(xk, y)− f(xk, y) ≤ f(xk, y) + h(xk)||yk − y||.

This implies that lim supk→+∞ f(xk, y) ≥ 0, for every y ∈ Φ(x). The assertion follows by
(3).

In case C is weakly compact, the following existence result for a (QEP) problem easily
follows:
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Theorem 3. Let C be a nonempty, weakly compact and convex subset of a real Banach
space X, f, P : C ×C → R bifunctions, Φ : C ⇒ C a set-valued map with nonempty closed
and convex values. Suppose that

i. f is B-pseudomonotone, and f(x, x) = 0 for all x ∈ C;

ii. |f(z, y)− f(z, x)| ≤ h(z)||y− x||, for every x, y, z ∈ C, where h : C → R is positive and
bounded on bounded sets;

iii. f(x, ·) and P (x, ·) are convex, for every x ∈ C;

iv. t→ P (t, t) is weakly sequentially lower semicontinuous, for every t ∈ C;

v. the function f(·, y) is upper semicontinuous on the intersection of C with any finite
dimensional subspace Z of X, and P (·, y) is weakly sequentially upper semicontinuous,
for every y ∈ C;

vi. Φ is weakly lower semicontinuous at every x ∈ C.

Then, problem (EPk) is solvable, and any weak limit point x of a sequence of solutions xk
of problem (EPk) is a solution of (QEP).

Proof. The assumptions give the solvability of Problem (EPk) via Proposition 3 setting
g(x, y) = P (x, y) − P (x, x). Moreover, the weak compactness of the set C entails the
existence of limit points for every sequence in C. Therefore the sequence of solutions xk of
problems (EPk) admits weak limit points, and the assertion follows by Proposition 5.

In case C is not weakly compact, we introduce the following regularized problem (EP′k):
find x ∈ C such that

f(x, y) + k(P (x, y)− P (x, x)) +
1

k
(µ(y)− µ(x)) ≥ 0, ∀y ∈ C, (EP′k)

where µ : X → R is convex, coercive with respect to C, and continuous with respect to the
strong topology. Note that, in particular, µ is weakly lower semicontinuous.

We can now state the following result, under the stronger assumption that X is a
reflexive Banach space:

Theorem 4. Let C be a nonempty, closed and convex subset of a reflexive Banach space
X, f, P : C × C → R bifunctions, Φ : C ⇒ C a set-valued map with nonempty closed and
convex values. Suppose that the assumptions i.-vi. of Theorem 3 hold, together with the
coercivity condition (C′), where g(x, y) = P (x, y)− P (x, x).

Then, problem (EP′k) is solvable and any sequence of solutions xk of problem (EP′k) has
weak limit points that are, in particular, solutions of (QEP).
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Proof. Condition (C′) with g(x, y) = P (x, y)−P (x, x), implies that for every x ∈ C \Bµ(r)
there exists z ∈ C such that

k(P (x, z)− P (x, x)) +
1

k
(µ(z)− µ(x)) ≤ 0.

Therefore the assumptions in Proposition 4 are satisfied setting, in this case,

g(x, y) = k(P (x, y)− P (x, x)) +
1

k
(µ(y)− µ(x)),

and (EP′k) is solvable. Moreover, it is easy to show that for every x ∈ C \Bµ(r), there exists
z ∈ C such that

f(x, z) + k(P (x, z)− P (x, x)) +
1

k
(µ(z)− µ(x)) < 0,

and therefore all the solutions of the regularized problem necessarily belong to the bounded
set Bµ(r) (see Remark 1 ii). Thus, by the reflexivity of X, for any sequence of solutions {xk}
of the problems (EP′k) there exists a weak limit point x ∈ C. Without loss of generality, we
will assume that xk ⇀ x.

From the lower semicontinuity of µ we have that µ(x) ≤ lim infk→+∞ µ(xk), which

implies that, for every ε > 0, µ(xk) > µ(x) − ε for k big enough, i.e., µ(xk)
k > µ(x)−ε

k .
Therefore,

lim inf
k→+∞

µ(xk)

k
≥ 0. (4)

Obviously, taking k2 instead of k within the argument above, we obtain from (4)

lim infk→+∞
µ(xk)
k2
≥ 0, which implies in particular that

lim inf
k→+∞

(
−µ(xk)

k2

)
= − lim sup

k→+∞

µ(xk)

k2
≤ 0 (5)

