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Semi-inclusive hadron production processes in deep-inelastic lepton-nucleon scattering are important
probes of the quark flavor structure of the nucleon and of the fragmentation dynamics of quarks into
hadrons. We compute the full next-to-next-to-leading order QCD corrections to the coefficient functions for
semi-inclusive deep-inelastic scattering in analytical form. The numerical impact of these corrections for
precision physics is illustrated by a detailed comparison with data on single inclusive hadron spectra from
the CERN COMPASS experiment.
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Introduction.—Identified hadron production in hard
scattering processes is described in quantum chromody-
namics (QCD) through the production of partons (quarks or
gluons) which subsequently fragment into hadrons. This
parton-to-hadron transition is a nonperturbative process
that can be parametrized in terms of fragmentation func-
tions (FFs) which describe the probability of a parton
fragmenting into a hadron carrying some fraction of its
momentum [1,2]. These FFs fulfill Altarelli-Parisi evolu-
tion equations in their resolution scale [3], which are in
complete analogy to the evolution of parton distributions
functions (PDFs) in the nucleon.
Production cross sections for a variety of hadron species

have beenmeasured in electron-positron, lepton-hadron, and
hadron-hadron collisions. To include these datasets into a
global fit of FFs requires the knowledge of the respective
parton-level coefficient functions (differential in themomen-
tum of the fragmenting parton) to the desired perturbative
order. At present, these coefficient functions are known to
next-to-leading order (NLO) for lepton-hadron [4–6] and
hadron-hadron collisions [7] and to next-to-next-to-leading
order (NNLO) for eþe− annihilation [8,9]. Consequently,
global fits of FFs at NNLO [10–12] focus only on data
from eþe− experiments, while having to discard any other
collider data.
Semi-inclusive hadron production in deep-inelastic lepton-

nucleon scattering (SIDIS) has been measured extensi-
vely [13–17] for various hadrons. By considering different

hadron species, it is possible to single out different flavor
combinations of incoming partons, thereby probing the
detailed quark and antiquark flavour decomposition of the
PDFs. This SIDIS information is largely complementary to
inclusive DIS structure function measurements, which
allow to determine only a single flavour combination
to high accuracy. Moreover, SIDIS measurements play
an important role in the determination of spin-dependent
PDFs [18] that have to rely on far fewer hadron-collider
observables than ordinary (spin-averaged) PDFs. Again,
these studies can be performed in a self-consistent manner
only up to NLO due to the unavailability of corrections to
the SIDIS coefficient functions at higher orders.
It is the purpose of this work to enable precision physics

studies with SIDIS observables by deriving the full NNLO
QCD corrections to the SIDIS coefficient functions. We
provide their analytical expressions for all partonic chan-
nels (combinations of initial state and identified final-state
partons) and study the impact of the newly derived
corrections on a representative data set on SIDIS charged
pion production from COMPASS [17].
Kinematics of SIDIS.—We consider the observation

of a hadron h following the scattering of a lepton on a
nucleon. We closely follow the notation of [19], describing
semi-inclusive deep-inelastic scattering as lðkÞpðPÞ →
lðk0ÞhðPhÞX, with X inclusive final-state radiation. The
leptons l momenta define the four-momentum q ¼ k − k0
of the exchanged virtual vector boson and the energy
transfer y ¼ ðP · qÞ=ðP · kÞ. The usual exclusive variables
for Q2 ¼ −q2,

x¼ Q2

2P ·q
; z¼P ·Ph

P ·q
; ð1Þ

describe the momentum fraction of the nucleon carried by
the incoming parton (x) and the momentum fraction of the
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outgoing parton carried by the identified hadron (z). For
ffiffiffi
s

p
center-of-mass energy of the lepton-nucleon system we
have Q2 ¼ xys.
As we consider values of Q ≪ MZ only (highly) virtual

photons are exchanged, and the triple-differential cross
section reads

d3σh

dxdydz
¼ 4πα2

Q2

�
1þ ð1 − yÞ2

2y
F h

Tðx; z; Q2Þ

þ 1 − y
y

F h
Lðx; z; Q2Þ

�
; ð2Þ

with α denoting the fine structure constant.
The transverse F h

T and longitudinal F h
L SIDIS structure

functions are given by the sum over all partonic channels of
the convolution between the PDF for a parton p (fp), the
FF of a parton p0 into the hadron h (Dh

p0), and the coefficient

function for the transition p → p0 (Cip0p):

