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Abstract
Topology optimization aims to find the best material layout subject to given
constraints. The so-called material distribution methods cast the governing
equation as an extended or fictitious domain problem, in which a coefficient
field represents the design. When solving the governing equation using the finite
element method, a large number of elements are used to discretize the design
domain, and an element-wise constant function approximates the coefficient
field in the considered design domain. This article presents a spectral analysis
of the (large) coefficient matrices associated with the linear systems stemming
from the finite element discretization of a linearly elastic problem for an arbi-
trary coefficient field. Based on the spectral information, we design a multigrid
method which turns out to be optimal, in the sense that the (arithmetic) cost for
solving the related linear systems, up to a fixed desired accuracy, is proportional
to the matrix-vector cost, which is linear in the corresponding matrix size. The
method is tested, and the numerical results are very satisfactory in terms of lin-
ear cost and number of iterations, which is bounded by a constant independent
of the matrix size.

K E Y W O R D S
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1 INTRODUCTION

Topology optimization1 is a computational method for finding an optimal distribution material within a given design
domain Ω ⊂ Rd, satisfying some given performance measure, subject to assigned constraints in d-dimension(s). The
most typical problems in topology optimization are binary design variable problems, in which we consider two
material types, typically denoted solid (density 𝜌solid > 0) and void (density 0). The most common method to solve
topology optimization problems is the so-called density-based or material distribution approach. The material distribution
topology optimization has been subject to intense research in different fields such as electromagnetic,2–4 fluid-structure
interaction,5,6 acoustics,7,8 additive manufactured structure,9 and especially (non)linear elasticity.10–12 In the latter
application, the results are outstanding, when considering conceptual designs of components under idealized
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conditions. For example, the corresponding technique is used for designing advanced lightweight components in the car
and aeronautical industries.13 In the material distribution setting, the decision variable in the optimization problem is a
design function 𝛼 ∶ Ω→ {0, 1}, that defines the physical density 𝜌.

Typically, topology optimization problems are solved numerically by discretizing Ω into N elements and 𝛼 by an
element-wise constant function with element values 𝜶 = [𝛼1, 𝛼2, … , 𝛼N]. After discretization, the use of a binary-valued
material indicator function is not feasible for many reasons, one is that the problem becomes computationally intractable.
A standard solution for this issue is to allow the element values 𝛼i to take values in the range [0, 1] and to define
the physical density 𝜌 by using penalization and filtering. In particular, the physical density 𝜌 is defined as 𝜌(x) =
𝜌 + (𝜌solid − 𝜌)g ( (𝛼)(x)), where  is a filter operator, g is a penalty function, and 𝜌 ≥ 0 is a constant. The relaxation of the
material indicator function enables the use of gradient-based optimization methods, which, together with the efficient
adjoint-based computation of design sensitivities, empowers the efficient solution of large-scale problems. The standard
approach to attain a unique solution for the state problem is to set 𝜌 to a small but strictly positive value. Berggren and
Kasolis14 studied a linearly elastic boundary value problem (BVP) defined on Ω and proved that the approximation error
is bounded by the sum of three terms: a standard finite element (FE) approximation error term and two additional terms,
both tending to zero as 𝜌→ 0+. However, there are some drawbacks when setting 𝜌 to a small positive value, which have
been indicated and discussed by Buhl et al.15 and Bruns and Tortorelli.16 To avoid those issues, there are few studies for
vanishing lower bound. Bruns17 let 𝜌 = 0 and treated the problem by using spectral decomposition and singular value
decomposition (SD/SVD), to construct a generalized inverse (pseudoinverse) stiffness matrix KN for solving the FE system
of equations. Nguyen et al.18 have introduced a preconditioning approach that allows the element densities to take values
from a continuum and use a specific ad hoc preconditioner when solving a standard test problem. However, this approach
has been only proved analytically in one spatial dimension (d = 1), by using a suitable spectral analysis. In fact, there is
a very limited number of studies that use spectral analysis for treating the considered classes of stiffness matrices {KN}N ,
arising from FE approximation in topology optimization. Nguyen et al.18 have used a new spectral analysis method that
is the so-called theory of Generalized Locally Toeplitz (GLT) sequences to compute and analyze the asymptotic spectral
distribution of the stiffness matrices {KN}N for one spatial dimension problems.

The GLT sequences theory19,20 is applied here for computing/analyzing the spectral distribution of matrix sequences
arising from, for example, the numerical discretization such as the FE approximation of partial differential equations
(PDEs) with proper boundary conditions. In the considered matrix sequences, the size of the given linear systems dN
increases with N, and it tends to infinity as N →∞. Hence, what needs to be considered is not just a single linear system,
but an entire sequence of linear systems with increasing size. Under suitable conditions, the sequence of discretization
matrices, such as {KN}N , has an asymptotic spectral distribution. More precisely, for a large set of test functions F (usually,
for all continuous functions F with bounded support), it often happens that the following limit relation holds:

lim
N→∞

1
dN

dN∑

j=1
F(𝜆j(KN)) =

1
𝜇t(D) ∫D

F(f (x)) dx, (1)

where 𝜆j(KN), j = 1, … , dN are the eigenvalues of KN , 𝜇t(D) ∈ (0,∞) is the measure (t-dimensional volume) of D, and
f ∶ D → C is the spectral symbol of the sequence {KN}N . The spectral symbol f contains spectral information briefly
described informally as follows: assuming that N is large enough, the eigenvalues of KN , except possibly for a small
number of outliers, are approximately equal to the samples of f over a uniform grid in D. It is then clear that the symbol f
provides a “compact” and quite accurate description of the spectrum of the matrices KN (for N large enough), where, of
course, D is related to the design domain Ω and t is related to the dimensionality d of Ω.

Here, we extend the results of our previous work18 to the two-dimensional case (d = 2). A key component is the
theory of multilevel block GLT sequences,21,22 which provides the tools for computing the spectral distribution of
block-structured matrices arising from the FE approximation in two-dimensional topology optimization, where the
symbol f appearing in relation (1) is matrix-valued instead of scalar-valued, according to the concepts provided in
Definition 1. By using this theory and more results,23,24 we perform a detailed spectral analysis of the linear systems
associated with the FE discretization of the governing equation. Moreover, the information obtained from the spec-
tral symbol f is exploited to design a fast multigrid solver. More precisely, the proposed multigrid technique turns
out to be optimal, in the sense that the (arithmetic) cost for solving the related linear systems up to a fixed desired
accuracy is proportional to the computational cost of the matrix-vector products, which is linear with respect to the
corresponding matrix size. The method is tested and the numerical results are promising, in terms of linear cost and
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number of iterations, which is bounded by a constant independent of the matrix size and only mildly depending on the
desired accuracy.

It is well-known that the spectral condition numbers of FE matrices grows as O(h−2), where h is the element size. This
type of result is quite old (see Reference 25 and references therein): for instance, in some settings, it is enough to work
with elementary tools such as the Gerschgorin theorems, at least for proving the positive definiteness. However, in our
setting, the matrices have an expression, which is less standard, due to the tensor structure of the operator 𝜖(u), and, in
fact, the involved matrices do not possess the form described by Dorostkar et al.26 In reality, if one applies the Gerschgorin
theorems, the conclusions are less general and parameter (𝜈) dependent, as it is clear looking at the intricate expression of
the matrix in Equation (6); refer also to (7). Hence we need more sophisticated mathematical instruments along the lines
followed in Reference 26. Indeed, we observe that our results and those in Reference 26 are similar in the sense that the
same block multilevel GLT machinery is employed, but different just because the matrices have different mathematical
expressions and the derivation of the symbol has to be performed from scratch. We finally stress that determining the
symbol is important for two additional reasons, which go beyond the conditioning analysis:

• the position and the order of the zeros, not only for understanding the behavior of the spectral condition numbers but
especially for designing the projection/restriction operators, with the target of obtaining optimal solvers, as done in
Section 5;

• the global distribution results for the eigenvalues, which of course are not classical and cannot be recovered using
classical tools and, moreover, they have an impact in the modern analysis of the convergence speed of (preconditioned)
Krylov methods; see References 27,28.

The article is organized as follows. In Section 2, we describe the continuous problem and the resulting coefficient
matrices arising from our FE approximation. Section 3 is devoted to the spectral analysis of the FE matrices in the
two-dimensional setting, from the perspective of the GLT theory. In Section 4, we give a brief account of multigrid meth-
ods, with special attention to the block case encountered in the present context. Section 5 contains a multigrid proposal
based on the spectral information given in Section 3 and on the conditions reported in Section 4. Finally, conclusions are
reported in Section 6. In addition, Appendix A is devoted to some relevant model information.

2 PRELIMINARIES AND DISCRETIZATION

In this section, we report the description of the continuous problem (Section 2.1), its approximation by a basic FE pro-
cedure (Section 2.2), and finally, the formal expression of the resulting FE matrices (Section 2.3). We emphasize that the
formal expression of the relevant matrices is a key ingredient for applying the GLT theory, in order to produce a global
spectral description of the matrix sequences under consideration.

