
International Journal of Approximate Reasoning 164 (2024) 109080

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Three-way decisions with evaluative linguistic expressions

Stefania Boffa ∗, Davide Ciucci
Dipartimento di Informatica, Sistemistica e Comunicazione, University of Milano–Bicocca, viale Sarca 336, 20126 Milano, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Three-way decisions

Rough sets

Probabilistic rough sets

Evaluative linguistic expressions

Explainable Artificial Intelligence

The theory of three-way decisions (3WD) requires dividing a finite, non-empty universe into three 
disjoint sets called positive, negative, and boundary regions. Three types of decisions are then 
made on the objects in each region: acceptance, rejection, and abstention (or non-commitment), 
respectively. Until today, a large number of 3WD extensions and applications have been proposed; 
some of the most recent ones also include aspects of linguistics. In this article, we first propose 
an innovative linguistic interpretation of three-way decisions, where the positive, negative, and 
boundary regions are constructed by means of the so-called evaluative linguistic expressions. 
These are expressions of natural language, such as small, medium, very short, quite roughly 
strong, extremely good, etc., and they are described within a logical theory based on the formal 
system of higher-order fuzzy logic. Furthermore, in line with our linguistic 3WD approach, we 
introduce the novel notion of linguistic rough sets, thus contributing to the development of 
Rough Set Theory. Finally, we connect the theory of linguistic three-way decisions with the 
standard 3WD model based on probabilistic rough sets, establishing conditions under which the 
two approaches coincide. Our results highlight connections between two different research areas: 
three-way decisions and the theory of evaluative linguistic expressions.

1. Introduction

The theory of three-way decisions (3WD) divides a finite and non-empty universe into three disjoint sets, which are called positive, 
negative, and boundary regions. These regions respectively induce positive, negative, and boundary rules: a positive rule makes a 
decision of acceptance, a negative rule makes a decision of rejection, and a boundary rule makes an abstained or non-committed 
decision [1,2]. The concept of three-way decision was originally introduced in Rough Set Theory [1,3], and so far, it has been studied 
and employed to solve many decision-making problems (see [4–7] for some examples). Thus, different methods generating the three 
regions exist in literature [8]; the most important one is based on probabilistic rough sets (that are extensions of Pawlak rough sets 
[9]), where the three regions called probabilistic positive, negative, and boundary regions, are constructed using a pair of thresholds 
and the notion of conditional probability. The philosophy and the power of three-way decisions for building high-level conceptual 
models are discussed in [10].

Three-way decision theory with probabilistic rough sets has been extensively developed from a theoretical and applied per-

spective. To show the wide range of fields touched by these studies, let us mention [11], where a temporal-spatial three-way 
recommendation strategy (TS3WR) is proposed to realize a multi-step recommendation; in [12], an optimization-based three-way 
decision model is realized in the interval-valued intuitionistic fuzzy environment; in [13], the interplay of three-way decision theory 
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and granular computing is explored in the context of cognitive science; in [14], three-way approximations of fuzzy sets are presented 
by using the concept of granular shadowed sets in the quotient space; in [15], a three-way multi-attribute decision-making model is 
constructed in incomplete fuzzy decision systems.

The contribution of this article is to provide a linguistic interpretation of the positive, negative, and boundary regions. Therefore, 
we propose a three-way decision method based on the concept of evaluative linguistic expressions, which are expressions of natural 
language such as small, medium, very short, quite roughly strong, extremely good, etc. In particular, we focus on the expressions involving 
the adjectives small, medium, and big that can be preceded by an adverb; examples are very small, roughly medium, extremely big, and 
so on.

In recent years, evaluative linguistic expressions have been studied in the fields of theoretical linguistics and mathematical 
logic [16–18], and have been considered in the majority of applications of fuzzy modelling. Particularly relevant for our study is 
the application of linguistic expressions in fuzzy decision-making. In this context, experts commonly give their evaluation using 
expressions of natural language, which are aggregated with selected operators and exploited following the classical decision scheme. 
In this case, the simplest evaluative linguistic expressions are modelled by fuzzy sets with trapezoidal/triangular-shaped membership 
functions. More complex evaluative linguistic expressions are modelled using several approaches such as the ones based on hesitant 
fuzzy linguistic term sets [19] or linguistic distributions [20].

Our model stands out from those usually considered in fuzzy decision-making for two aspects. Firstly, the mathematical instrument 
chosen to represent evaluative linguistic expressions. In fact, evaluative linguistic expressions involved in this work are described 
within a formal logical theory based on the formal system of higher-order fuzzy logic [21–24]. The second difference is the role of 
evaluative linguistic expressions in the decision process. Indeed, they are employed to evaluate the size of sets in order to obtain a 
tri-partition of an initial universe and they do not relate to expert opinions. As a consequence, the corresponding aggregation and 
exploitation steps need not be taken into account.

We notice that also various 3WD models include some aspects of linguistics: linguistic terms could appear for determining 
thresholds as in [25] or for defining a generalized formula of the conditional probability as in [26]. The substantial differences with 
our approach are two: in all these models, evaluative linguistic expressions are semantically described by means of mathematical tools 
different from our approach and the three regions are obtained using the concept of conditional probability. Therefore, evaluative 
linguistic expressions as introduced in [21] are applied to 3WD theory for the first time in this work. It is fundamental to underline 
that we adopt an abstract approach to 3WD because the thresholds 𝛼 and 𝛽 are generic values of [0,1] satisfying the inequality 𝛽 < 𝛼
and they are not the solutions of specific equations as in [2].

Let us briefly describe how evaluative linguistic expressions act here. First of all, consider that evaluative linguistic expressions 
are characterized by the notions of intention, context, and extension. The meaning of an evaluative linguistic expression is modelled 
by its intention, which is a function assigning to each context another mapping called extension (see Subsection 2.2 for more 
details). In this article, since we usually deal with the standard context, the extension of an evaluative linguistic expression is a map 
𝐸𝑣 ∶ [0, 1] → [0, 1]. The positive, negative, and boundary regions of a non-empty and finite universe 𝑈 are defined starting from a 
subset 𝑋 of 𝑈 , an equivalence relation  on 𝑈 (i.e.  is reflexive, symmetric and transitive), an evaluative linguistic expression 
represented by 𝐸𝑣 ∶ [0, 1] → [0, 1], and a pair of thresholds (𝛼, 𝛽) with 0 ≤ 𝛽 < 𝛼 ≤ 1. Then, an object 𝑥 belongs to the positive region 
when the size of [𝑥] ∩𝑋 evaluated w.r.t. 𝐸𝑣 is at least 𝛼, where [𝑥] is the equivalence class of 𝑥 w.r.t. . Analogously, 𝑥 belongs 
to the negative region when the size of [𝑥] ∩𝑋 evaluated w.r.t. 𝐸𝑣 is at most 𝛽. Finally, the remaining elements form the boundary 
region. In order to obtain the three regions, the size of 𝑋 ∩ [𝑥] is quantified using a fuzzy measure [27].

The role of evaluative linguistic expressions in the context of three-way decision can be better understood by the following 
example.

Example 1. Suppose that the number of buses between the University of Buenos Aires and the rest of the city has to be increased 
from 7 am to 8 am. Thus, we intend to understand which city areas need buses the most, as resources are limited. Let us denote the 
areas of the city with 𝐴1, … , 𝐴𝑛 and map each area 𝐴𝑖 with the set 𝑆𝐴𝑖 made of all students of the university who live in 𝐴𝑖. Thus, 
𝑆𝐴1

, … , 𝑆𝐴𝑛 can be seen as the equivalence classes w.r.t. the relation  on the set of all students of the University of Buenos Aires 
living in the city: 𝑥𝑦 if and only if 𝑥 and 𝑦 live in the same area. Based on a survey, we also consider a set 𝑋 made of all students 
that usually take a bus to the university in the slot time [7 am, 8 am]. We also choose (𝛼, 𝛽) = (0.6, 0.3) and 𝐸𝑣 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑏𝑖𝑔. We 
construct three regions in the following way. The positive region is the union of 𝑆𝐴′

1
, … , 𝑆𝐴′

𝑘
(with {𝐴′

1, … , 𝐴′
𝑘
} ⊆ {𝐴1, … , 𝐴𝑛}) so that 

the number of students of 𝑆𝐴′
𝑖

that take a bus from 7 am to 8 am is “extremely big” with a truth value of at least 0.6. Similarly, the 
negative region is the union of 𝑆𝐴∗

1
, … , 𝑆𝐴∗

ℎ
(with {𝐴∗

1 , … , 𝐴∗
ℎ
} ⊆ {𝐴1, … , 𝐴𝑛}) so that the amount of students of 𝑆𝐴∗

𝑖
that take a bus 

from 7 am to 8 am is extremely big with a truth value of at most 0.3. All other students form the boundary region. The final decision 
is immediate: the buses are certainly increased for the areas 𝐴′

1, … , 𝐴′
𝑘
, but not for 𝐴∗

1 , … , 𝐴∗
ℎ
. Furthermore, the decision is postponed 

for the remaining areas (that is, for each 𝐴𝑖 ∉ {𝐴′
1, … , 𝐴′

𝑘
} ∪{𝐴∗

1 , … , 𝐴∗
ℎ
}). In order to make a decision in those areas, for example, we 

could take into account the workers (besides the students) who need a bus in the slot of time [7 am, 8 am].

The choice of 𝐸𝑣 depends on the situation where the three regions are used. Indeed, in the previous example, we have chosen 
extremely big in order to select the areas where a large number of students catch the bus from 7 am to 8 am. However, if we focus on 
the inverse problem (namely we need to eliminate some existing bus rides), then we should identify the areas where there are fewer 
students taking the bus in the time slot [7 am, 8 am]. Therefore, in this case, the evaluative linguistic expression extremely small is 
2

more appropriate to construct the three regions.
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The principal strengths of our linguistic 3WD model are:

• providing a linguistic and novel interpretation of the positive, negative, and boundary regions already determined with prob-

abilistic rough sets. Consequently, the reasons for decisions of acceptance, rejection, and non-commitment can be explained in 
terms of expressions of natural language. Of course, the advantage is that non-technical users dealing with 3WD models can 
better understand the reliability of the procedures related to the final decisions. This is in line with the scope of Explainable 
Artificial Intelligence (XAI), which is a new approach to AI emphasizing the ability of machines to give sound motivations about 
their decisions and behaviour [28];

• contributing to the development of Rough Set Theory. Indeed, the exploitation of the strict connection between 3WD and rough 
sets naturally leads to the notion of linguistic rough sets;

• allowing a probabilistic model (3WD model based on probabilistic rough sets) to be reinterpreted as a model involving fuzziness. 
In fact, in order to obtain the three regions, we compare the thresholds 𝛼 and 𝛽 with truth degrees instead of probabilities of 
events;

• highlighting connections between two different research areas: three-way decisions and the theory of evaluative linguistic ex-

pressions.

