CONSTRUCTING INFINITELY MANY HALF-ARC-TRANSITIVE COVERS OF TETRAVALENT GRAPHS

PABLO SPIGA AND BINZHOU XIA

Abstract

We prove that, given a finite graph Σ satisfying some mild conditions, there exist infinitely many tetravalent half-arc-transitive normal covers of Σ. Applying this result, we establish the existence of infinite families of finite tetravalent half-arc-transitive graphs with certain vertex stabilizers, and classify the vertex stabilizers up to order 2^{8} of finite connected tetravalent half-arc-transitive graphs. This sheds some new light on the longstanding problem of classifying the vertex stabilizers of finite tetravalent half-arc-transitive graphs.

Key words: half-arc-transitive; vertex stabilizer; normal quotient; normal cover; concentric group

MSC2010: 20B25, 05C20, 05C25

1. Introduction

Let Γ be a graph and let G be a subgroup of the automorphism group $\operatorname{Aut}(\Gamma)$ of Γ. We say that G is vertex-transitive, edge-transitive or arc-transitive if G acts transitively on the vertex set, edge set or the set of ordered pairs of adjacent vertices, respectively, of Γ. If G is vertex-transitive and edge-transitive but not arc-transitive, then we say that G is half-arc-transitive. The graph Γ is said to be half-arc-transitive if $\operatorname{Aut}(\Gamma)$ is half-arc-transitive.

Numerous papers have been published on half-arc-transitive graphs over the last half a century (see the survey papers [5, 11]), most of which are on those of valency 4 , the smallest valency of half-arc-transitive graphs. However, somewhat surprisingly, not so many examples of tetravalent half-arc-transitive graphs are known in the literature (see [16]), compared with the considerable attention they have received.

For a graph Γ and a group N such that N is normal in G for some vertex-transitive subgroup G of $\operatorname{Aut}(\Gamma)$, the normal quotient Γ / N is the graph whose vertex set $V(\Gamma / N)$ is the set of N-orbits on the vertex set $V(\Gamma)$ of Γ, with an edge of Γ / N between vertices Δ and Ω if and only if there is an edge of Γ between α and β for some $\alpha \in \Delta$ and $\beta \in \Omega$. Such a graph Γ is called a normal cover of the graph Γ / N. Broadly speaking, in this paper, given a graph Σ satisfying some mild conditions, we establish the existence of infinitely many tetravalent half-arc-transitive graphs that are normal covers of Σ.

Let p be a prime number. For a positive integer m, denote the largest power of p dividing m by m_{p}. Moreover, given a finite group X, let $\mathbf{O}_{p}(X)$ denote the largest normal p-subgroup of X. Our main result is as follows.

Theorem 1.1. Let Σ be a finite connected tetravalent graph and let T be a nonabelian simple half-arc-transitive subgroup of $\operatorname{Aut}(\Sigma)$. Then, for each prime number p, such that $p>|T|_{2}$ and p is coprime to $|T|$, there exists a finite connected tetravalent graph Γ satisfying the following:
(a) Γ is half-arc-transitive;
(b) $\operatorname{Aut}(\Gamma)$ has vertex stabilizer isomorphic to that of T;
(c) $\mathbf{O}_{p}(\operatorname{Aut}(\Gamma)) \neq 1, \operatorname{Aut}(\Gamma) / \mathbf{O}_{p}(\operatorname{Aut}(\Gamma)) \cong T$ and $\Gamma / \mathbf{O}_{p}(\operatorname{Aut}(\Gamma)) \cong \Sigma$.

Although it is not hard to construct a graph Γ with a half-arc-transitive group G of automorphisms, it is in general not known whether $\operatorname{Aut}(\Gamma)$ is larger than G to possibly make $\operatorname{Aut}(\Gamma)$ arc-transitive on Γ. In this sense, the significance of Theorem 1.1 is asserting the existence (under some mild conditions) of infinitely many half-arc-transitive graphs which are normal covers of a given connected tetravalent graph, even if the given graph is not itself half-arc-transitive. Thus, with the help of Theorem 1.1, one can construct infinitely many connected tetravalent half-arc-transitive graphs with some exotic vertex stabilizers, and we will present some examples in this paper.

For a half-arc-transitive graph Γ, the vertex stabilizer in $\operatorname{Aut}(\Gamma)$ will be called the vertex stabilizer of Γ. It is not hard to construct half-arc-transitive graphs with abelian vertex stabilizers (see for instance [12]). However, half-arc-transitive graphs with nonabelian vertex stabilizers are much more elusive and the problem of constructing half-arc-transitive graphs with nonabelian vertex stabilizers has received extensive attention and considerable effort (see for instance [4, 5, [17, [18]). The first infinite family of half-arc-transitive graphs with nonabelian vertex stabilizers was only constructed very recently in [18]. The vertex stabilizers in [18] are isomorphic to $\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6}$ for integers m with $m \geqslant 7$.

In Example 3.3 we construct a finite connected tetravalent graph Σ_{m} for every integer $m \geqslant 4$ such that Σ_{m} admits a half-arc-transitive action of the alternating group $\mathrm{A}_{2^{m}}$ with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$. Then, by applying Theorem 1.1 to the graphs in Example 3.3 and to the graphs in [18], we obtain the following result:

Theorem 1.2. For every integer $m \geqslant 4$, there exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$ and, for every integer $m \geqslant 7$, there exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6}$.

