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Notation

G = (V,E) a generic graph

α(G) cardinality of a maximum stable set

ν(G) size of a maximum matching

αT (G) size of a maximum total matching

χ[A] characteristic vector of a subset A ⊆ G

PSTAB(G) Stable Set Polytope

PM(G) Matching Polytope

PT (G) Total Matching Polytope

ω(G) the size of a maximum clique

χ(G) clique number of G

χ(G) chromatic number of G

χ′(G) chromatic index of G

χT (G) total chromatic number of G

1n the vector of n ones

R+ space of real, non-negative n-dimensional vectors

S the set of all stable sets of a graph

M the set of all matchings of a graph

T the set of all total matchings of a graph

K the set of all cliques of a graph
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Abstract

A total matching of a graph G = (V,E) is a subset of G such that its elements, i.e.
vertices and edges, are pairwise not adjacent. In this context, the Total Matching
Problem calls for a total matching of maximum size. This problem has been mainly
studied in the literature from a graph theoretical point of view. However, due to the
strong connection with well-known combinatorial problems of the Stable Set Problem
and the Matching Problem, we focus on an integer programming point of view. In this
Thesis, we present a polyhedral approach to the Total Matching Problem, and hence,
we introduce the corresponding polytope, namely the Total Matching Polytope. To
the best of our knowledge, we are the first to tackle the problem from a polyhedral
perspective. We introduce several families of valid inequalities: vertex-clique inequal-
ities based on standard clique inequalities of the Stable Set Polytope, congruent-2k3
cycle inequalities based on the parity of the vertex set induced by the cycle, even-clique
inequalities induced by complete subgraphs of even order, and, balanced biclique and
non-balanced lifted biclique inequalities based on complete bipartite graphs, where the
balanced family has the partitions of the vertex set of equal size, whereas the second
class each vertex partition has different size. We prove that congruent-2k3 cycle in-
equalities are facet-defining when k = 4, and for cubic graphs under certain conditions.
The non-balanced lifted biclique inequalities are obtained by a lifting procedure and are
facet-defining for bipartite graphs. While the vertex-clique, even-cliques, and balanced
bicliques inequalities are always facet-defining. In addition, we provide a first linear
complete description for trees and complete bipartite graphs. For the latter family, the
complete characterization is obtained by projecting a higher-dimension polytope onto
the original space. This leads to also give an extended formulation of small size for the
Total Matching Polytope of complete bipartite graphs.

Another problem related to the Total Matching Problem is the Total Coloring Prob-
lem. Any partition of the elements into total matchings induces a coloring of G, that
is, each total matching is assigned to a color class. Hence, a total coloring is an as-
signment of colors to vertices and edges such that neither two adjacent vertices nor
two incident edges get the same color, and, for each edge, the endpoints and the edge
itself receive different colors. In this Thesis, we propose Integer Linear Programming
models for Total Coloring problems, and we study the strength of the corresponding
Linear Programming relaxations. The total coloring is formulated as the problem of
finding the minimum number of total matchings that cover all the graph elements.
This covering formulation can be solved by a Column Generation algorithm, where the
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pricing subproblem corresponds to the Weighted Total Matching Problem. Finally, we
present computational results of a Column Generation algorithm for the Total Coloring
Problem and a Cutting Plane algorithm for the Total Matching Problem.
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Introduction

Consider a simple and undirected graph G = (V,E) and let D = V ∪ E be the set
of its elements. We say that a pair of elements a, b ∈ D are adjacent if a and b are
adjacent vertices, or if they are incident edges, or if a is an edge incident to a vertex b.
If two elements a, b ∈ D are not adjacent, they are independent. The Total Matching
Problem (TMP) asks for a subset of the elements of G which yields an independent set
of maximum size. The TMP generalizes both the Matching Problem, where we look for
an independent set of edges [22], and the Stable Set Problem, where instead we look
for an independent set of vertices [69, 68]. The first work on the TMP appeared in
[1], where the authors derive lower and upper bounds on the size of a maximum total
matching. In [57], Manlove provides a survey of the algorithmic complexities of the
decision problems related to graph parameters. The author reports that αT (G) is NP-
complete for bipartite, planar, and arbitrary graphs. Despite the strong connection with
the Matching Problem, the TMP is less studied in the operations research literature.
In particular, significant results are obtained only for structured graphs, such as cycles,
paths, full binary trees, hypercubes, and complete graphs, see [45]. This thesis aims to
present the first polyhedral study of the TMP deriving several facet-defining inequalities
for its polytope.

A problem strictly related to the TMP is the Total Coloring Problem (TCP). Given
a set of colors K = {1, . . . , k}, a k–total coloring of G is an assignment ϕ : D → K such
that ϕ(a) ̸= ϕ(b) for every pair of adjacent elements a, b ∈ D. Each subset of elements
assigned to the same color by ϕ defines a total matching, that is, a subset T ⊆ D where
the elements are pairwise independent. Hence, a k-total coloring induces a partition of
the elements in D into k disjoint total matchings. The minimum value of k such that
G admits a k-total coloring is called the total chromatic number, and it is denoted by
χT (G).

The TCP consists of finding χT (G). It is an NP-hard problem [71], which is studied
mainly in graph theory [78] for the conjecture attributed independently to Vizing [76]
and Behzad [5] that relates χT (G) to the maximum degree ∆(G) of the nodes in G. The
conjecture states that χT (G) ≤ ∆(G) + 2. Observe that ∆(G) + 1 is a lower bound,
we need ∆(G) colors for the edges incident the vertex of maximum degree and one
more color for the vertex itself. While the conjecture holds for specific classes of graphs
(e.g., see [75]), the conjecture is still open for general graphs. In particular, Vizing’s
conjecture was proved for cubic graphs, and hence, the total chromatic number of a
cubic graph is either 4 or 5. In [7], the authors pose the question of whether a cubic
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graph of Type 2 (that is, with χT (G) = ∆(G)+2) and with girth greater than 4 exists,
where the girth is defined as the length of the smallest cycle in the graph. So far,
the question is still open. The TCP generalizes both the Vertex Coloring Problem,
where we have to color only the vertices of G, and the Edge Coloring Problem, where
instead we have to color only the edges. The Vertex Coloring Problem was tackled
in the literature by many exact polyhedral approaches (for a recent survey, see [56]).
The most effective exact approaches to the Vertex Coloring Problem are based on set
covering formulations [59, 34, 55, 36], where each set of the covering represents a subset
of vertices taking the same color, corresponding hence to a (maximal) stable set of
G. Similarly, the best polyhedral approach to the Edge Coloring Problem is based on
a set covering formulation, where the edges are covered by (maximal) matchings of
G [62, 43]. An innovative alternative formulation for the Edge Coloring Problem is
based on a different ILP model based on a binary encoding of the problem variables
[44]. While in the literature there are other interesting approaches to graph coloring
problems (e.g., branch-and-cut [61], semidefinite programming [42], decision diagrams
[37], constraint satisfiability [35], memetic algorithms [51]), and other interesting types
of coloring problems (e.g., equitable coloring [47, 17], graph multicoloring [32], sum
coloring [18], selective graph coloring [19]), in this thesis, we focus on a polyhedral
approach to the TCP.

The TCP has several practical applications, for instance, in Match Scheduling [41],
Network Task Efficiency, and Math Art [45]. As an example of match scheduling, con-
sider the martial art tournament problem, which can be formulated using a tournament
graph G = (V,E) and a set of colors K defined as follows. We introduce a vertex i to
V for each player, and an edge {i, j} to E for each match. Then, we associate a color
in K to each time period of the tournament. The assignment of a color k ∈ K to an
edge {i, j} represents the scheduled time period of the match between players i and
j. The assignment of a color k ∈ K to a vertex i represents a rest time for player i

during the time period associated with color k. Given this graph formulation, no pair of
incident edges get the same color because no player can be in two matches at once; no
vertex can be incident to an edge with the same color as the vertex because no player
should have a match during his rest time; no pair of adjacent vertices should get the
same color because no two matched players can leave the stage simultaneously. Hence,
a proper total coloring of the tournament graph represents a feasible scheduling of the
tournament, and the total chromatic number represents the minimum number of time
periods to schedule the tournament.

Our contributions The main results of this thesis are summarized as follows:

10



1. The definition of families of valid inequalities that we call the vertex-clique in-
equalities based on classic clique inequalities of the Stable Set Polytope, the
congruent-2k3 cycle inequalities, which are based on the parity of the cycle, and
the even-clique inequalities, which are based on complete graphs of even cardinal-
ity, the balanced biclique inequalities and non-balanced lifted biclique inequalities.
We prove that the vertex-clique and even-cliques are always facet-defining, while
the congruent-2k3 cycle inequalities are facet-defining when k = 4. In particular,
we show that the separation problem of a congruent-2k3 cycle can be solved with a
network flow model or equivalently, using a sequence of shortest path problems in
an auxiliary directed graph. For the latter family of biclique inequalities, we dis-
tinguish between balanced biclique inequalities, which are always facet-defining,
and the non-balanced lifted biclique inequalities, obtained by a lifting procedure
and facet-defining for bipartite graphs.

2. Complete description of the Total Matching Polytope for trees and complete bi-
partite graphs. For the latter class, we introduce an extended formulation of
polynomial size. By projecting such formulation onto the original space, we de-
rive the original description of the Total Matching Polytope for complete bipartite
graphs. In particular, an irredundant description is provided by characterizing
the extreme rays of the associated projection cone.

3. A set covering formulation of the Total Coloring Problem based on maximal
total matchings, which can be solved by column generation, and which yields a
lower bound at least as strong as the lower bound obtained with standard ILP
formulation.

4. Computational results on the strength of the set covering relaxation with respect
to the assignment relaxation, and on the computational strength of the valid
inequalities introduced for the Total Matching Polytope.
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1. Mathematical Background

1.1 Mathematical Preliminaries

In this Chapter, we report classical results on polyhedral theory as a self-contained
survey. The results present in this chapter can be found in [13]. In particular, we recall
polyhedral tools which reveal to be useful throughout the Thesis. First, we deal with
polyhedra.

Definition 1. A polyhedron is a set of the form

P := {x ∈ Rn | Ax ≤ b}

where A ∈ Rm×n, b ∈ Rn.

We refer to a polytope if P is bounded. Polyhedra are convex set.

Definition 2. A set S ⊆ Rn is convex if for any x, y ∈ S and any α ∈ [0, 1], αx+(1−
α)y ∈ S

Given a set S ⊆ Rn the convex hull of S, denoted with conv(S) is the smallest convex
set containing S. Given a polyhedron P , we recall the notion of valid inequalities.

Definition 3. An inequality cTx ≤ δ is valid for P if it is satisfied by every point in
P .

Definition 4. A face F of a polyhedron P is of the form

F := P ∩ {x | cTx = δ}

for a valid inequality cTx ≤ δ of P .

Given a polyhedron P , we say that a face F is a facet of P if it is inclusion-wise
maximal, that is, F is not contained in any other faces.

Proposition 1. Let P be a polyhedron, the following statements are equivalent:

• F is a facet of P .

• dim(F ) = dim(P )− 1.

13



In order to describe the inequalities representing a polyhedron P , we are mainly
interested in finding an irredundant description of it. It results that such inequalities
are associated with maximal faces of P .

Theorem 1. Let P ⊆ Rn be a nonempty polyhedron.

• For each facet F of P , at least one of the inequalities defining F is necessary in
any description Ax ≤ b of P .

• Inequalities defining faces of dimension less than dim(P ) − 1 are not needed in
the description of P and can be removed.

In order to derive max-min relations we make use of the following two fundamental
theorems in folklore’s linear programming.

Theorem 2 (Weak Duality Theorem). Given a matrix A ∈ Rn×m and vectors c ∈
Rn, b ∈ Rm let P := {x ∈ Rn | Ax ≤ b} ≠ ∅ and D := {u ∈ Rm | uTA ≥ 0} ≠ ∅.
Consider the problems max{cTx | x ∈ P} and min{bTy | y ∈ D}. Then,

cTx ≤ bTy

Theorem 3 (Strong Duality Theorem). Given a matrix A ∈ Rn×m and vectors c ∈
Rn, b ∈ Rm let P := {x ∈ Rn | Ax ≤ b} ≠ ∅ and D := {u ∈ Rm | uTA ≥ 0} ≠ ∅. Then

max{cTx | Ax ≤ 0, x ≥ 0} = min{bTy | uTA = c, u ≥ 0}

Proposition 2 (Farkas’ Lemma). A system of linear inequalities Ax ≤ b is infeasible
if and only if the system uTA = 0, u ≥ 0 is feasible.

A vector x ∈ Rn is a conic combination of vectors u1, u2, . . . , ur if there exist scalar
α1, α2, . . . , αr ≥ 0 such that

x =
k∑

i=1

αiui,

Definition 5. A set C ⊆ Rn is a cone if 0 ∈ C and for every x ∈ C and c ≥ 0, cx also
belongs to C. In other terms, C is a cone if and only if it contains the origin and, for
every x ∈ C \ {0}, C contains the half line starting from the origin and passing through
x.

In particular, a cone C is convex if every conic combination of vectors in C lies
on C. Given a nonempty set S ⊆ Rn, we denote as cone(S) the smallest convex cone
containing S. From now on, we refer to a cone C as a convex cone.

14



Definition 6. A polyhedral cone is a set of the form C := {x ∈ Rn | Ax ≤ 0}, that is,
it is the intersection of finitely many halfspaces containing the origin on their boundary.

Theorem 4 (Minkowski-Weyl Theorem). For a set C ⊆ Rn the following two condi-
tions are equivalent:

• There exists a matrix A such that C = {x ∈ Rn | Ax ≤ 0}.

