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CONSTRUCTING INFINITELY MANY HALF-ARC-TRANSITIVE

COVERS OF TETRAVALENT GRAPHS

PABLO SPIGA AND BINZHOU XIA

Abstract. We prove that, given a finite graph Σ satisfying some mild conditions, there
exist infinitely many tetravalent half-arc-transitive normal covers of Σ. Applying this
result, we establish the existence of infinite families of finite tetravalent half-arc-transitive
graphs with certain vertex stabilizers, and classify the vertex stabilizers up to order 28

of finite connected tetravalent half-arc-transitive graphs. This sheds some new light on
the longstanding problem of classifying the vertex stabilizers of finite tetravalent half-
arc-transitive graphs.
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1. Introduction

Let Γ be a graph and let G be a subgroup of the automorphism group Aut(Γ) of Γ.
We say that G is vertex-transitive, edge-transitive or arc-transitive if G acts transitively
on the vertex set, edge set or the set of ordered pairs of adjacent vertices, respectively,
of Γ. If G is vertex-transitive and edge-transitive but not arc-transitive, then we say
that G is half-arc-transitive. The graph Γ is said to be half-arc-transitive if Aut(Γ) is
half-arc-transitive.

Numerous papers have been published on half-arc-transitive graphs over the last half a
century (see the survey papers [5, 11]), most of which are on those of valency 4, the small-
est valency of half-arc-transitive graphs. However, somewhat surprisingly, not so many
examples of tetravalent half-arc-transitive graphs are known in the literature (see [16]),
compared with the considerable attention they have received.

For a graph Γ and a group N such that N is normal in G for some vertex-transitive
subgroup G of Aut(Γ), the normal quotient Γ/N is the graph whose vertex set V (Γ/N)
is the set of N -orbits on the vertex set V (Γ) of Γ, with an edge of Γ/N between vertices
∆ and Ω if and only if there is an edge of Γ between α and β for some α ∈ ∆ and
β ∈ Ω. Such a graph Γ is called a normal cover of the graph Γ/N . Broadly speaking, in
this paper, given a graph Σ satisfying some mild conditions, we establish the existence of
infinitely many tetravalent half-arc-transitive graphs that are normal covers of Σ.

Let p be a prime number. For a positive integer m, denote the largest power of p
dividing m by mp. Moreover, given a finite group X, let Op(X) denote the largest normal
p-subgroup of X. Our main result is as follows.

Theorem 1.1. Let Σ be a finite connected tetravalent graph and let T be a nonabelian
simple half-arc-transitive subgroup of Aut(Σ). Then, for each prime number p, such that
p > |T |2 and p is coprime to |T |, there exists a finite connected tetravalent graph Γ
satisfying the following:

(a) Γ is half-arc-transitive;
1
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(b) Aut(Γ) has vertex stabilizer isomorphic to that of T ;
(c) Op(Aut(Γ)) 6= 1, Aut(Γ)/Op(Aut(Γ)) ∼= T and Γ/Op(Aut(Γ)) ∼= Σ.

Although it is not hard to construct a graph Γ with a half-arc-transitive group G of
automorphisms, it is in general not known whether Aut(Γ) is larger than G to possibly
make Aut(Γ) arc-transitive on Γ. In this sense, the significance of Theorem 1.1 is asserting
the existence (under some mild conditions) of infinitely many half-arc-transitive graphs
which are normal covers of a given connected tetravalent graph, even if the given graph
is not itself half-arc-transitive. Thus, with the help of Theorem 1.1, one can construct
infinitely many connected tetravalent half-arc-transitive graphs with some exotic vertex
stabilizers, and we will present some examples in this paper.

For a half-arc-transitive graph Γ, the vertex stabilizer in Aut(Γ) will be called the vertex
stabilizer of Γ. It is not hard to construct half-arc-transitive graphs with abelian vertex
stabilizers (see for instance [12]). However, half-arc-transitive graphs with nonabelian
vertex stabilizers are much more elusive and the problem of constructing half-arc-transitive
graphs with nonabelian vertex stabilizers has received extensive attention and considerable
effort (see for instance [4, 5, 17, 18]). The first infinite family of half-arc-transitive graphs
with nonabelian vertex stabilizers was only constructed very recently in [18]. The vertex
stabilizers in [18] are isomorphic to D8 × D8 × Cm−6

2 for integers m with m > 7.
In Example 3.3 we construct a finite connected tetravalent graph Σm for every integer

m > 4 such that Σm admits a half-arc-transitive action of the alternating group A2m with
vertex stabilizer D8 ×Cm−3

2 . Then, by applying Theorem 1.1 to the graphs in Example 3.3
and to the graphs in [18], we obtain the following result:

Theorem 1.2. For every integer m > 4, there exist infinitely many finite connected
tetravalent half-arc-transitive graphs with vertex stabilizer D8×Cm−3

2 and, for every integer
m > 7, there exist infinitely many finite connected tetravalent half-arc-transitive graphs
with vertex stabilizer D8 × D8 × Cm−6

2 .

