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Abstract Objective: Seek new candidate prognostic markers for neuroblastoma outcome, 
relapse or progression.
Materials and methods: In this multicentre and retrospective study, Random Forests coupled 
with recursive feature elimination techniques were applied to electronic records (55 clinical 
features) of 3034 neuroblastoma patients. To assess model performance and feature im-
portance, dataset was split into a training set (80%) and a test set (20%).
Results: In the test set, the mean Matthews correlation coefficient for the Random Forests 
models was greater than 0.46. Feature importance analysis revealed that, together with 
maximum response to first-line treatment (D_MAX_RESP), time to maximum response to 
first-line treatment (TIME_MAX_RESP.days) is a relevant predictor of both patients’ out-
come and relapse\progression. We showed the prognostic value of the max response to first- 
line treatment in clinically relevant subsets of high-, intermediate-, and low-risk patients for 
both overall and relapse-free survival (Log-rank p-value < 0.0001). In high-risk patients older 
than 18 months and stage 4 tumour achieving a complete response or very good partial re-
sponse, patients who exhibited a D_MAX_RESP greater than 9 months showed a better 
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prognosis with respect to patients achieving D_MAX_RESP earlier than 9 months (overall 
survival): hazard ratio 3.3 95% confidence interval 1.8–5.9, Log-rank p-value p  <  0.0001; 
relapse-free survival: 3.2 95%CI 1.8–5.6, Log-rank p-value p  <  0.0001). 
Conclusion: Our findings evidence the emerging role of the TIME_MAX_RESP.days in ad-
dition to the D_MAX_RESP as relevant predictors of outcome and relapse\progression in 
neuroblastoma with potential clinical impact on the management and treatment of patients. 
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).    

1. Introduction 

Peripheral neuroblastic tumours are a family of rare tu-
mours of the sympathetic nervous system derived from the 
primitive neural crest, accounting for 7–10% of all tu-
mours in children [1]. Neuroblastoma is the most common 
and clinically relevant peripheral neuroblastic tumour 
histologic variant [2]. Patients diagnosed with neuro-
blastoma are assigned to different risk groups, which drive 
the choice of the treatment protocol [3]. Although the 
advances in neuroblastoma treatment have improved 
neuroblastoma patient survival rates with respect to the 
past, the clinical and biological heterogeneity of neuro-
blastoma still poses serious challenges to physicians [4,5]. 
About 20% of patients with high-risk neuroblastoma early 
progress or are refractory to standard induction therapy, 
and 50% of patients who achieve remission later relapse  
[6–8]. Novel prognostic markers able to accurately predict 
patients’ relapse\progression or deaths are fundamental to 
improve patients’ stratification by tailoring treatment to 
patients’ characteristics [9–11]. 

The ability of promising biomarkers to improve the 
actual patients’ stratification system has already been 
demonstrated in preclinical studies [5,9,12–17] However, 
most of the proposed markers are still waiting for clin-
ical validation to date [18]. 

The Registro Italiano dei Tumori Neuroblastici 
Periferici (RINB) is the official Italian register for col-
lecting clinical data about patients with neuroblastoma 
treated at institutions of the Italian Association of 
Pediatric Hematology-Oncology (AIEOP) network [19]. 
Since its foundation in 1976, RINB database collects 
features about personal, clinical, biological, histological, 
and treatment data on patients with neuroblastoma, 
thereby becoming an essential resource for supporting 
clinical decisions and for providing data to research 
projects. Epidemiological studies based on selected data 
from the RINB database have already been published 
showing that the outcome of children with neuro-
blastoma has progressively improved over the years, 
stage 4s neuroblastoma is curable in nearly 90% of 
cases, the cure rate could be further increased through 
timely identification of patients at risk who might ben-
efit from surgical techniques, infants diagnosed with 
stage 4s neuroblastoma who underwent upfront tumour 
resection had a better outcome than who did not, and 

infants who progressed to stage 4 did worse in relation 
to older age at progression and longer interval between 
diagnosis and progression [19–23]. However, a sys-
tematic analysis of the entire RINB database to identify 
new predictive markers is currently lacking. 