• There exists a matrix R such that C = {x ∈ Rn | x = Ru for some u ≥ 0}.

In other words, the Minkowski-Weyl Theorem states that a convex cone is finitely
generated, that is, it is the conic combination of a finite number of vectors, if and only if
it is a polyhedral cone. We write as C = cone(r1, r2, . . . , rk) the cone generated by the
vectors u1, u2, . . . , ur, namely extreme rays of C. Thus, we are interested in identifying
the generators of a cone. The next Theorem characterizes the extreme rays of a cone.
A pointed cone is a cone without lines.

Theorem 5. Let C := {x ∈ Rn : Ax ≤ 0} be a pointed cone, and let ū be a ray of C.
The following statements are equivalent.

• ū is an extreme ray of C,

• ū satisfies at equality n− 1 linearly independent inequalities of Ax ≤ 0,

• ū is not a proper conic combination of two distinct rays in C.

We have two equivalent ways to represent a polyhedron. We refer to the V -
description of a polyhedron if it can be expressed as a convex combination of its vertices,
whereas H-description is the intersection of finitely many halfspaces. Given a two sub-
sets V,Q ⊆ Rn the Minkowski sum is the set P := V + U = {x ∈ Rn | x = v + u, v ∈
V, u ∈ U}

Theorem 6 (Minkowski-Weyl Theorem Polyhedra). For a subset P ⊆ Rn the two
following conditions are equivalent:

• P is a polyhedron, that is, there exists a matrix A such that P can be expressed
as P := {x ∈ Rn | Ax ≤ b},

• There exists v1, v2, . . . , vp ∈ Rn, r1, r2, . . . , rq ∈ Rn such that P can be written as
the sum P = conv({v1, v2, . . . , vp}) + cone({r1, r2, . . . , rq}).

Now, we turn to the question of when a polyhedron has only integral vertices. This
ensures that the corresponding LP problem over the polyhedron has an optimal integral
solution when it is finite. We introduce the following definition.

15



Definition 7. A polyhedron P is integral if every nonempty face contains an integral
point.

As a consequence, if we optimize over an integral polyhedron P we obtain integrality
for free. In fact, let z∗ = max{cTx | x ∈ P} which is associated to the face F := {x ∈
P | cTx = z∗}. This holds for every face, in particular, there exists an optimal solution
that is integral

max{cTx | x ∈ P} = max{cTx | x ∈ P ∩ Zn}

We resort to the following Theorem.

Theorem 7. Let P := {x ∈ Rn | Ax ≤ b} be a rational pointed polyhedron. Then, the
following statements are equivalent.

• P is an integral polyhedron.

• The LP max{cTx : x ∈ P} has an integral optimal solution for every c ∈ Rn

where the value is finite.

• The LP max{cTx : x ∈ P} has an integral optimal solution for every c ∈ Zn

where the value is finite.

• P = conv(P ∩ Zn).

It is useful to focus on the structure of the constraint matrix defining a polytope.
When the matrix has a specific form, the vertices of the polytope are integral. This
fact occurs when we deal with totally unimodular matrices.

Definition 8. A matrix A is said to be totally unimodular if every square submatrix
has the determinant ∈ {0,−1,+1}.

We recall the most important related to the concept of totally unimodular matrix

Theorem 8. [38]Let A be a m× n totally unimodular matrix and b ∈ Zm. Then,

P = {x ∈ Rn | Ax ≤ b}

is an integral polytope.

Ghouila-Houri in [30] proposes a characterization of totally unimodular matrices in
terms of partition of rows and columns of the corresponding matrix

Theorem 9. The following statements are equivalent

• A is totally unimodular
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• For every J ⊆ N = {1, 2, . . . , n} there exists a partition of J1, J2 of J such that∣∣∣∣∣∑
j∈J2

aij −
∑
j∈J1

aij

∣∣∣∣∣ ≤ 1

Corollary 1. The following statements are equivalent

• A is totally unimodular.

• AT is totally unimodular.

• [A|I] is totally unimodular.

Consider the problem {cTx | Ax ≤ b}, where A and b are rational and c ∈ Zn.
A linear system Ax ≤ b, x ≥ 0 is called totally dual integral, abbreviated as TDI, if
for every integral vector c ∈ Zn, the LP problem max{cTx | x ∈ Ax ≤ b} has a dual
problem that admits an integer optimal solution. Thanks to Edmonds and Giles we
have the following characterization.

Theorem 10. [23] The linear system Ax ≤ b, x ≥ 0 is TDI and b ∈ Zm, then the
polyhedron P := {x ∈ Rn

+ | Ax ≤ b} is integral.

Valid inequalities can be made stronger by a lifting procedure. Specifically, the
extension of a valid inequality for a polytope P to a valid inequality for a higher
dimensional polytope Q is called lifting. Consider a mixed integer set S := {x ∈
Zn

+ × Rq
+ : Ax ≤ b}. Given a subset T of N := {1, ..., n + q}, and a valid inequality∑

j∈C
αjxj ≤ β for conv(S) ∩ {x ∈ Rn+q : xj = 0, j ∈ N \ T}, an inequality

n+q∑
j=1

αjxj ≤ β

is a lifting of
∑
j∈T

αjxj ≤ β if it is valid for conv(S).

Proposition 3. Let S ⊆ {0, 1}n such that S ∩ {x : xn = 1} = ∅, and let
n−1∑
i=1

αixi ≤ β

be a valid inequality for S ∩ {x : xn = 0}. Then

αn := β −max

{
n−1∑
i=1

αixi : x ∈ S, xn = 1

}

is the largest coefficient such that
n−1∑
i=1

αixi + αnxn ≤ β is valid for S. Furthermore, if
n−1∑
i=1

αixi ≤ β defines a d-dimensional face of conv(S) ∩ {xn = 0}, then
n∑

i=1

αixi ≤ β

defines a face of conv(S) of dimension at least d+ 1.
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1.2 Graph Theory

In this part, we provide graph-theoretical notions and notations used throughout the
thesis. A graph G = (V (G), E(G)) is a pair G = (V (G), E(G)), where V (G) is a set and
E(G) ⊆

(
V (G)
2

)
. The elements of V (G) are called vertices (or equivalently nodes), and

the elements of E(G) are called edges, for simplicity we will write a graph as G = (V,E)

and D = V ∪ E as the whole set. Given a graph G = (V,E), throughout the thesis,
define n = |V | and m = |E|. We will denote an edge e = {v, w} ∈ E, where v and w

are the end-points of e. Two vertices v and w are adjacent if e = {v, w} ∈ E and two
edges e1 and e2 are incident if they share a vertex. For a vertex v ∈ V , we denote by
δ(v) the set of edges incident to v and by NG(v) the set of vertices adjacent to v. The
degree of a vertex is |δ(v)|, in particular, we denote by ∆(G) := max{|δ(v)| | v ∈ V }.

If two elements a, b ∈ D are not adjacent, they are independent. An element a ∈ D

is said to be covered by a set C ⊆ D if it is adjacent to at least one element of C.
A stable set is an independent set of vertices, instead, a matching is an independent
set of edges. A total matching is a subset T ⊆ D where the elements are pairwise
independent. A subset C ⊆ V ∪ E is a total cover of G if it covers all the elements of
G. In particular, a matching of G is perfect, if it contains |V (G)| /2 edges.

It is possible also to have more than one edge between two vertices, or, to have an
edge starting and ending at the same vertex, let e1 and e2 be two edges. e1 and e2 are
parallel if e1 = {u, v} ∈ E and e2 = {u, v} ∈ E for two vertices u and v, and, an edge
forms a loop if it starts and ends at the same vertex. A graph G is called simple if it
does not contain loops.

Graphs considered in this thesis are simple. A graph G is k-regular if |δ(v)| = k

for all v ∈ V ; if k = 3, G is called cubic. U is a subgraph of G if V (U) ⊆ V (G)

and E(U) ⊆ E(G). A subgraph U is said to be induced if E(U) consists of all edges
of G having both end-points in U ; in particular, U is called a spanning subgraph if
V (U) = V (G). If U ⊆ V , we denote by G[U ] the induced subgraph having U as set
of vertices and we use the notation E[U ] to indicate the edges of G[U ]. We define
δ(U) := {e ∈ E | e = {u, v}, u ∈ U, v ∈ V \ U} a cut of G.

A path of length n ∈ N is a graph P = (V,E) such that V = {v0, . . . , vn}, E =

{v0v1, . . . , vkvk+1, . . . , vn−1vn}, where vi ̸= vj, for i ̸= j. A cycle C is a connected graph
in which every vertex has degree 2. A cycle of length n ∈ N is a graph Cn that can be
written as P ∪ {vn, v0} where P = v0v1 . . . vn is a path.

Given a subset W ⊆ V , the graph G \ W denotes the graph obtained by deleting
all vertices in W . We write G \ {v} as the graph obtained with the deletion of vertex
v. A graph G is connected if, for every pair of vertices, there is a path connecting
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them. A cutset of G is a set X ⊆ V (G) of the form G \ X is not connected. If X

is a cutset, then G \X can be partitioned into connected components. We refer to an
odd connected component if the cardinality is odd, and even, otherwise. A k-regular
spanning subgraph of G is called a k-factor, thus G has a 1-factor if G has a perfect
matching.

A clique K ⊆ V (G) is a graph in which every vertex in K is pairwise adjacent.
We denote as ω(G) the size of a maximum clique in G. The complement of a graph
G is the graph G = (V ,E) having the same vertex set of V (G) and there is an edge
e = {v, w} ∈ E if and only if v and w are not adjacent in G. The line graph L(G) of
a graph G has the vertex set the edges of G, and two vertices are adjacent in L(G) if
and only the corresponding edges in the original graph are incident to the same vertex.
A graph is chordal if every cycle of length greater or equal to four has a chord, that
is, there is an edge connecting two non-consecutive vertices of the cycle. An acyclic
graph is called a forest. If the forest is connected then the graph is a tree. We recall a
structural Theorem to characterize the class of Trees.

Theorem 11. [21] A connected graph with n nodes is a tree if and only if it has n− 1

edges.

A graph G = (V,E) is bipartite if the V can be partitioned into two sets A and B

such that A and B form stable sets, that is, no edge occurs in the same set of vertices.
The following theorem provides a complete characterization of bipartite graphs.

Theorem 12. [21] A graph is bipartite if and only if G contains no odd cycles.

We conclude the Chapter by introducing the following parameters which occur fre-
quently throughout the thesis. We define αT (G) := max{|T | : T is a total matching},
ν(G) := max{|M | : M is a matching} and α(G) := max{|S| : S is a stable set}.
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2. Review of known results

This Chapter aims to give an overview of known results for the Stable Set and Matching
problems, since the Total Matching Problem is strictly related to these ones. We
recall relevant polyhedral properties of the associated polytopes, namely the Stable
Set Polytope and the Matching Polytope.

2.1 Stable Set Polytope and Matching Polytope

Specifically, we denote by PM(G) the Matching Polytope, that is, the convex hull of all
incidence vectors of matchings of a graph G. Thanks to Edmonds [22], we have a first
complete linear description of the Matching Polytope, which can be described by the
following inequalities{

y ∈ R|E|
+ :

∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V, (2.1)

∑
e∈E[U ]

ye ≤
|U | − 1

2
∀U ⊆ V, |U | is odd

}
. (2.2)

The inequalities (2.2) are called blossom inequalities and are induced by subgraphs of
odd cardinality. Although the number of blossom inequalities is exponential in the size
of the graph, for any point not lying on PM(G), the Padberg-Rao separation algorithm
[72] gives a polynomial time algorithm for finding a violated blossom inequality. If the
constraint (2.1) is modified with the equality we have the Perfect Matching Polytope
denoted by PPM(G).

The Stable Set Polytope is defined as the convex hull of all incidence vectors of
stable sets. Thus, given a stable set S, the incidence vector of S is the following vector
in the |V |-dimensional space.

χ[S] =

{
xv = 1 if v ∈ S ⊆ V,

xv = 0 otherwise.

Then we define the Stable Set Polytope as

PSTAB(G) = conv{χ[S] | S ⊆ V, S is a stable set}

The Stable Set Problem is an NP-hard problem in general, thus it is most unlikely to
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derive a compact description of it. On the other hand, for certain classes of graphs, many
valid and facet-defining inequalities have been investigated for the Stable Set Polytope,
see [46, 66, 11, 65, 25, 69, 29, 68, 26, 27]. In particular, complete linear descriptions have
been obtained for classes of graphs as line graphs and quasi-line graphs, see [25, 22].
We will give an overview of the most well-known class of inequalities that characterize
the Stable Set Polytope. The basic formulation for the Stable Set Problem is based on
the edge inequalities

α(G) = max
∑
v∈V

xv

xi + xj ≤ 1 ∀e = {i, j} ∈ E,

xv ∈ {0, 1} ∀v ∈ V.

It is natural to consider its continuous relaxation

PFSTAB(G) :=

{
x ∈ [0, 1]|V | | xi + xj ≤ 1,∀e = {i, j} ∈ E(G)

}
this polytope is known as the Fractional Stable Set Polytope. While it is easy to
optimize over PFSTAB(G), this provides very weak upper bounds on α(G). In fact,
the vector x∗ = 1T 1

2
yields an optimal solution to the problem. On other hand, A

relevant fact about the structure of PFSTAB(G) is that the vertices of this polytope are
half-integral.

Theorem 13. [63] The vertices of PFSTAB(G) lie on {0, 1
2
, 1}.