A group H = 〈a1, . . . , am〉 is said to be concentric if |〈ai, . . . , aj〉| = 2j−i+1 for all
1 6 i < j 6 m and there exists a group isomorphism

ϕ : 〈a1, . . . , am−1〉 → 〈a2, . . . , am〉

such that aϕ
i = ai+1 for i = 1, . . . , m−1. (Note in the definition that each ai is necessarily

an involution if m > 3.) The study of concentric groups dates back to Glauberman [8, 9]
about 50 years ago and was made systematic by Marušič and Nedela [13] in 2001. It
was proved in [13] that a group H is concentric if and only if there exist a connected
tetravalent graph Γ and a subgroup G of Aut(Γ) such that G is half-arc-transitive with
vertex stabilizer H . Moreover, Marušič and Nedela gave a characterization of concentric
groups in terms of their defining relations [13, Theorem 5.5] and determined the concentric
groups of order up to 28 [13, Theorem 6.3]. Let

H7 = 〈a1, . . . , a7 | a2
i = 1 for i 6 7, (aiaj)

2 = 1 for |i − j| 6 4,

(a1a6)
2 = a3, (a2a7)2 = a4, (a1a7)2 = a5〉.

Theorem 1.3 (Glauberman-Marušič-Nedela). The following are precisely the concentric
groups of order at most 28:

Cm
2 for 1 6 m 6 8, D8 × Cm−3

2 for 3 6 m 6 8,

D8 × D8 × Cm−6
2 for 6 6 m 6 8, H7 × Cm−7

2 for 7 6 m 6 8.
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Marušič [12] has shown that every nontrivial elementary abelian 2-group is the vertex
stabilizer of a connected tetravalent half-arc-transitive graph. Similar results have been
proved for D8 by Conder and Marušič [4] and for D8 × C2 by Conder, Potočnik and

Šparl [5]. Moreover, the first author showed in [17] that D8 × D8 and H7 are both vertex
stabilizers of connected tetravalent half-arc-transitive graphs in a response to a problem
posed in [13], and the second author recently proved in [18] that D8 × D8 × Cm−6

2 is
the vertex stabilizer of a connected tetravalent half-arc-transitive graph for every integer
m > 7. In light of these results and Theorem 1.2, we see that the only concentric group of
order at most 28 that is not known to be the vertex stabilizer of a connected tetravalent
half-arc-transitive graph is H7 × C2. In Example 3.2, we apply Theorem 1.1 to construct
connected tetravalent half-arc-transitive graphs with vertex stabilizer H7 ×C2. This leads
to the next theorem.

Theorem 1.4. Every concentric group of order at most 28 is the vertex stabilizer of
infinitely many finite connected tetravalent half-arc-transitive graphs.

We prove Theorem 1.1 in Section 2. Then in Section 3 we construct some connected
tetravalent graphs admitting a half-arc-transitive nonabelian simple group action with
vertex stabilizer H7 × C2 and D8 × Cm−3

2 for m > 3, respectively, which will be used in
Section 4 to prove Theorems 1.2 and 1.4. In Section 5 we briefly discuss the relevance of
our work and a conjecture of Džambić-Jones and Conder concerning faithful amalgams.
We also include a natural open problem at the end of Section 5.

2. Proof of Theorem 1.1

For a group X, let Soc(X) denote the socle of X and let Rad(X) denote the maximal
normal solvable subgroup of X. Let Γ be a graph, let G be a vertex-transitive subgroup
of Aut(Γ) and let N be a normal subgroup of G. Then the group G induces a vertex-
transitive subgroup of Aut(Γ/N). Denote by αN and βN the N -orbits containing the
vertices α and β, respectively, of Γ. If αN and βN are adjacent in Γ/N , then each vertex
in αN is adjacent to the same number of vertices in βN (because N is transitive on both
sets). Moreover, the stabilizer in G of the vertex αN in Γ/N is GαN .

See [15, Subsection 2.2] for the definition of regular covering projection, lift and group
of covering transformations.