Machine learning provides the theoretical basis and 
practical solutions to handle scientific problems including 
discovering predictive features of disease severity and pa-
tient survival from electronic medical records [9,24]. 

In the present study, we apply machine learning 
techniques to data in the RINB database for discovering 
new prognostic markers of the neuroblastoma outcome 
or relapse/progression with potential clinical impact on 
the management and treatment of patients. 

2. Materials and methods 

2.1. Patient characteristics, inclusion criteria and clinical 
parameters definition 

A total of 3756 patients aged 0–36 years were diagnosed 
with neuroblastoma between January 1979 and 
December 2020 in 32 institutions of the Italian AIEOP 
network and registered in the RINB database. Tumour 
stage and maximum response to first-line treatment 
(D_MAX_RESP) were defined according to Italian 
Cooperative Group for Neuroblastoma (ICGNB) cri-
teria before 1989 [25], and from 1989 according to the 
International Neuroblastoma Staging System (INSS) 
and the International Neuroblastoma Response Criteria 
system [26,27]. Patients were treated by the ICGNB 
protocols until 1994 [25,28–32], and by protocols of the 
International Society of Pediatric Oncology European 
Neuroblastoma Group (SIOPEN) thereafter [33–36]. 

All protocols were approved by the local institutional 
review board. Before being enroled and treated on their 
respective trials, patients or their guardians signed a 
consent form allowing the use of their clinical and 
nongenetic data for clinical research purposes. 

Time to the maximum response to first-line treatment 
(TIME_MAX_RESP.days) was computed by sub-
tracting the date of the D_MAX_RESP from the date of 
diagnosis. Only patients who deceased from tumour, 
and patients with available status at the clinical follow- 
up were included in the study. Furthermore, features 
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with 80% or greater of non-missing values were also 
included. 

2.2. Study endpoints 

The primary endpoint was the clinical status, alive or 
dead, referred to as the outcome. Overall survival (OS) 
was defined as the time (in years) from disease diagnosis 
to patient death or the last follow-up if the patient 
survived. The secondary endpoint was a binary variable 
expressing whether a patient experienced a relapse/pro-
gression. Relapse-free Survival (RFS) was defined as the 
time (in years) from disease diagnosis to relapse\pro-
gression or the last follow-up if no relapse\progression 
occurred. 

2.3. Machine learning build-up and validation 

To be analysed by machine learning techniques, the 
dataset required data filtering, harmonisation, and 
transformation steps whose effect was to exclude fea-
tures providing redundant information, not sufficiently 
reliable, or unsuitable to be analysed with machine 
learning techniques. Missing values might have negative 
effects on the reliability of the analyses, therefore we 
excluded features whose number of missing values ex-
ceeded 20% of total values. Machine learning analysis 
was carried out on patient’s status, alive or dead, with at 
least 3-year follow-up to improve the reliability of the 
reference variables used in the machine learning ana-
lysis. 

We applied Random Forests [37] with default para-
meters for binary classification on the general datasets 
and on the localised and metastatic subsets, both for 
outcome and relapse\progression. We employed the 
randomForest R software library version 4.7–1.1 with 
default parameters (500 trees to grow, number of vari-
ables randomly sampled as candidates at each split 
equal to square root of the number of features), on a 
computer running R version 4.1.3 through Miniconda. 

We trained our model on a training set of 80% of 
randomly selected patients’ data and applied the trained 
model on the remaining test set of 20% of patients’ data. 
We repeated this procedure 100 times and measured 
prediction performance results with the Matthews cor-
relation coefficient (MCC) [38,39]. 

We decided to use MCC performance metric because 
it is more informative than other metrics [40–42]. MCC 
ranges in [−1, +1] where +1 indicates perfect prediction 
and −1 indicates imperfect prediction. 