2.1 A problem in linear elastostatics

A material that deforms under a load and resumes its undeformed shape, when removing the load, is called elastic.
Provided that the load-induced deformations are small, many solids are linearly elastic, which means that the relation
between the deformation and the applied load is linear. In this article, we consider a linearly elastic structure that (when
unloaded) occupies the hyper-rectangular domain Ω ⊂ Rd. Henceforth, let b ∈ L2(Ω)d be a given body load (a volume
force) in Ω, t ∈ L2(ΓF)d be the surface traction acting on the non-clamped boundary ΓF ⊂ 𝜕Ω of the solid, and u denote
the resulting equilibrium displacement.

In linear elasticity, deformations are characterized by the so-called strain tensor

𝜖(u) = 1
2
(∇u + ∇uT).

We remark that the skew-symmetric part of the displacement gradient is related to rigid rotations (and not to the
deformations) of the body. Hooke’s generalized law states the relationship between the strain tensor and the so-called
stress tensor 𝜎 that is
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𝜎 = E𝜖(u), (2)

with E being the fourth-order plane stress elasticity tensor having in total d4 components. In this article, we limit our
attention to the analysis of FE matrices arising in the two-dimensional plane stress setting, which is the standard in
material distribution topology optimization problems.1 By invoking symmetries, the number of independent components
in E can be reduced29(p. 194–197). The equilibrium assumption, which states that the forces acting on any sub-body must be
in balance, together with Cauchy’s theorem, which states that the surface force density depends linearly on the normal
derivative n, and the divergence theorem implies

−∇ ⋅ 𝜎 = b. (3)

In this article, we assume that the structure is clamped along the boundary portion ΓD ⊂ 𝜕Ω and subject to a surface
traction load t on ΓF = 𝜕Ω ⧵ ΓD. The boundary conditions above together with Equations (2) and (3) yield the BVP

−∇ ⋅ (E𝜖(u)) = b in Ω, (4a)

u = 0 on ΓD, (4b)

(E𝜖(u))n = t on ΓF . (4c)

Here, the application in focus is material distribution based topology optimization. More precisely, we assume that
the elasticity tensor is 𝜌Ec, where Ec is a constant fourth-order elasticity tensor and 𝜌 ∈  ⊂ L∞(Ω). A typical choice is to
let = {𝜌 ∈ L∞(Ω) || 𝜌 ≤ 𝜌 ≤ 1 a.e. in Ω}, where 𝜌 is a constant that satisfies 0 < 𝜌 ≪ 1.

In the context of material distribution topology optimization, the finite element method (FEM) is the standard choice
for generating numerical solutions of the BVP (4). This solution process uses the variational form of the BVP. Since the
structure is clamped along the boundary portion ΓD ⊂ 𝜕Ω, the set of all kinematically admissible displacements of the
structure is

 =
{

u ∈ H1(Ω)d || u|ΓD ≡ 0
}
.

Under the above assumptions, the steady-state displacement u of the structure is the solution to

Find u ∈  such that a(𝜌;u, v) = 𝓁(v) ∀v ∈  . (5)

Here, the energy bilinear form a and the load linear form 𝓁 are defined as

a(𝜌;u, v) =
∫

Ω

𝜌 (Ec𝜖(u)) ∶ 𝜖(v),

𝓁(v) =
∫

ΓF

t ⋅ v +
∫

Ω

b ⋅ v,

where the colon “:” denotes the full contraction between the two tensors. When using the standard basis, the full
contraction of the two matrices is their Frobenius scalar product.

2.2 Discretization by Q1 finite elements

Let h be a structured grid consisting of tensor product elements. More precisely, we define h to be the space of all
continuous functions that are zero on the boundaryΓD and 2-vectors with each component being linear in each coordinate
direction on each element in h. More precisely, we set

h = {u ∈  || u|S ∈ P1(S)d, ∀S ∈ h},

where P1(S) is the space of all functions that are linear in each spatial component on element S. We define N = n1n2 to be
the number of elements in h and M = m1m2 to be the number of basis functions inh where subscripts 1 and 2 denote
the number of elements and the number of basis functions in x1 and x2 direction, respectively.
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KHANH NGUYEN et al. 5 of 25

In order to obtain a discrete equation system corresponding to the variational problem (5), we approximate functions
u ∈  and v ∈  by functions uh ∈ h and vh ∈ h, and approximate the physical density 𝜌 by a function 𝜌h that is
constant on each element in h. We let u ∈ RM and v ∈ RM be the coefficient vectors of uh and vh, respectively. We define
𝝆 ∈ RN to be the vector whose entries coincide with the values of 𝜌h in each element. In other words, we defineh ⊂ RN

to be the set of vectors 𝝆 that correspond to element-wise constant functions 𝜌h that are in . By applying the above
approximations, we deduce that the variational problem (5) reduces to the linear system

K(𝝆)u = f,

where the stiffness matrix K(𝝆) and the right hand vector f have entries

Kij =
∫

Ω

𝜌h (Ec𝜖(𝜑i)) ∶ 𝜖(𝜑j) and fj =
∫

ΓF

t ⋅ 𝜑j +
∫

Ω

b ⋅ 𝜑j,

respectively.
A standard procedure for assembling the stiffness matrix K is to loop over each element so that

K =
N∑

n=1
𝜌nKn,

where Kn is the elementary stiffness matrix for the element Sn. In the studied setup, we remark that all elements have
the same shape and size, and hence all elements in the stiffness matrices possess the same non-zero values. The positions
holding these values in the element matrices correspond to the indices of the basis function having support in the element.

2.3 Explicit expressions for the element stiffness matrix

In this article, we limit our attention to two spatial dimensions. Hence, if not otherwise stated, by default d = 2. In the
subsequent lines, we give an explicit expression of the element stiffness matrix Kn with respect to the reference element
illustrated in Figure 1A, which will be assembled into stiffness matrix K using the global node numbering illustrated
in Figure 1B. For example, for the first element, the nodes with local node numbers 5, 6, 7, and 8 have the global node
numbers 2m2 + 1, 2m2 + 2, 2m2 + 3, and 2m2 + 4, respectively.

Here, we consider the so-called plane stress case. In this setting, the element stiffness matrix

Kn =
E0

1 − 𝜈2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

k1 k2 k3 k4 k5 k6 k7 k8

k2 k1 k6 k5 k4 k3 k8 k7

k3 k6 k1 k8 k7 k2 k5 k4

k4 k5 k8 k1 k2 k7 k6 k3

k5 k4 k7 k2 k1 k8 k3 k6

k6 k3 k2 k7 k8 k1 k4 k5

k7 k8 k5 k6 k3 k4 k1 k2

k8 k7 k4 k3 k6 k5 k2 k1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (6)

where 𝜈 is the Poisson ratio, E0∕(1 − 𝜈2) is a constant that will be neglected without affecting spectral analysis in the
following sections, and the entries are

k1 = 1
2

(
1 − 𝜈

3

)
, k3 = 𝜈

6
, k5 = − 1

4

(
1 + 𝜈

3

)
, k7 = 1

4

(
−1 + 𝜈

3

)
,

k2 = 1
8
(1 + 𝜈), k4 = 1

8
(1 − 3𝜈) , k6 = − 1

8
(1 − 3𝜈) , k8 = − 1

8
(1 + 𝜈).

(7)
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6 of 25 KHANH NGUYEN et al.

F I G U R E 1 Local node numbering on the reference element (left) and the global node numbering for the full discretization (right)

Appendix A provides more information regarding the stress–strain relation and the assumptions used to arrive at the
element stiffness matrix above. Moreover, Appendix A includes a motivation why the Poisson’s ratio must be in the range
𝜈 ∈ (−1, 1) in the two-dimensional setting. This is in contrast to the typical bound 𝜈 ∈ (−1, 0.5), which holds for the
three-dimensional setting. From an application viewpoint, we are mainly interested in the case where the material is
isotropic. Therefore, we primarily consider Poisson’s ratios in the range 𝜈 ∈ [0, 0.5).

3 SPECTRAL ANALYSIS

The current section is devoted to the spectral analysis of the FE coefficient matrices derived in the previous section and is
complemented by numerical tests, that confirm the theoretical analysis. In particular, Section 3.1 contains the necessary
preliminary concepts and tools, while Sections 3.2 and 3.3 focus on the specific study in 2D, where Section 3.2 covers the
constant coefficient case and Section 3.3 covers the variable coefficient case.

3.1 Premises

The premises include the formal definition of eigenvalue and singular value distribution, the notion of multi-indexing,
the concepts of multilevel block Toeplitz matrices, multilevel block sampling matrices, and multilevel block GLT matrix
sequences.

3.1.1 Singular value/eigenvalue distributions

We first give the formal definitions, and then we briefly discuss the informal and practical meaning.

Definition 1. Let {An}n be a sequence of matrices, with An of size dn, and let f ∶ D ⊂ Rt → Cr×r be a measurable function
defined on a set D with 0 < 𝜇t(D) < ∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we write {An}n ∼𝜎 f , if

lim
n→∞

1
dn

dn∑

i=1
F(𝜎i(An)) =

1
𝜇t(D) ∫D

∑r
i=1F(𝜎i(f (x)))

r
dx, ∀ F ∈ Cc(R). (8)
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KHANH NGUYEN et al. 7 of 25

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f , and we write {An}n ∼𝜆 f , if

lim
n→∞

1
dn

dn∑

i=1
F(𝜆i(An)) =

1
𝜇t(D) ∫D

∑r
i=1F(𝜆i(f (x)))

r
dx, ∀ F ∈ Cc(C). (9)

If {An}n has both a singular value and an eigenvalue distribution described by f , then we write {An}n ∼𝜎,𝜆 f . Notice
that (9) is a generalization of (1). More specifically (1) reduces to (9) when the size r of the matrix-valued symbol f is equal
to 1. (In practice in the Toeplitz setting and often in the GLT setting, the parameter r can be read at a matrix level as the
size of the elementary blocks which form the global matrix An. This also holds for the problem studied in this article, as
will be further discussed in terms of the stiffness matrices in Sections 3.2 and 3.3 as well as in the block Toeplitz/block
diagonal sampling structures in Section 3.1.2.)