Proof of Theorem 1.1. Let Σ and T be as in Theorem 1.1 and let p be a prime number
such that p > |T |2 and p is coprime to |T |. Viewing [15, Corollary 8] and applying [15,
Theorem 6] with the prime p, the graph Σ and the group of automorphisms T , we obtain
a regular covering projection ℘ : Γ → Σ such that the following hold:

(i) Γ is finite;
(ii) the maximal group that lifts along ℘ is T ;
(iii) the group of covering transformations of ℘ is a p-group.

Let A = Aut(Γ), let G be the subgroup of A that T lifts to along ℘, and let P be the
group of covering transformations of ℘. Then conclusion (iii) shows that P is a p-group,
and G/P ∼= T is nonabelian simple. Since P is a normal solvable subgroup of G, it follows
that P = Rad(G). Moreover, we deduce from conclusion (ii) and [15, Lemma 1] that

NA(P ) = G. (1)
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Since P = Rad(G) is characteristic in G, we derive that P is normal in NA(G), that is,
NA(G) 6 NA(P ). Thus it follows from (1) that

NA(G) = G. (2)

We aim to prove that A = G, from which the proof of Theorem 1.1 immediately follows.
Assume for a contradiction that A > G. Then G < B for some subgroup B of A such
that G is maximal in B.

Let α be a vertex of Γ. Since T is half-arc-transitive on Σ, the group G is half-arc-
transitive on Γ. This implies that Gα is a 2-group and B = GBα is edge-transitive and
vertex-transitive on Γ. It follows that |B : G| = |GBα : G| = |Bα : Gα| divides |Bα|. As
Bα is a {2, 3}-group and p > |T |2 > 5, we infer that p is coprime to |B : G|. Since p is
coprime to |T | = |G/P |, we see that P is a Sylow p-subgroup of B. According to Sylow’s
theorem, the number of Sylow p-subgroups of B is |B : NB(P )| ≡ 1 (mod p) and so p
divides |B : NB(P )| − 1. By (1) we have NB(P ) = G. Hence

p | (|B : G| − 1). (3)

Let K be the core of G in B. Then K ✂ B, K 6 G, and the action of B/K on the
set Ω of right cosets of G/K in B/K is faithful and primitive of degree |B : G|. Since
both K and P are normal in G, the group KP is normal in G, which implies that KP/P
is normal in G/P . As G/P ∼= T is a simple group, we deduce that either G = KP or
K 6 P .

Case 1. G = KP .

In this case, P ∩ K is a normal subgroup of K with

K/(P ∩ K) ∼= KP/P = G/P ∼= T

nonabelian simple. Since P ∩ K is solvable, we conclude that

P ∩ K = Rad(K)

is characteristic in K. As K is normal in B, it follows that

P ∩ K ✂ B.

Note that |G/K| = |KP/K| = |P/(P ∩ K)| is a power of p and G 6= K by (2). We have

|G/K| = pn

for some positive integer n.
Suppose that |Bα| is divisible by 3. Then Bα is 2-transitive on the neighborhood of α

in Γ, and so it follows from a result of Gardiner (see for instance [7, Lemma 2.3]) that
|Bα| divides 2436. Now B/K is a primitive group of degree |B : G| = |Bα : Gα| dividing
2336 such that the point stabilizer G/K is a p-group. We deduce from [10] that B/K
is an affine group of degree 3k with 3 6 k 6 6, and Soc(B/K) is the unique Sylow 3-
subgroup of B/K. Since B/K = (G/K)(BαK/K) and |G/K| is coprime to 3, it follows
that Soc(B/K) ✂ BαK/K ∼= Bα/Kα. Note that

|Soc(B/K)| = 3k = |B : G| = |Bα : Gα| = |Bα|3

as Gα is a 2-group. We conclude that the Sylow 3-subgroup of Bα is elementary abelian
of order 3k > 33. The structure of the vertex stabilizer Bα is described in [14, Table 1],
which shows that Bα cannot have an elementary abelian Sylow 3-subgroup of order at
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least 33, a contradiction. Thus Bα is a 2-group, and so |B : G| = |Bα : Gα| is a power of
2, say,

|B : G| = 2ℓ.

Note that ℓ > 1 by (2).
Since |B : G| = 2ℓ and |G : K| = pn, we see that B/K has order 2ℓpn and thus is

solvable. Moreover, as B/K is a primitive group of degree 2ℓ, it follows that Soc(B/K)
is an elementary abelian group of order 2ℓ. Let H be the subgroup of B such that
H/K = Soc(B/K). The reader may find Figure 1 useful at this point.