From the inequality

f(xk, y) + k(P (xk, y)− P (xk, xk)) +
1

k
(µ(y)− µ(xk)) ≥ 0, ∀y ∈ C, (6)

we get that

0 ≤ P (xk, xk) ≤
1

k
f(xk, y) + P (xk, y) +

1

k2
(µ(y)− µ(xk)), ∀y ∈ C. (7)

Let y′ ∈ Φ(x). From vi. of Theorem 3, there exists yk ∈ Φ(xk) such that yk → y′. Take
y = yk in (7). Then, from the assumptions, we have

0 ≤ P (x, x) ≤ lim inf
k→+∞

P (xk, xk)

≤ lim inf
k→+∞

(
1

k
f(xk, yk) +

1

k2
(µ(yk)− µ(xk)))

≤ lim inf
k→+∞

(
1

k
h(xk)‖yk − xk‖+

1

k2
(µ(yk)− µ(xk)))

= 0.
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This implies that P (x, x) = 0, i.e., x ∈ Φ(x). Again from vi. of Theorem 3, there exists
{zk} such that zk ∈ Φ(xk) and zk → x. From (6) with y = zk, we get

f(xk, zk) +
1

k
(µ(zk)− µ(xk)) ≥ 0.

This implies that

0 ≤ f(xk, zk)+
1

k
(µ(zk)−µ(xk)) = f(xk, x)+(f(xk, zk)−f(xk, x))+

1

k
(µ(zk)−µ(xk)). (8)

Then,

0 ≤ lim inf
k→+∞

(f(xk, x) + (f(xk, zk)− f(xk, x)) +
1

k
(µ(zk)− µ(xk)))

≤ lim inf
k→+∞

(f(xk, x) + h(xk)‖zk − x‖+
1

k
(µ(zk)− µ(xk)))

= lim inf
k→+∞

(f(xk, x)− 1

k
µ(xk))

≤ lim inf
k→+∞

f(xk, x)− lim inf
k→+∞

1

k
µ(xk)

≤ lim inf
k→+∞

f(xk, x)

(the last inequality follows by (4)). From the assumption of B-pseudomonotonicity, we get
f(x, y) ≥ lim supk→+∞ f(xk, y), for every y ∈ C.

Let now z′ ∈ Φ(x). Then there exists {zk} such that zk ∈ Φ(xk), and zk → z′. As before
we have

0 ≤ lim inf
k→+∞

((f(xk, zk)− f(xk, z
′)) + f(xk, z

′) +
1

k
(µ(zk)− µ(xk)))

≤ lim inf
k→+∞

(h(xk)‖zk − z′‖+ f(xk, z
′) +

1

k
(µ(zk)− µ(xk)))

≤ lim inf
k→+∞

f(xk, z
′).

This implies that lim supk→+∞ f(xk, z
′) ≥ 0. Again from the B-pseudomonotonicity,

f(x, z′) ≥ lim sup
k→+∞

f(xk, z
′) ≥ 0.

Since z′ is arbitrarily chosen in Φ(x), we can conclude that x is a solution of (QEP).

Remark 4. If Φ : C ⇒ C denotes the set-valued map of the constraint sets of the (QEP),
a possible choice for the bifunction P could be P (x, y) = dΦ(x)y, where dAy is the usual
distance function of the point y from the set A (see [16]). In order to satisfy the assumptions
of Theorem 3 and Theorem 4, taking into account Lemma 4.3 in [16], the set-valued map
Φ should satisfy some additional requirements. In case C is weakly compact, it is enough
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to assume the following: for every xn ⇀ x, if the sequence {yn}, with yn ∈ Φ(xn), has
a weak limit point y, then y ∈ Φ(x). Note that this condition, together with the lower
semicontinuity in Definition 2, gives the well-known weak Mosco continuity of Φ. In case C
is not weakly compact, one must ask for the supplementary condition that Φ(C) is relatively
weakly compact. Finally, let us point out that the coercivity condition (C′) requires, in
fact, that Φ(x) is not a singleton if x is a fixed point in C \ Bµ(r). This is not an effective
restriction, since these possible fixed points would be trivial solutions of (QEP) since the
equilibrium bifunction is null on the diagonal.

5 Set-valued quasi variational inequalities

The purpose of this section is to apply the previous results to the particular case of quasi
variational inequalities. Let T : X ⇒ X∗ be an operator. One can naturally associate to T
the representative bifunction GT : X ×X → R ∪ {+∞}, given by

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉.