As already mentioned in the introduction, the symbol f contains spectral/singular value information briefly described
informally as follows. With reference to (9), assuming that N is large enough, the eigenvalues of KN are partitioned into r
subsets of the same cardinality, except possibly for a small number of outliers, and the ith subset is approximately formed
by the samples of 𝜆i(f ) over a uniform grid in D, i = 1, … , r. It is then clear that the symbol f provides a “compact” and
a quite accurate description of the spectrum of the matrices KN for N large enough. Relation (8) has the same meaning
when referring to the singular values of KN and by replacing 𝜆i(f ) with 𝜎i(f ), i = 1, … , r.

3.1.2 Multilevel block Toeplitz matrices, multilevel block diagonal sampling matrices,
and multilevel block GLT sequences

We start by introducing the multi-index notation, which is quite useful for treating sequences of matrices arising from
the discretization of PDEs. A multi-index i ∈ Zd, also called a d-index, is simply a (row) vector in Zd; its components are
denoted by i1, … , id.

• 0, 1, 2, … are the vectors of all zeros, all ones, all twos, … (their size will be clear from the context).
• For any d-index m, we set N(m) =

∏d
j=1mj and we write m →∞ to indicate that min(m) →∞.

• If h,k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, … , d.
• If h,k are d-indices such that h ≤ k, the multi-index range h, … ,k is the set {j ∈ Zd ∶ h ≤ j ≤ k}. The standard

lexicographic ordering is assumed uniformly

[
…

[ [
(j1, … , jd)

]
jd=hd,… ,kd

]

jd−1=hd−1,… ,kd−1

…
]

j1=h1,… ,k1

. (10)

For instance, in the case d = 2 the ordering is the following: (h1, h2), (h1, h2 + 1), … , (h1, k2), (h1 + 1, h2),
(Multilevel) Block Toeplitz matrices.
We now briefly summarize the definition and few relevant properties of multilevel block Toeplitz matrices, that we

will employ in the analysis of the stiffness matrices. Given n ∈ Nd, a matrix of the form

[Ai−j]ni,j=e ∈ C
N(n)r×N(n)r

with e vector of all ones, with blocks Ak ∈ Cr×r, k = −(n − e), … ,n − e, is called a multilevel block Toeplitz matrix, or,
more precisely, a d-level r-block Toeplitz matrix. Let 𝜙 ∶ [−𝜋, 𝜋]d → Cr×r a matrix-valued function in which each entry
belongs to L1([−𝜋, 𝜋]d). We denote the Fourier coefficients of the generating function 𝜙 as

�̂�k =
1

(2𝜋)d ∫[−𝜋,𝜋]d
𝜙(𝜽)e−𝚤(k,𝜽) d𝜽 ∈ C

r×r
, k ∈ Z

d
,
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8 of 25 KHANH NGUYEN et al.

where the integrals are computed component-wise and (k,𝜽) = k1𝜃1 + · · · + kd𝜃d. For every n ∈ Nd, the nth Toeplitz
matrix associated with 𝜙 is defined as

Tn(𝜙) ∶= [�̂�i−j]ni,j=e,

or, equivalently, as

Tn(𝜙) =
∑

|j1|<n1

…
∑

|jd|<nd

[J(j1)
n1
⊗ … J(jd)

nd
]⊗ �̂�(j1,… ,jd),

where ⊗ denotes the (Kronecker) tensor product of matrices, while J(l)m is the matrix of order m whose (i, j) entry equals
1 if i − j = l and zero otherwise. We call {Tn(𝜙)}n∈Nd the family of (multilevel block) Toeplitz matrices associated with 𝜙,
which, in turn, is called the generating function of {Tn(𝜙)}n∈Nd .

(Multilevel) block diagonal sampling matrices. For n ∈ N and a ∶ [0, 1] → Cr×r, we define the block diagonal
sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,… ,n

a
( i

n

)
=

⎡
⎢
⎢
⎢
⎢
⎢⎣

a( 1
n
)

a( 2
n
)
⋱

a(1)

⎤
⎥
⎥
⎥
⎥
⎥⎦

∈ C
rn×rn

.

For n ∈ Nd and a ∶ [0, 1]d → Cr×r, we define the multilevel block diagonal sampling matrix Dn(a) as the block diagonal
matrix

Dn(a) = diag
i=1,… ,n

a
(

i
n

)
∈ C

rN(n)×rN(n)
,

with the lexicographical ordering (10) as discussed at the beginning of Section 3.1.2.
Zero-distributed sequences. According to Definition 1, a sequence of matrices {Zn}n such that

{Zn}n ∼𝜎 0,

is referred to as a zero-distributed sequence and we emphasize that this notion applies in the sense of the singular values.
Note that, for any r ≥ 1, {Zn}n ∼𝜎 0 is equivalent to {Zn}n ∼𝜎 Or (notice that Om and Im denote the m ×m zero matrix
and the m ×m identity matrix, respectively). Proposition 1 provides an important characterization of zero-distributed
sequences together with a useful sufficient condition for detecting such sequences. Throughout this article, we use the
natural convention 1∕∞ = 0.

Proposition 1. Let {Zn}n be a sequence of matrices, with Zn of size dn, and let || ⋅ || be the standard spectral matrix norm
(the one induced by the Euclidean vector norm).

• {Zn}n is zero-distributed if and only if Zn = Rn + Nn with rank(Rn)∕dn → 0 and ||Nn||→ 0 as n → ∞.
• {Zn}n is zero-distributed if there exists a p ∈ [1,∞] such that ||Zn||p∕(dn)1∕p → 0 as n → ∞.

(Multilevel) Block GLT matrix sequences.
Now we give a very concise and operational description of the multilevel block GLT sequences, from which it will

be clear that the multilevel block Toeplitz structures, the zero-distributed matrix sequences, and the multilevel block
diagonal sampling matrices represent the basic building components.

Let d, r ≥ 1 be fixed positive integers. A multilevel r-block GLT sequence (or simply a GLT sequence if d, r can be
inferred from the context or we do not need/want to specify them) is a special r-block matrix sequence {An}n equipped
with a measurable function 𝜅 ∶ [0, 1]d × [−𝜋, 𝜋]d → Cr×r, the so-called symbol. We use the notation {An}n ∼GLT 𝜅 to indi-
cate that {An}n is a GLT sequence with symbol 𝜅. The symbol of a GLT sequence is unique in the sense that if {An}n ∼GLT
𝜅 and {An}n ∼GLT 𝜍 then 𝜅 = 𝜍 a.e. in [0, 1]d × [−𝜋, 𝜋]d. The main properties of r-block GLT sequences proved in
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KHANH NGUYEN et al. 9 of 25

Reference 21 are listed below. If A is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1

whenever A is invertible).

GLT 1 If {An}n ∼GLT 𝜅, then {An}n ∼𝜎 𝜅. If moreover each An is Hermitian, then {An}n ∼𝜆 𝜅.
GLT 2 We have:

(a) {Tn(𝜙)}n ∼GLT 𝜅(x,𝜽) = 𝜙(𝜽) if 𝜙 ∶ [−𝜋, 𝜋]d → Cr×r is in L1([−𝜋, 𝜋]d);
(b) {Dn(a)}n ∼GLT 𝜅(x,𝜽) = a(x) if a ∶ [0, 1]d → Cr×r is Riemann-integrable;
(c) {Zn}n ∼GLT 𝜅(x,𝜽) = Or if and only if {Zn}n ∼𝜎 0 (zero-distributed sequences coincide exactly with the GLT

sequences having GLT symbol equal to Or a.e. and hence equal to Os a.e. for any positive integer s).
GLT 3 If {An}n ∼GLT 𝜅 and {Bn}n ∼GLT 𝜍, then

(a) {A∗
n}n ∼GLT 𝜅

∗;
(b) {𝛼An + 𝛽Bn}n ∼GLT 𝛼𝜅 + 𝛽𝜍 for all 𝛼, 𝛽 ∈ C;
(c) {AnBn}n ∼GLT 𝜅𝜍;
(d) {A†

n}n ∼GLT 𝜅
−1 provided that 𝜅 is invertible a.e.

3.2 The constant coefficient case (𝝆 ≡ 1)

Hereafter we are looking for identifying the symbol underlying the constant coefficient case 𝜌 ≡ 1, according to the
standard notion of generating function in the Toeplitz theory (see Section 3.1.2 and Reference 22 for more details) and
according to the notion of symbol reported in Definition 1.