F h
i ðx;z;Q2Þ¼

X

p;p0

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
fp

�
x
x̂
;μ2F

�
Dh

p0

�
z
ẑ
;μ2A

�

×Cip0pðx̂; ẑ;Q2;μ2R;μ
2
F;μ

2
AÞ; i¼T;L: ð3Þ

The factorization theorem that allows the above expression
introduces two factorization scales: μF for the initial state
and μA for the final state. With μR we indicate the
renormalization scale. The coefficient functions encode
the hard-scattering part of the process and can be computed
in perturbative QCD. Their perturbative expansion in the
strong coupling constant αs reads

Cip0p¼Ci;ð0Þ
p0p þαsðμ2RÞ

2π
Ci;ð1Þ
p0p þ

�
αsðμ2RÞ
2π

�
2

Ci;ð2Þ
p0p þOðα3sÞ:

ð4Þ

At LO, only the qq channel (γ�q → q) contributes, with
the LO coefficient functions trivially given by

CT;ð0Þ
qq ¼ e2qδð1− x̂Þδð1− ẑÞ; CL;ð0Þ

qq ¼ 0; ð5Þ

where eq is the quark’s charge. At NLO instead also the

channels qg and gq start to contribute, and results for Ci;ð1Þ
qq ,

Ci;ð1Þ
gq and Ci;ð1Þ

qg can be found in the literature [19].
In this Letter we present results for the NNLO correc-

tions Ci;ð2Þ
p0p to all partonic channels appearing at this order.

Following the notation of [20], the 7 partonic channels
appearing at Oðα2sÞ are

Ci;ð2Þ
qq ¼ Ci;ð2Þ

q̄ q̄ ¼ e2qC
i;NS
qq þ

 
X

j

e2qj

!

Ci;PS
qq ;

Ci;ð2Þ
q̄q ¼ Ci;ð2Þ

qq̄ ¼ e2qCi
q̄q;

Ci;ð2Þ
q0q ¼ Ci;ð2Þ

q̄0q̄ ¼ e2qC
i;1
q0q þ e2q0C

i;2
q0q þ eqeq0C

i;3
q0q;

Ci;ð2Þ
q̄0q ¼ Ci;ð2Þ

q0q̄ ¼ e2qC
i;1
q0q þ e2q0C

i;2
q0q − eqeq0C

i;3
q0q;

Ci;ð2Þ
gq ¼ Ci;ð2Þ

gq̄ ¼ e2qCi
gq;

Ci;ð2Þ
qg ¼ Ci;ð2Þ

q̄g ¼ e2qCi
qg;

Ci;ð2Þ
gg ¼

 
X

j

e2qj

!

Ci
gg; ð6Þ

again for i ¼ T, L. With q0 (q̄0) we indicate a quark
(antiquark) of flavor different from q, whereas the NS and
PS superscripts in the quark-to-quark channel denote the
nonsinglet and the pure-singlet components, respectively.
The coefficient functions are computed by applying

projectors to extract the longitudinal and transverse com-
ponents from the respective parton-level subprocess matrix
elements with incoming kinematics fixed by Q2 and x̂,
which are then integrated over the final state phase space.
This integration is fully inclusive in the extra radiation X
and keeps the final state momentum fraction of the parton
p0 fixed to ẑ.
Method.—At NNLO in QCD, three types of parton-level

contributions must be taken into account, relative to the
underlying Born-level process: two-loop virtual corrections
(double-virtual, VV), one-loop corrections to single real
radiation processes (real-virtual, RV) and tree-level double
real radiation processes (RR), with example diagrams
shown in Fig. 1. These are accompanied by contributions
from QCD renormalization and mass factorization of the
PDFs and FFs.
NNLO QCD corrections to processes with identified

particles at hadron colliders have recently been derived for
identified photons [21,22] and for the production of bottom
hadrons in top quark decays [23]. These calculations are
performed in a fully exclusive manner in the form of
parton-level event generators which provide the full kin-
ematical information on all final state partons (and on a
single identified hadron or photon), which can then be
subjected to the precise final state definition that is used in
the experiment. To enable these computations, a method to
identify and extract infrared singular real radiation up to
NNLO had to be employed. The calculation for identified
photons used the antenna subtraction method [24–26],
while the bottom hadron production relies on a sector-
improved residue subtraction [27].
The analytic ingredients to the antenna subtraction