Proof. Let x be a vertex of PFSTAB(G) and define the two following subsets:

U :=

{
vi | 0 < xi <

1

2
, 1 ≤ i ≤ n

}
W :=

{
wj |

1

2
< xj < 1, 1 ≤ j ≤ n

}
We aim to prove that the sets are empty. Define the two vectors

zi :=


xi − δ if i ∈ U,

xi + δ if i ∈ W,

xi otherwise.
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ti :=


xi + δ if i ∈ U,

xi − δ if i ∈ W,

xi otherwise.

where δ > 0 can be chosen arbitrarily small enough in such a way that z, t ∈ PFSTAB.
Assume now that U and W are not both empty. Observe that, by construction, the
vertex x can be written as x = z+t

2
. We show now that both the vectors z and t satisfy

the inequalities characterizing PFSTAB. First, by definition each component of z and t

is non-negative. Because zi+ zj ≤ 1 for every edge e = {i, j}, the unique possible cases
are listed as follows

• zi + zj − 2δ, if (i, j) ∈ U × U

• zi + zj, if (i, j) ∈ U ×W or (i, j) ∈ W × U , or (i, j) /∈ U ×W

• zi + zj − δ, if i /∈ (U ∪W ), j ∈ V , or if j /∈ (U ∪W ), i ∈ V

• zi + δ, if i ∈ U, j /∈ U ∪W , or j ∈ U, i /∈ U ∪W

The same procedure holds for the vector t, thus the vectors satisfy the edge inequalities.
Since x is an extreme point and it is different from z and t, this implies that U = W =

∅.

Nemhauser and Trotter provided a graphical characterization of the vertices for
the Fractional Stable Set Polytope induced by subgraphs of G. The next Proposition
establishes the structure of the vertices for PFSTAB(G) in correspondence to specific
subgraphs of G.

Proposition 4. Let U ⊆ V and suppose that x ∈ PFSTAB(G) is a vertex defined by
xu = 1

2
,∀u ∈ U . Then, x is a vertex if and only if G[U ] contains an odd cycle.

2.1.1 Matching Polytopes

Let PFPM(G) be the Fractional Matching Polytope defined by the following constraints:

PFPM(G) :=

{
y ∈ R|E| :

∑
e∈δ(v)

ye = 1 ∀v ∈ V,

ye ≥ 0 ∀e ∈ E

}
.

Analogously to the Fractional Stable Set polytope, the vertices of this polytope reflect
the same behavior.
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Theorem 14. y ∈ PFPM(G) is a vertex if and only if ye ∈ {0, 1
2
, 1}. Moreover, ye = 1

2

form node disjoint odd-cycles.

Proof. “ ⇐= ” First, a vertex can be seen as the unique intersection between a
supporting hyperplane H and the polytope itself, i.e. {y′} = PFPM(G) ∩H. Suppose
we are given a point y′ which is half-integral. Define the weights of a supporting
hyperplane H as αe = −1, if y′e = 0, αe = 0, if y′e > 0 and define the following
set R := PFPM(G) ∩ {αTy = 0}. We want to prove that R contains a unique point
corresponding to a vertex of PFPM(G). On the contrary, suppose we have another
point ỹ ̸= y′ such that ỹ ∈ R. Define the set of edges E0 := {e ∈ E | ye = 0} and
E1 := {e ∈ E | ye > 0}. Since ỹe ∈ R, this implies that ỹe = 0,∀e ∈ E0 and y′e = ỹe =

1
2

for every edge that lie on a cycle. Observe that any other edge that does not belong to
a cycle must be set to 1. This proves that y′e = ỹe.

“ =⇒ ” Suppose that we have a vertex y ∈ PFPM(G). We apply a transformation
of G into a new graph G′ in such a way that if e = {u,w} ∈ E, then the new nodes
u′, u′′, w′, w′′ are the end-points of e′ = {u′, w′′} ∈ E(G′) and e′′ = {u′′, w′} ∈ E(G′).
Hence, an edge e in G corresponds to edges e′ and e′′ in G′. Note that ye = 1

2
(ye′ +ye′′).

Observe that the graph G′ is bipartite by construction. Thus, this implies that incidence
vectors of matchings are the vertices of the matching polytope, i.e. it has only 0, 1

vertices. If it corresponds to an odd cycle, exactly one of ye′ and ye′′ will be set to one.
Because ye =

1
2
(ye′ + ye′′), it is necessarily that ye =

1
2
. Now, it is easy to prove that if

ye =
1
2
, it must be part of an odd cycle. This concludes the proof.

Now we start the treatment of the complete linear descriptions for the Matching
Polytope, and, for the Perfect Matching Polytope.

Theorem 15. For any graph G the PPM(G) coincides with:

Q :=

{
y ∈ R|E|

+ :
∑
e∈δ(v)

ye = 1, ∀v ∈ V, (2.3)

∑
e∈δ(U)

ye ≥ 1, ∀U ⊆ V, |U | is odd
}
. (2.4)

Proof. It is easy to verify that PPM(G) ⊆ Q, since the characteristic vector of a perfect
matching satisfies the constraints in Q. Now, we prove that Q ⊆ PPM(G). To this end,
assume that G is a minimum counterexample to the statement, where G is chosen to be
one that minimizes |V |+ |E|. Hence, there exists a point y ∈ Q, but y /∈ PPM(G). By
minimality, G must be a connected graph and 0 < ye < 1,∀e ∈ E. In fact, suppose that
G is not connected, then there are at least two connected components with fewer edges
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than G and thus one of its components represents a counterexample, a contradiction.
If ye = 0, then we can delete e, yielding a smaller counterexample G \ e. In the other
case, if ye = 1 for an edge e = {u, v}, the edges variables incident to end-points u and
v must set to zero, thus the edge e must be disconnected from the graph. But also in
this case G\{u, v} creates a counterexample. We prove then that |E(G)| ≥ |V (G)|+1.
If G contains a vertex v of degree 1, then the unique edge e incident to v must satisfy
ye = 1, a contradiction. Then suppose that every vertex of G has degree 2, in this
case, G must be a disjoint union of cycles. We can assume that the cardinality of
each cycle is even, for otherwise Q = ∅ and consequently PPM(G) = ∅. So, let C an
even cycle, then there are two perfect matchings M1 and M2 in C, and there exists
α ∈ (0, 1) such that y = αχ[M1] + (1 − α)χ[M2], a contradiction to the fact that y

is an extreme point. This implies that there exists a vertex of degree strictly greater
than 2 and therefore condition |E| > |V | holds. Since y is a vertex of Q it satisfies |E|
linearly independent constraints at equality. Notice that this system of equalities must
be selected from the constraints in Q. Since |E| > |V | and by what we argued before
the non-negative constraint must not be satisfied at equality, this imposes that there
must exist at least an odd component U ⊆ V such that

∑
e∈δ(U)

ye = 1. Now, look at

the partition resulting from the cut (U,U). Denote by H ′ and H ′′ the graphs obtained
by contracting respectively G \ U to a single vertex w, and G \ U to a single vertex
w′. Define the corresponding new edges variables y′e ∈ RE(H′) and y′′e ∈ RE(H′′) the
restriction of y with respect to the edges that are still present in the contracted graphs.
Notice that by construction |δ(U)| = |δ(w)| = |δ(w′)|, hence

∑
e∈δ(w)

y′e =
∑

e∈δ(U)

ye = 1,

this certifies that all the vertex degree and blossom constraints are satisfied showing
that y′e ∈ PPM(H ′) and y′′e ∈ PPM(H ′′), by inductive hypothesis. Hence, y′ and can
be written as a convex combination of a list of perfect matchings in H ′, and y′′ as a
convex combination of other perfect matchings in H ′′. Note that y is rational since it
is a point of the polytope determined by the inequalities (2.3) − (2.4), so y′ and y′′ are
also rational points. Thus, there exists an integer r such that

y′ =
1

r

r∑
i=1

χ[M ′
i ]

y′′ =
1

r

r∑
i=1

χ[M ′′
i ]

where M ′
1,M

′
2, . . . ,M

′
r are perfect matchings in H ′ and M ′′

1 ,M
′′
2 , . . . ,M

′′
r perfect match-

ings in H ′′. Now, since w belongs to every perfect matchings and using
∑

e∈δ(w)

ye = 1,
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we have that ∀e = {w, v}, v ∈ U , e appears in exactly ry′e = ry′′e = rye perfect match-
ings among M ′

1,M
′
2, . . . ,M

′
r, and similarly in r perfect matchings of M ′′

1 ,M
′′
2 , . . . ,M

′′
r .

Hence, for every edge e ∈ δ(U) there exist perfect matchings M ′
i and M ′′

i sharing ex-
actly the edge e. Therefore M ′

i ∪M ′′
i forms a perfect matching in G. Assume w.l.o.g.

that Mi := M ′
i ∪M ′′

i , i = 1, 2, . . . , r are perfect matchings in G. This implies that:

y =
1

r

r∑
i=1

χ[Mi]

This concludes the proof, since we have a contradiction to our assumption.

We use the Theorem 15 to show a complete polyhedral characterization of the
Matching Polytope.

Theorem 16. For any graph G, PM(G) is completely determined by:

PM(G) :=

{
y ∈ R|E|

+ :
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V, (2.5)

∑
e∈E[U ]

ye ≤
|U | − 1

2
∀U ⊆ V, |U | is odd

}
. (2.6)

Proof. Construct a new graph H ′ = (V ′, E ′) as follows. Take a copy G′ = (V ′, E ′) of
G and add edges e = {v, v′} such that v ∈ V and v′ is the copy of v in G′. For every
point x ∈ PM(G) we construct a vector y ∈ PPM(H) such that y has weight xe for
every edge e ∈ E, and the corresponding copy e′ of the edge e, for each edge e = {v, v′}
is defined as y′e := 1−

∑
e∈δ(v)

xe. It is easy to see that y belongs to PPM(H). In fact, by

construction of y we have
∑

e∈δ(v)
ye =

∑
e∈δ(v′)

ye =
∑

e∈δ(v)\{v,v′}
ye + yvv′ = 1. Then, we have

to check that y satisfies also the third constraint. Consider a subset U ⊆ V (H) of odd
cardinality, and let W = U ∩V and X ′ = U ∩V ′, where X ′ is the copy of X in V ′. It is
easy to see that

∑
e∈δ(U)

ye ≥
∑

e∈δ(W\X)

ye +
∑

e∈δ(X′\W ′)

ye. Hence, we may assume that |W |
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is odd and thus X ′ = ∅. Then, we obtain the following relations.∑
δ(U)

ye =
∑

e∈δ(W )

ye

=
∑

e∈δ(v),v∈W

ye − 2
∑

e∈E(G[W ])

ye

= |W | −
∑

e∈E(G[W ])

ye ≥ |W | − 2
|W | − 1

2

≥ 1

We have verified that y ∈ PPM(H), and therefore x lies to PM(G). This concludes the
proof.

It is worthy of mention that, by using a LP duality technique, we can derive a min-
max relation in the following formula. Let O(V (G)) be the set of all subgraphs of G of
odd cardinality.

Corollary 2. Let G = (V,E) be a graph and w ∈ R|E| be a weighted function on the
edges of G. Then, the maximum weight of a matching is equal to

min
∑
v∈V

yv +
∑

u∈O(V )

zU
|U | − 1

2

s. t. yv + yw +
∑

U∈O(V ):e∈U

zU ≥ we, ∀e = {v, w} ∈ E,

where y ∈ R|V |
+ and z ∈ R|O(V )|

+

Cunningham and Marsh,in [72], show that the defining inequalities of the matching
polytope are totally dual integral. Thus, if we restrict the value of w to be integral,
this allows defining the corresponding dual values y and z integers accordingly. Later
on, Edmonds and Pulleyblank found a minimal description of the Matching Polytope
by characterizing all the facets. They used the following concept: A graph H is called
hypomatchable if, for all nodes v of H, the subgraph H \{v} admits a perfect matching.

Theorem 17. [24] If H = (V,E) is a 2-connected hypomatchable graph, then

∑
e∈E(H)

ye ≤
|V | − 1

2

is a facet of PM(H).
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Furthermore, Edmonds and Pulleyblank in [24] characterized which hypomatchable
subgraphs of G produce facets of PM(G). Thus we can restate the Theorem in terms of
all facet-defining inequalities characterizing PM(G). We show in the next Proposition
when the degree constraints are facet-defining for PM(G).

Proposition 5. An inequality
∑

e∈δ(v)
ye ≤ 1 is a facet of PM(G) if and only if |δ(v)| ≥ 3,

or v does not belong to a triangle.

Proof. “ ⇐= ” Suppose NG(v) = {u,w} and that {u,w} ∈ E. Then every characteris-
tic vector that satisfies

∑
e∈δ(v)

ye = 1, also must satisfy at equality the blossom inequality

associated with S = {u, v, w}. But the reverse is not true. Thus the face induced by
the edge inequality is not maximal.

“ =⇒ ” For each edge e ∈ δ(v), let Me = {e}, and for each edge e ∈ E \ δ(v), let
Me = {e, f}, where f is an edge in δ(v) not incident to e. Me is a matching in G for
all e ∈ E. The set of incidence vectors of Me, e ∈ E, are affinely-independent, so by
definition

∑
e∈δ(v)

ye ≤ 1 induces a facet of PM(G).

The following Lemma turns out to be helpful in proving the next Proposition.

Lemma 1. Let G = (V,E) be a 2-vertex connected graph and hypomatchable graph,
and let W be a proper subset of V with |W | ≥ 3 odd. Then G has a matching of size⌊
1
2
|V |

⌋
containiting less edges that

⌊
1
2
|W |

⌋
.

Proposition 6. If H ⊆ G is a 2-connected hypomatchable subgraph of G, then

∑
e∈E(H)

ye ≤
|V (H)| − 1

2
, (2.7)

is a facet of PM(G).