We used a cutoff of 0.5 for the generation of the 
confusion matrix: we mapped values below 0.5 into 0s 
and mapped values greater or equal to 0.5 into1s. To 
assess feature importance, we employed Random 
Forests in a recursive feature elimination procedure [37], 
by removing a single variable and computing the binary 

classification, for a number of iterations equal to the 
number of features. 

2.4. Statistical analysis 

OS and RFS curves were plotted by the Kaplan-Meier 
method and were compared with the log-rank test. P- 
values lower than 0.005 are considered significant, as 
suggested by Benjamin and colleagues [43]. Patients with 
missing values were excluded from the Kaplan-Meier 
analysis. GraphPad Prism version 8.0 for Microsoft 
Windows, www.graphpad.com, was used to plot Ka-
plan-Meier curves and to compute log-rank p-values, 
hazard ratios(HR) and relative confidence intervals 
(CI). Logrank method was used to compute hazard 
ratios and relative confidence intervals. Treatment pro-
tocol was evaluated as a potential confounder. The 
lowest log-rank p-value or the highest HR, in case of 
identical log-rank p-value, was used to select the best 
cut-off value. 

Additional details about methods are included in the  
Supplementary materials. 

3. Results 

3.1. Prediction performance and feature importance 
ranking using machine learning techniques 

Analysis used the data of 3756 patients with neuro-
blastoma registered in the RINB database until 31st 
December 2020. Fig. 1 shows the schematic re-
presentation of the analysis workflow implemented in 
the present study. 

Data filtering, harmonisation, and transformation 
steps are fundamental steps for preparing the data to be 
analysed by machine learning techniques and to ensure 
the validity and reliability of data analysis results [44]. 
The effect of data preprocessing was to exclude patient 
records or features providing redundant information, 
not sufficiently reliable, or unsuitable to be analysed 
with machine learning techniques. The complete pre-
processing procedure with the number of patients and 
features excluded from subsequent analysis is reported 
in the Supplementary Fig. S1. 

The filtering step excluded 11 (0.29%) patients who 
deceased for causes unrelated to neuroblastoma, 100 
(2.66%) patients who deceased for toxicity or second 
tumour, and 611 (16.2%) patients with missing status at 
the clinical follow-up were excluded from subsequent 
analyses. 

RINB dataset was originally constituted by 412 
clinical and molecular parameters. The filtering step 
excluded 74 (17.9%) features providing redundant in-
formation, 273 (66.2%) features with number of missing 
values exceeding 20% of the total values, and 10 (2.4) 
features that cannot be analysed by ML methods. Data 
harmonisation and mapping were also carried out as 
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reported in the Supplementary methods. Pre-processing 
steps reduced a dataset of 3034 records composed of 55 
clinical features. To consider tumour subsets, we 
decided to perform machine learning analyses on the 
general dataset and on three subsets defined based on 
tumour stage, which included patients with metastatic 
(stage 4), localised (stage 1, 2, and 3), or patients with 
special metastatic disease associated with a favourable 
prognosis (stage 4s), respectively. The number of pa-
tients and relative percentage of each clinical feature in 
the general, metastatic, localised, and 4s datasets is-
summarised in Table S1. To simplify the legibility of the 
manuscript, we indicated the general, subset of meta-
static, localised, or 4s with A, M, L, and 4s, respectively, 

followed by _OS or _RFS, if outcome or relapse\pro-
gression was used as endpoint. The eight datasets were: 
A_OS, A_RFS, M_OS, M_RFS, L_OS, L_RFS, 4s_OS, 
and 4s_RFS. Patients’ outcome or relapse\progression 
were used as reference variables to perform supervised 
machine learning analysis. A detailed evaluation of the 
patient follow-up revealed that 535 (17.6%) alive pa-
tients had a follow-up lower than 3 years. Since the 
outcome of alive patients cannot be reliably determined, 
we decided to exclude patient records from the sub-
sequent machine learning analysis. OS and RFS features 
were excluded from the machine learning analysis to 
avoid trivial conclusions. The resulting dataset included 
2499 out of 3034 (82.4%) patients. The characteristics of 