A group $H=\left\langle a_{1}, \ldots, a_{m}\right\rangle$ is said to be concentric if $\left|\left\langle a_{i}, \ldots, a_{j}\right\rangle\right|=2^{j-i+1}$ for all $1 \leqslant i<j \leqslant m$ and there exists a group isomorphism

$$
\varphi:\left\langle a_{1}, \ldots, a_{m-1}\right\rangle \rightarrow\left\langle a_{2}, \ldots, a_{m}\right\rangle
$$

such that $a_{i}^{\varphi}=a_{i+1}$ for $i=1, \ldots, m-1$. (Note in the definition that each a_{i} is necessarily an involution if $m \geqslant 3$.) The study of concentric groups dates back to Glauberman [8, 9] about 50 years ago and was made systematic by Marušič and Nedela [13] in 2001. It was proved in [13] that a group H is concentric if and only if there exist a connected tetravalent graph Γ and a subgroup G of $\operatorname{Aut}(\Gamma)$ such that G is half-arc-transitive with vertex stabilizer H. Moreover, Marušič and Nedela gave a characterization of concentric groups in terms of their defining relations [13, Theorem 5.5] and determined the concentric groups of order up to 2^{8} [13, Theorem 6.3]. Let

$$
\begin{array}{r}
\mathcal{H}_{7}=\left\langle a_{1}, \ldots, a_{7}\right| a_{i}^{2}=1 \text { for } i \leqslant 7,\left(a_{i} a_{j}\right)^{2}=1 \text { for }|i-j| \leqslant 4, \\
\left.\left(a_{1} a_{6}\right)^{2}=a_{3},\left(a_{2} a_{7}\right)^{2}=a_{4},\left(a_{1} a_{7}\right)^{2}=a_{5}\right\rangle
\end{array}
$$

Theorem 1.3 (Glauberman-Marušič-Nedela). The following are precisely the concentric groups of order at most 2^{8} :

$$
\begin{aligned}
\mathrm{C}_{2}^{m} \text { for } 1 \leqslant m \leqslant 8, & \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3} \text { for } 3 \leqslant m \leqslant 8 \\
\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6} \text { for } 6 \leqslant m \leqslant 8, & \mathcal{H}_{7} \times \mathrm{C}_{2}^{m-7} \text { for } 7 \leqslant m \leqslant 8
\end{aligned}
$$

Marušič [12] has shown that every nontrivial elementary abelian 2-group is the vertex stabilizer of a connected tetravalent half-arc-transitive graph. Similar results have been proved for D_{8} by Conder and Marušič [4] and for $\mathrm{D}_{8} \times \mathrm{C}_{2}$ by Conder, Potočnik and Šparl [5]. Moreover, the first author showed in [17] that $D_{8} \times D_{8}$ and \mathcal{H}_{7} are both vertex stabilizers of connected tetravalent half-arc-transitive graphs in a response to a problem posed in [13], and the second author recently proved in [18] that $\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6}$ is the vertex stabilizer of a connected tetravalent half-arc-transitive graph for every integer $m \geqslant 7$. In light of these results and Theorem 1.2, we see that the only concentric group of order at most 2^{8} that is not known to be the vertex stabilizer of a connected tetravalent half-arc-transitive graph is $\mathcal{H}_{7} \times \mathrm{C}_{2}$. In Example 3.2, we apply Theorem 1.1 to construct connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathcal{H}_{7} \times \mathrm{C}_{2}$. This leads to the next theorem.

Theorem 1.4. Every concentric group of order at most 2^{8} is the vertex stabilizer of infinitely many finite connected tetravalent half-arc-transitive graphs.

We prove Theorem 1.1 in Section [2, Then in Section 3 we construct some connected tetravalent graphs admitting a half-arc-transitive nonabelian simple group action with vertex stabilizer $\mathcal{H}_{7} \times \mathrm{C}_{2}$ and $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$ for $m \geqslant 3$, respectively, which will be used in Section 4 to prove Theorems 1.2 and 1.4. In Section 5 we briefly discuss the relevance of our work and a conjecture of Džambić-Jones and Conder concerning faithful amalgams. We also include a natural open problem at the end of Section 5 .

2. Proof of Theorem 1.1

For a group X, let $\operatorname{Soc}(X)$ denote the socle of X and let $\operatorname{Rad}(X)$ denote the maximal normal solvable subgroup of X. Let Γ be a graph, let G be a vertex-transitive subgroup of $\operatorname{Aut}(\Gamma)$ and let N be a normal subgroup of G. Then the group G induces a vertextransitive subgroup of $\operatorname{Aut}(\Gamma / N)$. Denote by α^{N} and β^{N} the N-orbits containing the vertices α and β, respectively, of Γ. If α^{N} and β^{N} are adjacent in Γ / N, then each vertex in α^{N} is adjacent to the same number of vertices in β^{N} (because N is transitive on both sets). Moreover, the stabilizer in G of the vertex α^{N} in Γ / N is $G_{\alpha} N$.

See [15, Subsection 2.2] for the definition of regular covering projection, lift and group of covering transformations.

Proof of Theorem 1.1. Let Σ and T be as in Theorem 1.1 and let p be a prime number such that $p>|T|_{2}$ and p is coprime to $|T|$. Viewing [15, Corollary 8] and applying [15, Theorem 6] with the prime p, the graph Σ and the group of automorphisms T, we obtain a regular covering projection $\wp: \Gamma \rightarrow \Sigma$ such that the following hold:
(i) Γ is finite;
(ii) the maximal group that lifts along \wp is T;
(iii) the group of covering transformations of \wp is a p-group.

Let $A=\operatorname{Aut}(\Gamma)$, let G be the subgroup of A that T lifts to along \wp, and let P be the group of covering transformations of \wp. Then conclusion (iii) shows that P is a p-group, and $G / P \cong T$ is nonabelian simple. Since P is a normal solvable subgroup of G, it follows that $P=\operatorname{Rad}(G)$. Moreover, we deduce from conclusion (ii) and [15, Lemma 1] that

$$
\begin{equation*}
\mathbf{N}_{A}(P)=G \tag{1}
\end{equation*}
$$

Since $P=\operatorname{Rad}(G)$ is characteristic in G, we derive that P is normal in $\mathbf{N}_{A}(G)$, that is, $\mathbf{N}_{A}(G) \leqslant \mathbf{N}_{A}(P)$. Thus it follows from (11) that

$$
\begin{equation*}
\mathbf{N}_{A}(G)=G \tag{2}
\end{equation*}
$$

We aim to prove that $A=G$, from which the proof of Theorem 1.1 immediately follows. Assume for a contradiction that $A>G$. Then $G<B$ for some subgroup B of A such that G is maximal in B.