Proof. Let F be the face associated with an inequality of type (2.7) and F ′ be a facet.
By hypothesis F ′ must be one of the faces induced by the inequalities describing PM(G),
that is, F is one of the inequalities of type (2.5). Suppose that F ⊆ F ′. First, assume
that F ′ is determined by ye = 0 for some e ∈ E. If e is not covered by any vertex in H,
there is a v ∈ H such that e is not incident to H \ {v}. Let M be a perfect matching of
G[H] \ {v}. Then χ[M ∪ {e}] ∈ F \ F ′, a contradiction. If e is covered by H, choose v

incident to the edge e and, let M be a perfect matching of G[H] \ {v}. Let f ∈ M such
that e and f share a vertex and define M ′ := (M \ {f}) ∪ {e}. Then χ[M ′] ∈ F \ F ′,
a contradiction. Next assume that F ′ is determined by

∑
e∈δ(v)

ye = 1 for some v such
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that |δ(v)| ≥ 3. Then, as G[H] is hypomatchable, there exists a matching M with
|M ∩E[H]| = |H|−1

2
and |M ∩ δ(v)| = 0. So χ[M ] ∈ F \F ′, a contradiction. If H ′ ⊈ H,

there is a matching M with |M ∩ E[H]| =
⌊
1
2
|H|

⌋
missing at least two vertices in H ′

and hence |M ∩ E[H ′]| <
⌊
1
2
|H ′|

⌋
. Then χ[M ] ∈ F \ F ′, a contradiction. So H ′ ⊂ H.

By Lemma 1, G[H] has a matching M of size
⌊
1
2
|H|

⌋
such that less than

⌊
1
2
|H ′|

⌋
edges

in M are spanned by H ′. Then χ[M ] ∈ F \ F ′, a contradiction.

2.1.2 Class of valid inequalities for the Stable Set Polytope

In the following, we provide an overview of some of the most relevant valid inequalities
studied for PSTAB(G). For a clique K of a graph G the following inequality reads as
follows ∑

v∈K

xv ≤ 1, (2.8)

it is clearly valid for PSTAB(G) since for any stable set S of a graph G we have |S∩K| ≤
1. This family of inequalities known as clique inequalities was first introduced by
Padberg, see [66]. The clique inequalities generalize the edge inequalities, and moreover,
they are facet-defining if and only if the corresponding clique K is maximal. In the
same paper, Padberg introduced the so-called odd-hole inequalities which are based
on induced subgraphs that correspond to odd-holes, and the odd-antihole inequalities,
which refer to induced subgraphs that are the complement of an odd-hole. Since it can
be easily observed that α(G[H]) = |H|−1

2
, and similarly α(G[H]) = 2 for an induced

odd-hole H ⊆ G, the corresponding odd-hole inequality reads as

∑
v∈H

xv ≤
|H| − 1

2
,

and the odd-antihole is written as follows∑
v∈H

xv ≤ 2.

It is proven to be useful the process of lifting a valid inequality in the context of the
Stable Set Polytope. The sequential lifting procedure is used to derive the coefficients
of facet-defining inequalities for PSTAB(G) of a graph G, starting with an inequality
that it is facet-defining for the Stable Set Polytope of an induced subgraph of G. Let∑
v∈H

avxv ≤ b be a facet-defining inequality of PSTAB(H) where H ⊆ V , and consider a
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(a) (b)

Figure 2.1: (a) An odd-hole C7 and (b) the complement of C7.

vertex u ∈ V \ H. The coefficient for the vertex u is chosen by solving the following
optimization problem:

au = b−max
∑

v∈V \H

avxv

x ∈ PSTAB(G[H ∪ {u}]),
xu = 1.

Then, it can be shown that au is the largest coefficient chosen such that
∑
v∈H

avxv +

auxu ≤ b is facet-defining for PSTAB(G[H ∪ {u}]). By iteratively applying a sequential
lifting procedure |V \ H| times, we end up with an inequality

∑
v∈V

avxv ≤ β which

is facet-defining for PSTAB(G). In the same work [66], Padberg exploited the lifting
argument approach to come up with an interesting family of inequalities based on an
odd-wheel. Let H ⊆ V be an odd-hole, and, let c be a vertex c ∈ V adjacent to all
the nodes of H. The subgraph H ∪ {c} is called an odd-wheel, see Figure 2.2. Since
the odd-hole inequality is facet-defining for PSTAB(H), the lifting coefficient for c can
be achieved by applying a lifting procedure to the central vertex of the wheel to obtain
the corresponding inequality:

∑
v∈H

xv +
|H| − 1

2
xc ≤

|H| − 1

2
.

We call these inequalities the odd-wheel inequalities.

Let p and q be two integers with p ≥ 2q + 1. Trotter in [73] introduced the web
inequalities

∑
i∈W

xi ≤ q, where W ⊆ V induces a web W (p, q) of G, that is, a subgraph

with p vertices {1, . . . , p} with, adopting modulo p arithmetic, an edge between every
two vertices i and j ∈ {i+ q, . . . , i− q}. In the same paper [73], Trotter introduced the
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Figure 2.2: Odd wheel W7.

antiweb inequalities
∑
i∈W

xi ≤
⌊
p
q

⌋
, where W (p, q) is the complement of W (p, q), that is,

a web W (p, q) of G.
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Figure 2.3: (a) Web W (10, 3), and (b) an Antiweb W (10, 3).

All the previous classes of inequalities fall into the family of the so-called rank-
inequalities, as shown in [15]. For any induced subgraph U ⊆ G, we can pick at most
the cardinality of a maximum stable set on U , thus this allows to define the rank
inequalities as ∑

v∈U

xv ≤ α(G[U ]). (2.9)

By construction, all the coefficients are 0,1 and the right-hand-side corresponds to the
maximum value of a stable set on U . Now, we summarize the results obtained from the
classes of graphs investigated in the literature such that a complete linear description
has been derived. We underline the most well-known classes of graphs based on the
inequalities presented in this Section.
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Bipartite Graphs. We start with the class of bipartite graphs. It turns out that edge
inequalities and non-negative inequalities are sufficient to describe completely PSTAB(G)

if and only if G is bipartite, we report the statement in the following Theorem.

Theorem 18. [72] G is a bipartite graph if and only if PFSTAB(G) coincides with
PSTAB(G).

Proof. “ =⇒ ” Suppose first that G is not bipartite. Then, G contains at least an
odd cycle C. Consider the vector x with values xv =

1
2
,∀v ∈ C and xv = 0,∀v ∈ V \C.

It results that x satisfies the edge inequalities and non-negativity constraints, but x

does not lie in PSTAB(G). In fact, suppose by contradiction that x can be written as a
convex combination of incidence vectors of stable sets of G. Let S be the usual set of
all stable sets, and denote with S(C) the set of stable sets containing only vertices of
C. Then, we have the following situation

x =
∑
S∈S

λSχ[S] =
∑

S∈S(C)

λSχ[S] +
∑

S/∈S(C)

λSχ[S] =
∑

S∈S(C)

λSχ[S],

Where
∑
S∈S

λS = 1, λS ≥ 0. Notice that λS = 0,∀S /∈ S(C), since
∑

S/∈S(C)

λS = 0. Then,

xT1V =
∑

S∈S(C)

λS(χ[S]
T1V ) =

∑
S∈S(C)

λS|S| ≤
∑

S∈S(C)

λS
|C| − 1

2
=

|C| − 1

2
.

The inequality says that any stable set intersects C in at most (|C| − 1)/2 vertices,
and, the last equality is obtained by using the convexity constraint

∑
S∈S

λS = 1. On the

other hand,

xT1V =
∑

v∈V (C)

xv =
|C|
2

.

We get a contradiction. Thus, we infer that x cannot be written as a convex combination
of stable sets of G.

“ ⇐= ” Since PFSTAB(G) = PSTAB(G) every vertex in the Fractional Stable Set
Polytope has 0, 1 coordinates and corresponds to a characteristic vector of a stable set.
By using Proposition 4, there does not exist an odd-cycle. This concludes the proof.

Some considerations are made in order. Observe that the maximum stable set prob-
lem can be solved efficiently via a standard LP formulation using the simplex method.
The previous result can also be proved directly by exploiting the structure of the inci-
dence matrix A of a bipartite graph G, which results in being totally unimodular. Then,
it follows immediately that each vertex is integer and corresponds to a characteristic

32



vector of a stable set. Since the incidence-node matrix of a graph is totally unimodu-
lar, then AT is totally unimodular. This fact has important polyhedral consequences.
Consider the computation of the maximum matching on a bipartite graph.

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V,

ye ≥ 0 ∀e ∈ E.

By LP-duality relation the dual problem consists of finding the minimum value of

min
∑
v∈V

yv

yv + yw ≥ 1 ∀e = {v, w} ∈ E,

yv ≥ 0 ∀v ∈ V.

Denote with PV C(G) the convex hull of all vertices associated with the feasible region
attached to the latter problem, it turns out that PV C(G) is the vertex cover polytope
of G, that is, the convex hull of all incidence vectors of vertex covers of G. We have
the following important consequence due to the properties of the total unimodularity
of the matrix.

Theorem 19. For any bipartite graph G, we have:

PV C :=

{
y ∈ R|V |

+ : yv + yw ≥ 1,∀e = {v, w} ∈ E

}
.

Proof. The constraint matrix is totally unimodular since it is the transpose of the
incidence-node matrix of a bipartite graph.

With this useful observation, one may derive easily the following well-known Theo-
rem which relates the minimum size of a vertex cover to the cardinality of a maximum
matching in a bipartite graph by using LP-duality.

Theorem 20 (König’s theorem). For any bipartite G

τ(G) = ν(G).

that is the size of a minimum vertex cover equals to the size of a maximum matching.
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Proof. By LP-duality we have max

{ ∑
e∈E

xe

∣∣∣∣ ∑
e∈E

xe ≤ 1, x ≥ 0

}
= min

{ ∑
v∈V

yv

∣∣∣∣ yi +
yj ≥ 1,∀e = {i, j} ∈ E, y ≥ 0

}
. Both the problems have integer optimal solutions

y∗ and x∗, by the total unimodularity of the defining constraint matrix. Clearly, y∗

corresponds to an incidence vector of a matching of maximum size, whereas x∗ to the
characteristic vector of a minimum vertex cover. This concludes the proof.

Perfect Graphs. The graphs for which the non-negativity constraints and clique
inequalities are sufficient to describe completely the Stable Set Polytope are called
perfect. Berge in 1960 introduced this class of graphs and proposed two conjectures
related to them. The first is known as the weak perfect graph theorem, which asserts
that a graph is perfect if and only if its complement is. This conjecture was later
proven to be true by Lovàsz in [48]. The second conjecture referred to as the strong
perfect graph conjecture, characterizes the class of perfect graphs in terms of forbidden
induced subgraphs. Berge noticed that odd holes and their complements constitute the
unique forbidden graphs, in fact, this conjecture was proven to be true in the seminal
paper by Chudnovsky, Robertson, Seymour, and Thomas, in [9]. The strong interest in
studying perfect graphs has brought important combinatorial consequences. We report
the well-known Theorem which characterizes the perfect graphs and we will make use
of it in the course of the thesis for the main results obtained.

Theorem 21 (Strong Perfect Graph Theorem, [9]). A graph is perfect if and only if it
does not contain an odd cycle of length at least five, or its complement, as an induced
subgraph.

For a graph G, we recall the following lower bound

χ(G) ≥ ω(G)

For perfect graphs, it holds that χ(G′) = ω(G′) for every induced subgraph G′ ⊆ G. To
this end, we introduce parameters that are strictly related to the structure of perfect
graphs. A clique cover is a partition of the vertex set of a graph into cliques. The
minimum number of cliques to cover the vertex set is denoted with χ(G). Moreover,
since a stable set in a graph is converted into a clique in the complement of G, we infer
immediately that α(G) = ω(G) and χ(G) = χ(G). In particular, Lovàsz noticed the
following.

Lemma 2 (Replication Lemma). [48] Let G be a perfect graph and v ∈ V (G). Add a
new vertex v′ and connect it to v and to all the vertices in NG(v). Then, the new graph
G′ obtained from this operation is still perfect.
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Proof. Let v ∈ V and its corresponding replicated vertex v′ ∈ V ′. Let H ′ be an
induced subgraph of G′. We may assume that H ′ contains both the vertices v and v′,
for otherwise, H is an induced subgraph of a perfect graph, and thus is perfect. Consider
the graph H := H ′\{v} and Let K be a maximum clique of H, and, consider any vertex
coloring of H with ω(H) colors. Suppose first that v belongs to a maximum clique K

of H. By construction, the neighbors of v′ are the vertices in K, hence K ′ := K ∪ {v′}
forms a clique such that |K ′| = ω(H ′) = ω(H) + 1. Use a new color for the vertex v′,
and clearly χ(H ′) = ω(H ′) follows. Now suppose v does not belong to any maximum
clique of H. Let S be the color class containing v. Then, ω(H \ (S \ {v})) = ω(H)− 1,
since each maximum clique of H must receive ω(H) colors, and thus each maximum
clique meets S \{v}. By the perfection of H, the graph H\(S\{v}) can be colored with
ω(H)− 1 colors. Since v′ is not adjacent to any other nodes in a maximum clique, we
can use an additional color for the nodes (S\{v}) ∪ {v′}. Hence, we obtain a coloring
of H ′ with ω(H ′) colors, and this concludes the proof.

Theorem 22. Let G be a perfect graph. Then, the linear system∑
v∈S

xv ≤ 1 ∀S ∈ S,

is totally dual integral.