method are so-called antenna functions, which encapsulate
all infrared singular radiation that emerges between two
hard radiator partons. These antenna functions are used to
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construct the real radiation subtraction terms, and they are
integrated analytically over the respective antenna phase
spaces to make the infrared pole structure explicit. In the
case of fragmentation processes [28], one of the hard
radiators is the fragmenting parton, while the other can
be in the initial or in the final state. The kinematical
situation of fragmentation antenna functions with one
radiator in the initial state corresponds exactly to the
kinematics of SIDIS [29]. Consequently, the RV and RR
contributions to SIDIS can be obtained employing exactly
the same methods as were used to derive the integrated
fragmentation antenna functions with one initial state
radiator. These methods were described in detail in [21]
and we only provide a brief summary here.
The one-loop squared matrix elements for the RV

contributions can be expressed in terms of one-loop bubble
and box integrals, which are known in exact form in ϵ, with
ϵ the dimensional regularization parameter for N ¼ 4 − 2ϵ
space-time dimensions. For fixed x̂ and ẑ, the associated
phase space integral is fully constrained, such that only
expansions in the end-point distributions in x̂¼ 1 and ẑ ¼ 1
are required to obtain the final result for this contribution.
To avoid ambiguities associated with the analytic continu-
ation of the one-loop master integrals, the parameter
space of the RV contribution is segmented into four
sectors: ðx̂≤ 0.5; x̂≤ ẑ≤ 1− x̂Þ, ðẑ ≤ 0.5; ẑ < x̂ ≤ 1 − ẑÞ,
ðx̂ > 0.5; 1 − x̂ < ẑ < x̂Þ, and ðẑ > 0.5; 1 − ẑ < x̂ ≤ ẑÞ,
where manifestly real-valued expressions for the contribu-
tions are obtained [21]. The expressions are continuous
across the boundaries of the regions.
The RR contributions correspond to integrations over a

three-particle phase space, with the momentum fraction of
one of the particles fixed by ẑ. They can be expressed as
cuts of two-loop integrals in forward kinematics, with ẑ

expressed as the linear cut propagator. These integrals are
reduced to master integrals using integration-by-parts (IBP)
identities [30,31], as implemented in Reduze2 [32]. The RR
contributions to the SIDIS coefficient functions are
expressed in terms of 13 integral families, which contain
a total of 21 master integrals. These master integrals are
determined by solving their differential equations [33] in x̂
and ẑ, using PolyLogTools [34] and HPL [35]. The boundary
terms for these differential equations are obtained by
integrating the generic solutions over ẑ and comparing
to the master integrals relevant to inclusive integrated
antenna functions [36] with one initial-state and one
final-state radiator. Of the 21 master integrals, 9 were
already computed in the context of photon fragmentation at
NNLO [21], and derivation of the remaining 12 integrals
will be described in detail elsewhere [37].
The VV contributions correspond to the well-known

two-loop quark form factor [38] in spacelike kinematics.
All contributions are computed using FORM [39] and are

assembled to yield the bare SIDIS coefficient functions,
which still contain ultraviolet and collinear pole terms. By
adding the renormalization and mass factorization counter-
terms (including convolutions of lower-order terms using
MT [40]), the finite physical SIDIS coefficient functions are
obtained.
Results.—The results for the full set of coefficient

functions up to NNLO are too lengthy to be presented
here and thus are given as Supplementary Material [41].
Our results include the full scale dependence (μR, μF, and
μA) that was cross-checked with the solution of the
renormalization group equation for all channels. In this
section we discuss the comparison of our results with the
literature and numerical results.
By means of the threshold resummation formalism for

SIDIS [19], approximate corrections for the qq channel
have been derived at NNLO [42], and even at N3LO [43].
Such approximate NNLO corrections have been adopted
in the context of a global QCD analysis of light fragmen-
tation functions [44,45]. Moreover, partial results for
the qq NNLO longitudinal coefficient function are also
available [20]. Most recently the leading color contribution
to the qq nonsinglet channel was computed in [46].
Concerning the qq channel, we compare our results

against the ones of [46]. The longitudinal components are
in perfect numerical agreement. Regarding the leading
color transverse ones, we find analytical agreement for
all terms involving end-point distributions as well as perfect
numerical agreement for the regular part in the full
kinematic region. We are also in agreement with the
threshold expansion terms of [42], which predict all double
distributions in the partonic variables, and have been
confirmed by [46] as well.
Figure 2 illustrates the numerical impact of the newly

computed NNLO corrections and assesses the relevance of
different partonic channels. Using selected kinematical bins