B

G H

KP

P ∩ K

Figure 1. The structure of B

Let B = B/(P ∩K), H = H/(P ∩K), K = K/(P ∩K) and C = CH(K). Then K ∼= T ,
and both H and K are normal in B. It follows that C = H ∩ CB(K) ✂ B, and

H/C . Aut(K) ∼= Aut(T ).

Moreover,
C K/C ∼= K/(K ∩ C) ∼= Inn(K) ∼= Inn(T ). (4)

Thus H/(C K) . Out(T ). Let C be the subgroup of H containing P ∩ K such that
C/(P ∩ K) = C. Then

C ✂ B

and H/(CK) . Out(T ). Now CK ✂ B and so CK/K ✂ B/K. As CK/K 6 H/K and
H/K = Soc(B/K) is a minimal normal subgroup of the affine primitive group B/K, it
follows that either CK/K = 1 or CK/K = H/K. If CK/K = 1, then the elementary
abelian 2-group H/K = H/(CK) is isomorphic to a subgroup of Out(T ), which implies
that

|B : G| = 2ℓ = |H/K| 6 |Out(T )|2 6 |T |2 < p,

contradicting (3). (Observe that the inequality |Out(T )|2 6 |T |2 follows by inspecting the
list of finite simple groups.) Therefore, CK/K = H/K and hence H = CK. This in turn
with (4) implies that

H/C = CK/C ∼= C K/C ∼= T.

Note that T is the unique nonsolvable composition factor of H as H/K is solvable and
K is a p-group extended by T . We then conclude that

C = Rad(H).

Consequently,
C ∩ K = Rad(H) ∩ K = Rad(K) = P ∩ K

and so
|C/(P ∩ K)| = |C/(C ∩ K)| = |CK/K| = |H/K| = 2ℓ.
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B

G H

KP

P ∩ K

C

2ℓ pn

T

pn

pn
2ℓ

T

T

2ℓ

Figure 2. More detailed structure of B

The reader may find Figure 2 useful at this point.
Consider the quotient graph Γ/C. Let N be the kernel of B acting on V (Γ/C). Since

H is a normal subgroup of B with index pn odd and Bα is a 2-group, we have Bα 6 H .
Consequently, N = CNα 6 CBα 6 H . Moreover, N = CNα is a {2, p}-group and thus
is solvable. Hence N 6 Rad(H) = C. This shows that the action of B/C on V (Γ/C) is
faithful. Suppose that Cα 6= 1. Then the number of orbits of Cα on the neighborhood of
α in Γ is less than 4. It follows that the valency of Γ/C is less than 4 and so must be
1 or 2, being a divisor of 4. Thereby we conclude that B/C 6 Aut(Γ/C) is solvable, a
contradiction. Thus Cα = 1.

As Cα = 1, the orbits of C on V (Γ) have size |C|. Since C is normal in B and B
is transitive on V (Γ), it follows that |C| divides |V (Γ)|. Hence |C| divides |G| as G
is transitive on V (Γ). In particular, |C|2 6 |G|2. As |C|2 = |C/(P ∩ K)|2 = 2ℓ and
|G|2 = |G/P |2 = |T |2, we then obtain 2ℓ 6 |T |2. This together with (3) implies that
p < |B : G| = 2ℓ 6 |T |2, contradicting our choice of p.

Case 2. K 6 P .

Let B = B/K, G = G/K, P = P/K and H = H/K = Soc(B). Recall that B acts
primitively and faithfully on the set of right cosets of G in B, and

|B : G| = |B : G| = |GBα : G| = |Bα : Gα|.

As Bα is a {2, 3}-group, we obtain |B : G| = 2ℓ3k for some nonnegative integers ℓ and k.
If |Bα| is divisible by 3, then Bα is 2-transitive on the neighborhood of α in Γ and so [7,
Lemma 2.3] shows that |Bα| divides 2436. Consequently, either ℓ 6 3 and 1 6 k 6 6, or
k = 0.

Since K is normal in B, we deduce from (1) that K 6= P . Hence K < P and so P is a
nontrivial p-group. This shows that G is a nontrivial p-group extended by the nonabelian
simple group G/P ∼= T . Then as G is a point stabilizer of the primitive group B of degree
|B : G| = 2ℓ3k, it follows from [10] that k = 0 and B is an affine primitive group of degree
2ℓ. Hence |H| = 2ℓ, and so H is a {2, p}-group.
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Let R = P H . Then R is a {2, p}-group and thus is solvable. Moreover, R ✂ B, and as
P 6 G, we have B = HG = HP G = RG. Hence

B/R = RG/R ∼= G/(G ∩ R) ∼= (G/P )/((G ∩ R)/P ).