Proof. Let w ∈ Z|V | and consider the primal-dual pair problems

max
∑
v∈V

wvxv min
∑
S∈S

yS∑
v∈S

xv ≤ 1 ∀S ∈ S,
∑

S∈S:v∈S

yS ≥ wv ∀v ∈ V,

xv ≥ 0 ∀v ∈ V, yS ≥ 0 ∀S ∈ S.

If we restrict the x variables to be integral, the problem calls for a maximum weighted
clique. Thus, let ω(G,w) be a maximum weighted clique. First, given feasible solutions
x and y respectively for the primal and for the dual, by weak duality we have

∑
S∈S

ys ≥∑
v∈V

wvxv. Observe that ω(G,w) is an integer feasible solution to the primal, hence,

we derive that ω(G,w) ≤
∑
v∈V

wvx
∗
v for an optimal solution x∗. Then, by iteratively

applying the replication Lemma 2 wv times to each vertex v, we construct a new graph
G′. Since each new vertex is adjacent to all the neighbors in a maximum clique we have
ω(G,w) = ω(G′). The new graph is perfect in view of Lemma 2, thus χ(G′) = ω(G′)

and there exist χ(G′) stable sets S1, S2, . . . , Sω(G′) such that the union of these sets
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covers V (G′). Let yS be the number of copies of the sable set S when is counted back
in G, i.e., the restriction of a stable set S ′ in G′ to S with respect to the times that
replication procedure is applied to generate S. Hence,

∑
S∈S

yS = χ(G′) = ω(G′) =

ω(G,w) ≤
∑
v∈V

wvx
∗
v. This concludes the proof.

Corollary 3. Let G be a perfect graph. Then,∑
v∈K

xv ≤ 1, ∀K ∈ K ⊆ G

is totally dual integral.

Proof. Observe that the constraint matrix has the characteristic vectors of cliques of
G as rows. By taking the complement of G the constraint matrix coincides with the
stable set matrix of G, defined as the matrix having the incidence vectors of stable sets
in each row. Hence, by applying the Theorem 22 we get the desired result.

In light of the observations made so far, it is useful to derive combinatorial conse-
quences and how they are linked to each other. Consider the following polytope

PQSTAB(G) :=

{
x ∈ R|V |

+

∣∣∣∣ ∑
v∈K

xv ≤ 1, ∀ K ∈ K ⊆ V (G),∀v ∈ V

}

In general, PSTAB(G) ⊆ PQSTAB(G) by what we argued before, but for the family of
perfect graphs, the equality holds. This allows giving a polyhedral characterization for
this type of graphs. In particular, the graph G is perfect if and only if PQSTAB(G) =

PSTAB(G).

Theorem 23. [31, 10] For any graph G the following are equivalent:

(i) G is perfect, that is, ω(G′) = χ(G′) for any induced subgraph of G′ ⊆ G.

(ii) ω(G′, c) = χ(G′, c) for any weighted function c : V −→ Z|V |
+ .

(iii) PSTAB(G) = PQSTAB(G).

(iv) The complement G is perfect.

Proof. Clearly, (iv) =⇒ (i) since the complement of G coincides with the original
graph G.

(i) =⇒ (ii). By Lemma 2 replicating a node in a perfect graph yields a still perfect
graph. Starting from a weighted graph (G, c), where c is the weighting function asso-
ciated with G, for each node i ∈ V (G, c) by replicating ci times we obtain unweighted
graph G′. This implies that ω(G′) = ω(G, c) and χ(G′) = χ(G, c)
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(ii) =⇒ (iii). Let y ∈ Q|V | be a vector that lies in PQSTAB(G). In order to show
that y ∈ PSTAB(G), we write y as a convex combination of incidence vectors of stable
sets of G. Let q ∈ Z be the least common denominator of the entries of y. Then
qy ∈ Z|V |

+ , and due to y ∈ PQSTAB(G) the following holds for a clique K of maximum
cardinality ω(G):

ω(G, qy) = q
∑
v∈K

yv ≤ q

By (ii), we have χ(G, qy) ≤ q. Hence, there exists a family q stable sets S1, S2, . . . , Sq

such that each vertex is contained in exactly qyi each of them.

qy =

q∑
i=1

χ[Si]

this implies that y = 1
q

q∑
i=1

χ[Si], that is, y is written as convex combination of vertices of

PSTAB(G). This concludes the proof since we have shown that PQSTAB(G) ⊆ PSTAB(G).

(iii) =⇒ (iv) If PSTAB(G) is completely determined by clique constraints and non-
negative constraints, this holds also for every induced subgraph G′ of G. It is enough
therefore to show that G can be partitioned into α(G) cliques, since ω(G) = α(G).
We use induction on |V |. Let F := {x ∈ PSTAB(G) |

∑
v∈V (G)

xv = α(G)}, that is,

the face induced by the convex combination of all the characteristic vectors of stable
sets of size α(G). Since the clique inequalities are facets for PSTAB(G), there does
exist a clique K such that the face induced by the clique K contains F . But, since K

intersects all the stable sets of G, this implies that, for each maximum stable set S of
G, |S ∩K| = χ[S]T1K = 1 and thus, α(G \K) = α(G)− 1, which is equivalent to say
that ω(G \K) = ω(G)− 1. By the inductive hypothesis, G \K can be partitioned into
α(G \K) cliques. Adding K to this family of cliques, we obtain the clique cover of G
using α(G) cliques, or equivalently, an ω(G)-coloring of G.

Since we have a complete polyhedral characterization of the Stable Set Polytope
for perfect graphs, it is natural to consider the following chain of inequalities, which
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provide typical tools to relate integer and linear programming problems.

α(G,w) = max

{
wTx

∣∣∣x ∈ PSTAB(G)

}
= max

{
wTx

∣∣∣x ∈ PSTAB(G),
∑
v∈K

xv ≤ 1,∀K ∈ K ⊆ V, x ∈ {0, 1}|V |
}

≤ max

{
wTx

∣∣∣∑
v∈K

xv ≤ 1, ∀ K ∈ K ⊆ V, xv ≥ 0,∀v ∈ V

}
= min

{ ∑
K∈K

yK

∣∣∣ ∑
K∈K:v∈K

yK ≥ cv,∀v ∈ V, yK ≥ 0,∀K ∈ K ⊆ V

}
≤ min

{ ∑
K∈K

yK

∣∣∣ ∑
K∈K:v∈K

yK ≥ cv,∀v ∈ V, yK ∈ Z+, ∀K ∈ K ⊆ V

}
= χ(G,w)

Observe that the dual problem attached to the LP relaxation of the maximum stable set
problem reads as the fractional clique covering problem, thus its integer programming
version asks for a clique cover of minimum weight. It follows directly from Theorem [31]
that the equality holds throughout the previous chain if and only if the graph G is
perfect since the duality gap is zero. As mentioned, perfect graphs brought important
combinatorial properties in terms of matrices and structural properties. Consider the
following polytope defined by a 0, 1 matrix A.

P := {x | Ax ≤ 1, x ≥ 0}.

A 0, 1 matrix A is perfect if the polytope P := {x | Ax ≤ 1, x ≥ 0} is integral. In
particular, Chvàtal in [10] proved that {x ≥ 0, Ax ≤ 1} is an integral polytope if and
only if A is the clique-node incidence matrix of a perfect graph, where the clique-node
incidence matrix of a graph G is the 0, 1 matrix whose columns are indexed by the nodes
of G and whose rows are the characteristic vectors of maximal cliques of G. Thus, the
study of perfect matrices boils down to the study of perfect graphs and the latter serves
to recognize properties of the associated matrices

Theorem 24. [10] Let A be a 0, 1 matrix with at least a 1 in each column. Then
P = {x ≥ 0, Ax ≤ 1} is integral if and only if A is the clique-node incidence matrix of
a perfect graph.

Proof. “ ⇐= ” This is a direct consequence of the previous Theorem 23.
“ =⇒ ” We have to show that if P is an integral polytope, then A is the clique-node

incidence matrix of a graph. Define G = (V,E) the graph with V = {1, 2, . . . , n} such
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that {i, j} ∈ E if and only if aki = akj = 1, for some row k ∈ {1, 2, . . . ,m} of A. Suppose
by contradiction that A is not a clique-node incidence matrix of a graph. Then, there
exists a clique S , denote with j1, j2, . . . , j|S| the columns to the vertices of S, such that
akl = 0 for every row k of A, for some l ∈ j1, j2, . . . , j|S|. Let c be the incidence vector
of S, and consider the linear programming problems zLP := max{cTx | Ax ≤ 1, x ≥ 0}
and zIP := max{cTx | Ax ≤ 1, x ∈ {0, 1}n}. Define the vector x

x =

{
xv =

1
|S|−1

if v ∈ S,

xv = 0 otherwise.

It is easy to see that by construction x ∈ P . In particular, we have that zLP = cTx =
|S|

|S|−1
> 1, whereas zIP ≤ 1, since S is a clique. But this is a contradiction since we

suppose that zLP = zIP .

Theorem 25. [49] For a 0,1 matrix A, the following statements are equivalent:

• The linear system {x ≥ 0, Ax ≤ 1} is TDI.

• The matrix A is perfect.

Proof. “ =⇒ ” For every integral vector c let zLP := {cTx | Ax ≤ 1, x ≥ 0}. Let x∗

be an optimal solution to the problem, then by Strong Duality cTx∗ = zLP = 1Ty for
some integral solution y to the dual. This implies that the primal optimal solution x∗

is integer, and hence, the result follows.
“ ⇐= ” The matrix A is perfect if and only if it coincides with the incidence

clique-node matrix of a perfect graph by Theorem 24. This is equivalent to say that
the corresponding constraint matrix consists of the following constraints∑

v∈K

xv ≤ 1, ∀K ∈ K ⊆ V (G).

By the previous Corollary 3, the linear system is totally dual integral. This concludes
the proof.

t-Graphs This class of graphs is based on edge inequalities, non-negativity con-
straints, and odd-hole constraints. We have PSTAB(G) = PCSTAB(G), where

PCSTAB(G) :=

{
x ∈ R|V |

+ :
∑
v∈C

xv ≤
|C| − 1

2
∀C ⊆ V, |C| odd cycle

xv + xw ≤ 1 ∀e = {v, w} ∈ E

}
.
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We summarize the most well-known classes of graphs that fall into this family.

• The series-parallel graphs fall into this category. A graph is series-parallel if the
graph is obtained from disjoint cycle-free subgraphs by repeated application of
the following two operations: adding a new edge parallel to an existing edge and
subdividing edges, i.e., replacing edges by a path. It is easy to check whether a
graph is series-parallel. The author in [53] proved that if G is a series-parallel
graph, then PSTAB(G) coincides with the Stable Set Polytope of G.

• Almost-bipartite graphs have a node v such that the deletion of v makes the graph
bipartite.

• Strongly t-perfect graphs, that are graphs having no subgraph obtained from sub-
dividing edges of a K4 such that all four cycles corresponding to the triangles of
the K4 are odd.

The separation problem of an odd-hole constraint calls for a vector y ∈ Q|V | which
certificates that y ∈ PCSTAB(G) or outputs an odd-hole inequality violated by y. Such
a problem is polynomial solvable as we show in the next Proposition.

Proposition 7. [31] The separation problem for an odd-hole constraint is polynomial-
time solvable.

Proof. Define for each edge e = {v, w} ∈ E the weight ye := 1 − xv − xw. Then, the
corresponding vector is non-nonnegative and by summing up all the values along an
odd cycle C we obtain: ∑

e∈E(C)

ye = |C| − 2
∑
v∈C

xv

note that the odd-hole inequality induced by C can be stated in an equivalent way:∑
e∈C

ye ≥ 1

Hence, the separation problem asks for the minimum length of an odd hole, where the
weights on each edge e ∈ E are defined by ye. This can be done in polynomial time.
Construct an auxiliary weighted directed bipartite graph H = (VA ∪ VB, EH , c) in the
following way. Split each node v ∈ V into two nodes va ∈ VA and vb ∈ VB, and for
each edge e = {u, v}, make new arcs e1 = {va, ub} ∈ EH and e2 = {ua, vb} ∈ EH

such that c(e1) = c(e2) := ye. By construction H is a bipartite graph, since there
is no edge between any pair of vertices in VA and VB. Then, for all nodes u ∈ V ,
compute a minimum weighted path from ua to ub in the graph H. Observe that the
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corresponding path has odd cardinality, since ua and ub do not lie in the same set of
bipartition of vertices. This concludes the proof, since finding a minimum weighted
path is polynomial time solvable, and such procedure is repeated |V | times.

Theorem 26. [31] The maximum weighted stable set problem in a t-perfect graph can
be found in polynomial time.

Line Graphs. Line graphs fall into the category of rank-perfect graphs due to the
findings of Edmonds and Pulleyblank in [24]. They characterize completely the match-
ing polytope by finding a minimal linear description of the Matching Polytope in terms
of all facet-defining inequalities. By construction, given a graph G and its line graph
L(G), a stable set in L(G) corresponds to a matching in the original graph G. This
implies that we have also a complete characterization of the Stable Set Polytope of
L(G). Observe that, for each vertex v ∈ G, δ(v) induces a clique of L(G) which is
maximal if and only if v is a vertex of degree greater than 3, or it does not belong
to a triangle. Let Q ⊆ V (G) be an induced 2-connected hypomatchable subgraph of
G. Then, the subgraph H ⊆ L(G) induced by the set of vertices E[Q] yields a facet-
inducing inequality and α(H) = ν(Q) = |Q|−1

2
. We can therefore list the facets of the

Stable Set Polytope of a connected line graph L with at least two vertices. Let H be
the set of all line graphs of hypomatchable graphs that are 2-connected.