Fig. 1. Workflow of the analysis. Analysis is divided into three main sections: data preprocessing, machine learning analysis, and clinical 
utility assessment. In the preprocessing, 3756 records from the Registro Italiano dei Tumori Neuroblastici Periferici (RINB) database 
were filtered, new features were created and harmonised to be processed by machine learning techniques. At the end of this step, 3034 and 
55 features constituted the general dataset. Metastatic, metastatic showing spontaneous maturation and regression, and localised subsets 
of patients from the general dataset were extracted to consider distinct disease peculiarities. Outcome and relapse\progression were used as 
endpoints for the four datasets. The eight resulting datasets were iteratively split into training and test sets, respectively. A minimum of 3 
years of follow-up was set up to define alive patients’ outcomes for machine learning analysis. Training data were used to build classifiers 
with Random Forest and recursive feature elimination techniques. Test data were used to assess prediction performance and rank features 
by relevance. The clinical utility of selected features was assessed in clinically relevant groups of patients by Kaplan-Meier method and 
log-rank test. The prognostic value of the selected features was assessed in selected subsets of patients. When necessary, distinct cut-off 
values were tested to find the most relevant one. Supplementary figures and tables were included between brackets to provide additional 
details about datasets. 
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patients analysed by machine learning techniques are 
reported in Table S2. 

Each dataset was randomly split into two groups of 
80% and 20% of patients for 100 consecutive iterations. 
In the test set, the resulting mean MCC for the Random 
Forests models from the highest to the lowest was: 0.697 
for A_OS, 0.632 for 4s_RFS, 0.629 for A_RFS, 0.584 
for L_OS, 0.556 for 4s_OS, 0.509 for L_RFS, 0.498 for 
M_OS, and 0.462 for M_RFS. 

Features in each dataset were sorted by decreasing 
order of relevance and ranking is reported in the Table 
S3-S10. The top ten relevant clinical parameters in each 
dataset were displayed by spider charts for additional 
investigations (Fig. 2). 

Our findings evidence that age at diagnosis 
(TIME_DG.days), D_MAX_RESP, TIME_MAX_- 
RESP.days, and MYCN status (GDE_D_- 
MYCN_STATUS_BIN) are the most relevant pre-
dictors of both patients’ outcome and relapse\pro-
gression. 

Furthermore, our findings suggest that 
D_MAX_RESP and TIME_MAX_RESP.days might 
be of clinical utility for neuroblastoma. 

3.2. Assessing the clinical utility of the D_MAX_RESP 
for neuroblastoma 

D_MAX_RESP was classified into six categories: com-
plete response (CR), very good partial response 
(VGPR), partial response (PR), mixed response (MR), 
no response (NR), and progressive disease (PD). 

To evaluate the clinical utility of D_MAX_RESP for 
neuroblastoma, survival analysis was carried out in all 
datasets (Fig. 3A-H). D_MAX_RESP significantly strati-
fied patients in the general dataset, in the subset of patients 
with metastatic tumour, in the subset with localised tu-
mour, as well as those with 4s tumour, thus highlighting 
the high prognostic value of D_MAX_RESP in neuro-
blastoma for both OS and RFS (Log-rank p-value <  
0.0001, Fig. 3A-H). The prognostic value of D_MAX_-
RESP was confirmed for OS and RFS in additional 
clinically relevant subgroups of patients defined by com-
bination of established prognostic markers including the 
group of high-risk patients older than 18 months with 
stage 4 tumours (Log-rank p-value < 0.0001; Fig. 4A-B), 
low/intermediate-risk patients younger than 18 months 
with stage 4 tumours lacking Neuroblastoma-Derived V- 
Myc Avian Myelocytomatosis Viral Related Oncogene 
(MYCN) amplification (Log-rank p-value < 0.0001;  
Fig. 4C-D), intermediate-risk patients older than 18 
months with stage 3 and not amplified MYCN tumours 
(Log-rank p-value < 0.0001; Fig. 4E-F), and low-risk pa-
tients with stage 1, 2, 4s tumours lacking MYCN ampli-
fication (Log-rank p-value < 0.0001; Fig. 4H-G). 