3.2.1 Symbol definition

Let An(1,DN3) be the stiffness matrix obtained with a Q1 FEs approximation as described in Section 2.2 with proper bound-
ary conditions, Dirichlet in one side “D” and Neumann “N” in the other three (and hence the formal notation An(1,DN3)),
where we have chosen a uniform meshing with n intervals in the x1 direction and n intervals in the x2 direction. According
to the previously considered ordering of the nodes, the matrix An(1,DN3) is a two-level block tridiagonal structure of size
n with tridiagonal blocks of size n + 1, whose elements are small matrices of size 2. We notice that the size is dictated by
all the mesh points (including those lying in the boundaries) when considering Neumann boundary conditions, and by
all the internal mesh points (excluding those lying in the boundaries), when considering Dirichlet boundary conditions,
so that the precise structure is the following:

An(1,DN3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Â0 Â−1

ÂT
−1 Â0 Â−1

⋱ ⋱ ⋱

ÂT
−1 Â0 Â−1

ÂT
−1 Ã0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

with Â1 = ÂT
−1 and Ã0 slightly differing from Â0 due to the Neumann boundary condition on the right vertical border, and

where

Â0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ã0,0 a0,−1

a0,−1 a0,0 a0,−1

⋱ ⋱ ⋱

a0,−1 a0,0 a0,−1

a0,−1 ã0,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, Â−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ã−1,0 a−1,−1

a−1,1 a−1,0 a−1,−1

⋱ ⋱ ⋱

a−1,1 a−1,0 a−1,−1

a−1,1 ã−1,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

Again with the superscript “∽” we are denoting slightly different entries due to Neumann boundary conditions. We notice
that the dimension of the blocks Ai equals double the number of nodes on the vertical border, while their number equals
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10 of 25 KHANH NGUYEN et al.

the number of nodes on the horizontal border minus one due to the Dirichlet boundary condition on the left vertical
border. Finally, every as,t, s, t ∈ {−1, 0, 1} is a 2 × 2 matrix, because two degrees of freedom are associated to each node of
the mesh. More precisely, it holds

a0,0 = 2

[
2k1 k2 + k8

k2 + k8 2k1

]
, a0,1 = a0,−1 =

[
2k3 k4 + k6

k4 + k6 2k5

]
, a1,−1 = a−1,1 =

[
k7 k2

k2 k7

]
,

a1,0 = a−1,0 =

[
2k5 k4 + k6

k4 + k6 2k3

]
, a1,1 = a−1,−1 =

[
k7 k8

k8 k7

]
.

Now setting n = (n1,n2), n1 = n,n2 = n + 1 we define

Tn(fQ1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

A0 A−1

AT
−1 A0 A−1

⋱ ⋱ ⋱

AT
−1 A0 A−1

AT
−1 A0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

,

where A1 = AT
−1 and

A0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

a0,0 a0,−1

a0,−1 a0,0 a0,−1

⋱ ⋱ ⋱

a0,−1 a0,0 a0,−1

a0,−1 a0,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, A−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

a−1,0 a−1,−1

a−1,1 a−1,0 a−1,−1

⋱ ⋱ ⋱

a−1,1 a−1,0 a−1,−1

a−1,1 a−1,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

Therefore, in accordance with the multi-index notation and with the definition of multilevel block Toeplitz matrices
in Section 3.1.2, we can easily read the generating function fQ1 , just by having in mind that we are dealing with a
matrix-valued one of size 2 × 2. More precisely, we have

fQ1(𝜃1, 𝜃2) = fA0(𝜃1) + fA−1(𝜃1)e−𝚤𝜃2 + fA1(𝜃1)e𝚤𝜃2

= (a0,0 + a0,−1e−𝚤𝜃1 + a0,−1e𝚤𝜃1) + (a−1,0 + a−1,−1e−𝚤𝜃1 + a−1,1e𝚤𝜃1)e−𝚤𝜃2 + (a1,0 + a1,−1e−𝚤𝜃1 + a1,1e𝚤𝜃1)e𝚤𝜃2

= a0,0 + 2a0,−1 cos 𝜃1 + 2a−1,0 cos 𝜃2 + a−1,−1(e−𝚤𝜃1 e−𝚤𝜃2 + e𝚤𝜃1 e𝚤𝜃2) + a−1,1(e𝚤𝜃1 e−𝚤𝜃2 + e−𝚤𝜃1 e𝚤𝜃2)

=

[
f11(𝜃1, 𝜃2) f12(𝜃1, 𝜃2)
f21(𝜃1, 𝜃2) f22(𝜃1, 𝜃2)

]
, (11)

where

f11(𝜃1, 𝜃2) = 4k1 + 4k3 cos 𝜃1 + 4k5 cos 𝜃2 + 4k7 cos 𝜃1 cos 𝜃2,

f12(𝜃1, 𝜃2) = 2(k2 + k8) + 2(k4 + k6)(cos 𝜃1 + cos 𝜃2) + k8(e−𝚤𝜃1 e−𝚤𝜃2 + e𝚤𝜃1 e𝚤𝜃2) + k2(e𝚤𝜃1 e−𝚤𝜃2 + e−𝚤𝜃1 e𝚤𝜃2),
f22(𝜃1, 𝜃2) = 4k1 + 4k5 cos 𝜃1 + 4k3 cos 𝜃2 + 4k7 cos 𝜃1 cos 𝜃2,

f21(𝜃1, 𝜃2) = f12(𝜃1, 𝜃2).

Finally, by recalling the expression of ki in (7), we deduce that

f11(𝜃1, 𝜃2) = 2
(

1 − 𝜈

3

)
+ 2𝜈

3
cos 𝜃1 −

(
1 + 𝜈

3

)
cos 𝜃2 +

(
−1 + 𝜈

3

)
cos 𝜃1 cos 𝜃2,

f12(𝜃1, 𝜃2) = f21(𝜃1, 𝜃2) =
1
8
(1 + 𝜈)(−e−𝚤𝜃1 e−𝚤𝜃2 − e𝚤𝜃1 e𝚤𝜃2 + e𝚤𝜃1 e−𝚤𝜃2 + e−𝚤𝜃1 e𝚤𝜃2),

f22(𝜃1, 𝜃2) = 2
(

1 − 𝜈

3

)
−
(

1 + 𝜈

3

)
cos 𝜃1 + 2𝜈

3
cos 𝜃2 +

(
−1 + 𝜈

3

)
cos 𝜃1 cos 𝜃2.
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KHANH NGUYEN et al. 11 of 25

Of course, when the boundary conditions are uniformly of Dirichlet type, then An(1,D4) = Tn(fQ1)with n = (n1,n2), n1 =
n2 = n − 1, since only the internal meshpoints are involved in the matrix.

By collecting all the previous results, the following proposition links in a precise way the Toeplitz structures with
matrices An(1,D4) and An(1,DN3).

Proposition 2. Let fQ1(𝜃1, 𝜃2) be the symbol defined in (11). Let us consider a uniform meshing in both directions with n
sub-intervals. Then we have the following relationships

An(1,D4) = Tn(fQ1), n = (n1,n2), n1 = n2 = n − 1,
An(1,DN3) = Tn(fQ1) + Rn, n = (n1,n2), n1 = n,n2 = n + 1,

where Rn has rank bounded by 2(n + 1) due to the term Ã0 − A0 plus 4(n − 1) due to the terms Âj − Aj, j = −1, 0, 1.
If the more general setting is considered with n1 sub-intervals in the x1 direction and n2 sub-intervals in the x2 direction,

then analogous relations are true:

An(1,D4) = Tn(fQ1), n = (n1 − 1,n2 − 1),
An(1,DN3) = Tn(fQ1) + Rn, n = (n1,n2 + 1),

where Rn has rank bounded by 2(n2 + 1) due to the term Ã0 − A0 plus 4(n1 − 1) due to the terms Âj − Aj, j = −1, 0, 1.
In the following Section 3.2.2, we show by numerical evidences that the function fQ1 is the eigenvalue symbol, in

the sense of Definition 1, of the matrix sequences {An(1,D4)}n and {An(1,DN3)}n. These visualizations find a theoretical
ground in Section 3.2.3, where the related statements are proven in Proposition 3.

3.2.2 Numerics: The eigenvalue distribution

We start our analysis by performing a few numerical tests. First of all, in Figure 2 we draw the two eigenvalues surfaces of
the symbol fQ1 with a sampling in (−𝜋, 𝜋) × (−𝜋, 𝜋)with respect to different 𝜈 values together with corresponding contour
lines. The figure clearly shows that there is a minimum at (0, 0) for both surfaces, regardless of the value of 𝜈. Moreover,
the eigenvalue surfaces for different values of 𝜈 share the same general features. However, there are some noticeable
trends that one might find interesting. In particular, for the second surface, both the maximum value and the minimum
decrease as 𝜈 increases in (0, 0.5) with the minimum decreasing faster than the maximum. Concerning the maximum
values of the two surfaces, Figure 3 highlights that the maximum of the first surface is 4 independently of 𝜈, while the
maximum of the second surface is decreasing from 2 to 1.6 as long as 𝜈 increases in (0, 0.5). The picture is similar if we
consider the full interval (−1, 0.5).

We have computed the minimal eigenvalue and the spectral condition number of matrices of increasing
dimension with 𝜈 = 0.4, both in the case of Dirichlet boundary conditions and Dirichlet+Neumann bound-
ary conditions (see Table 1). In both cases it is evident that the ratio 𝜆min(h)∕𝜆min(h∕2) tends to 4 and
the ratio 𝜅2(h)∕𝜅2(h∕2) to 1∕4 in accordance with the above conjecture. No significant dependency on 𝜈 is
present.