Let α be a vertex of Γ. Since T is half-arc-transitive on Σ, the group G is half-arctransitive on Γ. This implies that G_{α} is a 2-group and $B=G B_{\alpha}$ is edge-transitive and vertex-transitive on Γ. It follows that $|B: G|=\left|G B_{\alpha}: G\right|=\left|B_{\alpha}: G_{\alpha}\right|$ divides $\left|B_{\alpha}\right|$. As B_{α} is a $\{2,3\}$-group and $p>|T|_{2} \geqslant 5$, we infer that p is coprime to $|B: G|$. Since p is coprime to $|T|=|G / P|$, we see that P is a Sylow p-subgroup of B. According to Sylow's theorem, the number of Sylow p-subgroups of B is $\left|B: \mathbf{N}_{B}(P)\right| \equiv 1(\bmod p)$ and so p divides $\left|B: \mathbf{N}_{B}(P)\right|-1$. By (1) we have $\mathbf{N}_{B}(P)=G$. Hence

$$
\begin{equation*}
p \mid(|B: G|-1) \tag{3}
\end{equation*}
$$

Let K be the core of G in B. Then $K \unlhd B, K \leqslant G$, and the action of B / K on the set Ω of right cosets of G / K in B / K is faithful and primitive of degree $|B: G|$. Since both K and P are normal in G, the group $K P$ is normal in G, which implies that $K P / P$ is normal in G / P. As $G / P \cong T$ is a simple group, we deduce that either $G=K P$ or $K \leqslant P$.

Case 1. $G=K P$.
In this case, $P \cap K$ is a normal subgroup of K with

$$
K /(P \cap K) \cong K P / P=G / P \cong T
$$

nonabelian simple. Since $P \cap K$ is solvable, we conclude that

$$
P \cap K=\operatorname{Rad}(K)
$$

is characteristic in K. As K is normal in B, it follows that

$$
P \cap K \unlhd B
$$

Note that $|G / K|=|K P / K|=|P /(P \cap K)|$ is a power of p and $G \neq K$ by (22). We have

$$
|G / K|=p^{n}
$$

for some positive integer n.
Suppose that $\left|B_{\alpha}\right|$ is divisible by 3 . Then B_{α} is 2-transitive on the neighborhood of α in Γ, and so it follows from a result of Gardiner (see for instance [7, Lemma 2.3]) that $\left|B_{\alpha}\right|$ divides $2^{4} 3^{6}$. Now B / K is a primitive group of degree $|B: G|=\left|B_{\alpha}: G_{\alpha}\right|$ dividing $2^{3} 3^{6}$ such that the point stabilizer G / K is a p-group. We deduce from [10] that B / K is an affine group of degree 3^{k} with $3 \leqslant k \leqslant 6$, and $\operatorname{Soc}(B / K)$ is the unique Sylow 3subgroup of B / K. Since $B / K=(G / K)\left(B_{\alpha} K / K\right)$ and $|G / K|$ is coprime to 3 , it follows that $\operatorname{Soc}(B / K) \unlhd B_{\alpha} K / K \cong B_{\alpha} / K_{\alpha}$. Note that

$$
|\operatorname{Soc}(B / K)|=3^{k}=|B: G|=\left|B_{\alpha}: G_{\alpha}\right|=\left|B_{\alpha}\right|_{3}
$$

as G_{α} is a 2 -group. We conclude that the Sylow 3 -subgroup of B_{α} is elementary abelian of order $3^{k} \geqslant 3^{3}$. The structure of the vertex stabilizer B_{α} is described in [14, Table 1], which shows that B_{α} cannot have an elementary abelian Sylow 3 -subgroup of order at
least 3^{3}, a contradiction. Thus B_{α} is a 2-group, and so $|B: G|=\left|B_{\alpha}: G_{\alpha}\right|$ is a power of 2 , say,

$$
|B: G|=2^{\ell}
$$

Note that $\ell>1$ by (2).
Since $|B: G|=2^{\ell}$ and $|G: K|=p^{n}$, we see that B / K has order $2^{\ell} p^{n}$ and thus is solvable. Moreover, as B / K is a primitive group of degree 2^{ℓ}, it follows that $\operatorname{Soc}(B / K)$ is an elementary abelian group of order 2^{ℓ}. Let H be the subgroup of B such that $H / K=\operatorname{Soc}(B / K)$. The reader may find Figure 1 useful at this point.

Figure 1. The structure of B
Let $\bar{B}=B /(P \cap K), \bar{H}=H /(P \cap K), \bar{K}=K /(P \cap K)$ and $\bar{C}=\mathbf{C}_{\bar{H}}(\bar{K})$. Then $\bar{K} \cong T$, and both \bar{H} and \bar{K} are normal in \bar{B}. It follows that $\bar{C}=\bar{H} \cap \mathbf{C}_{\bar{B}}(\bar{K}) \unlhd \bar{B}$, and

$$
\bar{H} / \bar{C} \lesssim \operatorname{Aut}(\bar{K}) \cong \operatorname{Aut}(T)
$$

Moreover,

$$
\begin{equation*}
\bar{C} \bar{K} / \bar{C} \cong \bar{K} /(\bar{K} \cap \bar{C}) \cong \operatorname{Inn}(\bar{K}) \cong \operatorname{Inn}(T) \tag{4}
\end{equation*}
$$

Thus $\bar{H} /(\bar{C} \bar{K}) \lesssim \operatorname{Out}(T)$. Let C be the subgroup of H containing $P \cap K$ such that $C /(P \cap K)=\bar{C}$. Then

$$
C \unlhd B
$$

and $H /(C K) \lesssim \operatorname{Out}(T)$. Now $C K \unlhd B$ and so $C K / K \unlhd B / K$. As $C K / K \leqslant H / K$ and $H / K=\operatorname{Soc}(B / K)$ is a minimal normal subgroup of the affine primitive group B / K, it follows that either $C K / K=1$ or $C K / K=H / K$. If $C K / K=1$, then the elementary abelian 2-group $H / K=H /(C K)$ is isomorphic to a subgroup of $\operatorname{Out}(T)$, which implies that

$$
|B: G|=2^{\ell}=|H / K| \leqslant|\operatorname{Out}(T)|_{2} \leqslant|T|_{2}<p
$$