The article is organized as follows. The next section reviews some basic notions regarding probabilistic three-way decisions and 
the concept of evaluative linguistic expressions. Also, the notion of fuzzy measure is recalled. Section 3 presents a new model of 
three-way decision based on the theory of evaluative linguistic expressions. As a consequence, a linguistic generalization of Pawlak 
rough sets is introduced. Finally, Section 4 connects the 3WD models based on evaluative linguistic expressions and probabilistic 
rough sets. In particular, confining to the evaluative linguistic expressions modelled by increasing functions, we find the class of 
thresholds so that the corresponding probabilistic positive, negative, and boundary regions are equal to those generated by a given 
evaluative linguistic expression.

2. Preliminaries

In the following, we consider a finite and non-empty universe 𝑈 , a subset 𝑋 of 𝑈 , and an equivalence relation  on 𝑈 (i.e.  is 
reflexive, symmetric, and transitive). Moreover, we indicate the equivalence class of 𝑥 ∈ 𝑈 w.r.t.  with [𝑥].

2.1. Three-way decision with probabilistic rough sets

This subsection recalls the fundamental notions of three-way decisions based on probabilistic rough sets.

Viewing 𝑋 and [𝑥] as events of 𝑈 , the symbol 𝑃𝑟(𝑋|[𝑥]) denotes the conditional probability of 𝑋 given [𝑥], i.e.

𝑃𝑟(𝑋|[𝑥]) = |[𝑥] ∩𝑋||[𝑥]| . (1)

Then, three special subsets of 𝑈 are determined by using (1) and a pair of thresholds as shown by the next definition.

Definition 1. Let 𝛼, 𝛽 ∈ [0, 1] such that 𝛽 < 𝛼, the (𝛼, 𝛽)-probabilistic positive, negative and boundary regions are respectively the follow-

ing:

(i) 𝑃𝑂𝑆(𝛼,𝛽)(𝑋) = {𝑥 ∈𝑈 | 𝑃𝑟(𝑋|[𝑥]) ≥ 𝛼},

(ii) 𝑁𝐸𝐺(𝛼,𝛽)(𝑋) = {𝑥 ∈𝑈 | 𝑃𝑟(𝑋|[𝑥]) ≤ 𝛽},

(iii) 𝐵𝑁𝐷(𝛼,𝛽)(𝑋) = {𝑥 ∈𝑈 | 𝛽 < 𝑃𝑟(𝑋|[𝑥]) < 𝛼}.

We put

(𝛼,𝛽)(𝑋) = {𝑃𝑂𝑆(𝛼,𝛽)(𝑋),𝑁𝐸𝐺(𝛼,𝛽)(𝑋),𝐵𝑁𝐷(𝛼,𝛽)(𝑋)}. (2)

Trivially, (𝛼,𝛽)(𝑋) is a tri-partition of 𝑈 .1 Namely,

• the three regions of (𝛼,𝛽)(𝑋) are mutually disjoint: 𝐴 ∩𝐵 = ∅ for each 𝐴, 𝐵 ∈ (𝛼,𝛽)(𝑋) with 𝐴 ≠ 𝐵;

• they cover the universe 𝑈 :

𝑃𝑂𝑆(𝛼,𝛽)(𝑋) ∪𝑁𝐸𝐺(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷(𝛼,𝛽)(𝑋) =𝑈. (3)

In the context of three-way decision theory, the following rules are considered: let 𝑥 ∈ 𝑈 ,

1 By a tri-partition, we mean a partition of 𝑈 made of three equivalence classes. On the other hand, {𝑃𝑂𝑆(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺(𝛼,𝛽)(𝑋), 𝐵𝑁𝐷(𝛼,𝛽)(𝑋)} could collapse into a 
3

bi-partition or the whole universe when one or two of its sets are empty.
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• if 𝑥 ∈ 𝑃𝑂𝑆(𝛼,𝛽)(𝑋), then 𝑥 is accepted;

• if 𝑥 ∈𝑁𝐸𝐺(𝛼,𝛽)(𝑋), then 𝑥 is rejected;

• if 𝑥 ∈ 𝐵𝑁𝐷(𝛼,𝛽)(𝑋), then we abstain on 𝑥.

The values 𝑃𝑟(𝑋|[𝑥]) represent the accuracy (or confidence) of the rules:

• the higher 𝑃𝑟(𝑋|[𝑥]) is, the more confident we are that 𝑥 ∈ 𝑃𝑂𝑆(𝛼,𝛽)(𝑋) is correctly accepted,

• the lower 𝑃𝑟(𝑋|[𝑥]) is, the more confident we are that 𝑥 ∈𝑁𝐸𝐺(𝛼,𝛽)(𝑋) is correctly rejected.

Definition 1 is strictly related to the notion of probabilistic rough sets.

Definition 2. The (𝛼, 𝛽)-probabilistic rough set of 𝑋 is the pair

((𝛼,𝛽)(𝑋),(𝛼,𝛽)(𝑋)),

where

(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼,𝛽)(𝑋) and (𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷(𝛼,𝛽)(𝑋),

which are respectively called (𝛼, 𝛽)− lower and upper approximations of 𝑋.

Remark 1. When 𝛼 = 1 and 𝛽 = 0, ((𝛼,𝛽)(𝑋), (𝛼,𝛽)(𝑋)) is the rough set ((𝑋),  (𝑋)) of 𝑋 defined by Pawlak in [3], namely

((𝑋), (𝑋)) = ({𝑥 ∈𝑈 | [𝑥]𝑅 ⊆𝑋},{𝑥 ∈𝑈 | [𝑥]𝑅 ∩𝑋 ≠ ∅}). (4)

The sets (𝑋) and  (𝑋) are respectively called lower and upper approximations of 𝑋 w.r.t. .

2.2. Evaluative linguistic expressions

This subsection reviews concepts and results that are found in [21,24] and it recalls the notion of fuzzy measure.

Evaluative linguistic expressions are special expressions of natural language, which people commonly employ to evaluate, judge, 
estimate, and in many other situations. Examples of evaluative linguistic expressions are small, medium, big, about twenty-five, roughly 
one hundred, very short, more or less deep, not very tall, roughly warm or medium-hot, etc. For convenience, we will often omit the 
adjective “linguistic” and use only the term “evaluative expressions”. The simplest evaluative expressions are called pure evaluative 
expressions and have the following structure:

⟨linguistic hedge⟩⟨TE-adjective⟩,
where

• a linguistic hedge is an adverbial modification such as very, roughly, approximately, and significantly;

• a TE-adjective is an adjective such as good, medium, big, short, etc. TE stands for trichotomous evaluative, indeed TE-adjectives 
typically form pairs of antonyms like small and big completed by a middle member, which is medium in the case of small and big. 
Other examples are “weak, medium-strong, and strong” and “soft, medium-hard, and hard”.

The empty linguistic hedge is employed to deal with evaluative expressions made of only a TE-adjective; hence, small, medium, and big

are considered evaluative expressions. Other pure evaluative expressions are the fuzzy numbers like about twenty-five. Two or more 
pure evaluative expressions can be connected to form negative evaluative expressions like “NOT very small” and compound evaluative 
expressions like “very expensive AND extremely small” and “very expensive OR extremely small”.

The semantics of evaluative expressions is based on the essential concepts of context, intension, and extension.

Context. The meaning of an evaluative expression in the natural language can change based on the context in which it appears. 
For instance, regarding the evaluative expression big, we spontaneously think of two different sizes if dealing with big cats or big 
elephants. Therefore, when handling an evaluative expression, it is always necessary to specify three values 𝑠, 𝑚, 𝑏 ∈ ℝ forming 
the interval [𝑠, 𝑚] ∪ [𝑚, 𝑏] and indicating what is meant by small, medium, and big. The triple 𝜔 = ⟨𝑠, 𝑚, 𝑏⟩ is called context of the 
considered evaluative expression. Let us show an example of two different contexts. Suppose that evaluative expressions are used 
to evaluate the size of apartments. If we are thinking of apartments for one person, then we could choose 𝜔1 = ⟨40, 70, 100⟩ as 
context, which means that flats measuring 40 𝑚2, 70 𝑚2, and 100 𝑚2 are typically considered small, medium and big, respectively. 
On the other hand, when thinking of apartments for a family of 5 people, the context 𝜔5 = ⟨70, 120, 160⟩ is intuitively more 
appropriate.

Extension. Evaluative expressions are employed in the natural language to evaluate something like the size of animals, apartments, 
and so on. Thus, an evaluative expression is associated with a universe of objects. In the example above, such a universe could 
4

be composed of some apartments 𝑎1, 𝑎2, 𝑎3, and 𝑎4 whose size you want to evaluate. Thus, the context is described by a mapping 
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𝑤 ∶ [0, 1] →𝑈 where let 𝑢 ∈𝑈 , 𝑤−1(𝑎) = 0, 𝑤−1(𝑎) = 0.5, and 𝑤−1(𝑎) = 1 if and only if 𝑎 is typically considered small, medium and 
big, respectively. Once the universe 𝑈 corresponding to an evaluative expression 𝐸 and the context are established, the extension

of 𝐸 is a special fuzzy set of the set of the real numbers ℝ. Its role is to model 𝐸 in the fixed context. Taking up the previous 
example again, 𝑤−1(𝑎𝑖) could be identified with the size 𝑥𝑎𝑖 ∈ ℝ of 𝑎𝑖. Then, once fixed the context 𝜔5, the extension of the 
evaluative expression 𝑠𝑚𝑎𝑙𝑙 is a map 𝑆𝑚𝜔5 ∶ℝ → [0, 1] so that 𝑆𝑚𝜔5 (𝜔

−1
5 (𝑎𝑖)) is the truth degree to which “𝑎𝑖 is small in the context 

𝜔5” (namely, “𝑎𝑖 is small for 5 people”). For example, if the size of the apartment 𝑎1 is 0.8, then the truth degree of the statement 
“the size of the apartment 𝑎1 is small in the context 𝑤5” (for 5 people) is 0.9, while if the size of 𝑎4 is 140, then 𝑎4 is small in the 
same context 𝑤5” with the truth degree 0. Of course, the extension of an evaluative expression changes with the context. Indeed, 
it is easy to understand that if 𝑆𝑚𝜔5 (𝜔

−1
5 (𝑎𝑖)) = 0.8 (the apartment 𝑎𝑖 is considered small for 5 people with the truth degree 0.8), 

then 𝑆𝑚𝜔1 (𝜔
−1
1 (𝑎𝑖)) < 0.8 (the apartment 𝑎𝑖 cannot be considered equally small for only one person).