Finally, we would like to stress as the match between the samplings of the symbol eigenvalues and the matrix
eigenvalues is really sharp even for the moderate size of the involved matrices. To this end in Figure 4, we report the
ordered union of equispaced samplings of the two surfaces 𝜆1

(
fQ1(𝜃1, 𝜃2)

)
and 𝜆2

(
fQ1(𝜃1, 𝜃2)

)
(red line) side by side to the

ordered eigenvalues of the matrix An(1,D4) for N(n) = 7938 and different values of 𝜈. No significant dependency on 𝜈 is
observed for both types of boundary conditions (see Figure 5).

3.2.3 Symbol spectral analysis: Distribution, extremal eigenvalues, and conditioning

This section comprises three propositions that focus on spectral distribution, extremal eigenvalues, and conditioning of
our matrix sequences in 2D. All the results are based on the symbol and its analytical features.

We start with a result devoted to the spectral distribution, whose numerical evidences have been discussed already in
Section 3.2.2.
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12 of 25 KHANH NGUYEN et al.

F I G U R E 2 Eigenvalues surfaces of the symbol fQ1
for different 𝜈 values and corresponding contour lines

Proposition 3. Let fQ1(𝜃1, 𝜃2) be the symbol defined in (11). According to the notation in Proposition 2, all the matrix
sequences {Tn(fQ1)}n, {An(1,D4)}n, {An(1,D4)}n, {An(1,DN3)}n, {An(1,DN3)}n are spectrally distributed as fQ1 in the sense
of Definition 1.

Proof. For the multilevel block Toeplitz sequences {Tn(fQ1)}n, {An(1,D4)}n, {An(1,D4)}n refer to Item GLT 2., part 1, and
Item GLT 1., part 2 in Section 3.1.2. For the sequences {An(1,DN3)}n and {An(1,DN3)}n, first observe that the matrix
sequence {Rn}n defined in Proposition 2 is zero-distributed thanks to Propositions 1 and 2, since rank(Rn)∕size(Rn) → 0,
as n → ∞. Then the claim follows thanks to the ∗-algebra structure of the GLT sequences and more specifically thanks
to Item GLT 3., part 2, Item GLT 2., part 1, and Item GLT 1., part 2. ▪

Now we analyze few key analytical features of the spectral symbol, which is shared by all the matrix sequences men-
tioned in Proposition 3. Such a study is important for the analysis of the extremal eigenvalues and of the conditioning of
the same matrix sequences and, in Section 5, it will be the main ingredient for designing ad hoc multigrid solvers, when
dealing with the related large linear systems.

Theorem 1. Let fQ1(𝜃1, 𝜃2) be the symbol defined in (11). The following statements hold true:

1. fQ1(0, 0)e = 0, e = [1, 1]T;
2. both eigenvalues of fQ1 have a zero of order 2 at (0, 0).

Proof. Claim 1. The function fQ1 evaluated at (0, 0) equals

fQ1(0, 0) = 4

[
k1 + k3 + k5 + k7 k2 + k4 + k6 + k8

k2 + k4 + k6 + k8 k1 + k3 + k5 + k7

]
,
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KHANH NGUYEN et al. 13 of 25

F I G U R E 3 Maxima of eigenvalues surfaces of the symbol fQ1
as functions of 𝜈

T A B L E 1 Spectral data for matrices An(1,D4) and An(1,DN3) of increasing dimension N(n)—case 𝜈 = 0.4

An(1,D4)

N(n) 𝝀min 𝝀min(h)∕𝝀min(h∕2) 𝝁(h) 𝝁(h)∕𝝁(h∕2)

18 6.5599e-01 - 4.8455e+00 -

98 1.8112e-01 3.6219e+00 2.0809e+01 2.3286e-01

450 4.6397e-02 3.9036e+00 8.4925e+01 2.4502e-01

1922 1.1670e-02 3.9759e+00 3.4148e+02 2.4870e-01

7938 2.9218e-03 3.9940e+00 1.3677e+03 2.4967e-01

An(1,DN3)

40 1.2678e-02 - 5.1460e+00 -

144 4.0891e-03 3.1005e+00 2.1003e+01 2.4501e-01

544 1.1807e-03 3.4632e+00 8.5034e+01 2.4700e-01

2112 3.1877e-04 3.7040e+00 3.4154e+02 2.4897e-01

8320 8.2930e-05 3.8438e+00 1.3678e+03 2.4971e-01

F I G U R E 4 Ordered equispaced samplings of 𝜆j
(

fQ1
(𝜃1, 𝜃2)

)
, j = 1, 2 (red line) and ordered eigenvalues 𝜆l(An(1,D4)), l = 1, … ,N(n),

N(n) = 7938 (blue line)
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14 of 25 KHANH NGUYEN et al.

F I G U R E 5 Ordered equispaced samplings of 𝜆j
(

fQ1
(𝜃1, 𝜃2)

)
, j = 1, 2 (red line) and ordered eigenvalues 𝜆l(An(1,DN3)), l = 1, … ,N(n),

N(n) = 8320 (blue line)

and the row-sum vanishes as
∑8

i=1ki = 0 according to (7).
Claim 2. It is just a direct check. Indeed we can evaluate the eigenvalues of the symbol as

𝜆1,2(𝜃1, 𝜃2) =
1
2

(
tr(fQ1(𝜃1, 𝜃2)) ±

√
tr2(fQ1(𝜃1, 𝜃2)) − 4 det(fQ1(𝜃1, 𝜃2))

)
,

where tr(fQ1 (𝜃1, 𝜃2)) and det(fQ1(𝜃1, 𝜃2)) denote the trace and the determinant of the matrix-valued symbol respectively.
By expanding the previous expression, we obtain that

𝜆1,2(𝜃1, 𝜃2) =
1
2

((
𝜈

3
− 1

)
(cos 𝜃1 + cos 𝜃2 + 2 cos 𝜃1𝜃2 − 4) ± (𝜈 + 1)| cos 𝜃1 cos 𝜃2 − 1|

)

with 𝜈 > −1. Finally, by considering the Taylor expansion centered at (0, 0) we have

𝜆1,2(0, 0) =
𝜕𝜆1,2(𝜃1, 𝜃2)

𝜕𝜃1 |(0,0)
=
𝜕𝜆1,2(𝜃1, 𝜃2)

𝜕𝜃2 |(0,0)
= 0 for all 𝜈,

whereas the second order derivatives form a positive definite Hessian matrix at (0, 0). ▪

Since the minimal eigenvalue of the symbol fQ1(𝜃1, 𝜃2) has a unique zero of order two at (𝜃1, 𝜃2) = (0, 0) (in fact both
eigenvalues of the symbol fQ1(𝜃1, 𝜃2) have a unique zero of order two at (𝜃1, 𝜃2) = (0, 0)) and since the symbol is positive
semi-definite, we can deduce and discuss important information on the extremal eigenvalues and on the conditioning of
the corresponding matrix sequences.

Proposition 4. Let fQ1(𝜃1, 𝜃2) be the symbol defined in (11). Let us consider a uniform meshing in both directions with n
subintervals. Then we have the following relationships

𝜆min(An(1,D4)) ∼ n−2
,

max 𝜆max(fQ1) − 𝜆max(An(1,D4)) ∼ n−2
,

𝜅2(An(1,D4)) ∼ n2
,

An(1,D4) = Tn(fQ1), n = (n1,n2), n1 = n2 = n − 1,
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KHANH NGUYEN et al. 15 of 25

with 𝜅2(⋅) denoting the condition number in spectral norm (the one induced by the Euclidean vector norm || ⋅ ||2), and an ∼ bn
for an, bn ≥ 0 indicating that there exist positive constants c,C independent of n such that c ⋅ an ≤ bn ≤ C ⋅ an for any index
n (and analogously in the case of multi-indices).

If the more general setting is considered with n1 subintervals in the x1 direction and n2 subintervals in the x2 direction,
then analogous relations are true

𝜆min(An(1,D4)) ∼ [min nj]−2
,

max 𝜆max(fQ1 ) − 𝜆max(An(1,D4)) ∼ [min nj]−2
,

𝜅2(An(1,D4)) ∼ [min nj]2,
An(1,D4) = Tn(fQ1), n = (n1 − 1,n2 − 1).

Proof. The proof relies essentially on the fact that the involved operators are linear and positive (see Reference 30 for a
general treatment of the subject in a matrix theoretic context).

By Theorem 1, second item, it follows that fQ1(𝜃1, 𝜃2) can be factored as

l(𝜃1, 𝜃2)gQ1(𝜃1, 𝜃2), l(𝜃1, 𝜃2) = 4 − 2 cos(𝜃1) − 2 cos(𝜃2),

where l is the generating function of the standard 2D discrete Laplacian by centered finite differences of order two and
minimal bandwidth, and where gQ1 has eigenvalues given by

sj(𝜃1, 𝜃2) =
𝜆j(fQ1)

l(𝜃1, 𝜃2)
, j = 1, 2,

which are bounded away from zero and infinity since 𝜆j(fQ1), j = 1, 2, l(𝜃1, 𝜃2) are all nonnegative and with a unique zero
of order 2 at (0, 0). More precisely there exist C > c > 0 such that c ≤ s1(𝜃1, 𝜃2), s2(𝜃1, 𝜃2) ≤ C uniformly with respect to
(𝜃1, 𝜃2) with

c = min{min s1,min s2}, C = max{max s1,max s2}.