contradicting (3). (Observe that the inequality $|\operatorname{Out}(T)|_{2} \leqslant|T|_{2}$ follows by inspecting the list of finite simple groups.) Therefore, $C K / K=H / K$ and hence $H=C K$. This in turn with (4) implies that

$$
H / C=C K / C \cong \bar{C} \bar{K} / \bar{C} \cong T
$$

Note that T is the unique nonsolvable composition factor of H as H / K is solvable and K is a p-group extended by T. We then conclude that

$$
C=\operatorname{Rad}(H)
$$

Consequently,

$$
C \cap K=\operatorname{Rad}(H) \cap K=\operatorname{Rad}(K)=P \cap K
$$

and so

$$
|C /(P \cap K)|=|C /(C \cap K)|=|C K / K|=|H / K|=2^{\ell} .
$$

Figure 2. More detailed structure of B
The reader may find Figure 2 useful at this point.
Consider the quotient graph Γ / C. Let N be the kernel of B acting on $V(\Gamma / C)$. Since H is a normal subgroup of B with index p^{n} odd and B_{α} is a 2-group, we have $B_{\alpha} \leqslant H$. Consequently, $N=C N_{\alpha} \leqslant C B_{\alpha} \leqslant H$. Moreover, $N=C N_{\alpha}$ is a $\{2, p\}$-group and thus is solvable. Hence $N \leqslant \operatorname{Rad}(H)=C$. This shows that the action of B / C on $V(\Gamma / C)$ is faithful. Suppose that $C_{\alpha} \neq 1$. Then the number of orbits of C_{α} on the neighborhood of α in Γ is less than 4. It follows that the valency of Γ / C is less than 4 and so must be 1 or 2 , being a divisor of 4 . Thereby we conclude that $B / C \leqslant \operatorname{Aut}(\Gamma / C)$ is solvable, a contradiction. Thus $C_{\alpha}=1$.

As $C_{\alpha}=1$, the orbits of C on $V(\Gamma)$ have size $|C|$. Since C is normal in B and B is transitive on $V(\Gamma)$, it follows that $|C|$ divides $|V(\Gamma)|$. Hence $|C|$ divides $|G|$ as G is transitive on $V(\Gamma)$. In particular, $|C|_{2} \leqslant|G|_{2}$. As $|C|_{2}=|C /(P \cap K)|_{2}=2^{\ell}$ and $|G|_{2}=|G / P|_{2}=|T|_{2}$, we then obtain $2^{\ell} \leqslant|T|_{2}$. This together with (3) implies that $p<|B: G|=2^{\ell} \leqslant|T|_{2}$, contradicting our choice of p.

Case 2. $K \leqslant P$.
Let $\bar{B}=B / K, \bar{G}=G / K, \bar{P}=P / K$ and $\bar{H}=H / K=\operatorname{Soc}(\bar{B})$. Recall that \bar{B} acts primitively and faithfully on the set of right cosets of \bar{G} in \bar{B}, and

$$
|\bar{B}: \bar{G}|=|B: G|=\left|G B_{\alpha}: G\right|=\left|B_{\alpha}: G_{\alpha}\right| .
$$

As B_{α} is a $\{2,3\}$-group, we obtain $|\bar{B}: \bar{G}|=2^{\ell} 3^{k}$ for some nonnegative integers ℓ and k. If $\left|B_{\alpha}\right|$ is divisible by 3 , then B_{α} is 2-transitive on the neighborhood of α in Γ and so [7, Lemma 2.3] shows that $\left|B_{\alpha}\right|$ divides $2^{4} 3^{6}$. Consequently, either $\ell \leqslant 3$ and $1 \leqslant k \leqslant 6$, or $k=0$.

Since K is normal in B, we deduce from (1) that $K \neq P$. Hence $K<P$ and so \bar{P} is a nontrivial p-group. This shows that \bar{G} is a nontrivial p-group extended by the nonabelian simple group $G / P \cong T$. Then as \bar{G} is a point stabilizer of the primitive group \bar{B} of degree $|\bar{B}: \bar{G}|=2^{\ell} 3^{k}$, it follows from [10] that $k=0$ and \bar{B} is an affine primitive group of degree 2^{ℓ}. Hence $|\bar{H}|=2^{\ell}$, and so H is a $\{2, p\}$-group.

Let $R=P H$. Then R is a $\{2, p\}$-group and thus is solvable. Moreover, $R \unlhd B$, and as $P \leqslant G$, we have $B=H G=H P G=R G$. Hence

$$
B / R=R G / R \cong G /(G \cap R) \cong(G / P) /((G \cap R) / P)
$$

Since $G / P \cong T$ is simple, it follows that either $B / R=1$ or $B / R \cong T$. Clearly, $B \neq R$ as R is solvable and B is nonsolvable. Thus $B / R \cong T$ is nonabelian simple, which implies

$$
R=\operatorname{Rad}(B)
$$

Consider the quotient graph Γ / R. Let M be the kernel of B acting on $V(\Gamma / R)$. Then $M=R M_{\alpha}$. Since $M_{\alpha} \leqslant B_{\alpha}$ is a 2 -group, we see that M is a $\{2, p\}$-group as R is a $\{2, p\}$-group. Accordingly, M is solvable, and so $M \leqslant \operatorname{Rad}(B)=R$. This shows that the action of B / R on $V(\Gamma / R)$ is faithful. Suppose that $R_{\alpha} \neq 1$. Then the number of orbits of R_{α} on the neighborhood of α in Γ is less than 4. It follows that the valency of Γ / R is less than 4 and so must be 1 or 2 as it divides 4 . Thereby we conclude that $B / R \leqslant \operatorname{Aut}(\Gamma / R)$ is solvable, a contradiction. Thus $R_{\alpha}=1$.

As $R_{\alpha}=1$, the orbits of R on $V(\Gamma)$ have size $|R|$. Since R is normal in B and B is transitive on $V(\Gamma)$, it follows that $|R|$ divides $|V(\Gamma)|$. Hence $|R|$ divides $|G|$ as G is transitive on $V(\Gamma)$. In particular, $|R|_{2} \leqslant|G|_{2}$. As $|R|_{2}=|P H|_{2}=|H|_{2}=|H / K|_{2}=2^{\ell}$ and $|G|_{2}=|G / P|_{2}=|T|_{2}$, we then obtain $2^{\ell} \leqslant|T|_{2}$. This in conjunction with (3) implies that $p<|G: B|=|\bar{B}: \bar{G}|=2^{\ell} \leqslant|T|_{2}$, contradicting our choice of p.