Intension. Since the extension of an evaluative expression 𝐸 depends on the context, a good mathematical description of 𝐸 includes 
a function assigning to each context the corresponding extension. Such mapping is called the intension of 𝐸 and it is denoted with 
𝐼𝑛𝑡𝐸 . In the case of apartments, we get 𝐼𝑛𝑡𝑠𝑚𝑎𝑙𝑙 ∶ 𝜔1 ↦ 𝑆𝑚𝜔1

and 𝐼𝑛𝑡𝑠𝑚𝑎𝑙𝑙 ∶ 𝜔5 ↦ 𝑆𝑚𝜔5
.

In this article, we confine to the TE adjectives small, medium, and big because we use evaluative expressions to evaluate the size 
of sets. Therefore, let 𝑋 be a subset of a universe 𝑈 , we will say that the size of 𝑋 w.r.t. the size of 𝑈 is very small, extremely big, etc. 
Furthermore, we deal with the standard context, which is ⟨0, 0.5, 1⟩. Finally, since sizes are expressed by means of a fuzzy measure 
(by Example 2, the measure of the size of a set 𝑋 is a value of [0, 1]), the extensions of our evaluative expressions are functions from 
[0, 1] to [0, 1], which have a specific formula. The extension of an evaluative expression like ⟨𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡 ℎ𝑒𝑑𝑔𝑒⟩⟨𝑇𝐸 − 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒⟩ with 
𝑇𝐸 − 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ∈ {𝑠𝑚𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑏𝑖𝑔} is obtained by composing two functions, one models the linguistic hedge and the other models 
the TE-adjective. The function describing a linguistic hedge depends on three parameters, which are experimentally estimated (see 
[24] for more details).

In what follows, we provide the formula of ¬𝑆𝑚 ∶ [0, 1] → [0, 1], 𝐵𝑖𝑉 𝑒 ∶ [0, 1] → [0, 1], and 𝐵𝑖𝐸𝑥 ∶ [0, 1] → [0, 1], which are the 
extensions of the evaluative expressions not small, very big, and extremely big, when the context ⟨0, 0.5, 1⟩ is fixed.2

¬𝑆𝑚(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑥 ∈ [0.275,1],

1 − (0.275 − 𝑥)2

0.02305
if 𝑥 ∈ (0.16,0.275),

(𝑥− 0.0745)2

0.01714
if 𝑥 ∈ (0.0745,0.16],

0 if 𝑥 ∈ [0,0.0745].

(5)

𝐵𝑖𝑉 𝑒(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑥 ∈ [0.9575,1],

1 − (0.9575 − 𝑥)2

0.00796
if 𝑥 ∈ [0.895,0.9575),

(𝑥− 0.83)2

0.00828
if 𝑥 ∈ (0.83,0.895),

0 if 𝑥 ∈ [0,0.83].

(6)

𝐵𝑖𝐸𝑥(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑥 ∈ [0.995,1],

1 − (0.995 − 𝑥)2

0.00495
if 𝑥 ∈ [0.95,0.995),

(𝑥− 0.885)2

0.00715
if 𝑥 ∈ (0.885,0.95),

0 if 𝑥 ∈ [0,0.885].

(7)

The graphics of the functions ¬𝑆𝑚, 𝐵𝑖𝑉 𝑒, and 𝐵𝑖𝐸𝑥 are depicted by Fig. 1.

Remark 2. The evaluative expressions ¬𝑆𝑚, 𝐵𝑖𝑉 𝑒, and 𝐵𝑖𝐸𝑥 have a special role: they are respectively used to construct the formula 
of fuzzy quantifiers many, most, and almost all [29].

We also consider the class of operators {Δ𝑡 ∶ [0, 1] → {0, 1} | 𝑡 ∈ [0, 1]}, where let 𝑡 ∈ [0, 1],

Δ𝑡(𝑎) =

{
1 if 𝑎 ≥ 𝑡,

0 otherwise,
(8)

for each 𝑎 ∈ [0, 1].

2 We have got the formulas of 𝐵𝑖𝑉 𝑒 and 𝐵𝑖𝐸𝑥 using the function 𝜈𝑎,𝑏,𝑐 (𝐿𝐻(𝜔−1)) and Table 5.1 given in [24]. Concerning the formula of ¬𝑆𝑚, we have considered 
5

that ¬𝑆𝑚(𝑥) = 1 −𝑆𝑚(𝑥). After that, we have found the formula of 𝑆𝑚 using the function 𝜈𝑎,𝑏,𝑐 (𝑅𝐻(𝜔−1)) and Table 5.1 given in [24].
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Fig. 1. The graphics of the functions ¬𝑆𝑚 ∶ [0, 1] → [0, 1], 𝐵𝑖𝑉 𝑒 ∶ [0, 1] → [0, 1], and 𝐵𝑖𝐸𝑥 ∶ [0, 1] → [0, 1], which are respectively the extensions of the evaluative 
expressions not small, very big, and extremely big in the context ⟨0, 0.5, 1⟩.

The operators defined by (8) are interpretations of logical formulas of the formal theory of evaluative linguistic expressions 
presented in [21].

Remark 3. Δ1 coincides with the evaluative expression utmost and it is related to the fuzzy quantifier all [29].

In the sequel, we need the notion of fuzzy measure [27].

Definition 3. Let 𝑈 be a finite universe, a mapping 𝜑 ∶ 2𝑈 →ℝ is called fuzzy measure if and only if

(a) 𝜑(∅) = 0;

(b) if 𝑋 ⊆ 𝑌 then 𝜑(𝑋) ≤ 𝜑(𝑌 ), for each 𝑋, 𝑌 ⊆ 𝑈 (monotonicity).

We say that a fuzzy measure 𝜑 is normalized or regular when 𝜑(𝑈 ) = 1.

In this paper, we focus on the normalized fuzzy measure given by the next example.

Example 2. Let 𝑈 be a finite universe, the function 𝑓 ∶ 2𝑈 →ℝ that assigns |𝑌 ||𝑈 | to each 𝑌 ⊆ 𝑈 is a fuzzy measure.

The value |𝑌 ||𝑈 | belongs to [0,1] and measures “how much 𝑌 is large with respect to 𝑈 in the scale [0, 1]”.

Let us observe that in Probability theory |𝑌 ||𝑈 | represents “how likely the event 𝑌 is to occur”.

3. Three-way decisions with linguistic expressions

In this section, a novel 3WD model and the corresponding generalized rough sets are constructed using evaluative expressions.

3.1. Linguistic three-way decision model

This subsection proposes a novel 3WD model, which is based on the concept of evaluative linguistic expressions previously 
described.

In the sequel, we use the symbol  to denote the collection of the extensions of all evaluative expressions in the context ⟨0, 0.5, 1⟩. 
Notice that ¬𝑆𝑚, 𝐵𝑖𝑉 𝑒, 𝐵𝑖𝐸𝑥, and Δ𝑡 belong to  .

Therefore, let 𝐸𝑣 ∈  , let 𝑋 ⊆ 𝑈 , and let 𝛼, 𝛽 ∈ [0, 1] with 𝛽 < 𝛼, three regions of 𝑈 are determined. In particular, the region of a 
given element 𝑥 ∈𝑈 is found by taking into account the following steps:

1. computing 𝐸𝑣 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
, which is the evaluation of the size of 𝑋 ∩ [𝑥] w.r.t. the size of [𝑥] by using 𝐸𝑣;

2. comparing 𝐸𝑣 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
with the thresholds 𝛼 and 𝛽.

For example, regarding point 1, if Ev models the evaluative expression “significantly big”, then 𝐸𝑣 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
measures
6

“how much the size of 𝑋 ∩ [𝑥] is significantly big w.r.t. the size of [𝑥]”.
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Equivalently, we are saying that

“the size of the set of the elements of [𝑥] that also belong to 𝑋 is significantly big (w.r.t. the size of [𝑥]) with the truth degree 

𝐸𝑣 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
”.

Observe that 
|𝑋 ∩ [𝑥]||[𝑥]| syntactically coincides with the conditional probability (see (1)), but here it has a different interpretation: 

it is the fuzzy measure specified by Example 2.

Formally, the three regions of 𝑈 determined by an evaluative expression are given by the following definition.

Definition 4. Let 𝐸𝑣 ∈  , the (𝛼, 𝛽)-linguistic positive, negative, and boundary regions induced by 𝐸𝑣 are respectively the following:

(i) 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | 𝐸𝑣(|[𝑥] ∩𝑋||[𝑥]|

)
≥ 𝛼

}
;

(ii) 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | 𝐸𝑣(|[𝑥] ∩𝑋||[𝑥]|

)
≤ 𝛽

}
;

(iii) 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | 𝛽 < 𝐸𝑣(|[𝑥] ∩𝑋||[𝑥]|

)
< 𝛼

}
.

We put

 𝐸𝑣
(𝛼,𝛽)(𝑋) = {𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋),𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋),𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)}, (9)

which is trivially a tri-partition of 𝑈 . Thus,

• the three regions of  𝐸𝑣
(𝛼,𝛽)(𝑋) are mutually disjoint, i.e. 𝐴 ∩𝐵 = ∅ for each 𝐴, 𝐵 ∈  𝐸𝑣

(𝛼,𝛽)(𝑋) with 𝐴 ≠ 𝐵;

• they cover the universe 𝑈 , i.e.

𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) =𝑈. (10)

Remark 4. Let us focus on the evaluative expressions not small, very big, extremely big, and utmost. The first three expressions 
are respectively modelled by (5), (6), and (7). According to Remark 2, ¬𝑆𝑚, 𝐵𝑖𝑉 𝑒, and 𝐵𝑖𝐸𝑥 appear in the formula of the 
fuzzy quantifiers many, most, and almost all, which are special functions 𝑚𝑎𝑛𝑦, 𝑚𝑜𝑠𝑡, and 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 assigning a value of [0,1] to 
each pair of fuzzy sets of the initial universe. As explained in [30] (see Lemma 4.5), considering that 𝑋 and [𝑥] are crisp set, 

¬𝑆𝑚 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
, 𝐵𝑖𝑉 𝑒 

(|𝑋 ∩ [𝑥]||[𝑥]|
)

, and 𝐵𝑖𝐸𝑥 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
exactly coincide with the formula of many, most, and almost all; 

in symbols, 𝑚𝑎𝑛𝑦([𝑥], 𝑋) = ¬𝑆𝑚 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
, 𝑚𝑜𝑠𝑡([𝑥], 𝑋) = 𝐵𝑖𝑉 𝑒 

(|𝑋 ∩ [𝑥]||[𝑥]|
)

, and 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙([𝑥], 𝑋) = 𝐵𝑖𝐸𝑥 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
. 

Hence, they have the following meanings:

• ¬𝑆𝑚 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
is the truth degree to which “many objects of [𝑥] are in 𝑋”,

• 𝐵𝑖𝑉 𝑒 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
is the truth degree to which “most objects of [𝑥] are in 𝑋”,

• 𝐵𝑖𝐸𝑥 
(|𝑋 ∩ [𝑥]||[𝑥]|

)
is the truth degree to which “almost all objects of [𝑥] are in 𝑋”.

Moreover, according to Remark 3, the function Δ1 (obtained by (8) with 𝑡 = 1), models the evaluative expression utmost and is used 
to construct the fuzzy quantifier all. Therefore, analogously to the previous evaluative expressions, since [𝑥] and 𝑋 are crisp sets, 

Δ1
(|𝑋 ∩ [𝑥]||[𝑥]|

)
is understood as the truth degree to which “all objects of [𝑥] are in 𝑋”.

Observe that here the universe of quantification coincides with [𝑥], which is always non-empty. This is because {𝑥} ⊆ [𝑥], 
considering that  is reflexive. In mathematical logic, the assumption expressing that the universe of quantification must be non-

empty is called existential import (or presupposition) [31].

Remark 5. Consider the operators represented by (8). Let 𝑡 ∈ [0, 1], then Δ𝑡
(|𝑋 ∩ [𝑥]||[𝑥]|

)
∈ {0, 1}. Furthermore,

Δ𝑡
(|𝑋 ∩ [𝑥]||[𝑥]|

)
=

⎧⎪⎪⎨⎪
1 if “the size of the set of elements of [𝑥]

that also belong to 𝑋 is at least as large as 𝑡

(in the scale [0,1]) w.r.t. the size of [𝑥]”;
7

⎪⎩0 otherwise.
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3.2. An illustrative example

In this subsection, we provide an example of how to use linguistic three-way decisions to provide recommendations based on 
users’s profiles.

We consider a universe 𝑈 = {𝑢1, … , 𝑢32} made of users of online communities and the following equivalence relation  on 𝑈 : let 
𝑥, 𝑦 ∈𝑈 ,

𝑥𝑦 if and only if 𝑥 and 𝑦 belong to the same community.

Therefore,  corresponds to the partition {𝐶1, … , 𝐶6} of 𝑈 , where 𝐶𝑖 is the set of users of 𝑈 belonging to the community 𝑖. In 
particular, we suppose that

𝐶1 = {𝑢1,… , 𝑢5}, 𝐶2 = {𝑢6,… , 𝑢10}, 𝐶3 = {𝑢11,… , 𝑢15}, 𝐶4 = {𝑢16,… , 𝑢20}, 𝐶5 = {𝑢21,… , 𝑢25}, and 𝐶6 = {𝑢26,… , 𝑢32}.

We use the symbol 𝑋𝑇 to denote the set of all users of 𝑈 interested in a specific topic 𝑇 .

For example,

𝑋𝑆𝑝𝑜𝑟𝑡 = {𝑢10, 𝑢11, 𝑢12, 𝑢18, 𝑢19, 𝑢20, 𝑢21, 𝑢22, 𝑢23, 𝑢24, 𝑢26}

is the set of all users of 𝑈 interested in the topic Sport.

Employing our three-way decision model, we intend to select the most appropriate communities among 𝐶1, … , 𝐶6 to which 
propose news related to the topic 𝑇 .

If we choose (𝛼, 𝛽) = (0.8, 0.2) and the evaluative expression ¬𝑆𝑚 corresponding to the fuzzy quantifier many, then we decide to 
assign the news about the topic 𝑇 to the communities of 𝑃𝑂𝑆¬𝑆𝑚

(0.8,0.2)(𝑋𝑇 ). This is because 𝑃𝑂𝑆¬𝑆𝑚
(0.8,0.2)(𝑋𝑇 ) includes all the communities 

where the amount of users interested in 𝑇 is considered enough height for us. Indeed, 𝑥 ∈ 𝑃𝑂𝑆¬𝑆𝑚
(0.8,0.2) if and only if the truth degree 

to which

“many users of the community of 𝑥 are interested in 𝑇 ”

is greater than or equal to 0.8.

In the sequel, we determine the communities to which provide the news about 𝑆𝑝𝑜𝑟𝑡. Namely, we find 𝑃𝑂𝑆¬𝑆𝑚
(0.8,0.2)(𝑋𝑇 ), where 

𝑋𝑇 = 𝑆𝑝𝑜𝑟𝑡. To do this, we firstly compute the value 
|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]| for each 𝑥 ∈𝑈 :

|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if 𝑥 ∈ 𝐶1,

0.14 if 𝑥 ∈ 𝐶6,

0.2 if 𝑥 ∈ 𝐶2,

0.4 if 𝑥 ∈ 𝐶3,

0.6 if 𝑥 ∈ 𝐶4,

0.8 if 𝑥 ∈ 𝐶5.

(11)

According to the definition of ¬𝑆𝑚 that is given by (5), we get ¬𝑆𝑚(0) = 0, ¬𝑆𝑚(0.14) = 0.25, ¬𝑆𝑚(0.2) = 0.75 and ¬𝑆𝑚(0.4) =
¬𝑆𝑚(0.6) = ¬𝑆𝑚(0.8) = 1.

Consequently,

¬𝑆𝑚
(|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]|

)
=

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑥 ∈ 𝐶1,

0.25 if 𝑥 ∈ 𝐶6,

0.75 if 𝑥 ∈ 𝐶2

1 if 𝑥 ∈ 𝐶3 ∪𝐶4 ∪𝐶5.

(12)

Then, the positive, negative and boundary regions induced by (0.8, 0.2) and ¬𝑆𝑚 are the following:

𝑃𝑂𝑆¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) =

{
𝑥 ∈𝑈 | ¬𝑆𝑚(|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]|

)
≥ 0.8

}
= 𝐶3 ∪𝐶4 ∪𝐶5,

𝑁𝐸𝐺¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) =

{
𝑥 ∈𝑈 | ¬𝑆𝑚(|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]|

)
≤ 0.2

}
= 𝐶1,

𝐵𝑁𝐷¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) =

{
𝑥 ∈𝑈 | 0.2 < ¬𝑆𝑚

(|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]|
)
< 0.8

}
= 𝐶2 ∪𝐶6.

The three regions lead the following decisions. Firstly, we choose to provide the news about the sport to the communities 𝐶3 , 𝐶4, 
and 𝐶5 that form the positive region, considering that these contain many users interested in sport with a truth degree that we think 
8

is enough high (≥ 0.8). Moreover, we require further analysis of the communities 𝐶2 and 𝐶6 forming the boundary region, before 
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providing news about sports. For example, we could evaluate the interests of the users in 𝐶2 ∪𝐶6 in the future or once new users join 
such communities. Finally, we surely do not provide sports news to 𝐶1 because we think that not enough of its users are interested 
in sports topics, indeed we consider the truth degree to which many users of 𝐶1 are interested in sports low (≤ 0.2).

3.3. Linguistic rough sets

Definition 4 also leads to a novel generalization of Pawlak rough sets.

Definition 5. Let 𝐸𝑣 ∈  , the (𝛼, 𝛽)-linguistic rough set of 𝑋 determined by  and 𝐸𝑣 is the pair (𝐸𝑣(𝛼,𝛽)(𝑋),  𝐸𝑣
(𝛼,𝛽)(𝑋)), where

𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑋 | 𝐸𝑣(|[𝑥] ∩𝑋||[𝑥]|

)
≥ 𝛼

}
and  𝐸𝑣

(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑋 | 𝐸𝑣(|[𝑥] ∩𝑋||[𝑥]|

)
> 𝛽

}
.

𝐸𝑣(𝛼,𝛽)(𝑋) and  𝐸𝑣
(𝛼,𝛽)(𝑋) are respectively called (𝛼, 𝛽)-linguistic lower and upper approximations of 𝑋 determined by  and 𝐸𝑣.

Equivalently, by Definition 4, we get

𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) and  𝐸𝑣
(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋).

The following is an illustrative example.

Example 3. Consider the example presented by Subsection 3.2. Then, 𝑋𝑆𝑝𝑜𝑟𝑡 can be approximated by the (0.8, 0.2)-linguistic rough 
set3

(¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡),

¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡)) = (𝐶3 ∪𝐶4 ∪𝐶5, 𝐶2 ∪𝐶3 ∪𝐶4 ∪𝐶5 ∪𝐶6) = ({𝑢11,… , 𝑢25},{𝑢6,… , 𝑢32})}.

Thus, in line with the meaning of rough sets, the set 𝑋𝑆𝑝𝑜𝑟𝑡 of all users interested in sport could be approximated by the pair 
({𝑢1, … , 𝑢25}, {𝑢6, … , 𝑢32}), where

• {𝑢1, … , 𝑢25} is made of all users being in communities containing many users interested in sport with a truth degree at least or 
equal to 0.8;

• {𝑢6, … , 𝑢32} is made of all users being in communities containing many users interested in sport with a truth degree greater than 
0.2.