Therefore we infer

cl(𝜃1, 𝜃2)I2 ≤ fQ1(𝜃1, 𝜃2) ≤ Cl(𝜃1, 𝜃2)I2,

in the sense of the partial ordering in the (real) vector space of the Hermitian matrices. Now, since Tn(⋅) is a linear positive
operator, it is also monotone (see e.g., References 23,24), and hence

c𝜆min(Tn(l(𝜃1, 𝜃2)I2)) ≤ 𝜆min(An(1,D4)) ≤ C𝜆min(Tn(l(𝜃1, 𝜃2)I2)), (12)

where

𝜆min(Tn(l(𝜃1, 𝜃2)I2)) = 4 − 2 cos
(

𝜋

n1 + 1

)
− 2 cos

(
𝜋

n2 + 1

)

= 4sin2
(

𝜋

2(n1 + 1)

)
+ 4sin2

(
𝜋

2(n2 + 1)

)

∼ n−2
1 + n−2

2 ∼ [min nj]−2
. (13)

By combining (12) and (13), we deduce

𝜆min(An(1,D4)) ∼ [min nj]−2
,

which reduces to

𝜆min(An(1,D4)) ∼ n−2
,
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16 of 25 KHANH NGUYEN et al.

if n1 = n2 = n − 1. The other claim that is

max 𝜆max(fQ1) − 𝜆max(An(1,D4)) ∼ [min nj]−2
,

follows in the same way by duality, simply because

max 𝜆max(fQ1) − 𝜆max(An(1,D4)) = 𝜆min(Tn(𝜆max(fQ1)I2 − fQ1)).

Therefore the statements on the conditioning represent a direct consequence of the estimates on the extreme of the
spectrum, given the positive definite character of the involved matrices. ▪

Remark 1. For the case of An(1,DN3) the numerical experiments reported in Table 1 confirms that the extremal eigenvalue
behavior and the conditioning should be the same as in the case of the pure Dirichlet boundary conditions. Hence the
following relations should hold:

𝜆min(An(1,DN3)) ∼ n−2
,

max 𝜆max(fQ1) − 𝜆max(An(1,DN3)) ∼ n−2
,

𝜅2(An(1,DN3)) ∼ n2
.

The proof could be conducted using the Sherman-Morrison-Woodbury formula since An(1,DN3) = Tn(fQ1) + Rn, n =
(n1,n2), n1 = n,n2 = n + 1, with Rn of relatively small rank with respect to the matrix size, as in Proposition 2. The idea
relies on a clever writing of Rn as XY , with X ,Y T rectangular matrices of the same sizes, the smaller dimension coin-
ciding with the rank of Rn. The same splitting should be computed also in the general case of An(1,DN3) = Tn(fQ1) + Rn,
n = (n1,n2 + 1). We believe that this direction is worth to be explored in a future investigation.

3.3 The non-constant coefficient case

The natural extension of the previous analysis refers to the case of a non-constant coefficient 𝜌. In the physical model, we
are assuming the function 𝜌 piecewise constant with respect to the mesh elements 𝜏 ∈  . Thus, according to a standard
assembling procedure, we can write the stiffness matrix as

An(𝜌) =
∑

𝜏∈
𝜌𝜏AEl

n,𝜏 , (14)

where AEl
n,𝜏 is the elementary matrix Kn in (6) (possibly properly cut when nodes on the boundary are involved), but

widened to size N(n) following the chosen ordering of nodes. Here n = (n − 1,n − 1) in the case of Dirichlet boundary
conditions and n subintervals in all the directions so that An(𝜌) = An(𝜌,D4), while n = (n,n + 1) in the case of Dirichlet
boundary conditions on one side, Neumann boundary conditions in the other three with n subintervals in all the directions
so that An(𝜌) = An(𝜌,DN3).

Clearly the elementary matrix Kn is positive semi-definite. More precisely according to values ki in (7), the non-zero
eigenvalues are

(1 − 𝜈) (double), 1
2

(
1 − 𝜈

3

)
(double), 1 + 𝜈 (simple).

In addition, every elementary matrix, which has been cut due to nodes on the boundary, is positive semi-definite as well
being a principal submatrix of Kn in (6).

Thus, based on (14), we infer

𝜌minxTAn(1)x ≤ xTAn(𝜌)x ≤ 𝜌maxxTAn(1)x, for all x ≠ 0,

with 𝜌min and 𝜌max minimum and maximum of 𝜌, respectively, so that by applying the Courant–Fischer theorem we claim
that
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KHANH NGUYEN et al. 17 of 25

𝜌min𝜆min(An(1)) ≤ 𝜆min(An(𝜌)) ≤ 𝜌max𝜆min(An(1)),
𝜌min𝜆max(An(1)) ≤ 𝜆max(An(𝜌)) ≤ 𝜌max𝜆max(An(1)).

(15)

Now putting together the inequalities in (15) and Proposition 4, we deduce that the extremal eigenvalues and the condi-
tioning have the same asymptotical behavior, as in the constant coefficient setting with Dirichlet boundary conditions.
When Neumann boundary conditions are used, the result would be true if the conjecture reported in Remark 1 will be
proven.

A deeper analysis of the whole eigenvalues distribution can be conveniently performed by referring to the quite gen-
eral and powerful GLT theory,22 whose basics have been introduced in Section 3.1.2. Let Dn(𝜌) be a multilevel block
diagonal sampling matrix according to the notions introduced in Section 3.1.2 and let An(1) be the multilevel block
Toeplitz matrix Tn(fQ1) if Dirichlet boundary conditions are used or Tn(fQ1) + Rn in the other case. Then the following facts
hold:

Fact 1 {Dn(𝜌)}n ∼GLT 𝜌 according to Item GLT 2.
Fact 2 {Rn}n ∼GLT 0 according to Proposition 2, Proposition 1, and Item GLT 2.
Fact 3 {Tn(fQ1)}n ∼GLT fQ1 according to Item GLT 2.
Fact 4 {An(1)}n ∼GLT fQ1 according to Fact 2, Fact 3, and to the ∗-algebra structure of GLT sequences that is Item GLT 3.
Fact 5 givenΔn = An(𝜌) − Dn(𝜌)An(1) a simple check shows that {Δn}n ∼GLT 0 since it is obviously true that {Δn}n ∼𝜎 0,

by invoking Proposition 1.
Fact 6 {An(𝜌)}n ∼GLT 𝜌 fQ1 as a consequence of Fact 5, Fact 1, Fact 4, and of the ∗-algebra structure of GLT sequences

that is Item GLT 3.; moreover since the matrix sequence {An(𝜌)}n is made up by Hermitian matrices, by Item
GLT 1. it follows that {An(𝜌)}n ∼𝜎,𝜆 𝜌 fQ1 .

Fact 7 {A−1
n (1)An(𝜌)}n ∼GLT 𝜌 as a direct consequence of Fact 4 and Fact 6, taking into account ∗-algebra structure of

GLT sequences that is Item GLT 3. Here, for the present preconditioned matrix sequences, we can conclude that
the eigenvalues are distributed as 𝜌, even if the involved matrices are not Hermitian. The reasoning is as follows:
A−1

n (1)An(𝜌) is similar to A−1∕2
n (1)An(𝜌)A−1∕2

n (1)which is Hermitian for any size and {A−1∕2
n (1)An(𝜌)A−1∕2

n (1)}n ∼GLT
𝜌 since the square root of a positive definite GLT matrix sequence is still a positive definite GLT matrix sequence
(see Reference 19). Therefore

{A−1∕2
n (1)An(𝜌)A−1∕2

n (1)}n ∼𝜎,𝜆 𝜌,

and by similarity, we infer that

{A−1
n (1)An(𝜌)}n ∼𝜎,𝜆 𝜌.

In the preceding series of statements we have used the notation {An(𝜌)}n for several matrix sequences. More in detail,
we stress that the main facts that is Fact 6 and Fact 7 apply to all the matrix sequences

{An(𝜌)}n ∈
{
{An(𝜌,D4)}n, {An(𝜌,D4)}n, {An(𝜌,DN3)}n, {An(𝜌,DN3)}n

}
.

In fact, the previous matrix sequences represent the variable coefficient versions of the different matrix sequences reported
in Proposition 3, for the constant coefficient case when 𝜌 ≡ 1.

4 TWO- GRID AND MULTIGRID METHODS

In this section, we concisely report few relevant results concerning the convergence theory of algebraic multigrid
methods31, with special attention to the case of multilevel block Toeplitz structures generated by a matrix-valued
symbol f .

We start by taking into consideration the generic linear system Amxm = bm with large dimension m, where Am ∈
Cm×m is a Hermitian positive definite matrix and xm, bm ∈ Cm. Let m0 = m > m1 > · · · > ms > · · · > msmin and let Ps+1

s ∈
Cms+1×ms be a full-rank matrix for any s. At last, let us denote by s a class of stationary iterative methods for given linear
systems of dimension ms.
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18 of 25 KHANH NGUYEN et al.