The quasi equilibrium problem associated to the bifunction GT gives rise to the set-valued
quasi variational inequality QV I(T,Φ): find x ∈ Φ(x) such that

sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0 for all y ∈ Φ(x). (9)

It is well known that GT inherits the monotonicity property from the operator T and vicev-
ersa. We are now interested in studying the relationship in case of B-pseudomonotonicity.

Let us first recall that T is B-pseudomonotone on a nonempty subset C of dom(T ) if,
for every {xn} in C such that xn ⇀ x ∈ C, and for every x∗n ∈ T (xn) with

lim inf
n→+∞

〈x∗n, x− xn〉 ≥ 0,

one has that, for every y ∈ C, there exists x∗(y) ∈ T (x) such that

〈x∗(y), y − x〉 ≥ lim sup
n→+∞

〈x∗n, y − xn〉.

It is easy to prove the following

Proposition 6. Let T : X ⇒ X∗ be a weakly compact-valued operator, C ⊂ dom(T ), and
consider the bifunction GT : C × C → R. If GT is B-pseudomonotone on C × C, then T is
B-pseudomonotone on C.

Proof. Let us assume that GT is B-pseudomonotone on C×C. Take any sequence {xn} ⊂ C,
such that xn ⇀ x ∈ C, and {x∗n}, with x∗n ∈ T (xn) and lim infn→+∞〈x∗n, x− xn〉 ≥ 0. This
implies that lim infn→+∞GT (xn, x) ≥ 0. By the B-pseudomonotonicity of GT , we have that

GT (x, y) ≥ lim sup
n→+∞

GT (xn, y) ≥ lim sup
n→+∞

〈x∗n, y − xn〉, ∀y ∈ C.
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By the weak compactness of T (x), for every y ∈ C there exists x∗(y) ∈ T (x) such that
GT (x, y) = 〈x∗(y), y − x〉, and thus

〈x∗(y), y − x〉 ≥ lim sup
n→+∞

〈x∗n, y − xn〉, ∀y ∈ C,

proving the B-pseudomonotonicity of T.

On the contrary, the question whether B-pseudomonotonicity of T implies B-pseudo-
monotonicity of GT is still open. In [3] the authors proved that if T is B-pseudomonotone,
then GT satisfies condition iv. in Theorem 1 which, according to Proposition 2 and Ex-
ample 1, is weaker than B-pseudomonotonicity of GT . However, assuming that X is a
reflexive Banach space, if we strengthen the assumptions on T , it is possible to achieve B-
pseudomonotonicity of GT which can be useful in dealing with set-valued quasi variational
inequalities.

First, let us introduce the concept of S+ set-valued operators as a natural extension of
the scalar notion introduced by Browder in [7] for single-valued operators and which plays
an important role in the theory of Galerkin approximations.

Definition 3. The operator T : X ⇒ X∗ is said to be of type S+ on a nonempty subset C
of dom(T ) if, for every {xn} in C such that xn ⇀ x ∈ C, and for every x∗n ∈ T (xn), with

lim sup
n→+∞

〈x∗n, xn − x〉 ≤ 0,

it follows that xn → x in C.

In what follows we shall denote by gph(T ) the graph of the operator T . Recall that T is
said to be s-w -closed on C if, for any (xn, x

∗
n) ∈ gph(T |C) such that xn → x and x∗n ⇀ x∗,

one has that (x, x∗) ∈ gph(T |C). Furthermore, T is said to be bounded if it maps bounded
subsets of its domain into bounded sets.

We are now in the position to prove the following

Proposition 7. Let X be a reflexive Banach space, T : X ⇒ X∗, and C ⊂ dom(T ) be a
nonempty, closed and convex set. Suppose that T is convex-valued, s-w-closed, bounded and
of type S+ on C. Then GT is of type S+, and GT (·, y) is sequentially upper semicontinuous
for every y ∈ C. In particular, GT is B-pseudomonotone on C × C.

Proof. Under the assumptions, the set T (x) is convex and bounded, for every x ∈ X. In
addition, T (x) is closed. Indeed, for any x∗n → x∗, with x∗n ∈ T (x) we also have x∗n ⇀ x∗;
thus, since (x, x∗n) ∈ gph(T ) and T is s-w-closed, it follows that x∗ ∈ T (x). Then, by
reflexivity, T (x) is weakly compact.