Corollary 4. Let G be a graph. Then, the following inequalities characterize completely
PSTAB(L(G))

PSTAB(L(G)) =

{
x ∈ R|V |

+ :
∑
v∈K

xv ≤ 1 ∀K ∈ K, K maximal

∑
v∈H

xv ≤ α(H) ∀H ⊆ L(G), H ∈ H
}
.

2.1.3 Composition of stable set polytopes

We recall some polyhedral aspects associated with the decompositions of graphs, in
particular, we examine the decomposition procedure in relation to its polyhedral coun-
terpart. Chvàtal in his seminal paper [10] proved that if a graph has a clique separator,
that is, if we delete the clique from the graph we obtain a disconnected graph, then a
complete linear description of the Stable Set Polytope is the union of the stable sets of
its components. In the proof that follows, we will make use of the following principle
stated by Edmonds in [22].
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Proposition 8. [22] Let S be a finite set of solutions of

S ⊆ P :=

{
x ∈ R|I|

+

∣∣∣∣ ∑
i∈I

ajixi ≤ bj,∀j ∈ J

}

Then, conv(S) = P if and only if for every vector c ∈ Z|I| we have

max{cTx : x ∈ S} = min

{∑
j∈J

ujbj

∣∣∣∣ ∑
j∈J

ujaji ≥ ci, ∀i ∈ I, u ∈ R|J |
+

}

Theorem 27. [11] Let G = (V,E) be a connected graph. Let K ⊆ V be a clique
separator of G and V1, V2 ⊆ V \K be a partition of V \K. Then,

PSTAB(G) :=

{
x ∈ R|V | : xV1∪K ∈ PSTAB(G[V1 ∪K]), xV2∪K ∈ PSTAB(G[V2 ∪K])

}

Proof. Let c ∈ Z|V | and denote by U1 := V1∪K and U2 := V2∪K, and α := max{cTx |
x ∈ PSTAB(G)}. Then, for every vertex v ∈ K and i = 1, 2, define the following values:

βi
v = max

∑
v∈Ui

cvxv

xv ∈ PSTAB(G[Ui]) ∀v ∈ Ui,

xv = 1.

This problem corresponds to the maximum weighted stable set containing a node from
K and the following

βi
0 = max

∑
v∈Ui

cvxv

xv ∈ PSTAB(G[Ui]) ∀v ∈ Ui,

xv = 0 ∀v ∈ K.

corresponds to the maximum weighted stable set problem induced on Ui, i = 1, 2. Now,
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consider the following maximization problem

α1 = max
∑
v∈Ui

cvxv +
∑
v∈K

βi
0xv −

∑
v∈K

βi
vxv

xv ∈ PSTAB(G[Ui]) ∀v ∈ Ui, i ∈ {1, 2}.

We distinguish two cases. Let S∗ be a maximum stable set that yields an optimal
solution. If v /∈ S∗,∀v ∈ K then, by definition we have α1 = βi

0. Now, suppose that
there is a vertex in K which belongs to S∗. Since any stable set intersects a clique in
at most one node, let v ∈ K be such a vertex, we derive the following∑

v∈Vi

cvx
∗
v +

∑
v∈K

cvx
∗
v +

∑
v∈K

βi
0x

∗
v −

∑
v∈K

βi
vx

∗
v =

∑
v∈S∗\{v}

cv + cv + βi
0 − βi

v = βi
0

Where the last equality is implied by the definition of βi
v, that equals the weight of

S∗. As a consequence, the maximum is attained at α1 = βi
0. Hence, given a complete

description of PSTAB(G[Ui]), i = 1, 2, where Ji represents the indices of the rows of the
constraint matrices for the two descriptions, and, ai the row vector of the constraint
matrix ∑

v∈Ui

aivxv ≤ bi ∀i ∈ Ji, i ∈ {1, 2},

− xv ≤ 0 ∀v ∈ Ui, i ∈ {1, 2}.

Then, by applying Proposition 8, there are non-negative reals γi, i ∈ Ji, i = 1, 2, such
that

∑
i∈Ji

γibi = βi
0, and the following holds

∑
i∈Ji

γiaiv ≥ cv ∀v ∈ Vi, i ∈ {1, 2},∑
i∈Ji

γiaiv ≥ cv + βi
0 − βi

v ∀v ∈ K, i ∈ {1, 2}.

If we set β0 = β1
0+β2

0 and ∀v ∈ K, βv = β1
v+β2

v−cv this implies that α = max{β0, βv∈K}.
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In this case the maximum of

α2 = max
∑
v∈K

(α− β0)xv

xv ∈ PSTAB(K) ∀v ∈ K,

is equal to α− β0. Then, for every vertex v ∈ V1 the following holds:∑
i∈J1

γ̃iaiv ≥ 0, ∀v ∈ V1∑
i∈J1

γ̃iaiv ≥ α− β0, ∀v ∈ K

Define now

γ =

{
γ̃i + γi, for i ∈ J1

γi, for i ∈ J2

We shall prove that
∑

i∈J1∪J2

γibi = α, and for every v ∈ V , we must have
∑

i∈∈J1∪J2

γiaiv ≥

cv. Then, combining together the previous cases into a more general form we have the
following three cases based on the partition of vertices.

• ∀v ∈ V1,
∑

k∈J1∪J2

γkakv =
∑
i∈J1

γ̃iaiv +
∑
i∈J1

γiaiv ≥ cv,

• ∀v ∈ K,
∑

k∈J1∪J2

γkakv =
∑
i∈J1

γ̃iaiv +
∑
i∈J1

γiaiv +
∑
i∈J2

γiaiv ≥ (α − β0) + (cv + β1
0 −

β1
v) + (cv + β2

0 − β2
v) = α− βv + cv ≥ cv,

• ∀v ∈ V2,
∑

k∈J1∪J2

γkakv =
∑
i∈J2

γiaiv ≥ cv.

Finally, ∑
i∈J1∪J2

γibi =
∑
i∈J1

γ̃ibi +
∑
i∈J1

γibi +
∑
i∈J2

γibi = β1
0 + (α− β0) + β2

0 = α

and this concludes the proof.

In this Section, we have discussed the Stable Set Polytope of well-known classes
of graphs. In the next Section, we will provide a survey on the formulation for the
Graph Coloring Problems. Specifically, we report the standard formulation used in the
literature and we compare it to other models.
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2.2 Graph Coloring Problems

The Vertex Coloring Problem is to assign colors to the elements of a graph in such a way
that no two adjacent elements have the same color while minimizing the number of colors
used. In the following, we briefly summarize the integer programming formulations
proposed in the literature to tackle the problem. We distinguish between the coloring
restricted to the vertices as the Vertex Coloring Problem (VCP) and to the edges as
the Edge Coloring Problem (ECP).

Vertex Coloring The basic formulation of the VCP is known in the literature as
the Assignment Model. In this model, given a set K of colors where |K| > ∆(G), we
introduce binary variables xvk for every vertex v ∈ V and every color k ∈ K, where
xvk = 1 if the color k is assigned to vertex v and 0 otherwise, and correspondingly the
variable zk indicates if the color k is used or not. The Assignment Model reads as:

χ(G) = min
∑
k∈K

zk (2.10)∑
k∈K

xvk = 1 ∀v ∈ V, (2.11)

xvk + xwk ≤ zk ∀{v, w} ∈ E,∀k ∈ K, (2.12)

xvk ∈ {0, 1} (2.13)

zk ∈ {0, 1}. (2.14)

Constraints (2.11) state that every vertex is assigned to exactly one color. Constraints
(2.12) impose both that two adjacent vertices v and w cannot receive the same color k.
Then, the objective function aims to minimize the number of colors used. Gualandi and
Malucelli in [34], raise two shortcomings related to this simple model. The first one is
the inherent symmetry present in the ILP Assignment model, as there are

(
n
k

)
ways to

select a subset of χ(G) out of K colors, leading to an exponential number of equivalent
solutions. Additionally, the continuous LP-relaxation is quite weak, as it has always a
feasible solution of value 2 regardless of the specific graph under consideration. This
can be achieved by setting ∀v ∈ V , xv1 = xv2 =

1
2

and xvj = 0 for j = 3, . . . , |K|, and
z1 = z2 = 1 and all other zk = 0. To address the issue imposed by the symmetry of the
problem, Mendez-Diaz and Zabala [61] propose adding the following additional set of
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constraints:

zk ≤
∑
v∈V

xvk ∀k = 1, . . . , |K|, (2.15)

zk ≤ zk−1 ∀k = 2, . . . , |K|. (2.16)

The new constraints ensure that the color k is only assigned to some vertex, if color k−1

is already assigned to another one. Moreover, they present several sets of constraints
that arose from their studies of the polytope. In order to solve the new strengthened
ILP model, they developed a branch-and-cut algorithm.

Since any k-coloring in G defines a partition of the nodes V into k stable sets,
Mehrotra and Trick [59] proposed the so-called set covering formulation. Let S be the
collection of all stable sets in G. Moreover, let xS be a binary variable for each stable
set S ∈ S with value 1 if and only if the stable set S belongs to the partition, and 0
otherwise, then an alternative formulation of VCP is given by

χ(G) = min
∑
S∈S

xS (2.17)∑
S∈S:v∈S

xS ≥ 1 ∀v ∈ V, (2.18)

xS ∈ {0, 1}, ∀S ∈ S. (2.19)

The objective function asks for the minimum number of stable sets to cover all the
vertices in V , and, the constraints impose that each vertex belongs to at least to a
stable set. One issue linked to this formulation resides in the number of variables,
which is exponential in the number of nodes in G. In order to face this issue Mehrotra
and Trick proposed a branch-and-price algorithm, starting with a suitable subset of
variables and then adding new ones using a column generation scheme. Along this
approach, Gualandi and Malucelli [34] proposed a method employing branch-and-price
enhanced by constraint programming to compute exact solutions for the graph coloring
problem.

Since each vertex in a clique must receive a different color, a natural lower bound
for the chromatic number is the following

Proposition 9. Let G be a graph. Then, χ(G) ≥ ω(G).

By using LP-duality we derive the following relation. Let χf (G) be the optimal
value of the continuous relaxation of the model (2.17)–(2.19). Clearly, χf (G), known as
the fractional chromatic number is a lower bound of the χ(G). In particular, y = 1

α(G)
1V

the point belongs to the feasible region associated to the dual, by using weak duality
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we derive χf (G) ≥ 1T 1
α(G)

, and in particular

χf (G) ≥ max
H⊆G

|V (H)|
α(H)

Finally, we have the following relation

χ(G) ≥ χf (G) = ωf (G) ≥ ω(G).

Edge Coloring Problem. We refer to an edge coloring of a graph when we color
the edges of a graph. The parameter χ′(G) is known as the chromatic index of the
graph G and indicates the minimum number of colors used to cover the edges of the
graph. Holyer in [39] proved that it is NP-complete to determine the chromatic index
of a graph. The following Theorem, known as Vizing’s Theorem, shows a lower and
upper bound in order to establish the chromatic index.

Theorem 28 (Vizing’s Theorem,[76]). Let G be a graph. Then, ∆(G) ≤ χ′(G) ≤
∆(G) + 1

Hence, to solve the problem we have to distinguish between two integer values. On
the other hand, we can compute exactly the value χ′(G) when G is a bipartite graph.

Theorem 29 (König’s Theorem,[21]). Let G be a bipartite graph. Then, χ′(G) = ∆(G).

The most effective approach to tackle the problem is based on covering the edges of
the graph into as few as possible subsets of edges that receive the same color. As for
the stable set, the edges in the same color class form a matching. Let M be the set
of all maximal matchings in G = (V,E) and let xM be the binary variable such that
xM = 1 if the matching M is selected and 0 otherwise. We have the following ILP:

χ′(G) = min
∑
M∈M

xM (2.20)∑
M∈M:e∈M

xM ≥ 1 ∀e ∈ E, (2.21)

xM ∈ {0, 1}, ∀M ∈ M. (2.22)

Denote with (MP) the continuous relaxation of the model, and let χ′
f (G) be the optimal

value, known as the fractional chromatic index. By the weak duality Theorem notice
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that χ′
f (G) is a lower bound for χ′(G). Consider now the dual of the Problem MP:

max
∑
e∈E

ye (2.23)∑
e∈M

ye ≤ 1 ∀M ∈ M, (2.24)

ye ≥ 0 ∀e ∈ E. (2.25)

The constraints of the dual impose to find non-negative edge weights such that the
sum over each matching is not more than one. It is important to notice that a feasible
solution to the dual problem yields a lower bound for the optimal solution of the MP.
To this end, we have:

Proposition 10. χ′
f (G) ≥ ∆(G).

Proof. Consider a vertex v ∈ V (G) of degree ∆(G). In the dual problem, ∆(G) yields
a feasible value for which the associated solution is obtained by setting ye = 1 for each
edge e ∈ δ(v) over the matching containing the edge e, and 0 for the edges of the same
matching. By the weak duality Theorem, we conclude that the ∆(G) is a lower bound
for χ′

f (G).

Since we only have to distinguish between the values ∆(G) and ∆(G) + 1 and
since the LP-relaxation gives a lower bound to the value χ(G), we do not care about
the exact optimum, if we know that it exceeds ∆(G). If χ′

f (G) > ∆(G), we have
χ′(G) = ∆(G)+ 1, or if we have found an optimal solution to MP that is integral, then
we also have found χ′(G). We summarize this idea in the following Proposition.

Proposition 11. If χ′
f (G) > ∆(G), then χ′(G) = ∆(G) + 1 and if χ′

f (G) = ∆(G) and
there is an integral optimal solution to MP, then χ′(G) = ∆(G).