The high percentage of deaths or relapses\progressions in 
the subsets of patients achieving a CR or VGPR suggested 
that D_MAX_RESP is insufficient to stratify these patients. 

3.3. Assessing the clinical utility of 
TIME_MAX_RESP.days for neuroblastoma 

Survival analysis based on TIME_MAX_RESP.days 
feature was carried out in the subset of 502 high-risk 

Fig. 2. Spider chart of the top 10 relevant features predicted by Random Forest in eight distinct datasets. Features are ordered by 
relevance in clockwise order. The most relevant appears on the top side of the chart. Relevance was calculated as 1 minus mean MCC 
obtained by a feature during the execution of recursive feature elimination procedure. Charts are relative to the analysis in the following 
datasets: A) A_OS, B) A_RFS, C) M_OS, D) M_RFS, E) L_OS, F) L_RFS, G) 4s_OS, and H) 4s_RFS. maximum response to first-line 
treatment (D_MAX_RESP) and time to the maximum response to first-line treatment (TIME_MAX_RESP.days) were evidenced by a 
red box. 
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Fig. 3. Kaplan-Meier estimates of overall survival (OS) and relapse free survival (RFS) based on the D_MAX_RESP feature in the eight datasets. 
Plots are relative to: (A) A_OS, (B) A_RFS, (C) M_OS, (D) M_RFS, (E) L_OS, (F) L_RFS, (G) 4s_OS, and (H) 4s_RFS. Plots are entitled with a 
dataset name and number of patients. Survival curves for patients achieving complete response (CR) (blue), very good partial response (VGPR) 
(violet), partial response (PR) (green), mixed response (MR) (yellow), no response (NR) (orange), and progressive disease (PD) (red) were 
compared by log-rank test, respectively. Log-rank p-value is reported on top of each plot. When a log-rank p-value was lower than 0.0001, we 
indicated it as log-rank-p-value < 0.0001. A table reporting the number of patients at risk is shown below each plot. 

Fig. 4. Kaplan-Meier estimates of OS and RFS based on the D_MAX_RESP feature in clinically relevant groups of patients. Plots are relative 
to: (A) OS of high-risk patients, stage 4, and age > 18 months, (B) RFS of high-risk patients, stage 4, and age > 18 months, (C) OS of 
intermediate-risk patients, stage 4, age < 18 months, and with not amplified MYCN tumours, (D) RFS of intermediate-risk patients, stage 4, 
age < 18 months, and with not amplified MYCN tumours, (E) OS of intermediate-risk patients, age > 18 months, stage 3 with not amplified 
MYCN tumours, (F) RFS of intermediate-risk patients, age > 18 months, stage 3 with not amplified MYCN tumours, (H) OS of low-risk 
patients with stages 1, 2, 4s and no MYCN amplification tumour, and (G) RFS of low-risk patients with stages 1, 2, 4s and no MYCN 
amplification tumour. Plots are entitled with the characteristics of the patients’ subset. Survival curves for patients achieving CR (blue), VGPR 
(violet), PR (green), MR (yellow), NR (orange), and PD (red) curves were compared by log-rank test, respectively. Log-rank p-value is reported 
on top of each plot. When a log-rank p-value was lower than 0.0001, we indicated it as log-rank-p-value < 0.0001. A table reporting the number 
of patients at risk is shown below each plot. 
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patients older than 18 months and stage 4 tumour who 
achieved a CR or VGPR. Cut-off values at 3, 6, 9, 12, 
and 15 months were evaluated to assess the prognostic 
value of TIME_MAX_RESP.days. The most significant 
stratification was achieved at 12 months for both OS 
and RFS (OS: HR 2.6 95%CI 2.0–3.2, Log-rank p-value 
p  <  0.0001; RFS: 2.6 95%CI 2.1–3.2, Log-rank p-value 
p  <  0.0001; Fig. S2A-S2J). 