To prove that GT is of type S+, take any sequence {xn} ⊂ C, such that xn ⇀ x ∈ C,
and lim infn→∞GT (xn, x) ≥ 0. This means, by the definition of GT , that

lim inf
n→∞

sup
x∗n∈T (xn)

〈x∗n, x− xn〉 ≥ 0.
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By the weak compactness of T (xn), there exists z∗n ∈ T (xn) such that

sup
x∗n∈T (xn)

〈x∗n, x− xn〉 = 〈z∗n, x− xn〉

and, therefore, lim supn→∞〈z∗n, xn − x〉 ≤ 0. Since T is of type S+, we have that xn → x,
and hence GT is of type S+.

To prove the sequential upper semicontinuity of GT (·, y) for every y ∈ C, take any
sequence {xn} ⊂ C, such that xn → x ∈ C. By contradiction, there exists y ∈ C such that

GT (x, y) < lim sup
n→+∞

GT (xn, y) = lim
k→+∞

GT (xnk
, y), (10)

where {xnk
} is a suitable subsequence of {xn}. By the weak compactness of T (xnk

), there
exists x∗nk

∈ T (xnk
) such that

GT (xnk
, y) = 〈x∗nk

, y − xnk
〉.

Since T is bounded, let us assume, without loss of generality, that x∗nk
⇀ x∗. Furthermore,

by the s-w closedness of T on C, x∗ ∈ T (x). Therefore,

lim
k→+∞

GT (xnk
, y) = lim

k→+∞
〈x∗nk

, y − xnk
〉 = 〈x∗, y − x〉 ≤ GT (x, y),

thereby contradicting (10). Finally, according to Remark 3 i., GT is B-pseudomonotone on
C × C.

Remark 5. Note that, from Proposition 6, an operator satisfying the assumptions in Propo-
sition 7 is B-pseudomonotone.

By taking advantage of the previous discussion that links properties of T and GT , we
are able to prove existence results for QV I(T,Φ).

In case C is weakly compact, we underline that an existence result can be provided
solely via properties enjoyed by the operator T, meaning that GT and/or µ are not involved
in the assumptions.

The following result holds:

Theorem 5. Let us assume that P and Φ satisfy the assumptions of Theorem 3; moreover,
suppose that T is convex-valued, bounded, of type S+ and s-w–closed on C. Then the
problem QV I(T,Φ) is solvable.

Proof. In order to apply Theorem 3 with f(x, y) = GT (x, y), taking into account Proposition
7, we need only to show that ii. is satisfied, i.e.,

|GT (z, y)−GT (z, x)| ≤ h(z)||y − x||,

where h : C → R is positive and bounded on bounded sets. By the weak compactness of
T (z), there exists u∗ ∈ T (z) such that GT (z, y) = 〈u∗, y − z〉. Then

GT (z, y)−GT (z, x) ≤ 〈u∗, y − z〉 − 〈u∗, x− z〉 = 〈u∗, y − x〉 ≤ sup
v∗∈T (z)

||v∗|| · ||x− y||
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and, analogously, GT (z, x)−GT (z, y) ≤ supv∗∈T (z) ||v∗|| · ||x− y||. Since T is bounded, the
function h(z) = supv∗∈T (z) ||v∗|| is bounded on bounded sets and the assertion follows.

In case C is unbounded, let us consider the following coercivity condition for a bifunction
f : C × C → R (see [3] for a similar condition): there exists y0 ∈ C such that, for some
s > 0,

lim sup
‖x‖→+∞, x∈C

f(x, y0)

‖x− y0‖s
< +∞. (11)

The following result holds:

Theorem 6. Let C be a nonempty, closed and convex subset of a reflexive Banach space
X, and T : X ⇒ X∗ be convex-valued, bounded, of type S+ and s-w–closed on C. Let us
assume that P and Φ satisfy the assumptions of Theorem 3; moreover, P and GT satisfy,
for the same y0 ∈ C and s > 0, the condition of the bifunction f in (11).

Then, for every positive s′ > s, s′ ≥ 1, the regularized problem

GT,k(x, y) = GT (x, y) + k(P (x, y)− P (x, x)) +
1

k
(‖y‖s′ − ‖x‖s′) ≥ 0, ∀y ∈ C, (12)

is solvable, and any sequence of solutions xk of the problem above has weak limit points
that are, in particular, solutions of (QVI).