We derive a non-trivial lower bound for the fractional chromatic index. Suppose
that G has a k-edge-coloring with the color classes E1, E2, E3, . . . , Ek where k = χ′(G).
Since each color class corresponds to a matching, we have that |Ei| ≤

⌊
|V (G)|

2

⌋
, ∀i ∈

{1, 2, . . . , k}. Thus, |E(G)| ≤ χ′(G)
⌊
|V (G)|

2

⌋
and rearranging the terms it says that

χ′(G) ≥ |E(G)|
⌊ |V (G)|

2 ⌋ . In particular, for every induced subgraph H ⊆ G this implies that

χ′(G) ≥ χ′(H) ≥ |E(H)|⌊
|V (H)|

2

⌋ .
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We take the maximum overall induced subgraphs H ⊆ G. Observe that this value is
attained at an odd-induced subgraph. Finally, we get the lower bound

χ′(G) ≥ max
H⊆G,|V (H)|≥3,odd

⌈
2|E(H)|

|V (H)| − 1

⌉
The following is a direct consequence of the characterization of the Matching Polytope,
thus χ′

f (G) can be computed in polynomial time.

Proposition 12. [8] For any graph G, χ′
f (G) ≥ max

{
∆(G), max

H⊆G,|V (H)|≥3,Hodd

⌈
2|E(H)|
|V (H)|−1

⌉}
Proof. Consider the linear program defined in (2.20)–(2.21) where the inequality is
substituted with equality, and let β be the optimal solution. By dividing the objective
function by β we obtain

1

β

∑
M∈M

yMχ[M ] = 1E

this implies that ( 1
β
, 1
β
, . . . , 1

β
) ∈ R|E(G)| is a convex combination of incidence vectors of

matchings, thus 1
β
1E ∈ PM(G). This imposes |δ(v)| ≤ β and (1/β)

∑
e∈E[S]

y∗e ≤ |S|−1
2

,

∀S ⊆ V |S| odd. The latter condition amounts to requiring that

β ≥ max
S

|E[S]|
|S| − 1

(2.26)

where the maximum is taken over all odd subsets S ⊆ V . Hence, β must be the largest
value between ∆(G) and (2.26).

Total Coloring. Given a set of k colors and a graph G, a k–total coloring of G

is a mapping ϕ : D → K such that ϕ(a) ̸= ϕ(b) for every pair of incident elements
a, b ∈ D. The minimum number of colors needed in any total coloring of G is called the
total chromatic number, and it is denoted by the parameter χT (G). Hence, the Total
Coloring Problem (TCP) asks for finding χT (G). In what follows, we show the total
coloring for certain known classes of graphs. We focus more on detail from an integer
programming perspective in Chapter 5.

First, we report the following important observation. For any graph G, ∆(G) + 1 is
a trivial lower bound on the χT (G). We can pick a vertex v of degree ∆(G), we need
∆(G) colors for the edges and one more additional color for the vertex v. Hence, we
have the following important consequence

Remark 1. χT (G) ≥ ∆(G) + 1.
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We recall the Total Coloring Conjecture stated by Behzad and Vizing which esti-
mates an upper bound for the total chromatic number χT (G).

Conjecture 1. [5, 76] ∆(G) + 1 ≤ χT (G) ≤ ∆(G) + 2.

A graph G is of type 1 if χT (G) = ∆(G) + 1 and type 2 if χT (G) = ∆(G) + 2. In
the next Theorem, we show that the upper bound is tight for Kn when n is even.

Theorem 30. Let Kn be the complete graph on n vertices. Then,

χT (Kn) =

{
n if n odd,

n+ 1 otherwise.

Proof. Case 1 (n odd): We want to obtain a partition of Kn with the minimum number
of total matchings, i.e., V (Kn) ∪ E(Kn) = T1 ∪ T2 · · · ∪ Tk where k is the minimum
number. Label the vertices v0, v1, . . . , vn−1. Define the total matchings Ti = {vi, ei | i =
0, . . . ,

⌊
n−1
2

⌋
mod n}, for i = 0, . . . , n− 1 where ei = {vi+1, vi−1}. Note that the total

matchings Ti are maximal and in particular
n⋃

i=1

Ti = V ∪E. Since |V ∪E| = n(n+1)
2

and

|T | = n+1
2

, we deduce that χT (Kn) = n.
Case 2 (n even): Let Kn+1 be the complete graph obtained by adding a new vertex v to
Kn and the edges ej = {v, vj} for j = 0, . . . n−1. Notice that Kn+1 is a complete graph
of odd order and thus χT (Kn+1) = n+1. Since Kn is an induced subgraph of Kn+1, we
have that χT (Kn) ≤ χT (Kn+1). Now, since the partition into total matchings must cover
n(n+1)

2
elements, every total matching cannot contain more than n

2
, so χT (Kn) ≥ n+1.

This completes the proof.

Theorem 31. Let Kr,s be the complete bipartite graph. Then,

χT (Kr,s) =

{
∆(Kr,s) + 2 if r = s

∆(Kr,s) + 1 if r ̸= s.

Proof. First, suppose that r = s. Observe that no total matching can contain more than
r elements, and since |V (Kr,s)∪E(Kr,s)| = r2 + 2r, this implies that χT (Kr,s) ≥ r+ 2.
Now, since Kr,r is a bipartite graph we know that χ(Kr,r) = 2, that is, we can color one
side of the vertex bipartition with one color and a different color for the other partition.
Now, by applying König’s Theorem 29 we obtain χ′(Kr,r) = ∆(Kr,r) = r. Notice that,
since Kr,r is r-regular, each vertex must be incident to exactly r colored edges. Hence, it
is possible to choose r colors for the edges and two more distinct colors for the vertices.
Combining the two colorings we obtain that χT (Kr,r) = χ′(Kr,r)+χ(Kr,r) = ∆(Kr,r)+2,
see Figure 2.4. Now suppose that r < s, and let V (Kr,s) = R ∪ S. Also in this case
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König’s Theorem guarantees a valid s-edge-coloring, then use one more distinct color
for the vertices in R. In this case from the partial coloring defined, there are s − r

colors missing to each v ∈ S from the s colors selected for the edges. Let Cv be the set
of colors not incident v ∈ S. Now, for each v ∈ S assign a color k ∈ Cv. Since S is a
stable set, this provides a proper total coloring with ∆(Kr,s)+1 and this concludes the
proof in view of Remark 1.

Figure 2.4: Total Coloring of K3,3

2.3 Extended formulations and Projections

Most of the integral polytopes associated with combinatorial problems have a huge
number of irredundant inequalities. Since it is difficult to handle such representations,
it is convenient to introduce a polynomial number of additional variables and a poly-
nomial number of constraints such that the corresponding polytope can be obtained
as a projection of a higher dimensional polytope with a reduced number of defining
inequalities. For instance, see the Figure 2.5, the Polytope Q has fewer facets than its
projection P , thus it is more tractable to optimize a linear problem over Q rather than
P . This permits us to solve the problem efficiently in the extended space. We recall
the definition of an extended formulation for a polyhedron P .

Definition 9. Given a polyhedron P := {x ∈ Rn | Ax ≤ b} an extended formulation
for P is a system Bx+ Cz ≤ d such that P := {x ∈ Rn : ∃z ∈ Rp | Bx+ Cz ≤ d}.

Given a polyhedron Q := {(x, z) ∈ Rn × Rp | Bx + Cz ≤ d} the projection of Q
onto the subspace of x is defined as follows:

Projx(Q) := {x ∈ Rn | ∃u ∈ Rp such that (x, z) ∈ Q}

With abuse of notation, we refer to Q as an extended formulation of P . The size of the
polyhedron Q is the number of inequalities describing Q. Thus, we are mostly interested
in extended formulations of polynomial size, which we call compact formulations. In
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Figure 2.5: A polytope Q ⊆ R3 with 6 facets and its projection P with 8 facets.

order to project out the additional variables from the extended formulation we make
use of the projection cone:

CP := {u ∈ Rm | uTC = 0, u ≥ 0}

The next Theorem underlines the role of the Projection cone.

Theorem 32 (Projection cone,[3]).

Projx(Q) := {x ∈ P | (uTB)x ≤ uTd,∀u ∈ CP}

Proof. “ ⇐= ” Consider a valid inequality αTx ≤ β of Q. By definition of projection,
we deduce that αTx ≤ β is valid also for Projx(Q). Since we consider vectors u ≥ 0

such that uTC = 0, it follows that uTBx ≤ uTd yields a valid inequality of Q, and
hence for Projx(Q).

“ =⇒ ” Consider a point x /∈ Projx(Q). Observe that, x does not belong to
Projx(Q) if and only if the corresponding system Cz ≤ b− Bx is infeasible. Then, by
Farkas’ Lemma, there exists u ≥ 0, uTC = 0 and uTBx > uTd. Thus uTBx ≤ uTd is a
valid inequality for Projx(Q), but it is violated by x.

Observe that since CP ⊆ Rm
+ , the projection cone is a pointed polyhedral cone. This

implies that CP is described by a conic combination of finite number rays

CP :=

{
x ∈ Rm

∣∣∣∣x =
r∑

i=1

αiui, αi ≥ 0, i = 1, 2, . . . , r

}
where u1, u2, . . . , ur are the extreme rays. In light of this observation, we state the
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following

Proposition 13. Let Q := {(x, z) ∈ Rn × Rp | Bx + Cz ≤ d}, and, let u1, u2, . . . , ur

be the extreme rays of CP . Then Projx(Q) = {x ∈ P | (uT
i B)x ≤ uT

i d, i = 1, 2, . . . , r}.
Hence, Projx(Q) is a polyhedron.

We stress the fact the Projx(Q) as given in Theorem 32 may have several redundant
inequalities, even if they come from the extreme rays of projection cone CP . This implies
that in general there is not a one-to-one mapping between facet-defining inequalities of
the projection and the extreme rays of CP . Another relevant fact is that if x ∈ Rn is a
vertex of Projx(Q), then there exists u ∈ Rp such that (x, z) ∈ Q is a vertex. We have
the following consequence

Proposition 14. [3] If Q is an integral polyhedron, then Projx(Q) is an integral poly-
hedron.

Now we recall important dimensional aspects of projections. We have the following
Proposition.

Proposition 15. Let P be a polyhedron and F be a face of P . If Q is an extended
formulation for P , then there exists a face F ′ of Q such that F = Projx(F

′).

Proof. We denote as F := {x ∈ P | αTx = β} the face associated with the inequality
αTx ≤ β of P . Clearly, αTx ≤ β is also a valid inequality for Q, thus αTx = β is
associated with a face F ′ of Q. By definition of extended formulation we obtain the
following:

F ′ := {(x, y) ∈ Q | αTx = β}

Then,

Projx(F
′) = {x ∈ P | ∃y s.t. (x, y) ∈ F ′}
= {x ∈ P | ∃y s.t. (x, y) ∈ Q,αTx = β}
= F

It is important to point out that, the projection of a face does not correspond to
a face of the projection, that is, given a face F of Q, Projx(F ) is not always a face
of Projx(Q). For instance, as shown in Figure 2.5, the projection of the base of the
polytope is no longer a face of the corresponding projection. But, if Q has a face
Fβ defined by βTx ≤ β0 then, Projx(F ) is face of Projx(Q). Thus, we can state the
following:
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Proposition 16. If F is a face of Q defined by an inequality of type βTx ≤ β0, then
Projx(F ) is face of Projx(Q)

Proof. Suppose that F := {(x, z) ∈ Q | βTx ≤ β0}. Since βTx ≤ β0 is valid for
Projx(Q). This implies that Projx(F ) = Projx(Q)∩ {x ∈ P | βTx ≤ β0}, and this is by
definition a face of Projx(Q).

This implies that, in general, there is a bijection between faces of Q and faces of
Projx(Q) if and only if every face of Q can be defined by a valid inequality of the type
βTx ≤ β0.

Suppose now we deal with more than one polytope P1, P2, . . . Pr, it may be useful
sometimes to derive an extended formulation from the convex hull of the union of these
polytopes. The following example will clarify the motivation behind the use of this
technique. Let N := {1, 2, . . . , n} and consider the set Seven := {x ∈ {0, 1}n |

∑
i∈S

xi ≡ 0

mod 2,∀S ⊆ N}. A linear complete description for the convex hull of the set Seven is
provided, the interested reader can find more details in [14]

Peven :=

{
x ∈ Rn

+

∣∣∣∣∑
i∈S

xi −
∑

i∈N\S

xi ≤ |S| − 1, ∀S ⊆ N

}
.

Such a formulation is not compact. Now, we introduce the set Sk =

{
x ∈ {0, 1}n

∣∣∣∣ ∑
i∈S

xi =

k, ∀S ⊆ N

}
. We show that a complete linear formulation associated with Sk has a

linear number of inequalities.

Proposition 17. Let Pk = conv(Sk). Then:

Pk =

{
x ∈ Rn :

∑
i∈N

xi = k

0 ≤ xi ≤ 1,∀i ∈ N

}
.

Proof. This is a direct consequence of the total unimodularity of the constraint matrix
that has two ones per column. This concludes the proof since we have shown that the
polytope is integral.

Denote with Neven := {0 ≤ k ≤ n, k ≡ 0 mod 2}, then we write Seven :=⋃
k∈Neven

Sk. Our aim is to obtain a compact extended formulation in terms of the
union of the polytopes conv(

⋃
k∈Neven

Pk) = conv(Seven) = Peven. To this end, we make
use of the next important Theorem due to Balas.
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Theorem 33 (Union of Polytopes, [2]). Given P1, P2, . . . , Pk ⊆ Rn polytopes and P =

conv(
⋃k

i=1 Pi). The following is an extended formulation of P :

Q =

{
(λ, x, {zi}1≤i≤k) ∈ Rk+n+nk : x =

k∑
i=1

zi

Aizi ≤ λibi ∀i ∈ {1, . . . , k},
k∑

i=1

λi = 1

0 ≤ zi ≤ λiui ∀i ∈ {1, . . . , k},

λ ≥ 0

}
.