Analysis of the protocols administered to patients 
revealed a heterogeneous distribution, where HR-NBL- 
01, the most recent treatment protocol administered to 
manage high-risk patients in our dataset [45], was the 
most frequent (Fig. S3). Therefore, we decided to per-
form a new survival analysis using the data of 195 pa-
tients older than 18 months with INSS 4 tumour 
achieving a CR or VGPR treated with the HR-NBL-01 
protocol and with defined TIME_MAX_RESP.days to 
confirm our findings in a homogenous subset of pa-
tients. A significant difference was found at 6, 9, and 12 
months cut-offs for OS (Log-rank p-value < 0.005,  
Fig. 5C, E, G), and at 6, 9, 12, and 15 months cut-offs 
for RFS (Log-rank p-value < 0.005, Fig. 5D, F, H, J). 

Interestingly, for 6, 9, and 12 months cut-offs the OS 
and RFS of patients who achieved an early CR or 
VGPR was significantly lower than that of patients who 
achieved the same types of response, but later, thus 
confirming our findings in the previous analysis (Log- 

rank p-value < 0.005; Fig. 5). Nine months was the cut- 
off that achieved the most significant stratification for 
both OS and RFS (OS: HR 3.3 95%CI 1.8–5.9, Log- 
rank p-value p  <  0.0001; RFS: 3.2 95%CI 1.8–5.6, Log- 
rank p-value p  <  0.0001; Fig. 5E-F). 

HR-NBL-01 protocol treatment programme lasts 
approximately 14–16 months and includes induction 
chemotherapy, surgical resection of the primary tu-
mour, high-dose chemotherapy with autologous stem 
cell rescue, radiation therapy, and finally im-
munotherapy plus differentiation therapy with iso-
tretinoin [45]. During protocol administration patients 
are subjected at different time-points to evaluation of 
the status of the disease and eventually addressed to 
alternative treatments when a progression or relapse 
occurs. Patients achieving a satisfactory response after 
induction according to the SIOPEN criteria [36], pro-
ceed with the treatment programme. Patients who do 
not have a satisfactory response receive additional 
treatments [46]. Fig. S4 summarises the most common 
scenarios physicians might manage during periodical 
evaluations of patients’ response to treatment. 

Furthermore, we dissected the subset of patients 
treated with HR-NBL-01 protocol and assessed the 
differences between early or late responses in the subset 
of 171 patients, which get a remission after the end of 
the protocol and may be considered off-therapy. Again, 

Fig. 5. Kaplan-Meier estimates for OS and RFS based on the TIME_MAX_RESP.days in the subset of high-risk patients treated with 
HR-NBL-01 protocol. Plots are relative to overall or RFS of patients older than 18 months with stage 4 tumour who achieved a CR or 
VGPR and treated with HR-NBL-01 protocol. Plots are entitled with the characteristics of the patients’ subset. Cuts-off at 3 (A and B), 6 
(C and D), 9 (E and F), 12 (G and H), and 15 (I and J) months were used to split patients into early or late response. Log-rank p-value and 
hazard ratio (HR) with 95% of confidence interval (95%CI) are reported on top of each plots. When a log-rank p-value was lower than 
0.0001, we indicated it as log-rank-p-value < 0.0001. A table reporting the number of patients at risk is shown below each plot. 
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as above described for the subset of patients with stage 4 
tumour treated with the HR-NBL-01 protocol and 
achieving a CR or VGPR, a significant stratification of 
patients was found with 6, 9, and 12 months cut-offs for 
OS (Log-rank p-value < 0.005, Fig. 6C, E, G), but only 
for cut-offs of 9 and 12 months stratification was sig-
nificant for RFS (Log-rank p-value < 0.005, Fig. 6F, H). 