Since G/P ∼= T is simple, it follows that either B/R = 1 or B/R ∼= T . Clearly, B 6= R as
R is solvable and B is nonsolvable. Thus B/R ∼= T is nonabelian simple, which implies

R = Rad(B).

Consider the quotient graph Γ/R. Let M be the kernel of B acting on V (Γ/R). Then
M = RMα. Since Mα 6 Bα is a 2-group, we see that M is a {2, p}-group as R is a
{2, p}-group. Accordingly, M is solvable, and so M 6 Rad(B) = R. This shows that the
action of B/R on V (Γ/R) is faithful. Suppose that Rα 6= 1. Then the number of orbits of
Rα on the neighborhood of α in Γ is less than 4. It follows that the valency of Γ/R is less
than 4 and so must be 1 or 2 as it divides 4. Thereby we conclude that B/R 6 Aut(Γ/R)
is solvable, a contradiction. Thus Rα = 1.

As Rα = 1, the orbits of R on V (Γ) have size |R|. Since R is normal in B and B
is transitive on V (Γ), it follows that |R| divides |V (Γ)|. Hence |R| divides |G| as G is
transitive on V (Γ). In particular, |R|2 6 |G|2. As |R|2 = |P H|2 = |H|2 = |H/K|2 = 2ℓ

and |G|2 = |G/P |2 = |T |2, we then obtain 2ℓ 6 |T |2. This in conjunction with (3) implies
that p < |G : B| = |B : G| = 2ℓ 6 |T |2, contradicting our choice of p. �

3. Examples

Recall the standard construction of the coset graph Cos(X, Y, S) for a group X with a
subgroup Y and an inverse-closed subset S of X \ Y such that S is finite union of double
cosets of Y in X. Such a graph has vertex set [X : Y ], the set of right cosets of Y in X,
and edge set {{Y t, Y st} | t ∈ X, s ∈ S}. It is easy to see that Cos(X, Y, S) has valency
|S|/|Y |, and X acts by right multiplication on [X : Y ] as a group of automorphisms of
Cos(X, Y, S). Moreover, Cos(X, Y, S) is connected if and only if X = 〈Y, S〉.

3.1. Example D8. Let G = A10 and

H = 〈(1, 2, 3, 4)(5, 6, 7, 8), (1, 4)(2, 3)(5, 7)(9, 10)〉 < G.

Clearly, H ∼= D8. Let

s = (1, 8, 10)(2, 7, 4, 6, 9, 3, 5) ∈ G.

It can be checked immediately by the computational algebra system Magma [1] that

〈H, s〉 = G, |H : s−1Hs| = 2 and s−1 /∈ HsH.

Then letting

Σ = Cos(G, H, H{s, s−1}H), (5)

we see that

• Σ is a connected tetravalent graph;
• G acts faithfully and half-arc-transitively on Σ;
• the vertex stabilizer in G is H ∼= D8.
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3.2. Example H7 × C2. Let

H = 〈a1, . . . , a8 | a2
i = 1 for i 6 8, (aiaj)

2 = 1 for |i − j| 6 5,

(a1a7)2 = a3, (a2a8)2 = a4, (a1a8)
2 = a6〉.

Then H = 〈a1, a2, a3, a4, a6, a7, a8〉 × 〈a5〉 ∼= H7 × C2. Let

B = 〈a1, . . . , a7〉, C = 〈a2, . . . , a8〉

and let ϕ : B → C be the group isomorphism defined by

aϕ
i = ai+1 for i = 1, . . . , 7.

Then H = B ∪ a8B = C ∪ a1a2C. Let x be the permutation on H defined by

bx = bϕ and (a8b)
x = a1a2bϕ for b ∈ B.

Denote the right regular representation of H by R : H → Sym(H). It can be checked
easily by the computational algebra system Magma [1] that

〈R(H), x〉 = Alt(H), x−1R(H)x = R(C) and x−1 /∈ R(H)xR(H).

Then letting

Π = Cos(Alt(H), R(H), R(H){x, x−1}R(H)), (6)

we see that

• Π is a connected tetravalent graph;
• Alt(H) acts faithfully and half-arc-transitively on Π;
• the vertex stabilizer in Alt(H) is R(H) ∼= H ∼= H7 × C2.