Proof. Let us show that GT,k satisfies the coercivity condition v. of Theorem 1, with E = X
equipped with the weak topology. Indeed, taking into account (11) and the sign of P, we
get

lim sup
‖x‖→+∞, x∈C

GT,k(x, y0)

‖x− y0‖s

= lim sup
‖x‖→+∞, x∈C

(
GT (x, y0)

‖x− y0‖s
+ k

P (x, y0)− P (x, x)

‖x− y0‖s
+

1

k

‖y0‖s
′ − ‖x‖s′

‖x− y0‖s

)

≤ lim sup
‖x‖→+∞, x∈C

GT (x, y0)

‖x− y0‖s
+ k lim sup

‖x‖→+∞, x∈C

P (x, y0)− P (x, x)

‖x− y0‖s
+

+
1

k
lim sup

‖x‖→+∞, x∈C

‖y0‖s
′ − ‖x‖s′

‖x− y0‖s

= −∞.

This implies that there exists M > ‖y0‖, such that

GT,k(x, y0) < 0, ∀x ∈ C, ‖x‖ > M,

i.e., GT,k(x, y0) < 0 for every x ∈ C \ BX(0,M), where BX(0,M) denotes the closed ball
with centre 0 and radius M. Therefore v. holds choosing K = BX(0,M). Furthermore,
GT,k trivially satisfies assumptions i. and ii. of Theorem 1. Assumptions iii. and iv. follow
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from Proposition 7 and Proposition 2. Therefore, problem (12) is solvable and the solutions
belong to BX(0,M). To conclude the proof, we can now follow the line of Theorem 4, with
µ(x) = ‖x‖s′ .

Remark 6. Note that if we choose P (x, y) = dΦ(x)y, under the assumptions of Remark
4, the coercivity condition (11) holds. Indeed, by the relative weak compactness of Φ(C),
Φ(x) is bounded and P (x, y0) = dΦ(x)y0 is bounded, too. With this choice of P , Theorem 6
can be considered an extension of Theorem 4.4. in [16] to the set-valued and non compact
case.

Another possible approach to the unbounded case should be to introduce a coercivity
condition in terms of the function µ.

Proposition 8. Suppose that there exists a convex and lower semicontinuous function
µ : X → R, which is coercive with respect to the set C, and a point y0 ∈ C such that

lim
µ(x)→∞, x∈C

infx∗∈T (x)〈x∗, x− y0〉
µ(x)

= +∞. (13)

Then condition (C) is satisfied by f(x, y) = GT (x, y).

Proof. Let R := max{0, µ(y0)}. By (13) there exists r > R such that

infx∗∈T (x)〈x∗, x− y0〉
µ(x)

≥ 1, ∀x ∈ C, µ(x) > r, (14)

i.e.,
GT (x, y0) = sup

x∗∈T (x)
〈x∗, y0 − x〉 ≤ −µ(x), ∀x ∈ C, µ(x) > r. (15)

Hence for every x ∈ C \ Bµ(r) we have µ(x) > r > R ≥ µ(y0) which, together with (15),
shows that condition (C) is satisfied.

We are now in the position to apply Theorem 2 to the regularized problem (12) and,
with similar steps as Theorem 6, prove the following:

Theorem 7. Let C be a nonempty, closed and convex subset of a reflexive Banach space
X, and T : X ⇒ X∗ be convex-valued, bounded, of type S+ and s-w–closed on C. Let us
assume that P and Φ satisfy the assumptions of Theorem 3; moreover, there exists y0 ∈ C
such that T satisfy (13) for a suitable function µ, and P (x, y0) ≤ P (x, x) for all x ∈ C\Bµ(r)
where r is fixed in the proof of Proposition 8.

Then, the regularized problem

GT,k(x, y) = GT (x, y) + k(P (x, y)− P (x, x)) +
1

k
(µ(y)− µ(x)) ≥ 0, ∀y ∈ C, (16)

is solvable, and any sequence of solutions xk of the problem above has weak limit points
that are, in particular, solutions of (QVI).
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Remark 7. Assumptions of type (13) are often considered in the theory of differential
equations when dealing with coercivity conditions. Suppose that 0 ∈ C. A typical particular
instance is the case of elliptic operators, i.e., when µ(x) = ‖x‖ and there exists α > 0 such
that infx∗∈T (x)〈x∗, x〉 ≥ α‖x‖2 for all x ∈ C (here y0 = 0). For single-valued operators the
relation above reduces to 〈T (x), x〉 ≥ α‖x‖2.
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