In accordance with Reference 32, the algebraic Two-Grid Method (TGM) can be easily seen as a stationary iterative
method whose generic steps are reported below, where we refer to the dimension ms by means of its subscript s. More
specifically xout

s = TGM(s, xin
s , bs), with xpre

s = 𝜈pre
s,pre(xin

s , bs) (the pre-smoothing iteration), rs = Asxpre
s − bs, rs+1 = Pms+1

ms
rs,

As+1 = Pms+1
ms

As(P
ms+1
ms

)H , Solve As+1ys+1 = rs+1, x̂s = xpre
s − (Pms+1

ms
)Hys+1 (the exact coarse grid correction), and finally xout

s =

𝜈post
s,post(x̂s, bs) (the post-smoothing iteration).

The resulting iteration matrix of the TGM is then defined as TGMs = V 𝜈post
s,postCGCsV

𝜈pre
s,pre where CGCs = I(s) −

(Pms+1
ms

)HA−1
s+1Pms+1

ms
As and As+1 = Pms+1

ms
As(P

ms+1
ms

)H . In this setting Vs,pre and Vs,post represent the pre-smoothing and
post-smoothing iteration matrices, respectively, and I(s) is the identity matrix at the sth level.

By employing a recursive procedure, the TGM leads to a Multi-Grid Method (MGM). Indeed the standard V-cycle can
be expressed in the following way:

xout
s = MGM(s, xin

s ,bs)

if s ≤ smin then

Solve Asxout
s = bs Exact solution

else

xpre
s = 𝜈pre

s,pre(xin
s , bs) Pre-smoothing iterations

rs = Asx
pre
s − bs

rs+1 = Pms+1
ms

rs

ys+1 = MGM(s + 1, 0s+1, rs+1)

x̂s = xpre
s − (Pms+1

ms
)Hys+1

Coarse grid correction

xout
s = 𝜈post

s,post(x̂s, bs) Post-smoothing iterations

From a computational viewpoint, it is more efficient to compute the matrices As+1 = Ps+1
s As(Ps+1

s )H in the so called
setup phase as this reduces the total costs.

According to the previous setting, the global iteration matrix of the MGM is recursively defined as

MGMsmin = O ∈ C
smin×smin ,

MGMs = V 𝜈post
s,post

[
I(s) − (Pms+1

ms
)H

(
I(s+1) −MGMs+1

)
A−1

s+1Pms+1
ms

As
]

V 𝜈pre
s,pre, s = smin − 1, … , 0.

Remark 2. In the relevant literature (see, for instance, Reference 33), the convergence analysis of the TGM splits into
the validation of two separate conditions: the smoothing property and the approximation property. Regarding the latter,
with reference to scalar structured matrices,33,34 the TGM optimality is given in terms of choosing the proper conditions
that the symbol p of a family of projection operators has to fulfill. Indeed, let Tn(f ) with n = (2t − 1), f a nonnegative
trigonometric polynomial. Let 𝜃0 be the unique zero of f . Then the TGM optimality applied to Tn(f ) is guaranteed if we
choose the symbol p of the family of projection operators such that

lim sup
𝜃→𝜃0

|p(𝜂)|2
f (𝜃)

< ∞, 𝜂 ∈(𝜃),
∑

𝜂∈Ω(𝜃)
|p(𝜂)|2 > 0, (16)

where, for d = 1, the sets Ω(𝜃) and(𝜃) are the following corner and mirror points

Ω(𝜃) = {𝜂 ∈ {𝜃, 𝜃 + 𝜋}}, (𝜃) = Ω(𝜃) ⧵ {𝜃},

respectively. In the general case of d > 1, we have

Ω(𝜽) = {𝜼 ∈ {𝜽 + 𝜋s}, s = (s1, … , sd), sj ∈ {0, 1}, j = 1, … , d}

with(𝜽) = Ω(𝜽) ⧵ {𝜽}, so that the cardinality of Ω(𝜽) and(𝜽) is 2d and 2d − 1, respectively.
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KHANH NGUYEN et al. 19 of 25

T A B L E 2 Number of multigrid iterations for matrices An(1,D4) and An(1,DN3) of increasing dimension N(n), 𝜀 = 10−6

An(1,D4) An(1,DN3)

𝝂 = 0.1

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

18 4 1 1 40 8 1 1

98 6 6 6 144 7 7 8

450 7 7 7 544 8 8 8

1922 7 7 7 2112 8 9 8

7938 7 7 7 8320 8 9 8

32,258 7 7 7 33,024 8 9 8

𝜈 = 0.2

18 5 - - 40 8 - -

98 6 6 6 144 8 8 8

450 7 7 7 544 8 9 8

1922 7 8 7 2112 8 9 8

7938 7 8 7 8320 8 9 8

32,258 7 8 7 33,024 8 9 8

𝜈 = 0.4

18 6 - - 40 9 - -

98 8 8 8 144 9 9 9

450 9 9 9 544 9 10 9

1922 9 9 9 2112 9 10 9

7938 9 9 9 8320 9 11 9

32,258 9 10 9 33,024 9 11 9

Informally, for d = 1, it means that the optimality of the two-grid method is obtained by choosing the family of projec-
tion operators associated to a symbol p such that |p|2(𝜗) + |p|2(𝜗 + 𝜋) does not have zeros and |p|2(𝜗 + 𝜋)∕f (𝜗) is bounded
(if we require the optimality of the V-cycle then the second condition is a bit stronger); see Reference 33. When discretiz-
ing differential operators, the previous conditions mean that p has a zero of order at least 𝛼 at 𝜗 = 𝜋, whenever f has a
zero at 𝜃0 = 0 of order 2𝛼, since the involved Toeplitz-like structures have a spectral symbol with a unique zero at 𝜃0 = 0
of order 2𝛼.

In our specific block setting, by interpreting the analysis given in Reference 35, all the involved symbols are
matrix-valued and the conditions which generalize (16) and are sufficient for the TGM convergence and optimality are
the following:

A) zero of order 2 at all the mirror points of the eigenvalue functions of the symbol of the projector for our matrix
sequences having common symbol fQ1 (mirror point theory33,34),

B) positive definiteness of
∑
𝜼∈Ω(𝜃) ppH(𝜼),

C) commutativity of all p(𝜼) for 𝜼 varying in the corner points.

Even if the theoretical extension to the V-Cycle and W-Cycle convergence and optimality is not given, in the subse-
quent section we propose specific choices of the projection operators numerically showing how this leads to two-grid,
V-cycle, W-cycle procedures converging optimally or quasi-optimally with respect to all the relevant parameters (size,
dimensionality, polynomial degree k).

Our choices are in agreement with the mathematical conditions set in items A), B), and C). We remark that the
violation of condition C) is discussed in the conclusion section in Reference 35.
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20 of 25 KHANH NGUYEN et al.

5 MULTIGRID PROPOSALS

According to the theory in Section 4, we define the prolongation operator as follows

Ph
2h = P ⊗ P ⊗ I2,

in the case of matrices An(1,D4) and

Ph
2h = Pc ⊗ Pt ⊗ I2,

in the case of matrices An(1,DN3). In the expressions above,

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
2
1
1
2

1
2
1
1
2

⋱ 1
2
1
1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, Pt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
1
2

1
2
1
1
2

1
2
1
1
2

⋱ 1
2
1
1
2

1
2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, and Pc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
2
1
1
2

1
2
1
1
2

⋱ 1
2
1
1
2

1
2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

Note that A2h = PTAhP equals the same FEM approximation on the coarse mesh in both cases, independently of the
boundary conditions.

Again, independently of the boundary conditions, the symbol of the prolongation operator is

p(𝜃1, 𝜃2) = (1 + cos(𝜃1))(1 + cos(𝜃2))I2.

Since the matrix-valued function p(𝜃1, 𝜃2) is a scalar function times the identity, it is evident that the quite delicate
condition C) is automatically satisfied. Furthermore, taking into account Theorem 1, since the scalar function 1 + cos(𝜃)
has a zero of order 2 at 𝜃 = 𝜋, we deduce that condition A) holds, while the positive definiteness of

∑
𝜼∈Ω(𝜃) ppH(𝜼) is also

trivially verified so that also condition B) is met.
In addition, one iteration of Gauss–Seidel as pre and post smoother is considered. In view of the analysis reported in

the previous section, we expect that our multigrid method is convergent in an optimal way that is with a convergence
speed independent of the matrix size. Table 2 confirms such a theoretical forecast.

We have performed numerical experiments also with respect to other solvers. The incomplete Cholesky factorization
preconditioning and the block circulant preconditioning with proper Strang-type correction (see Table 3), as expected,
both improve the convergence with respect to the classical conjugate gradient. However, the iteration count grows (accord-
ing to the theory) as the square root of the matrix size of the involved matrices. On the other hand, our multigrid strategy
is not only optimal (number of iterations independent of the matrix size), but also the concrete iteration count is very
small (less than 10 iterations) and the computational cost is optimal that is linear and proportional to the cost of the
matrix-vector product.