4. Connection with thee-way decision methods

In this section, we find a link between the 3WD methods based on probabilistic rough sets and evaluative expressions. In particu-

lar, we fix a finite universe 𝑈 , a subset 𝑋 of 𝑈 , an equivalence relation  on 𝑈 , and a pair of thresholds (𝛼, 𝛽) such that 0 ≤ 𝛼 < 𝛽 ≤ 1, 
and we aim to determine for each evaluative expression 𝐸𝑣, the class of all pairs of thresholds like (𝛼′, 𝛽′) so that (𝛼′ ,𝛽′)(𝑋) coincides 
with  𝐸𝑣

(𝛼,𝛽)(𝑋).
We confine to the class + ⊂  , which is made of all extensions that are increasing functions, i.e. let 𝐸𝑣 ∈  , 𝐸𝑣 ∈ + if and only 

if “𝐸𝑣(𝑥) ≤ 𝐸𝑣(𝑦) for each 𝑥, 𝑦 ∈ [0, 1] such that 𝑥 ≤ 𝑦”. Examples of evaluative expressions so that their extension is an increasing 
function, are not small, very big, extremely big, and utmost (see (5), (6), (7), and (8)). However, there exist evaluative expressions like 
small that are represented by a decreasing function and others like medium that are represented by a non-monotonic function.

In order to obtain the results of this section, we need to define the values 𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 , 𝛽𝐸𝑣1 , and 𝛽𝐸𝑣2 , which are associated with 
 𝐸𝑣
(𝛼,𝛽)(𝑋), where 𝐸𝑣 ∈  .

Definition 6. Let 𝐸𝑣 ∈  . If 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) ≠ ∅, then we put

(i) 𝛼𝐸𝑣1 = max
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)

}
,

(ii) 𝛼𝐸𝑣2 = min
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋)

}
,

(iii) 𝛽𝐸𝑣1 = max
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋)

}
,

(iv) 𝛽𝐸𝑣2 = min
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)

}
.

9

3 Recall that in classical Rough Set Theory, the rough set ((𝑋),  (𝑋)) represents an approximation of 𝑋.
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Example 4. Consider the universe 𝑈 , its subset 𝑋𝑆𝑝𝑜𝑟𝑡, and the pair of thresholds (𝛼, 𝛽) that are defined by the example in Subsection 
3.2. Then, the corresponding positive, negative, and boundary regions are the following:

𝑃𝑂𝑆¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) = 𝐶3 ∪𝐶4 ∪𝐶5, 𝑁𝐸𝐺

¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) = 𝐶1, and 𝐵𝑁𝐷¬𝑆𝑚

(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) = 𝐶2 ∪𝐶6.

Hence, by (11), we get4{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]| | 𝑥 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋𝑆𝑝𝑜𝑟𝑡)
}

=
{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶3||𝐶3| ,

|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶4||𝐶4| ,
|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶5||𝐶5|

}
= {0.4,0.6,0.8};{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋𝑆𝑝𝑜𝑟𝑡)

}
=
{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶1||𝐶1|

}
= {0};{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋𝑆𝑝𝑜𝑟𝑡)} =

{|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶2||𝐶2| ,
|𝑋𝑆𝑝𝑜𝑟𝑡 ∩𝐶6||𝐶6|

}
= {0.2,0.14}.

Finally, by Definition 6, 𝛼¬𝑆𝑚1 = max{0.14, 0.2} = 0.2, 𝛼¬𝑆𝑚2 = min{0.4, 0.6, 0.8} = 0.4, 𝛽¬𝑆𝑚1 = max{0} = 0, and 𝛽¬𝑆𝑚2 = min{0.14, 0.2} =
0.14.

If 𝐸𝑣 is an increasing function, namely 𝐸𝑣 ∈ +, then we can order 𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 , 𝛼𝐸𝑣1 , and 𝛼𝐸𝑣2 as shown in the following proposition.

Proposition 1. Let 𝐸𝑣 ∈ +. If 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) ≠ ∅, then 0 ≤ 𝛽𝐸𝑣1 < 𝛽𝐸𝑣2 ≤ 𝛼𝐸𝑣1 < 𝛼𝐸𝑣2 ≤ 1.

Proof. By Definition 6, it is trivial that 0 ≤ 𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 , 𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ≤ 1.

(𝛽𝐸𝑣1 < 𝛽𝐸𝑣2 ). By Definition 6 ((iii) and (iv)), 𝛽𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| with 𝑥1 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) and 𝛽𝐸𝑣2 =

|𝑋 ∩ [𝑥2]||[𝑥2]| with 𝑥2 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). 

Then, by Definition 4 ((ii) and (iii)), 𝐸𝑣(𝛽𝐸𝑣1 ) ≤ 𝛽 and 𝛽 < 𝐸𝑣(𝛽𝐸𝑣2 ) < 𝛼. Hence, 𝐸𝑣(𝛽𝐸𝑣1 ) <𝐸𝑣(𝛽𝐸𝑣2 ). Thus, considering that 𝐸𝑣 is an 
increasing function, we can conclude that 𝛽𝐸𝑣1 < 𝛽𝐸𝑣2 .

(𝛼𝐸𝑣1 < 𝛼𝐸𝑣2 ). By Definition 6 ((i) and (ii)), 𝛼𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| with 𝑥1 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) and 𝛼𝐸𝑣2 =

|𝑋 ∩ [𝑥2]||[𝑥2]| with 𝑥2 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). 

Thus, by Definition 4 ((iii) and (i)), 𝛽 < 𝐸𝑣(𝛼𝐸𝑣1 ) < 𝛼 and 𝐸𝑣(𝛼𝐸𝑣2 ) ≥ 𝛼. Thus, 𝐸𝑣(𝛼𝐸𝑣1 ) < 𝐸𝑣(𝛼𝐸𝑣2 ). Hence, considering that 𝐸𝑣 is an 
increasing function, 𝛼𝐸𝑣1 < 𝛼𝐸𝑣2 .

(𝛽𝐸𝑣2 ≤ 𝛼𝐸𝑣1 ). By Definition 6 ((i) and (iv)), 𝛼𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| with 𝑥1 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) and 𝛽𝐸𝑣2 =

|𝑋 ∩ [𝑥2]||[𝑥2]| with 𝑥2 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). 

Therefore, 𝛽𝐸𝑣2 and 𝛼𝐸𝑣1 are respectively the minimum and the maximum of 
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)

}
, 𝛽𝐸𝑣2 ≤ 𝛼𝐸𝑣1 clearly 

holds. □

Example 5. In Example 4, we have shown that 𝛼¬𝑆𝑚1 = 0.2, 𝛼¬𝑆𝑚2 = 0.4, 𝛽¬𝑆𝑚1 = 0, and 𝛽¬𝑆𝑚2 = 0.14. Then, according to Proposition 1, 
0 ≤ 𝛽𝐸𝑣1 < 𝛽𝐸𝑣2 ≤ 𝛼𝐸𝑣1 < 𝛼𝐸𝑣2 ≤ 1.

The next theorems show that the three regions generated by 𝐸𝑣 ∈ + can be also obtained by using the probabilistic approach 
and changing the initial thresholds. We separately analyze the following cases: all three regions are non-empty (Theorem 1) and only 
one of the three regions is empty (Theorems 2-4). The remaining case where only one region is non-empty (namely, one of the three 
regions coincides with the universe) is omitted because not significant.

Theorem 1. Let 𝐸𝑣 ∈ + such that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) ≠ ∅ and let 𝛼′, 𝛽′ ∈ [0, 1] with 𝛽′ < 𝛼′. Then,

 𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋) if and only if 𝛼′ ∈ (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ] and 𝛽′ ∈ [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ).

Proof. (⇐). Let 𝛼′ ∈ (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ] and let 𝛽′ ∈ [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ), we need to prove that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =
𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋), and 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽) (𝑋) = 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋).

(𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋)). Let �̄� ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), then 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼𝐸𝑣2 from Definition 6 (ii). Moreover, 𝛼′ ≤ 𝛼𝐸𝑣2 because 𝛼′ ∈

(𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ]. Consequently, 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼′. Finally, �̄�∈ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) from Definition 1 (i).
10

4 Recall that the equivalence classes of {[𝑥] | 𝑥 ∈𝑈} are the sets 𝐶1, 𝐶2 , 𝐶3 , 𝐶4 , 𝐶5 , and 𝐶6 .
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Fig. 2. Intervals [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ) and (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ].

Let �̄� ∈ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋), then 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼′ from Definition 1 (i). By the previous inequality and by 𝛼′ > 𝛼𝐸𝑣1 , we get |𝑋 ∩ [�̄�]||[�̄�]| > 𝛼𝐸𝑣1 . Hence, considering that 𝛼𝐸𝑣1 is the maximum of 

{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)
}

(see Definition 6(i)), we 

are sure that �̄� ∉ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). Furthermore, 
|𝑋 ∩ [�̄�]||[�̄�]| > 𝛼𝐸𝑣1 and 𝛽𝐸𝑣1 < 𝛼𝐸𝑣1 (see Proposition 1) imply that 

|𝑋 ∩ [�̄�]||[�̄�]| > 𝛽𝐸𝑣1 . 

Thus, considering that 𝛽𝐸𝑣1 is the maximum of 
{|𝑋 ∩ [𝑥]||[𝑥]| | 𝑥 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋)

}
(see Definition 6(iii)), we have �̄�∉𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). 

Ultimately, by (10), �̄� ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋).

(𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) =𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋)). Let �̄� ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). By Definition 6 ((i) and (iv)), 𝛽𝐸𝑣2 ≤
|𝑋 ∩ [�̄�]||[�̄�]| ≤ 𝛼𝐸𝑣1 . Moreover, by hypothesis, 

𝛽′ < 𝛽𝐸𝑣2 and 𝛼′ > 𝛼𝐸𝑣1 . Thus, we can conclude that 𝛽′ <
|𝑋 ∩ [�̄�]||[�̄�]| < 𝛼′, namely �̄� ∈ 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋) from Definition 1 (iii).

Let �̄� ∈ 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋), then 𝛽′ <
|𝑋 ∩ [�̄�]||[�̄�]| < 𝛼′ from Definition 1 (iii). By hypothesis, 𝛽𝐸𝑣1 ≤ 𝛽′ and 𝛼′ ≤ 𝛼𝐸𝑣2 . Hence, we know 

that 𝛽𝐸𝑣1 <
|𝑋 ∩ [�̄�]||[�̄�]| < 𝛼𝐸𝑣2 . By Definition 6 (iii), 𝛽𝐸𝑣1 <

|𝑋 ∩ [�̄�]||[�̄�]| implies that �̄� ∉𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). Furthermore, by Definition 6

(ii), 
|𝑋 ∩ [�̄�]||[�̄�]| < 𝛼𝐸𝑣2 implies that �̄� ∉ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). Ultimately, by (10), �̄� ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋).

(𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋)). We have previously shown that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) and 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋). Thus, 
by (3) and (10), it is clear that 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋).

(⇒). Let  𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋), we intend to prove that 𝛽𝐸𝑣1 ≤ 𝛽′ < 𝛽𝐸𝑣2 and 𝛼𝐸𝑣1 < 𝛼′ ≤ 𝛼𝐸𝑣2 .

(𝛼′ ≤ 𝛼𝐸𝑣2 ). Let 𝑥2 ∈ 𝑈 such that 𝛼𝐸𝑣2 =
|𝑋 ∩ [𝑥2]||[𝑥2]| . By Definition 6 (ii), 𝑥2 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). Hence, 𝛼′ > 𝛼𝐸𝑣2 means that 

|𝑋 ∩ [𝑥2]||[𝑥2]| <

𝛼′. Thus, 𝑥2 ∉ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) from Definition 1 (i). This contradicts that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋). Thus, it must be true that 
𝛼′ ≤ 𝛼𝐸𝑣2 .

(𝛼𝐸𝑣1 < 𝛼′). Let 𝑥1 ∈ 𝑈 such that 𝛼𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| . By Definition 6 (i), 𝑥1 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). If 𝛼𝐸𝑣1 ≥ 𝛼′, then 

|𝑋 ∩ [𝑥1]||[𝑥1]| ≥ 𝛼′. There-

fore, 𝑥1 ∈ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) from Definition 1 (i). This contradicts that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋). Thus, it must be true that 𝛼𝐸𝑣1 < 𝛼′.

(𝛽𝐸𝑣1 ≤ 𝛽′). Let 𝑥1 ∈ 𝑈 such that 𝛽𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| . By Definition 6(iii), 𝑥1 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). If 𝛽𝐸𝑣1 > 𝛽′, then 

|𝑋 ∩ [𝑥1]||[𝑥1]| > 𝛽′, which 

implies that 𝑥1 ∉𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) from Definition 1(ii). This contradicts that 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋). Thus, it must be true 
that 𝛽𝐸𝑣1 ≤ 𝛽′.

(𝛽′ < 𝛽𝐸𝑣2 ). Let 𝑥2 ∈ 𝑈 such that 𝛽𝐸𝑣2 =
|𝑋 ∩ [𝑥2]||[𝑥2]| . By Definition 6(iv), 𝑥2 ∈ 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). Also, if 𝛽′ ≥ 𝛽𝐸𝑣2 , then 

|𝑋 ∩ [𝑥2]||[𝑥2]| ≤ 𝛽′, 

which implies that 𝑥2 ∈𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) from Definition 1 (ii). This contradicts that 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋). Thus, it must be 
true that 𝛽′ < 𝛽𝐸𝑣2 . □

Remark 6. Let us represent the intervals that contain 𝛼′ and 𝛽′ (i.e. the values for generating  𝐸𝑣
(𝛼,𝛽)(𝑋) with probabilistic rough sets) 

by Fig. 2. As an immediate consequence of Definition 6, these intervals separate 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) from 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) and 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋)
from 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋). Indeed, the three regions can be rewritten as follows:

• 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ∈ [0, 𝛽𝐸𝑣1 )

}
from Definition 6(iii);

• 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ∈ [𝛽𝐸𝑣2 , 𝛼𝐸𝑣1 ]

}
from Definition 6 (i) and (iv);

• 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) =
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ∈ (𝛼𝐸𝑣2 ,1]

}
from Definition 6 (ii).

Consequently, 𝑥 ∈𝑈 belongs to

|𝑋 ∩ [𝑥]|

11

• the (𝛼, 𝛽)-linguistic negative region when |[𝑥]| falls at the left of [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 );
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• the (𝛼, 𝛽)-linguistic boundary region when 
|𝑋 ∩ [𝑥]||[𝑥]| falls at the right of [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ) and at the left of (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ];

• the (𝛼, 𝛽)-linguistic positive region when 
|𝑋 ∩ [𝑥]||[𝑥]| falls at the right of (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ].

Therefore, connecting to the probabilistic 3WD model, we can view

• 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) as the collection of all elements so that the conditional probability of 𝑋 given [𝑥] is less than 𝛽𝐸𝑣1 ;

• 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) as the collection of all elements so that the conditional probability of 𝑋 given [𝑥] is between or equal to 𝛽𝐸𝑣2 and 
𝛼𝐸𝑣1 ;

• 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) as the collection of all elements so that the conditional probability of 𝑋 given [𝑥] is greater than 𝛼𝐸𝑣2 .

Example 6. Consider the example given by Subsection 3.2, ¬𝑆𝑚 is an increasing function and all the three regions of  ¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡)

are non-empty. In Example 4, we have found that 𝛼¬𝑆𝑚1 = 0.2, 𝛼¬𝑆𝑚2 = 0.4, 𝛽¬𝑆𝑚1 = 0, and 𝛽¬𝑆𝑚2 = 0.14. Therefore, according to Theo-

rem 1, we get  ¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) = (𝛼′ ,𝛽′)(𝑋𝑆𝑝𝑜𝑟𝑡) for each (𝛼′, 𝛽′) such that 𝛼′ ∈ (0.2, 0.4] and 𝛽′ ∈ [0, 0.14)

For example, we can easily verify that  ¬𝑆𝑚
(0.8,0.2)(𝑋𝑆𝑝𝑜𝑟𝑡) = (0.3,0.1)(𝑋𝑆𝑝𝑜𝑟𝑡). Indeed, by (11) and by Definition 1,

• 𝑃𝑂𝑆(0.3,0.1)(𝑋𝑆𝑝𝑜𝑟𝑡) =
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ≥ 0.3

}
= 𝐶3 ∪𝐶4 ∪𝐶5,

• 𝑁𝐸𝐺(0.3,0.1)(𝑋𝑆𝑝𝑜𝑟𝑡) =
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ≤ 0.1

}
= 𝐶1, and

• 𝐵𝑁𝐷(0.3,0.1)(𝑋𝑆𝑝𝑜𝑟𝑡) =
{
𝑥 ∈𝑈 | 0.1 < |𝑋 ∩ [𝑥]||[𝑥]| < 0.3

}
= 𝐶2 ∪𝐶6.

By Theorem 1, we can connect linguistic rough sets with classical rough sets. More precisely, the following corollary holds.

Corollary 1. Let 𝐸𝑣 ∈ + with 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) ≠ ∅. Then,

(𝐸𝑣(𝛼,𝛽)(𝑋),  𝐸𝑣
(𝛼,𝛽)(𝑋)) = ((𝑋),  (𝑋))5 if and only if 𝛽𝐸𝑣1 = 0 and 𝛼𝐸𝑣2 = 1.

Proof. (⇒). Suppose that (𝐸𝑣(𝛼,𝛽)(𝑋),  𝐸𝑣
(𝛼,𝛽)(𝑋)) is the rough set of 𝑋 determined by 𝑋. Then, by (4), let 𝑥 ∈𝑈 , 𝑥 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) if and 

only if [𝑥] ⊆𝑋. The latter means that 
|𝑋 ∩ [𝑥]||[𝑥]| = 1 for each 𝑥 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). Hence, by Definition 6 (ii), 𝛼𝐸𝑣2 = 1.

By (4), let 𝑥 ∈ 𝑈 , 𝑥 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) if and only if [𝑥] ∩𝑋 ≠ ∅. Since 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑈 ⧵𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), 

we know that 
|𝑋 ∩ [𝑥]||[𝑥]| = 0 for each 𝑥 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). Finally, by Definition 6 (iii), 𝛽𝐸𝑣1 = 0.

(⇐). Suppose that 𝛼𝐸𝑣2 = 1 and 𝛽𝐸𝑣1 = 0. Trivially, 𝛼𝐸𝑣2 ∈ (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ] and 𝛽𝐸𝑣1 ∈ [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ). Then, by Theorem 1, (𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 
𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ∪𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋)) = (𝑃𝑂𝑆(1,0)(𝑋), 𝑃𝑂𝑆(1,0)(𝑋) ∪𝐵𝑁𝐷(1,0)(𝑋)). Moreover, by Remark 1, ((1,0)(𝑋), (1,0)(𝑋)) = (𝑃𝑂𝑆(1,0)(𝑋), 
𝑃𝑂𝑆(1,0)(𝑋) ∪𝐵𝑁𝐷(1,0)(𝑋)) coincides with the rough set ((𝑋),  (𝑋)) given by (4). □

Example 7. Consider the universe 𝑈 = {𝑢1, … , 𝑢20} and the evaluative expression very big, which is modelled by (6). We suppose that 
𝑈 is partitionated into three equivalence classes: 𝐶1 = {𝑢1, … , 𝑢5}, 𝐶2 = {𝑢6, … , 𝑢10}, and 𝐶3 = {𝑢11, … , 𝑢20}. If 𝑋 = {𝑢6, … , 𝑢19}, we 
can simply prove that (𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋), 𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋)) = ((𝑋),  (𝑋)). Indeed, we get

|𝑋 ∩ [𝑥]||[𝑥]| =
⎧⎪⎨⎪⎩
0 if 𝑥 ∈ 𝐶1,

0.9 if 𝑥 ∈ 𝐶3,

1 if 𝑥 ∈ 𝐶2.

and 𝐵𝑖𝑉 𝑒

(|𝑋 ∩ [𝑥]||[𝑥]|
)
=
⎧⎪⎨⎪⎩
0 if 𝑥 ∈ 𝐶1,

0.59 if 𝑥 ∈ 𝐶3,

1 if 𝑥 ∈ 𝐶2.