3.3. Example D8 × Cm−3
2 . Let m > 4 be an integer,

H = 〈a, b | a4 = b2 = (ab)2 = 1〉 × 〈c1〉 × · · · × 〈cm−3〉,

where c1, . . . , cm−3 are involutions. Clearly, H ∼= D8 × Cm−3
2 . Let h = a

∏⌈(m−5)/2⌉
i=0 c2i+1

and

K = 〈a2, b, c1, . . . , cm−3〉 = 〈a2〉 × 〈b〉 × 〈c1〉 × · · · × 〈cm−3〉.

Then K ∼= Cm−1
2 and H = K ∪ aK = K ∪ hK. For convenience, put ci = 1 for i 6 0.

Define x ∈ Aut(H) by letting

ax = a−1, bx = ab, cx
2i+1 = c2i+1 and cx

2i+2 = a2c2i+1c2i+2

for 0 6 i 6 ⌊(m − 5)/2⌋ and letting cx
m−3 = a2cm−3 in addition if m is even. Define

τ ∈ Aut(K) by letting

(a2)τ = b, bτ = a2, cτ
2i+1 = c2i−1c2ic2i+2 and cτ

2i+2 = c2i−1c2ic2i+1

for 0 6 i 6 ⌊(m − 5)/2⌋ and letting cτ
m−3 = cm−3 in addition if m is even.

Note that x and τ are automorphisms of H and K respectively as the images of gen-
erators under x and τ are generators of H and K satisfying the defining relations. Let y
be the permutation of H such that gy = gτ and

(hg)y =







hgτ if m is odd,

hgτ cm−3 if m is even,
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for g ∈ K. Denote the right regular representation of H by R : H → Sym(H). It follows
from [2, Lemmas 2.1 and 2.3] that x and y are both involutions and 〈x, y, R(H)〉 6 Alt(H).
Let

Σm = Cos(Alt(H), R(H), R(H){xy, yx}R(H)). (7)

Fix the notation of H , R, x and y in this subsection, and let

z =







R(h)yR(h−1) if m is odd,

R(h)yR(h−1cm−3) if m is even.

According to [2, Lemma 2.1], the permutation z is an involution. Since z ∈ 〈x, y, R(H)〉,
it follows from 〈x, y, R(H)〉 6 Alt(H) that z ∈ Alt(H). As x, y and z all fix 1 ∈ H , we
may also view them as elements of Alt(H \ {1}) when they cause no confusion. Use ⊔ to
denote a disjoint union of sets.

Lemma 3.1. The following hold:

(a) R(H)xyR(H) = R(H)xy ⊔ R(H)xz;
(b) R(H)yxR(H) = R(H)yx ⊔ R(H)zx;
(c) R(H){xy, yx}R(H) = R(H)xy ⊔ R(H)yx ⊔ R(H)xz ⊔ R(H)zx.

Proof. Note that x, y and z are all involutions. It is straightforward to verify that x and
y normalize R(H) and R(K), respectively. If yR(H)x ∩ R(H) = R(H), then

〈x, y, R(H)〉 6 NAlt(H)(R(H)) < Alt(H),

contrary to [2, Lemmas 3.6 and 3.11]. Thus

yxR(H)xy ∩ R(H) = yR(H)y ∩ R(H) 6= R(H).

Since

yxR(H)xy ∩ R(H) = yR(H)y ∩ R(H) > yR(K)y ∩ R(K) = R(K)

and R(K) has index 2 in R(H), we then deduce that yxR(H)xy ∩ R(H) = R(K). In
particular, yxR(H)xy has index 2 in R(H), whence

|R(H)xyR(H)|

|R(H)|
=

|R(H)|

|yxR(H)xy ∩ R(H)|
= 2.

Consequently,

|R(H)yxR(H)| = |(R(H)yxR(H))−1| = |R(H)xyR(H)| = 2|R(H)| (8)

and thus

|R(H){xy, yx}R(H)| 6 |R(H)xyR(H)| + |R(H)yxR(H)| = 4|R(H)|. (9)

Note from the definition of z that

xz ∈ xR(H)yR(H) = R(H)xyR(H).

Hence R(H)xz ⊆ R(H)xyR(H) and R(H)zx ⊆ R(H)yxR(H). It is direct to verify that

(a2)xy = b, (a2)yx = ab, (a2)xz = a2b, (a2)zx = a3b,

which shows that xy, yx, xz and zx are pairwise distinct. Then as xy, yx, xz, zx ∈ Alt(H)1

and Alt(H)1 forms a right transversal of R(H) in Alt(H), it follows that R(H)xy, R(H)yx,
R(H)xz and R(H)zx are pairwise disjoint. Therefore,

R(H)xyR(H) ⊇ R(H)xy ⊔ R(H)xz,
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R(H)yxR(H) ⊇ R(H)yx ⊔ R(H)zx

and

R(H){xy, yx}R(H) ⊇ R(H)xy ⊔ R(H)yx ⊔ R(H)xz ⊔ R(H)zx.