Interestingly, OS and RFS of patients with early CR 
or VGPR response were significantly lower than that of 
those who achieved a late CR or VGPR response (Log- 
rank p-value < 0.005; Fig. 6). Nine months was the cut- 
off that achieved the most significant stratification for 
both OS and RFS (OS: HR 2.6 95%CI 1.2–5.5, Log- 
rank p-value p  <  0.0001; RFS: 2.3 95%CI 1.1–4.9, Log- 
rank p-value p = 0.0009; Fig. 6E-F). 

These findings indicate that TIME_MAX_RESP.days 
could additionally stratify clinically relevant subsets of pa-
tients even if patients achieved a CR or VGPR to first-line 
treatment. 

4. Discussion 

In the present study, we provide robust evidence of the 
independent predictive and prognostic value of the time 
to D_MAX_RESP in addition to the maximum 

response for neuroblastoma OS and RFS. These find-
ings were obtained from the analysis of 3756 records of 
patients diagnosed with neuroblastoma and registered in 
the RINB database, which includes both established 
features, such as age and non-established features, such 
as patients’ symptoms at diagnosis. Published studies 
have integrated clinical and molecular markers into 
classification models able to predict the survival of 
neuroblastoma patients [47,48]. However, our dataset 
represents the largest compendium of features ever re-
ported for neuroblastoma. Although the data registered 
in the RINB database has been analysed in part on 
other published reports [7,19,21,36,46–49], our study is 
the first exploiting the predictive power of machine 
learning techniques to the entire set of records stored in 
the RINB database. Machine learning analysis was 
based on patient status alive or dead with at least 3 years 
of follow-up. This procedure is in accordance with 
previously published studies [9,50,51]. 

Feature ranking by relevance was instrumental to show 
that D_MAX_RESP and TIME_MAX_RESP.days are 
among the top 4 relevant factors for the prediction of the 
outcome in the general or metastatic dataset and the relapse 
or progression in the general, metastatic, localised, or 4s 
dataset. 

Fig. 6. Kaplan-Meier estimates for OS and RFS based on the TIME_MAX_RESP.days in the subset of high-risk off-therapy patients 
treated with HR-NBL-01 protocol. Plots are relative to OS or RFS of patients older than 18 months with stage 4 tumour who achieved a 
CR or VGPR, treated with HR-NBL-01 protocol and who completed the entire treatment protocol (Off-therapy). Plots are entitled with 
the characteristics of the patients in the sub-population and log-rank p-value. Cut-off of at 3 (A and B), 6 (C and D), 9 (E and F), 12 (G 
and H), and 15 (I and J) months were used to split patients into early or late responses. Log-rank p-value and HR with 95% of 95%CI are 
reported on top of each plots. When a log-rank p-value was lower than 0.0001, we indicated it as log-rank-p-value < 0.0001. A table 
reporting the number of patients at risk is shown below each plot. 
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Survival analysis on high–risk patients older than 18 
months and stage 4 tumour achieving a CR or VGPR 
pointed out that there exists a significantly lower OS and 
RFS for patients who obtain an early maximum re-
sponse to therapy with respect to those with a later 
maximum response to therapy for either the good re-
sponders or the worse responders. Different cut-off va-
lues at 3, 6, 9, 12, and 15 months were evaluated, and all 
showed a significant stratification ability demonstrating 
that TIME_MAX_RESP.days is prognostic for high- 
risk patients. The prognostic value of the 
TIME_MAX_RESP.days has never been reported in 
the literature, thereby our findings show that it is a novel 
prognostic factor for neuroblastoma and provide the 
first indication of the clinical utility of this feature in 
neuroblastoma. 