Thus,

𝑃𝑂𝑆𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋) =⋃{
𝐶𝑖 | 𝑖 ∈ {1,2,3} and 𝐵𝑖𝑉 𝑒

(|𝑋 ∩𝐶𝑖||𝐶𝑖|
)
≥ 0.7

}
= 𝐶2;

𝑁𝐸𝐺𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋) =⋃{
𝐶𝑖 | 𝑖 ∈ {1,2,3} and 𝐵𝑖𝑉 𝑒

(|𝑋 ∩𝐶𝑖||𝐶𝑖|
)
≤ 0.3

}
= 𝐶1;

𝐵𝑁𝐷𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋) =⋃{
𝐶𝑖 | 𝑖 ∈ {1,2,3} and 0.3 <𝐵𝑖𝑉 𝑒

(|𝑋 ∩𝐶𝑖||𝐶𝑖|
)
< 0.7

}
= 𝐶3.
12

5 Recall that (𝐸𝑣(𝛼,𝛽)(𝑋),  𝐸𝑣
(𝛼,𝛽)(𝑋)) is the linguistic rough set of 𝑋 given by Definition 5 and ((𝑋),  (𝑋)) is the classical rough set of 𝑋 given by Eq. (4).
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Also, by Definition 6, 𝛽𝐵𝑖𝑉 𝑒1 = 0, 𝛼𝐵𝑖𝑉 𝑒2 = 1, 𝛼𝐵𝑖𝑉 𝑒1 = 𝛽𝐵𝑖𝑉 𝑒2 = 0.9. Since the hypothesis of the previous corollary is satisfied, we expect 
that ((𝑋),  (𝑋)) = (𝐵𝑖𝑉 𝑒(0.7,0.3)(𝑋),  𝐵𝑖𝑉 𝑒

(0.7,0.3)(𝑋)) = (𝐶2, 𝐶2 ∪ 𝐶3). We can immediately verify that this is true: (𝑋) = 𝐶2 because 𝐶2 is 
the unique class among 𝐶1, 𝐶2, and 𝐶3 that is included in 𝑋; moreover,  (𝑋) = 𝐶2 ∪ 𝐶3 because 𝑋 ∩ 𝐶2 ≠ ∅ and 𝑋 ∩ 𝐶3 ≠ ∅, while 
𝑋 ∩𝐶1 = ∅.

We are now going to deal with the cases where one of 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽), 𝑃𝑂𝑆
𝐸𝑣
(𝛼,𝛽), 𝑁𝐸𝐺

𝐸𝑣
(𝛼,𝛽) is empty.

Theorem 2. Let 𝐸𝑣 ∈ + such that 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽) = ∅ and 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽), 𝑁𝐸𝐺
𝐸𝑣
(𝛼,𝛽) ≠ ∅. Let 𝛼′, 𝛽′ ∈ [0, 1] such that 𝛽′ < 𝛼′. Then,

 𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋) if and only if 𝛼′, 𝛽′ ∈ [𝛽𝐸𝑣1 , 𝛼𝐸𝑣2 ].

Proof. (⇐). Let 𝛼′, 𝛽′ ∈ [0, 1] such that 𝛽𝐸𝑣1 ≤ 𝛽′ < 𝛼′ ≤ 𝛼𝐸𝑣2 , we need to prove that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =
𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋), and 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽) (𝑋) = 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋).

(𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋)). Let �̄� ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). Then, 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼𝐸𝑣2 from Definition 6 (ii). By hypothesis, 𝛼′ ≤ 𝛼𝐸𝑣2 . Finally, 

by the previous two inequalities, we obtain that 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼′. Namely, �̄� ∈ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) from Definition 1 (i).

Let �̄� ∈ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋). Then, 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝛼′ by Definition 1 (i). Moreover, by hypothesis 𝛽𝐸𝑣1 < 𝛼′ (notice that 𝛽𝐸𝑣1 ≤ 𝛽′ < 𝛼′). 

So, by the previous two inequalities, we get 
|𝑋 ∩ [�̄�]||[�̄�]| > 𝛽𝐸𝑣1 . Then, by Definition 6 (iii), �̄� ∉𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). Lastly, by (10) and by 

the hypothesis 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = ∅, we can conclude that �̄�∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋).

(𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋)). Let �̄� ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋). Then, by Definition 6 (iii), 
|𝑋 ∩ [�̄�]||[�̄�]| ≤ 𝛽𝐸𝑣1 . Additionally, we know that 𝛽𝐸𝑣1 ≤

𝛽′ from hypothesis. Then, 
|𝑋 ∩ [�̄�]||[�̄�]| ≤ 𝛽′, namely �̄� ∈𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) from Definition 1 (ii).

Let �̄� ∈𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋), then 
|𝑋 ∩ [�̄�]||[�̄�]| ≤ 𝛽′ from Definition 1 (ii). By hypothesis, 𝛽′ < 𝛼𝐸𝑣2 (notice that 𝛽′ < 𝛼′ ≤ 𝛼𝐸𝑣2 ). By the 

last two inequalities, 
|𝑋 ∩ [�̄�]||[�̄�]| < 𝛼𝐸𝑣2 . Thus, by Definition 6 (ii), �̄� cannot belong to 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋). Therefore, by (10) and the 

hypothesis 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = ∅, we can deduce that �̄� ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋).
(𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) = 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋)). This equality follows from 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) and 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋), consider-

ing that the sets 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋), 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋), and 𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) (as well as 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋), 𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋), and 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋)) cover 
the universe 𝑈 (see (3) and (10)).

(⇒). Let  𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋), we intend to prove that 𝛽𝐸𝑣1 ≤ 𝛽′ and 𝛼′ ≤ 𝛼𝐸𝑣2 .

(𝛽𝐸𝑣1 ≤ 𝛽′). Let 𝑥1 ∈𝑈 such that 𝛽𝐸𝑣1 =
|𝑋 ∩ [𝑥1]||[𝑥1]| . Of course, 𝑥1 ∈𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) from Definition 6 (iii).

It is clear that the inequality 𝛽𝐸𝑣1 > 𝛽′ leads to a contradiction:

• if 𝛽𝐸𝑣1 > 𝛽′, then 𝑥1 ∉𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) from Definition 1 (ii);

• but, this contradicts that 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋).

Thus, 𝛽𝐸𝑣1 ≤ 𝛽′ must hold.

(𝛼′ ≤ 𝛼𝐸𝑣2 ). Let 𝑥2 ∈𝑈 such that 𝛼𝐸𝑣2 =
|𝑋 ∩ [𝑥2]||[𝑥2]| . Then, 𝑥2 ∈ 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) from Definition 6 (ii).

It is clear that the inequality 𝛼′ > 𝛼𝐸𝑣2 leads to a contradiction:

• if 𝛼′ > 𝛼𝐸𝑣2 , then 𝑥2 ∉ 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) from Definition 1 (i);

• but, this contradicts that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) = 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋).

Finally, 𝛼′ ≤ 𝛼𝐸𝑣2 must hold. □

Examples of evaluative expressions satisfying the hypothesis of Theorem 2 can be obtained from the class defined by (8). Indeed, 
let 𝑡 ∈ [0, 1], Δ𝑡 is trivially an increasing function (i.e. Δ𝑡 ∈ +) and the boundary region determined by Δ𝑡 is always empty as shown 
by the following proposition. In addition, in Proposition 2, the formula of the three regions that are related to Δ𝑡 is rewritten so that 
13

the thresholds 𝛼 and 𝛽 do not appear in it.
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Proposition 2. Let 𝑡 ∈ [0, 1] and let 𝛼, 𝛽 ∈ [0, 1] such that 𝛽 < 𝛼, then

(a) 𝑃𝑂𝑆
Δ𝑡
(𝛼,𝛽)(𝑋) =

{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ≥ 𝑡

}
;

(b) 𝑁𝐸𝐺
Δ𝑡
(𝛼,𝛽)(𝑋) =

{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| < 𝑡

}
;

(c) 𝐵𝑁𝐷
Δ𝑡
(𝛼,𝛽)(𝑋) = ∅.

Proof. (a). Let �̄� ∈𝑈 . Thus, �̄� ∈ 𝑃𝑂𝑆Δ𝑡
(𝛼,𝛽)(𝑋) if and only if

Δ𝑡
(|𝑋 ∩ [�̄�]||[�̄�]|

)
≥ 𝛼 (13)

from Definition 4 (i).

By (8), the inequality (13) is true if and only if 
|𝑋 ∩ [�̄�]||[�̄�]| ≥ 𝑡.

(b). Let �̄� ∈𝑈 . Then, �̄� ∈𝑁𝐸𝐺Δ𝑡
(𝛼,𝛽)(𝑋) if and only if

Δ𝑡
(|𝑋 ∩ [�̄�]||[�̄�]|

)
≤ 𝛽 (14)

from Definition 4 (ii).

By (8), the inequality (14) is true if and only if 
|𝑋 ∩ [𝑥]||[𝑥]| < 𝑡.

(c). Notice that 
{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ≥ 𝑡

}
∪

{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| < 𝑡

}
= 𝑈 . Moreover, we have proved that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽)(𝑋) ={

𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| ≥ 𝑡

}
and 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽)(𝑋) =

{
𝑥 ∈𝑈 | |𝑋 ∩ [𝑥]||[𝑥]| < 𝑡

}
. Hence, since  𝐸𝑣

(𝛼,𝛽)(𝑋) is a tri-partition of 𝑈 ,

𝐵𝑁𝐷𝐸𝑣(𝛼,𝛽)(𝑋) must be empty. □

Example 8. Let us focus on  Δ0.5
(𝛼,𝛽) (𝑋), where 𝑈 , 𝑋, and  are defined in Example 7. By Proposition 2, it is easy to verify that 

𝑃𝑂𝑆
Δ0.5
(𝛼,𝛽)(𝑋) = 𝐶2 ∪𝐶3, 𝑁𝐸𝐺

Δ0.5
(𝛼,𝛽)(𝑋) = 𝐶1, and 𝐵𝑁𝐷Δ0.5

(𝛼,𝛽)(𝑋) = ∅ for each 𝛼, 𝛽 ∈ [0, 1] with 𝛽 < 𝛼. Furthermore, according to Theorem 2, 
𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) = 𝐶2 ∪ 𝐶3, 𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) = 𝐶1, and 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋) = ∅, for each 𝛼′, 𝛽′ ∈ [0, 1] such that 𝛽Δ0.5

1 ≤ 𝛽′ < 𝛼′ ≤ 𝛼
Δ0.5
2 , where 

𝛽
Δ0.5
1 = 0 and 𝛼Δ0.5

2 = 0.9. For example, if we choose 𝛼′ = 0.2 and 𝛽′ = 0.7, we obtain 𝑃𝑂𝑆(0.7,0.2)(𝑋) = 𝐶2 ∪𝐶3, 𝑁𝐸𝐺(0.7,0.2)(𝑋) = 𝐶1, and 
𝐵𝑁𝐷(0.7,0.2)(𝑋) = ∅.