This combined with (8) and (9) yields the lemma. �

Proposition 3.2. Let m > 4 be an integer and let Σm be the graph defined in (7). Then
Σm is a connected tetravalent graph admitting a half-arc-transitive action of A2m with
vertex stabilizer D8 × Cm−3

2 .

Proof. Let S = {xy, yx, xz, zx} ⊂ Alt(H \ {1}). According to [2, Lemmas 4.1 and 4.2],
Cay(Alt(H \ {1}), {x, y, z}) is connected, which means that Alt(H \ {1}) = 〈x, y, z〉.
Consider the subgroup W of even words of the generators x, y and z in Alt(H \ {1}).
Then W has index 1 or 2 in Alt(H \ {1}). Since Alt(H \ {1}) is simple, it follows that
W = Alt(H \ {1}). Moreover, as x, y and z are involutions, we have

W = 〈xy, xz, yz〉 = 〈xy, xz, (xy)−1(xz)〉 = 〈xy, xz〉.

Thus Alt(H \ {1}) = 〈xy, xz〉, and so Cay(Alt(H \ {1}), S) is connected.
Let ϕ : g 7→ R(H)g be the mapping from Alt(H \ {1}) to the vertex set of Σm. Since

Alt(H \ {1}) forms a right transversal of R(H) in Alt(H), ϕ is bijective. Moreover, for
any u and v in Alt(H \ {1}), u is adjacent to v in Cay(Alt(H \ {1}), S) if and only if

vu−1 ∈ S = {xy, yx, xz, zx},

which is equivalent to

R(H)vu−1 ∈ {R(H)xy, R(H)yx, R(H)xz, R(H)zx}.

By Lemma 3.1, this means that u and v are adjacent in Cay(Alt(H \ {1}), S) if and only
if

R(H)vu−1 ⊆ R(H)S = R(H){xy, yx}R(H),

or equivalently, R(H)u is adjacent to R(H)v in Σm. Therefore, ϕ is a graph isomorphism
from Cay(Alt(H \{1}), S) to Σm. As a consequence, Σm is a connected tetravalent graph.

Finally, Lemma 3.1 implies that {R(H)xy, R(H)xz} and {R(H)yx, R(H)zx} are the
two orbits of the group R(H) acting on the neighborhood of the vertex R(H) in Σm.
Thereby we conclude that the right multiplication action of Alt(H) on Σm is half-arc-
transitive. Since R(H) ∼= H ∼= D8 × Cm−3

2 and Alt(H) ∼= A|H| = A2m , this completes the
proof. �

4. Proofs of Theorem 1.2 and Theorem 1.4

Proof of Theorem 1.2. Let m > 4 be an integer and let Σm be the graph defined by (7).
Then as Proposition 3.2 asserts, Σm is a connected tetravalent graph admitting a half-arc-
transitive action of A2m with vertex stabilizer D8 × Cm−3

2 . Thus, by Theorem 1.1, there
exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex
stabilizer D8 × Cm−3

2 .
Let m > 7 be an integer and let Γm be the graph defined in [18, Section 3]. Then [18,

Theorem 1.2] asserts that Γm is a connected tetravalent half-arc-transitive graph whose
automorphism group is isomorphic to A2m with vertex stabilizer D8 × D8 × Cm−6

2 . Thus,
by Theorem 1.1, there exist infinitely many finite connected tetravalent half-arc-transitive
graphs with vertex stabilizer D8 × D8 × Cm−6

2 . �
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Proof of Theorem 1.4. According to [12, Theorem 1.1] and Theorem 1.2, each of the
groups

Cm
2 with 1 6 m 6 8, D8 × Cm−3

2 with 4 6 m 6 8, D2
8 × Cm−6

2 with 7 6 m 6 8

is the vertex stabilizer of infinitely many finite connected tetravalent half-arc-transitive
graphs. By Example 3.1, [4], [17] and Example 3.2, each of the groups