FIG. 1. Example Feynman diagrams contributing to Ci
gq at the

RV level (top), and to Ci;NS
qq and Ci;PS

qq at the RR level (bottom left
and right).
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from the COMPASS measurement [17] of SIDIS pion
production in muon-nucleon scattering, which is described
in more detail in the following section, we compute the K
factors atNLOandNNLOand decompose the cross sections
according to different channels.We use the NNPDF3.1 PDF
set [47] and the FF set from [44] at NNLO throughout, with
αsðMZÞ ¼ 0.118 and with NF ¼ 5 light quarks. The central
scales are fixed at μR ¼ μF ¼ μA ¼ Q, with scale variations
determined through variations by a factor 2 around the
central scale. We further fix μF ¼ μA.
We observe moderate NNLO corrections to the K

factors, which reinforce the tendency of the NLO correc-
tions of an increase of the K factor with increasing z. The
nonuniformity of the NNLO corrections in x and z clearly
highlights the phenomenological relevance of the NNLO
contributions. In the smallest x bin (corresponding to the
lowest Qavg), NNLO corrections are somewhat larger, and
the overlap of NLO and NNLO uncertainty bands is only
marginal. At larger x, the NNLO corrections are within the
NLO uncertainty bands and their inclusion leads to con-
siderably smaller uncertainties from 20% at NLO to well
below 10% at NNLO. The predictions are largely domi-
nated by the quark-to-quark channel, the gluon-to-quark
and quark-to-gluon channels both yield small negative
corrections to the SIDIS cross section, especially at small
x, with the gluon-to-quark channel being typically larger
due to the larger magnitude of the respective fragmentation
function. All new channels appearing at NNLO are found
to give negligible contributions.
Comparison with data.—The COMPASS experiment

performs deep-inelastic scattering measurements on various
fixed targets with a high-energy muon beam at CERN. In

their SIDIS study [17], momentum spectra for charged pions
and for unidentified charged hadrons are measured with a
160 GeV muon beam scattering off an isoscalar target,
corresponding to a center-of-mass energy

ffiffiffi
s

p
≈ 17.35 GeV.

Events are accepted if Q2 > 1 GeV2 andW > 5 GeV with
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ qÞ2

p
the invariant mass of the hadronic system.

The measured hadron multiplicities dMh=dz are given by
the ratio of the differential cross section for hadron
production and the differential inclusive DIS cross section.
Therefore we compute the ratio

dMh

dz
¼ d3σh=dxdydz

d2σ=dxdy
: ð7Þ

For brevity, we focus on the h ¼ πþ spectra. In our
numerical implementation we compute the denominator
of (7) using the APFEL++ code [48,49]. We apply the same
experimental cuts in our numerical implementation and
we integrate (7) over x and y, according to the given bin
ranges. In Fig. 3 we present the ratio of data and theory
predictions over the NLO result. The uncertainty on
theory predictions is estimated by varying the scales in
an uncorrelated way between the numerator and denom-
inator of (7).
We observe that inclusion of the NNLO corrections

modifies the shape of the predictions, in general improving
the description of the experimental data. For the lowest
values of Qavg ≤ 2 GeV, no reduction of the scale uncer-
tainty is observed. Moving to higher Qavg, this reduction
becomes clearly significant, with NNLO uncertainties
usually being half the size of their NLO counterparts.

FIG. 2. QCD K factors up to NNLO and fractional contribution of individual channels for selected kinematical bins studied by the
COMPASS experiment [17]. The g → g, q → q̄, q → q0, and q → q̄0 channels are not shown in the channel decomposition as they are
found to give negligible contributions in the kinematical bins considered.
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Conclusions.—Semi-inclusive deep-inelastic scattering
processes will be among the key observables of the physics
program at the BNL electron-ion collider (EIC). To enable
precision studies with SIDIS data, higher order perturbative
corrections are crucial. To prepare the precision SIDIS
program at EIC, we derived the analytical expressions for
the NNLO QCD corrections to the SIDIS coefficient
functions. The NNLO corrections are nonuniform in the
kinematical variables. They lead to a substantial reduction
of the uncertainty on the theory predictions at sufficiently
large values of Q, where the perturbative expansion is
applicable. In comparison with COMPASS results on πþ

SIDIS production, we observe an improved description of
the experimental data.
Our newly derived results allow precision determinations

of the quark flavor decomposition of nucleon PDFs and of
hadron FFs in SIDIS at the EIC. A natural extension of our
work could be towards the polarized SIDIS coefficient
functions, thereby enabling precision SIDIS studies in the
EIC spin physics program.
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