Now, let us suppose that the negative region is empty.

Theorem 3. Let 𝐸𝑣 ∈ + such that 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽) = ∅ and 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽), 𝐵𝑁𝐷
𝐸𝑣
(𝛼,𝛽) ≠ ∅. Let 𝛼′, 𝛽′ ∈ [0, 1] such that 𝛽′ < 𝛼′. Then,

 𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋) if and only if 𝛽′ ∈ [0, 𝛽𝐸𝑣2 ) and 𝛼′ ∈ (𝛼𝐸𝑣1 , 𝛼𝐸𝑣2 ].

Proof. The proof is similar to that of Theorems 1 and 2. Therefore, it is omitted. □

Example 9. Let 𝑈 = {𝑢1, … , 𝑢30}. We supposed that 𝑈 is divided into the following equivalence classes: 𝐶1 = {𝑢1, … , 𝑢5}, 𝐶2 =
{𝑢6, … , 𝑢10}, and 𝐶3 = {𝑢11, … , 𝑢30}.

Also, let 𝑋 = {𝑢1, … 𝑢28}, we are interested in  𝐵𝑖𝑉 𝑒
(0.8,0.4)(𝑋). Then,

|𝑋 ∩ [𝑥]||[𝑥]| =

{
0.9 if 𝑥 ∈ 𝐶3,

1 if 𝑥 ∈ 𝐶1 ∪𝐶2,

and

𝐵𝑖𝑉 𝑒

(|𝑋 ∩ [𝑥]||[𝑥]|
)
=

{
0.59 if 𝑥 ∈ 𝐶3,

1 if 𝑥 ∈ 𝐶1 ∪𝐶2.

Thus, by Definition 4, 𝑃𝑂𝑆𝐵𝑖𝑉 𝑒(0.8,0.4)(𝑋) = 𝐶1 ∪𝐶2, 𝐵𝑁𝐷𝐵𝑖𝑉 𝑒(0.8,0.4)(𝑋) = 𝐶3, and 𝑁𝐸𝐺𝐵𝑖𝑉 𝑒(0.8,0.4)(𝑋) = ∅. Moreover, 𝛽𝐵𝑖𝑉 𝑒2 = 0.9, 𝛼𝐵𝑖𝑉 𝑒1 = 0.9, and 
𝛼𝐵𝑖𝑉 𝑒2 = 1. Therefore, according to Theorem 3, 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) = 𝐶1 ∪𝐶2, 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋) = 𝐶3, and 𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) = ∅ for each 𝛽′ ∈ [0, 0.9)
and 𝛼′ ∈ (0.9, 1]. For example, if 𝛼′ = 0.95 and 𝛽′ = 0.8, then we can easily verify that 𝑃𝑂𝑆(0.95,0.8)(𝑋) = 𝐶1 ∪𝐶2, 𝐵𝑁𝐷(0.95,0.8)(𝑋) = 𝐶3, 
and 𝑁𝐸𝐺(0.95,0.8)(𝑋) = ∅.
14

Finally, the case of an empty positive region.
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Theorem 4. Let 𝐸𝑣 ∈ + such that 𝑃𝑂𝑆𝐸𝑣(𝛼,𝛽) = ∅ and 𝑁𝐸𝐺𝐸𝑣(𝛼,𝛽), 𝐵𝑁𝐷
𝐸𝑣
(𝛼,𝛽) ≠ ∅. Let 𝛼′, 𝛽′ ∈ [0, 1] such that 𝛽′ < 𝛼′. Then,

 𝐸𝑣
(𝛼,𝛽)(𝑋) = (𝛼′ ,𝛽′)(𝑋) if and only if 𝛽′ ∈ [𝛽𝐸𝑣1 , 𝛽𝐸𝑣2 ) and 𝛼′ ∈ (𝛼𝐸𝑣1 ,1].

Proof. The proof is similar to that of Theorems 1 and 2. For this reason, it is omitted. □

Example 10. Consider the universe 𝑈 and the equivalence classes 𝐶1, 𝐶2, and 𝐶3, which are defined by Example 9. Let 𝑋 =
{𝑢1, 𝑢6, 𝑢11, … 𝑢28}, we focus on  𝐵𝑖𝑉 𝑒

(0.7,0.2)(𝑋). Then,

|𝑋 ∩ [𝑥]||[𝑥]| =

{
0.2 if 𝑥 ∈ 𝐶1 ∪𝐶2,

0.9 if 𝑥 ∈ 𝐶3,

and

𝐵𝑖𝑉 𝑒

(|𝑋 ∩ [𝑥]||[𝑥]|
)
=

{
0.59 if 𝑥 ∈ 𝐶3,

0 if 𝑥 ∈ 𝐶1 ∪𝐶2.

By Definition 4, 𝑁𝐸𝐺𝐵𝑖𝑉 𝑒(0.7,0.2)(𝑋) = 𝐶1 ∪𝐶2, 𝐵𝑁𝐷𝐵𝑖𝑉 𝑒(0.7,0.2)(𝑋) = 𝐶3, and

𝑃𝑂𝑆𝐵𝑖𝑉 𝑒(0.7,0.2)(𝑋) = ∅. Also, 𝛽𝐸𝑣1 = 0.2, 𝛽𝐸𝑣2 = 0.9, 𝛼𝐸𝑣1 = 0.9. Thus, according to Theorem 4, 𝑁𝐸𝐺(𝛼′ ,𝛽′)(𝑋) = 𝐶1 ∪ 𝐶2, 𝐵𝑁𝐷(𝛼′ ,𝛽′)(𝑋) =
𝐶3, and 𝑃𝑂𝑆(𝛼′ ,𝛽′)(𝑋) = ∅ for each 𝛽′ ∈ [0.2, 0.9) and 𝛼′ ∈ (0.9, 1]. For example, let (𝛼′, 𝛽′) = (0.95, 0.6), we can easily verify that 
𝑁𝐸𝐺(0.95,0.6)(𝑋) = 𝐶1 ∪𝐶2, 𝐵𝑁𝐷(0.95,0.6)(𝑋) = 𝐶3, and 𝑃𝑂𝑆(0.95,0.6)(𝑋) = ∅.

Remark 7. The inverse problem to that discussed in this section can be easily addressed. Then, given 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 < 𝛽 and 
𝐸𝑣 ∈ +, we can find a pair of intervals (𝐼𝛼, 𝐼𝛽 ) so that (𝛼,𝛽)(𝑋) =  𝐸𝑣

(𝛼′ ,𝛽′)(𝑋) for each 𝛼′ ∈ 𝐼𝛼 and 𝛽′ ∈ 𝐼𝛽 .

Remark 8. As a possible application, we could use our model to compare the pairs of thresholds (𝛼𝑀1
, 𝛽𝑀1

) and (𝛼𝑀2
, 𝛽𝑀2

) determined 
by two methods 𝑀1 and 𝑀2, which generate different tri-partitions of the starting universe. In fact, we could find the evaluative 
expressions 𝐸𝑣1 and 𝐸𝑣2 together with a pair of thresholds (𝛼, 𝛽) so that

(𝛼𝑀1 ,𝛽𝑀1 )
(𝑋) = 

𝐸𝑣1
(𝛼,𝛽) (𝑋) and (𝛼𝑀2 ,𝛽𝑀2 )

(𝑋) = 
𝐸𝑣2
(𝛼,𝛽) (𝑋).

Therefore, we have the possibility to give a linguistic interpretation to the tri-partitions (𝛼𝑀1 ,𝛽𝑀1 )
(𝑋) and (𝛼𝑀2 ,𝛽𝑀2 )

(𝑋) using a unique 
pair of thresholds (𝛼, 𝛽). In this way, it becomes more easy and interpretable to compare the two methods and consequently facilitate 
the decision to adopt (𝛼𝑀1

, 𝛽𝑀1
) or (𝛼𝑀2

, 𝛽𝑀2
).

In order to better explain this idea, let us come back to the context of Example of Subsection 3.2, where we deal with a set of 
communities 𝐶1, … , 𝐶𝑛 of users and the set 𝑋𝑇 representing the users interested in sports topics. Recall that the aim is to choose the 
community to which to propose sports news.

Suppose that (𝛼𝑀1
, 𝛽𝑀1

) = (0.7, 0.2) and (𝛽𝑀1
, 𝛽𝑀2

) = (0.9, 0.2) derive by two different methods and the corresponding probabilistic 
positive regions are respectively 𝐶𝑖 ∪𝐶𝑗 ∪𝐶𝑘 and 𝐶𝑖 ∪𝐶𝑗 . Which of the two should we choose for our decision? Can we propose sports 
news to the community 𝐶𝑘? To answer these questions, assume that

𝑃𝑂𝑆(0.7,0.2)(𝑋𝑇 ) = 𝑃𝑂𝑆
𝐸𝑣1
(0.5,0.3)(𝑋𝑇 ) and 𝑃𝑂𝑆(0.9,0.2)(𝑋𝑇 ) = 𝑃𝑂𝑆

𝐸𝑣2
(0.5,0.3)(𝑋𝑇 ),

where 𝐸𝑣1 = ¬𝑆𝑚 and 𝐸𝑣2 = 𝐵𝑖𝐸𝑥 (i.e., 𝐸𝑣1 and 𝐸𝑣2 are respectively the extensions of the evaluative expressions not small and 
extremely big). Then, we take into account the tri-partition of (0.7, 0.2) when we intend to propose sports news to the communities 
having many users interested in sports topics, whereas we take into account the tri-partition of (0.9, 0.2) when we intend to propose 
sports news to the communities having almost all users interested in sports topics.

5. Conclusions and future directions

This work proposes a novel model for three-way decisions based on the concept of evaluative linguistic expressions. Thus, a new 
way is provided to divide the initial universe into three regions with the corresponding decision rules. Moreover, our results allow 
decision-makers to give a linguistic interpretation to the regions already obtained using the probabilistic approach.

As possible directions to continue this work, we firstly need to extend the results of Section 4 to the evaluative expressions 
that are not necessarily represented by increasing functions. Then, we want to deepen the study of linguistic regions by comparing 
our methods with those presented in [8]. In addition, we intend to understand how the decisions about the elements change using 
different evaluative expressions. Finally, we could analyze the logical relations between the linguistic regions determined by a given 
evaluative expression and investigate their consequences in terms of decisions by constructing a hexagon of opposition.
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