3. Examples

Recall the standard construction of the coset $\operatorname{graph} \operatorname{Cos}(X, Y, S)$ for a group X with a subgroup Y and an inverse-closed subset S of $X \backslash Y$ such that S is finite union of double cosets of Y in X. Such a graph has vertex set $[X: Y]$, the set of right cosets of Y in X, and edge set $\{\{Y t, Y s t\} \mid t \in X, s \in S\}$. It is easy to see that $\operatorname{Cos}(X, Y, S)$ has valency $|S| /|Y|$, and X acts by right multiplication on $[X: Y]$ as a group of automorphisms of $\operatorname{Cos}(X, Y, S)$. Moreover, $\operatorname{Cos}(X, Y, S)$ is connected if and only if $X=\langle Y, S\rangle$.

3.1. Example D_{8}. Let $G=\mathrm{A}_{10}$ and

$$
H=\langle(1,2,3,4)(5,6,7,8),(1,4)(2,3)(5,7)(9,10)\rangle<G .
$$

Clearly, $H \cong \mathrm{D}_{8}$. Let

$$
s=(1,8,10)(2,7,4,6,9,3,5) \in G
$$

It can be checked immediately by the computational algebra system Magma [1] that

$$
\langle H, s\rangle=G, \quad\left|H: s^{-1} H s\right|=2 \quad \text { and } \quad s^{-1} \notin H s H .
$$

Then letting

$$
\begin{equation*}
\Sigma=\operatorname{Cos}\left(G, H, H\left\{s, s^{-1}\right\} H\right) \tag{5}
\end{equation*}
$$

we see that

- Σ is a connected tetravalent graph;
- G acts faithfully and half-arc-transitively on Σ;
- the vertex stabilizer in G is $H \cong \mathrm{D}_{8}$.
3.2. Example $\mathcal{H}_{7} \times \mathrm{C}_{2}$. Let

$$
\begin{array}{r}
H=\left\langle a_{1}, \ldots, a_{8}\right| a_{i}^{2}=1 \text { for } i \leqslant 8,\left(a_{i} a_{j}\right)^{2}=1 \text { for }|i-j| \leqslant 5, \\
\left.\left(a_{1} a_{7}\right)^{2}=a_{3}, \quad\left(a_{2} a_{8}\right)^{2}=a_{4},\left(a_{1} a_{8}\right)^{2}=a_{6}\right\rangle .
\end{array}
$$

Then $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, a_{7}, a_{8}\right\rangle \times\left\langle a_{5}\right\rangle \cong \mathcal{H}_{7} \times \mathrm{C}_{2}$. Let

$$
B=\left\langle a_{1}, \ldots, a_{7}\right\rangle, \quad C=\left\langle a_{2}, \ldots, a_{8}\right\rangle
$$

and let $\varphi: B \rightarrow C$ be the group isomorphism defined by

$$
a_{i}^{\varphi}=a_{i+1} \quad \text { for } \quad i=1, \ldots, 7
$$

Then $H=B \cup a_{8} B=C \cup a_{1} a_{2} C$. Let x be the permutation on H defined by

$$
b^{x}=b^{\varphi} \quad \text { and } \quad\left(a_{8} b\right)^{x}=a_{1} a_{2} b^{\varphi} \quad \text { for } \quad b \in B .
$$

Denote the right regular representation of H by $R: H \rightarrow \operatorname{Sym}(H)$. It can be checked easily by the computational algebra system Magma [1] that

$$
\langle R(H), x\rangle=\operatorname{Alt}(H), \quad x^{-1} R(H) x=R(C) \quad \text { and } \quad x^{-1} \notin R(H) x R(H) .
$$

Then letting

$$
\begin{equation*}
\Pi=\operatorname{Cos}\left(\operatorname{Alt}(H), R(H), R(H)\left\{x, x^{-1}\right\} R(H)\right) \tag{6}
\end{equation*}
$$

we see that

- Π is a connected tetravalent graph;
- $\operatorname{Alt}(H)$ acts faithfully and half-arc-transitively on Π;
- the vertex stabilizer in $\operatorname{Alt}(H)$ is $R(H) \cong H \cong \mathcal{H}_{7} \times \mathrm{C}_{2}$.
3.3. Example $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$. Let $m \geqslant 4$ be an integer,

$$
H=\left\langle a, b \mid a^{4}=b^{2}=(a b)^{2}=1\right\rangle \times\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{m-3}\right\rangle,
$$

where c_{1}, \ldots, c_{m-3} are involutions. Clearly, $H \cong \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$. Let $h=a \prod_{i=0}^{\lceil(m-5) / 2\rceil} c_{2 i+1}$ and

$$
K=\left\langle a^{2}, b, c_{1}, \ldots, c_{m-3}\right\rangle=\left\langle a^{2}\right\rangle \times\langle b\rangle \times\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{m-3}\right\rangle
$$

Then $K \cong \mathrm{C}_{2}^{m-1}$ and $H=K \cup a K=K \cup h K$. For convenience, put $c_{i}=1$ for $i \leqslant 0$. Define $x \in \operatorname{Aut}(H)$ by letting

$$
a^{x}=a^{-1}, \quad b^{x}=a b, \quad c_{2 i+1}^{x}=c_{2 i+1} \quad \text { and } \quad c_{2 i+2}^{x}=a^{2} c_{2 i+1} c_{2 i+2}
$$

for $0 \leqslant i \leqslant\lfloor(m-5) / 2\rfloor$ and letting $c_{m-3}^{x}=a^{2} c_{m-3}$ in addition if m is even. Define $\tau \in \operatorname{Aut}(K)$ by letting

$$
\left(a^{2}\right)^{\tau}=b, \quad b^{\tau}=a^{2}, \quad c_{2 i+1}^{\tau}=c_{2 i-1} c_{2 i} c_{2 i+2} \quad \text { and } \quad c_{2 i+2}^{\tau}=c_{2 i-1} c_{2 i} c_{2 i+1}
$$