In the last numerical tests reported in Tables 4 and 5, we compare our approach both as a multigrid solver and a
one-step iteration in a preconditioned flexible conjugate gradient (FCG) to professional software (see References 36–40
and references therein). As we can see from the subsequent tables, our procedures employ fewer iterations, with a com-
parable cost per iteration, and show clear optimality. The optimality is not observed using the Notay codes. For the sake
of completeness, we again remark that the CPU timings are not reported since our codes are really basic and indeed they
would need further optimization for a fair comparison with professional and well-established codes. At any rate, even if
the CPU times are not reported, we are sure that also the cost of a single iteration is favorable in our approach both in
terms of theoretical complexity and in terms of timing. The reason is that we do not manipulate matrices when using our
prolongation/restriction operators but only polynomial symbols: whence only O(1) coefficients are used, and the related
timings are very compressed.
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T A B L E 3 Number of PCG iterations for matrices An(1,D4) and An(1,DN3) of increasing dimension N(n), 𝜀 = 10−6

An(1,D4) An(1,DN3)

𝝂 = 0.1

N(n) I IC C N(n) I IC C

18 9 5 11 40 32 9 25

98 20 8 17 144 60 15 36

450 41 12 27 544 119 28 54

1922 73 21 46 2112 231 53 90

7938 128 41 60 8320 450 104 152

𝜈 = 0.2

18 10 5 11 40 32 8 25

98 21 8 18 144 65 16 37

450 42 14 28 544 126 28 56

1922 76 24 47 2112 240 53 94

7938 133 41 61 8320 462 106 154

𝜈 = 0.4

18 11 5 11 40 33 10 25

98 24 9 19 144 70 17 39

450 44 14 31 544 134 30 61

1922 77 25 49 2112 260 58 97

7938 144 45 61 8320 497 114 163

T A B L E 4 Number of HSL-MI20 iterations (pure multigrid and AMG preconditioner37) and AMG-Notay36 for the matrices
An(1,D4) and An(1,DN3) of increasing dimension N(n), 𝜀 = 10−6, where AMG-Notay means FCG with one iteration of the AMG
designed by Notay as smoother

An(1,D4) An(1,DN3)
𝝂 = 0.1

N(n) HSL-MI20 HSL-MI20-prec AMG-Notay N(n) HSL-MI20 HSL-MI20-prec AMG-Notay
18 4 3 1 40 17 6 1
98 6 4 1 144 57 8 1
450 9 6 9 544 171 13 15
1922 20 10 10 2112 475 21 20
7938 44 17 11 8320 970 39 22
32,258 96 23 11 33,024 1149 54 24
𝜈 = 0.2
18 4 3 1 40 19 6 1
98 6 5 1 144 57 8 1
450 11 7 10 544 178 13 12
1922 20 11 13 2112 457 22 21
7938 59 18 16 8320 719 41 24
32,258 108 28 17 33,024 1369 72 27
𝜈 = 0.4
18 5 3 1 40 22 6 1
98 7 5 1 144 66 9 1
450 14 7 10 544 212 14 16
1922 37 12 13 2112 605 25 19
7938 85 21 15 8320 1389 46 21
32,258 141 31 16 33,024 1891 86 23

 10991506, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2433 by C

ochraneItalia, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 of 25 KHANH NGUYEN et al.

T A B L E 5 Number of FCG iterations with one iteration of multigrid (either Twogrid or V-cycle or W-cycle) as preconditioner for the
matrices An(1,D4) and An(1,DN3) of increasing dimension N(n), 𝜀 = 10−6

An(1,D4) An(1,DN3)

𝝂 = 0.1

N(n) Twogrid Vcycle Wcycle N(n) Twogrid Vcycle Wcycle

18 4 - - 40 6 - -

98 6 6 6 144 7 7 7

450 6 6 6 544 8 8 8

1922 6 6 6 2112 8 9 8

7938 6 6 6 8320 8 9 8

32,258 6 6 6 33,024 8 9 8

𝜈 = 0.2

18 4 - - 40 6 - -

98 6 6 6 144 7 7 7

450 6 7 6 544 8 8 8

1922 6 7 6 2112 8 9 8

7938 6 7 6 8320 8 9 8

32,258 6 6 6 33,024 8 9 8

𝜈 = 0.4

18 5 - - 40 7 - -

98 7 7 7 144 8 8 8

450 7 7 7 544 9 9 9

1922 7 7 7 2112 9 10 9

7938 7 7 7 8320 9 10 9

32,258 7 7 7 33,024 9 10 9

6 CONCLUSIONS

In this work, we have considered a problem that stems from topology optimization, which aims to find the best material
layout subject to assigned constraints. When solving the related governing equation using the FEM, a large number of
elements is employed to discretize the design domain, and an element-wise constant function approximates the coefficient
field in the considered 2D design domain. First, we have provided a spectral analysis of the coefficient matrices associated
with the linear systems stemming from the FE discretization of a linearly elastic problem, for an arbitrary coefficient field.
Based on the spectral information, we have proposed a specialized multigrid method, which turned out to be optimal, in
the sense that the (arithmetic) cost for solving the related linear systems, up to a fixed desired accuracy, is proportional to
the matrix-vector cost. The method has been tested, and the numerical results are very satisfactory, in terms of linear cost
number of iterations, which is bounded by a constant independent of the matrix size and lightly influenced by the desired
accuracy. We finally remark that the used tools are very flexible, and in particular, they do not depend on the number of
spatial dimensions of the underlying problem. Therefore, we are confident that a generalization of our spectral analysis
and the related algorithmic proposals can be obtained in a three-dimensional setting as well, even if to the price of quite
heavy notations.

Finally, what is conjectured in Remark 1 and it is numerically observed in Table 1 will be the subject of future investi-
gations, in order to complete the spectral analysis of the considered matrices, with Neumann boundary conditions on at
least one side.
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APPENDIX A. STRESS–STRAIN RELATION AND VARIOUS BOUNDS

In three-dimensions, there are six independent strain components in total at a point in an element and they are written
as a vector

𝝐 = [𝜖11 𝜖22 𝜖33 2𝜖12 2𝜖23 2𝜖31]T .

Similarly, corresponding to the six strain components above, there are also six independent stress components written in
vector form as

𝝈 = [𝜎11 𝜎22 𝜎33 𝜎12 𝜎23 𝜎31]T .

By the generalized Hooke’s law, the most general linear relation among components of the stress and strain tensor can
then be written as

𝝈 = E𝝐, (A1)

where E is a matrix that corresponds to the constant fourth-order elasticity tensor. The relationship between stresses and
strains is

𝜖11 = 1
E0
(𝜎11 − 𝜈(𝜎22 + 𝜎33)) , 𝜖12 =

𝜎12
2G
, 𝜖13 =

𝜎13

2G
,

𝜖22 = 1
E0
(𝜎22 − 𝜈(𝜎11 + 𝜎33)) , 𝜖23 =

𝜎23

2G
, 𝜖33 = 1

E0
(𝜎33 − 𝜈(𝜎11 + 𝜎22)) ,

(A2)

where 𝜈 is Poisson’s ratio, E0 is Young’s modulus, and

G = E0

2 + 2𝜈
, (A3)
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is the shear modulus.
However, in this article, we consider the two-dimensions plane stress condition that implies 𝜕

𝜕x3
= 0 and 𝜎13 = 𝜎23 =

𝜎33 = 0. Then, relations (A2) reduces to

𝜖11 =
1

E0
(𝜎11 − 𝜈𝜎22), 𝜖22 =

1
E0
(𝜎22 − 𝜈𝜎11), 𝜖33 = −

𝜈

E0
(𝜎11 + 𝜎22),

𝜖12 =
𝜎12

2G
, 𝜖13 = 0, 𝜖23 = 0.

Moreover, by combining relations for 𝜖11 and 𝜖22, we find that 𝜖33 = − 𝜈

1−𝜈
(𝜖11 + 𝜖22). Hence, the stress–strain relation can

be reduced to the stress and strain components in the x1x2-plane.

⎡
⎢
⎢
⎢⎣

𝜖11

𝜖22

2𝜖12

⎤
⎥
⎥
⎥⎦
= 1

E0

⎡
⎢
⎢
⎢⎣

1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

𝜎11

𝜎22

𝜎12

⎤
⎥
⎥
⎥⎦
. (A4)

Analogous the three-dimensional case, equation system (A4) can be inverted to obtain Hooke’s law (A1) with

E = E0

(1 − 𝜈)(1 + 𝜈)

⎡
⎢
⎢
⎢⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤
⎥
⎥
⎥⎦
.

In this case, the bulk modulus K can be expressed as

K =
(𝜎11 + 𝜎22)∕2
𝜖11 + 𝜖22

= E0

2(1 − 𝜈)
. (A5)

Also in this case, the Young (E0), shear (G), and bulk (K) moduli need to be positive. Thus, Equations (A3) and (A5) imply
that the Poisson ratio in the two dimensional plane stress setting must satisfy−1 < 𝜈 < 1. We remark that the upper-bound
in this case is larger than the upper-bound in the three dimensional setting.

Remark 3. Doing a similar analysis as above for the two-dimensional plane strain as well as in the three-dimensional
case yields that the Poisson’s ratio belongs to an open interval of the form −1 < 𝜈 < 0.5. As a consequence, the plane
stress setting allows for exotic (unphysical) materials with Poisson’s ratios larger than 0.5, which is the incompressibility
limit for the underlying physical problem (the three-dimensional case). To the best of our knowledge, there are no known
natural occurring isotropic materials for 𝜈 < 0. On the other hand, one can design isotropic material with negative Pois-
son’s ratio using theoretical analysis and simulations.41 Nevertheless as a matter of practice,42 we limit our attention to
Poisson’s ratio satisfying the following inequalities 0 ≤ 𝜈 < 0.5. However, in some more delicate circumstances, the Pois-
son ratio should lie in the interval 0.2 ≤ 𝜈 < 0.5, as proved experimentally in view of elastic properties of real isotropic
materials.43
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