D8, D8 × D8, H7, H7 × C2

is the vertex stabilizer of a half-arc-transitive nonabelian simple group acting on a finite
connected tetravalent graph. This implies that each of these groups is the vertex stabilizer
of infinitely many finite connected tetravalent half-arc-transitive graphs by Theorem 1.1.
Hence every group in the list of Theorem 1.3 is the vertex stabilizer of infinitely many
finite connected tetravalent half-arc-transitive graphs, and so Theorem 1.4 is true. �

5. Concluding remarks

The work in this paper was inspired by some new ideas developed in [18]. We observe
that there are many papers that recently keep the interest on half-arc-transitive graphs
very high. For instance, in [20], the author made significant progress in the study of
tetravalent non-normal half-arc-transitive Cayley graphs of prime power order, and an-
swered two very important problems related to this topic. Similarly, in [19], the authors
answered a long-standing problem regarding the existence of half-arc-transitive graphs of
order twice a prime square.

The reader may have noticed that our key ingredient in this paper is [15]. The main
results of [15] are rather general and apply to most actions of groups on graphs. Our
application of [15] in our work is rather successful, in our opinion, as we consider normal
covers of graphs

(†) admitting a nonabelian simple group of automorphisms.

Under this extra hypothesis, the results in [15] can be combined with rather strong group-
theoretic results based on CFSG and, as a consequence, we are able to obtain infinite
families of graphs having exotic vertex stabilizers. As far as we are aware, this type of
constructions is a novelty.

In light of the following conjecture originating from Džambić and Jones [6] and sup-
ported by Conder (see [3, Section 2]), the hypothesis (†) does not seem strong. This
suggests that Theorem 1.1 could be applied to show the existence of tetravalent half-arc-
transitive graphs with other vertex stabilizers as well, and thus sheds light on classifying
the vertex stabilizers of finite tetravalent half-arc-transitive graphs.

Conjecture 5.1 (Conder-Džambić-Jones). If A and B are finite groups and C is a sub-
group of A ∩ B of index at least 2 in A and at least 3 in B, then all but finitely many
alternating groups are homomorphic images of the amalgamated free product A ∗C B.

Remark. In fact, Marston Conder has a stronger conjecture:

Conjecture 5.2 ([3]). Let A and B be finite groups, let C be a subgroup of A ∩ B of
index at least 2 in A and at least 3 in B, and let K be the core of C in the amalgamated
free product A ∗C B. Then all but finitely many alternating groups occur as the image of
A ∗C B under some homomorphism that takes A and B to subgroups (of the alternating
group) isomorphic to A/K and B/K respectively.
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We conclude this section by giving a natural generalization of the example in Subsec-
tion 3.2. Let m > 7 be an integer and let

H = 〈a1, . . . , am | a2
i = 1 for i 6 m, (aiaj)

2 = 1 for |i − j| 6 m − 3,

(a1am−1)2 = a3, (a2am)2 = a4, (a1am)2 = am−2〉.

Then H = 〈a1, a2, a3, a4, am−2, am−1, am〉 × 〈a5, . . . , am−3〉 ∼= H7 × Cm−7
2 . Let

B = 〈a1, . . . , am−1〉, C = 〈a2, . . . , am〉

and let ϕ : B → C be the group isomorphism defined by

aϕ
i = ai+1 for i = 1, . . . , m − 1.

Then H = B ∪ amB = C ∪ a1a2C. Let x be the permutation on H defined by

bx = bϕ and (amb)x = a1a2bϕ for b ∈ B.

Denote the right regular representation of H by R. Inspired by [17] and the results in
Subsection 3.2, we make the following conjecture.

Conjecture 5.3. Let H, R and x be as above. Then

Cos(Alt(H), R(H), R(H){x, x−1}R(H))

is a connected tetravalent graph on which the right multiplication action of Alt(H) is
half-arc-transitive.

If this conjecture is true then Theorem 1.1 will imply that for every integer m > 7
there exist infinitely many finite connected tetravalent half-arc-transitive graphs with
vertex stabilizer H7 × Cm−7

2 .
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[6] A. Džambić, G. A. Jones, p-adic Hurwitz groups, J. Algebra, 379 (2013), 179–207.
[7] X. G. Fang, C. H. Li, M. Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Com-

bin., 25 (2004), no. 7, 1107–1116.
[8] G. Glauberman, Normalizers of p-subgroups in finite groups, Pacific J. Math., 29 (1969), 137–144.
[9] G. Glauberman, Isomorphic subgroups of finite p-groups. I, Canad. J. Math., 23 (1971), 983–1022.
[10] C. H. Li, X. Li, On permutation groups of degree a product of two prime-powers, Comm. Algebra,
42 (2014), no. 11, 4722–4743.
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