for $0 \leqslant i \leqslant\lfloor(m-5) / 2\rfloor$ and letting $c_{m-3}^{\tau}=c_{m-3}$ in addition if m is even.
Note that x and τ are automorphisms of H and K respectively as the images of generators under x and τ are generators of H and K satisfying the defining relations. Let y be the permutation of H such that $g^{y}=g^{\tau}$ and

$$
(h g)^{y}= \begin{cases}h g^{\tau} & \text { if } m \text { is odd } \\ h g^{\tau} c_{m-3} & \text { if } m \text { is even }\end{cases}
$$

for $g \in K$. Denote the right regular representation of H by $R: H \rightarrow \operatorname{Sym}(H)$. It follows from [2, Lemmas 2.1 and 2.3] that x and y are both involutions and $\langle x, y, R(H)\rangle \leqslant \operatorname{Alt}(H)$. Let

$$
\begin{equation*}
\Sigma_{m}=\operatorname{Cos}(\operatorname{Alt}(H), R(H), R(H)\{x y, y x\} R(H)) \tag{7}
\end{equation*}
$$

Fix the notation of H, R, x and y in this subsection, and let

$$
z= \begin{cases}R(h) y R\left(h^{-1}\right) & \text { if } m \text { is odd } \\ R(h) y R\left(h^{-1} c_{m-3}\right) & \text { if } m \text { is even }\end{cases}
$$

According to [2, Lemma 2.1], the permutation z is an involution. Since $z \in\langle x, y, R(H)\rangle$, it follows from $\langle x, y, R(H)\rangle \leqslant \operatorname{Alt}(H)$ that $z \in \operatorname{Alt}(H)$. As x, y and z all fix $1 \in H$, we may also view them as elements of $\operatorname{Alt}(H \backslash\{1\})$ when they cause no confusion. Use \sqcup to denote a disjoint union of sets.
Lemma 3.1. The following hold:
(a) $R(H) x y R(H)=R(H) x y \sqcup R(H) x z$;
(b) $R(H) y x R(H)=R(H) y x \sqcup R(H) z x$;
(c) $R(H)\{x y, y x\} R(H)=R(H) x y \sqcup R(H) y x \sqcup R(H) x z \sqcup R(H) z x$.

Proof. Note that x, y and z are all involutions. It is straightforward to verify that x and y normalize $R(H)$ and $R(K)$, respectively. If $y R(H) x \cap R(H)=R(H)$, then

$$
\langle x, y, R(H)\rangle \leqslant \mathbf{N}_{\mathrm{Alt}(H)}(R(H))<\operatorname{Alt}(H)
$$

contrary to [2, Lemmas 3.6 and 3.11]. Thus

$$
y x R(H) x y \cap R(H)=y R(H) y \cap R(H) \neq R(H)
$$

Since

$$
y x R(H) x y \cap R(H)=y R(H) y \cap R(H) \geqslant y R(K) y \cap R(K)=R(K)
$$

and $R(K)$ has index 2 in $R(H)$, we then deduce that $y x R(H) x y \cap R(H)=R(K)$. In particular, $y x R(H) x y$ has index 2 in $R(H)$, whence

$$
\frac{|R(H) x y R(H)|}{|R(H)|}=\frac{|R(H)|}{|y x R(H) x y \cap R(H)|}=2 .
$$

Consequently,

$$
\begin{equation*}
|R(H) y x R(H)|=\left|(R(H) y x R(H))^{-1}\right|=|R(H) x y R(H)|=2|R(H)| \tag{8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
|R(H)\{x y, y x\} R(H)| \leqslant|R(H) x y R(H)|+|R(H) y x R(H)|=4|R(H)| \tag{9}
\end{equation*}
$$

Note from the definition of z that

$$
x z \in x R(H) y R(H)=R(H) x y R(H)
$$

Hence $R(H) x z \subseteq R(H) x y R(H)$ and $R(H) z x \subseteq R(H) y x R(H)$. It is direct to verify that

$$
\left(a^{2}\right)^{x y}=b, \quad\left(a^{2}\right)^{y x}=a b, \quad\left(a^{2}\right)^{x z}=a^{2} b, \quad\left(a^{2}\right)^{z x}=a^{3} b,
$$

which shows that $x y, y x, x z$ and $z x$ are pairwise distinct. Then as $x y, y x, x z, z x \in \operatorname{Alt}(H)_{1}$ and $\operatorname{Alt}(H)_{1}$ forms a right transversal of $R(H)$ in $\operatorname{Alt}(H)$, it follows that $R(H) x y, R(H) y x$, $R(H) x z$ and $R(H) z x$ are pairwise disjoint. Therefore,

$$
R(H) x y R(H) \supseteq R(H) x y \sqcup R(H) x z
$$

$$
R(H) y x R(H) \supseteq R(H) y x \sqcup R(H) z x
$$

and

$$
R(H)\{x y, y x\} R(H) \supseteq R(H) x y \sqcup R(H) y x \sqcup R(H) x z \sqcup R(H) z x
$$

This combined with (8) and (9) yields the lemma.
Proposition 3.2. Let $m \geqslant 4$ be an integer and let Σ_{m} be the graph defined in (17). Then Σ_{m} is a connected tetravalent graph admitting a half-arc-transitive action of $\mathrm{A}_{2^{m}}$ with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$.