Clinical practice in Europe establishes that patients 
with high-risk neuroblastoma achieving CR/PR re-
sponse in the first few months of treatment receive the 
treatment expected from the HR-NBL-01 protocol 
moving to consolidation phase with high-dose che-
motherapy followed by maintenance with cis-retinoic 
acid and immunotherapy [7,36]. This treatment philo-
sophy is pursued in the ongoing HR-NBL-02 clinical 
trial (EudraCT N°: 2019–001068–31, Clinical-
Trials.gov Identifier: NCT04221035). Otherwise, pa-
tients who did not achieve an optimal response (CR 
\VGPR) received additional treatments [46]. To take 
this practice into account, we additionally refined our 
analysis focusing on the subset of patients older than 
18 months with stage 4 tumour treated with HR-NBL- 
01 protocol who achieved a CR or VGPR. We de-
monstrate that the OS and RFS of patients who exhibit 
a CR or VGPR to treatment after 9 or 12 months from 
the starting date of therapy is significantly higher with 
respect to those who exhibit the same maximum re-
sponse, but earlier than 9 or 12 months. Furthermore, 
we identify the 9 months as the cut-off that achieves the 
largest separation of both OS and RFS. Our findings 
are demonstrated in the subset of patients treated with 
HR-NBL-01 protocol and in the subset getting a re-
mission after the end of the protocol. Both analyses 
were necessary to additionally investigate the clinical 
utility of TIME_MAX_RESP.days by analysing as 
homogenous as possible subsets of patients, thereby 
excluding the potential confounding effect of the 
treatment protocol or avoiding that stratification might 
be due to the occurrence of disease progression\relapse 
during treatment. A limitation of the analysis, albeit 
unavoidable, is the exact time at which maximum re-
sponse is achieved. In fact, the transition from one 
state of the disease to another is a dynamic phenom-
enon throughout the treatment programme and pa-
tients are not under continuous evaluation. For this 
reason, the maximum response is linked to the date of 
examinations at different time points as scheduled 
during the treatment plan. 

Our findings countertrend the clinical practice and 
this may be justified with the fact that patients with later 
responses receive more prolonged treatments than pa-
tients with a rapid response in the first months of in-
duction therapy. These results could be related to 
biological characteristics of early responding patients, 
i.e. the presence of high proliferation rate that confer 
high response during the induction phase. In practice, 
the results of the present study encourage clinicians not 
to give up on the goal of definitive disease control after 
an induction therapy that has not led to a remission 
considered satisfactory, pending response signals to the 
induction therapy itself. Furthermore, it could be 
speculated that the prolongation of time of treatment 
would be beneficial for both patients who have a slow 
responding disease and those with a rapid disease re-
mission. In fact, in the last 2 decades the prolongation of 
the treatment duration in high-risk neuroblastoma, with 
the addition of a maintenance phase with retinoic acid, 
and further addition of immunotherapy has been de-
monstrated to be as efficacious [49,52]. Further attempts 
to prolong the treatment duration, such as the addiction 
to the maintenance of prolonged treatment with Di-
fluoromethylornithine could be beneficial and deserve 
evaluation, balancing on one hand the need to improve 
therapeutic results and on the other hand to preserve 
patients’ quality of life [53]. 

Our study demonstrates the ability of computational 
intelligence applied to large compendium of data from 
neuroblastoma patients to discover new features with 
potential clinical impact on the management and treat-
ment of patients. 

The retrospective nature of RINB dataset limited our 
control over the data collection and the database entry 
procedures. RINB records have been collected over 30 
years and manual curation of the data introduced a 
heterogeneous vocabulary and many missing values. 
For these reasons, many features included in the original 
RINB dataset were not sufficiently reliable such as 
features with a large number of missing values, or were 
not suitable to be analysed by machine learning tech-
niques. Therefore, new features such as the time to max 
response to first-line treatment were created and in-
cluded in the dataset and diverse data filtering and 
harmonisation steps were necessary to grant the validity 
of our statistical and computational analyses. A pro-
spective study will be designed in the future to validate 
our findings in a more specific and controlled setting 
thus reducing any potential source of bias. 
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