Proof. Let $S=\{x y, y x, x z, z x\} \subset \operatorname{Alt}(H \backslash\{1\})$. According to [2, Lemmas 4.1 and 4.2], $\operatorname{Cay}(\operatorname{Alt}(H \backslash\{1\}),\{x, y, z\})$ is connected, which means that $\operatorname{Alt}(H \backslash\{1\})=\langle x, y, z\rangle$. Consider the subgroup W of even words of the generators x, y and z in $\operatorname{Alt}(H \backslash\{1\})$. Then W has index 1 or 2 in $\operatorname{Alt}(H \backslash\{1\})$. Since $\operatorname{Alt}(H \backslash\{1\})$ is simple, it follows that $W=\operatorname{Alt}(H \backslash\{1\})$. Moreover, as x, y and z are involutions, we have

$$
W=\langle x y, x z, y z\rangle=\left\langle x y, x z,(x y)^{-1}(x z)\right\rangle=\langle x y, x z\rangle .
$$

Thus $\operatorname{Alt}(H \backslash\{1\})=\langle x y, x z\rangle$, and so $\operatorname{Cay}(\operatorname{Alt}(H \backslash\{1\}), S)$ is connected.
Let $\varphi: g \mapsto R(H) g$ be the mapping from $\operatorname{Alt}(H \backslash\{1\})$ to the vertex set of Σ_{m}. Since $\operatorname{Alt}(H \backslash\{1\})$ forms a right transversal of $R(H)$ in $\operatorname{Alt}(H), \varphi$ is bijective. Moreover, for any u and v in $\operatorname{Alt}(H \backslash\{1\}), u$ is adjacent to v in $\operatorname{Cay}(\operatorname{Alt}(H \backslash\{1\}), S)$ if and only if

$$
v u^{-1} \in S=\{x y, y x, x z, z x\}
$$

which is equivalent to

$$
R(H) v u^{-1} \in\{R(H) x y, R(H) y x, R(H) x z, R(H) z x\} .
$$

By Lemma 3.1, this means that u and v are adjacent in $\operatorname{Cay}(\operatorname{Alt}(H \backslash\{1\}), S)$ if and only if

$$
R(H) v u^{-1} \subseteq R(H) S=R(H)\{x y, y x\} R(H)
$$

or equivalently, $R(H) u$ is adjacent to $R(H) v$ in Σ_{m}. Therefore, φ is a graph isomorphism from $\operatorname{Cay}(\operatorname{Alt}(H \backslash\{1\}), S)$ to Σ_{m}. As a consequence, Σ_{m} is a connected tetravalent graph.

Finally, Lemma 3.1 implies that $\{R(H) x y, R(H) x z\}$ and $\{R(H) y x, R(H) z x\}$ are the two orbits of the group $R(H)$ acting on the neighborhood of the vertex $R(H)$ in Σ_{m}. Thereby we conclude that the right multiplication action of $\operatorname{Alt}(H)$ on Σ_{m} is half-arctransitive. Since $R(H) \cong H \cong \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$ and $\operatorname{Alt}(H) \cong \mathrm{A}_{|H|}=\mathrm{A}_{2^{m}}$, this completes the proof.

4. Proofs of Theorem 1.2 and Theorem 1.4

Proof of Theorem 1.2, Let $m \geqslant 4$ be an integer and let Σ_{m} be the graph defined by (77). Then as Proposition 3.2 asserts, Σ_{m} is a connected tetravalent graph admitting a half-arctransitive action of $\mathrm{A}_{2^{m}}$ with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$. Thus, by Theorem [1.1, there exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3}$.

Let $m \geqslant 7$ be an integer and let Γ_{m} be the graph defined in [18, Section 3]. Then [18, Theorem 1.2] asserts that Γ_{m} is a connected tetravalent half-arc-transitive graph whose automorphism group is isomorphic to $\mathrm{A}_{2^{m}}$ with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6}$. Thus, by Theorem 1.1, there exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathrm{D}_{8} \times \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-6}$.

Proof of Theorem 1.4. According to [12, Theorem 1.1] and Theorem [1.2, each of the groups

$$
\mathrm{C}_{2}^{m} \text { with } 1 \leqslant m \leqslant 8, \quad \mathrm{D}_{8} \times \mathrm{C}_{2}^{m-3} \text { with } 4 \leqslant m \leqslant 8, \quad \mathrm{D}_{8}^{2} \times \mathrm{C}_{2}^{m-6} \text { with } 7 \leqslant m \leqslant 8
$$

is the vertex stabilizer of infinitely many finite connected tetravalent half-arc-transitive graphs. By Example [3.1, [4], [17] and Example 3.2, each of the groups

$$
\mathrm{D}_{8}, \quad \mathrm{D}_{8} \times \mathrm{D}_{8}, \quad \mathcal{H}_{7}, \quad \mathcal{H}_{7} \times \mathrm{C}_{2}
$$

is the vertex stabilizer of a half-arc-transitive nonabelian simple group acting on a finite connected tetravalent graph. This implies that each of these groups is the vertex stabilizer of infinitely many finite connected tetravalent half-arc-transitive graphs by Theorem 1.1., Hence every group in the list of Theorem 1.3 is the vertex stabilizer of infinitely many finite connected tetravalent half-arc-transitive graphs, and so Theorem 1.4 is true.

5. Concluding remarks

The work in this paper was inspired by some new ideas developed in [18]. We observe that there are many papers that recently keep the interest on half-arc-transitive graphs very high. For instance, in [20], the author made significant progress in the study of tetravalent non-normal half-arc-transitive Cayley graphs of prime power order, and answered two very important problems related to this topic. Similarly, in [19], the authors answered a long-standing problem regarding the existence of half-arc-transitive graphs of order twice a prime square.

The reader may have noticed that our key ingredient in this paper is [15]. The main results of [15] are rather general and apply to most actions of groups on graphs. Our application of [15] in our work is rather successful, in our opinion, as we consider normal covers of graphs
$(\dagger) \quad$ admitting a nonabelian simple group of automorphisms.
Under this extra hypothesis, the results in [15] can be combined with rather strong grouptheoretic results based on CFSG and, as a consequence, we are able to obtain infinite families of graphs having exotic vertex stabilizers. As far as we are aware, this type of constructions is a novelty.

In light of the following conjecture originating from Džambić and Jones [6] and supported by Conder (see [3, Section 2]), the hypothesis (\dagger) does not seem strong. This suggests that Theorem 1.1 could be applied to show the existence of tetravalent half-arctransitive graphs with other vertex stabilizers as well, and thus sheds light on classifying the vertex stabilizers of finite tetravalent half-arc-transitive graphs.

Conjecture 5.1 (Conder-Džambić-Jones). If A and B are finite groups and C is a subgroup of $A \cap B$ of index at least 2 in A and at least 3 in B, then all but finitely many alternating groups are homomorphic images of the amalgamated free product $A *_{C} B$.

Remark. In fact, Marston Conder has a stronger conjecture:
Conjecture 5.2 ([3]). Let A and B be finite groups, let C be a subgroup of $A \cap B$ of index at least 2 in A and at least 3 in B, and let K be the core of C in the amalgamated free product $A *_{C} B$. Then all but finitely many alternating groups occur as the image of $A *_{C} B$ under some homomorphism that takes A and B to subgroups (of the alternating group) isomorphic to A / K and B / K respectively.

We conclude this section by giving a natural generalization of the example in Subsection 3.2, Let $m \geqslant 7$ be an integer and let

$$
\begin{array}{r}
H=\left\langle a_{1}, \ldots, a_{m}\right| a_{i}^{2}=1 \text { for } i \leqslant m,\left(a_{i} a_{j}\right)^{2}=1 \text { for }|i-j| \leqslant m-3, \\
\left.\left(a_{1} a_{m-1}\right)^{2}=a_{3}, \quad\left(a_{2} a_{m}\right)^{2}=a_{4}, \quad\left(a_{1} a_{m}\right)^{2}=a_{m-2}\right\rangle .
\end{array}
$$

Then $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{m-2}, a_{m-1}, a_{m}\right\rangle \times\left\langle a_{5}, \ldots, a_{m-3}\right\rangle \cong \mathcal{H}_{7} \times \mathrm{C}_{2}^{m-7}$. Let

$$
B=\left\langle a_{1}, \ldots, a_{m-1}\right\rangle, \quad C=\left\langle a_{2}, \ldots, a_{m}\right\rangle
$$

and let $\varphi: B \rightarrow C$ be the group isomorphism defined by

$$
a_{i}^{\varphi}=a_{i+1} \quad \text { for } \quad i=1, \ldots, m-1
$$

Then $H=B \cup a_{m} B=C \cup a_{1} a_{2} C$. Let x be the permutation on H defined by

$$
b^{x}=b^{\varphi} \quad \text { and } \quad\left(a_{m} b\right)^{x}=a_{1} a_{2} b^{\varphi} \quad \text { for } \quad b \in B .
$$

Denote the right regular representation of H by R. Inspired by [17] and the results in Subsection 3.2, we make the following conjecture.

Conjecture 5.3. Let H, R and x be as above. Then

$$
\operatorname{Cos}\left(\operatorname{Alt}(H), R(H), R(H)\left\{x, x^{-1}\right\} R(H)\right)
$$

is a connected tetravalent graph on which the right multiplication action of $\operatorname{Alt}(H)$ is half-arc-transitive.

If this conjecture is true then Theorem 1.1 will imply that for every integer $m \geqslant 7$ there exist infinitely many finite connected tetravalent half-arc-transitive graphs with vertex stabilizer $\mathcal{H}_{7} \times \mathrm{C}_{2}^{m-7}$.

References

[1] W. Bosma, J. Cannon, C. Playoust, The magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), no. 3-4, 235-265.
[2] J. Chen, B. Xia, J.-X. Zhou, An infinite family of cubic nonnormal Cayley graphs on nonabelian simple groups, Discrete Math., 341 (2018), no. 5, 1282-1293.
[3] M. D. E. Conder, Simple group actions on arc-transitive graphs with prescribed transitive local action, 2017 MATRIX annals, 327-335, MATRIX Book Ser., 2, Springer, Cham, 2019.
[4] M. D. E. Conder, D. Marušič, A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer, J. Combin. Theory Ser. B, 88 (2003), no. 1, 67-76.
[5] M. D. E. Conder, P. Potočnik, P. Šparl, Some recent discoveries about half-arc-transitive graphs, Ars Math. Contemp., 8 (2015), no. 1, 149-162.
[6] A. Džambić, G. A. Jones, p-adic Hurwitz groups, J. Algebra, 379 (2013), 179-207.
[7] X. G. Fang, C. H. Li, M. Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Combin., 25 (2004), no. 7, 1107-1116.
[8] G. Glauberman, Normalizers of p-subgroups in finite groups, Pacific J. Math., 29 (1969), 137-144.
[9] G. Glauberman, Isomorphic subgroups of finite p-groups. I, Canad. J. Math., 23 (1971), 983-1022.
[10] C. H. Li, X. Li, On permutation groups of degree a product of two prime-powers, Comm. Algebra, 42 (2014), no. 11, 4722-4743.
[11] D. Marušič, Recent developments in half-transitive graphs, Discrete Math., 182 (1998), no. 1-3, 219-231.
[12] D. Marušič, Quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math., 229 (2005), no. 1-3, 180-193.
[13] D. Marušič, R. Nedela, On the point stabilizers of transitive groups with non-self-paired suborbits of length 2, J. Group Theory, 4 (2001), no. 1, 19-43.
[14] P. Potočnik, A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2), European J. Combin., 30 (2009), no. 5, 1323-1336.
[15] P. Potočnik, P. Spiga, Lifting a prescribed group of automorphisms of graphs, Proc. Amer. Math. Soc., 147 (2019), no. 9, 3787-3796.
[16] P. Potočnik, P. Spiga, G. Verret, A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two, Ars Math. Contemp., 8 (2015), no. 1, 133-148.
[17] P. Spiga, Constructing half-arc-transitive graphs of valency four with prescribed vertex stabilizers, Graphs Combin., 32 (2016), no. 5, 2135-2144.
[18] B. Xia, Tetravalent half-arc-transitive graphs with unbounded nonabelian vertex stabilizers, to appear in J. Combin. Theory Ser. B, https://arxiv.org/abs/1908.09361.
[19] M.-M. Zhang, J.-X. Zhou, The classification of half-arc-regular bi-circulants of valency 6 , European J. Combin., 64 (2017) 45-56.
[20] J. -X. Zhou, Tetravalent half-arc-transitive p-graphs, J. Algebraic Combin., 44 (2016), no. 4, 947-971.
(Spiga) Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy

Email address: pablo.spiga@unimib.it
(Xia) School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

Email address: binzhoux@unimelb.edu.au