Proof. First, we prove that P ⊆ Projx(Q). Fix a point x ∈ P , we have to show
that there exist suitable vectors λ, {zi}i=1,...,k such that (λ, x, {zi}i=1,...,k) ∈ Q. Since
x ∈ P , we can write x as convex combination of points in P , thus x =

∑
i

λizi ∈ P ,

and
∑
i

λi = 1, λ ≥ 0. It is straightforward to see that the point satisfies Aiλizi ≤ λibi

and 0 ≤ λizi ≤ ui, therefore (λ, x, {λizi}i) ∈ Q. For the other direction, let u :=

(λ, x, {zi}1≤i≤k) ∈ Q, we have to show that x ∈ P . Suppose that λ ∈ {0, 1}k. Then,
since

∑
i

λi = 1 there is exactly one index j such that λj = 1 and the others are set to

zero. This implies that x = zj ∈ Pj. Now assume that λ /∈ {0, 1}k. We want to write
u = (λ, x, {zi}1≤i≤k) ∈ Q as convex combination of points {ũj}1≤j≤k ∈ Q as follows.
The vectors ũj := (λ̃j, x̃j, {z̃ji }1≤i≤k) are defined as λ̃j ∈ {0, 1}k where λ̃j

i = 1 if i = j

and 0 otherwise, z̃ji =
zj
λj

, for i = j and 0 otherwise, then we have x̃j =
zj
λj

,if i = j. By
plugging these values into the system we deduce that ũj ∈ Q,∀j = 1, . . . , k. Then, by
simple calculations we conclude that u =

∑
j

λju
j.

Hence, we are able to derive an extended formulation of Peven. Let |Neven| = r and
define

Q :=

{
(λ, x, {zk}k∈Neven) ∈ Rr+n+nr

+ : x =
∑

k∈Neven

zk∑
i∈N

zki = kλk i ∈ N, k ∈ Neven∑
k∈Neven

λk = 1

zki ≤ λk i ∈ N, k ∈ Neven

}
.
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Then, Projx(Q) = Peven. The Balas’ Union Theorem turns out to be one of the most
useful tools when we deal with compact formulations in order to derive extended for-
mulations. We shall make use of this Theorem to derive one of the main results exposed
in Chapter 4.

56



3. Total Matching Polytope

The Chapter presents a polyhedral study of the Total Matching Problem (TMP). Part
of the new results obtained are shown in [28], and, we extend further with new contri-
butions. Given a graph G, we recall that a total matching is a subset T ⊆ D where the
elements are pairwise independent. Hence, stable sets and matchings are total match-
ings, but the converse may not be true. The Total Matching Problem asks for a total
matching of maximum size. Thus, we introduce the Total Matching Polytope, defined
as the convex hull of all incidence vectors of all total matchings. In the specific, we
present families of valid inequalities for the corresponding polytope based on induced
subgraphs. We show that certain classes of the new inequalities are facet-defining for
the Total Matching Polytope, and, we provide the corresponding complexity of the sep-
aration problems. We point out that to the best of our knowledge, we are the first to
propose a polyhedral approach to the problem.

Before presenting the main contributions of this Chapter, we briefly summarize
some properties related to this problem and we introduce the relationships between
graph parameters linked to the TMP. We recall the following parameters, αT (G) :=

max{|T | : T is a total matching}, ν(G) := max{|M | : M is a matching}, ρ(G) :=

min{|F | : F is an edge cover} and γ′(G) := min{|F | : F is an edge dominating set},
where an edge dominating set is a subset F ⊆ E such that each edge not in F is covered
by at least one of the elements of F . In [1, 64], the authors show that:

αT (G) ≥ max{α(G), ν(G)}

In [1], the authors find a relation between αT (G) and τC(G) := min{|C| : C is a total cover},
indeed they show that:

τC(G) ≤ αT (G)

In [57], Manlove gives an overview of the algorithmic complexities of the decision prob-
lems related to the previous parameters. In particular, the author states that αT (G) can
be computed in polynomial time for Trees and it is NP-complete already for bipartite
and planar graphs. The Total Matching Problem is less studied in the operations re-
search literature, even though some significant results are obtained for specific classes of
graphs, such as cycles, paths, full binary trees, hypercubes, and complete graphs, [45].
Given a graph G, as for the Stable Set Problem and the Matching Problem we know
that there exists a relationship between α(G) and τ(G), and similarly, ν(G) is linked to
ρ(G), it is natural to ask whether there may exist a similar relation between the total
matching number and other graph parameters. We report the following Theorem.
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Theorem 34 (Gallai-Theorem,[72]). For any graph G we have

ν(G) + ρ(G) = n = α(G) + τ(G)

We start by noticing the following observation

Proposition 18. Let G = (V,E) be a graph and let T ⊆ V ∪ E be a total matching.
Then T is a maximal total matching if and only if T is a total cover.

Proof. The proof is by contradiction. Let us suppose that T is maximal total matching
and there is an element a not covered by T . Then, T ′ = T ∪ {a} is a total matching
strictly greater than T . For the other direction, a similar argument applies. This
concludes the proof.

As we show in the next Theorem, we have a relationship between the minimum
edge-dominating set of a graph and the total matching number. Before proving the
Theorem, we need the following Lemma.

Lemma 3. A set M is a maximal matching if and only if M is an independent edge
dominating set for G.

Proof. “ =⇒ ” The proof is by contradiction. Let us suppose that M is a maximal
matching and M is not an edge-dominating set. Then, there exists an edge e ∈ E

not adjacent to any edges of M . Thus, M ′ = M ∪ {e} is matching, but we get a
contradiction by definition of M .

“ ⇐= ” Suppose that M is an independent edge dominating set. If M is not
maximal then we have a missed edge. We get again a contradiction by definition.

Theorem 35. [80] Let G be a graph of order n

γ′(G) + αT (G) = n

that is, the sum of the size of the minimum edge dominating and the size of the maximum
total matching equals to n.

Proof. For simplicity, given a subset F ⊆ E(G) denote with V (F ) the set of the end-
points of F . Let D be a minimum edge dominating set. Observe that V \ V (D)

forms a stable set of G, and thus D ∪ (V \ V (D)) is a total matching. Therefore,
|D|+ |D ∪ (V \ V (D))| ≤ γ′(G) + αT (G). Then, let T = VT ∪ ET be a total matching
of maximum size with |ET | as large as possible. We claim that VT ∪ V (ET ) = V .
On the converse, there exists a vertex v ∈ V \ (VT ∪ V (ET )), and w ∈ VT such that
e := {v, w} ∈ E. Notice that e must not be incident to a vertex v ∈ V (ET ), otherwise,
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let f := {u, z} ∈ ET and e = {u, v}, define E ′
T := (ET \ {f}) ∪ {u, v}. Hence,

T := E ′
T ∪ VT is a maximum total matching containing all the nodes of G. Now, define

T ′ := (T \{w})∪{e}. T ′ is a maximum total matching since |T ′| = |T |, but |T ∩ET | >
|ET |. This contradicts the choice of ET . Observe that ET is an independent edge-
dominating set in view of Lemma 3. We conclude since γ′(G)+αT (G) ≤ |ET |+ |T | = n

and the result follows.

This Theorem links the complexity of computing the parameter γ′(G) to αT (G).
In [57], The author reports that the minimum edge domination parameter γ′ remains
NP-complete for planar or bipartite graphs of maximum degree 3, planar bipartite
graphs, their subdivision, line, and total graphs, perfect claw-free graphs, planar cu-
bic graphs. Whereas the problem of computing γ′(G) is polynomial-time solvable for
bipartite permutation graphs and cotriangulated graphs, trees, k-outerplanar graphs,
and a number of other classes of graphs including claw-free chordal graphs.

From now on, we show the main results of this Chapter.

3.1 Facet inequalities

In this Section, we study the feasible region of the Total Matching Polytope, and we
provide nontrivial valid inequalities induced by particular subgraphs and facet-defining
inequalities for the corresponding polytope. Given a total matching T , the correspond-
ing characteristic vector is defined as follows.

χ[T ] :=

{
za = 1 if a ∈ T ⊆ D = V ∪ E,

za = 0 otherwise.

where z = (x, y) ∈ {0, 1}n+m, x corresponds to the vertex variables and y to the edges
variables. The Total Matching Polytope of a graph G = (V,E) is defined as:

PT (G) := conv{χ[T ] ⊆ Rn+m | T ⊆ D = V ∪ E is a total matching}.

The following proposition implies that the valid inequalities that are facet-defining
are nonredundant, and, hence, they represent a minimal system defining PT (G).

Proposition 19. PT (G) is full-dimensional, that is, dim(PT (G)) = n+m.

Proof. We have that the origin, the unit vectors χ[{v}] for every v ∈ V and χ[{e}] for
every e ∈ E belong to PT (G), and clearly they are linearly independent. Thus, we have
n+m+ 1 affinely independent points.
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We establish now an important connection between total matchings of a graph and
the stable sets of the total graph, defined as in [6]. Consider a graph G and its line graph
L(G). Starting from L(G), we construct a new graph H = (V ∪V (L(G)), E(L(G))∪E ′),
namely, line-full graph, where E ′ is the set of edges connecting the vertices of L(G) to
vertices of G, if and only if v ∈ V (L(G)) is an edge of G. Given an edge e = {v, w} ∈ E,
we call a doubling of e the operation that adds a new edge between the end-points v

and w.

Definition 10. Let G be a graph and H its corresponding line-full graph. The graph
W obtained from H applying a doubling of an edge for every pair of vertices {v, w} ∈
V (H) \ V (L(G)) such that e = {v, w} ∈ E(G), is called the total graph of G.

Observe that in the line graph, if |δ(v)| = r ∈ N, then we have a corresponding
clique Kr. In addition, by doubling the edges, we can create triangles in the total
graph. Hence, as shown in Figure 3.1, the total graph can be described as the union of
cliques K3 and general cliques. We can prove that total matchings of G correspond to
stable sets of its total graph W .

Proposition 20. Let G be a graph and W its total graph. Then, PT (G) = PSTAB(W ).

Proof. The characteristic vectors of the stable sets of W correspond to the characteristic
vectors of total matchings of G, and, hence, the vertices of PSTAB(W ) are the vertices
of PT (G).

(a) (b) (c)

Figure 3.1: (a) The star graph S, (b) the line-full graph of S, (c) the total graph of S.

We start the treatment of the inequalities describing the feasible region of the Total
Matching Polytope. We prove that the following inequalities are facet-defining.
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Proposition 21. Let G be a graph. Then, the inequalities

xv +
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V (3.1)

xv + xw + ye ≤ 1 ∀e = {v, w} ∈ E (3.2)

xv, ye ≥ 0 ∀v ∈ V, ∀e ∈ E. (3.3)

are facet-defining for PT (G).

Proof. Let W = (V ′, E ′) be the total graph associated to G. Now, consider a vertex
v ∈ V and an edge e := {u, t} ∈ E. By construction of W , the subgraphs W [δ(v)∪{v}]
and W [e ∪ {u, t}] in W correspond to cliques K|δ(v)|+1 and K3 respectively. Moreover,
they are maximal cliques. Then, since PSTAB(W ) = PT (G) by Proposition 20 and
using the fact that maximal cliques and nonnegativity constraints are facet-defining
inequalities for PSTAB(W ) (e.g., see [66]), we get the result.

Throughout the thesis, we call inequalities of type (3.1) the total vertex inequalities
and (3.2) the total edge inequalities.

3.1.1 Perfect Total Matchings

A total matching is perfect if every vertex of the graph is covered by a total matching,
that is, every vertex is either in the total matching or one of its incident edges belongs
to the total matching. We prove next, that for any graph G, we can always find a
perfect total matching.

Proposition 22. Every graph G has a perfect total matching.

Proof. If G has a perfect matching, it is trivial. Otherwise, let us suppose that G has
no perfect matching. Given a subset of vertices S ⊆ V , let k be the number of odd
components of G that is, the number of maximal connected components of odd order.
We denote the odd components as O1, O2, . . . , Ok. By applying the Tutte’s theorem
[74, 50], we have k > |S|. Notice that, since the maximum size of a matching in an
odd component is |V (Oi)|−1

2
for i = 1, 2, . . . k, there is a vertex that is not covered by

a matching, we call it a left-out vertex. Instead, we have a perfect matching N that
covers all the vertices in the even components.

Now, let T be a total matching of G. We show how to construct T so that all
the vertices of G are covered by T . First, for each odd component we can construct
a maximum matching Mi of size |V (Oi)|−1

2
for every i = 1, 2, . . . k, in which we choose

as a left-out vertex one of the vertices connecting an odd component to S. Let vi
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Figure 3.2: A vertex z = 1
3
1 of the cycle C5.

be the left-out vertex by Mi of the component Oi for i = 1, 2, . . . , k. Now, take one
edge of |S| odd components connecting vi to the set S and consider the matching
SO := {e = {vi, si} | si ∈ V (S) for i = 1, 2, . . . , |S|}. Since k > |S|, for each of the
remaining components, we have a left-out vertex that cannot be covered by a matching
Mi and in particular, in order to form an independent set of elements, we cannot choose
an edge connecting S to the odd component. Consider the set L of these vertices and
define T := M1 ∪ M2 · · · ∪ Mk ∪ SO ∪ L ∪ N . Since every vertex is covered by T by
construction, the assertion follows.

The previous proposition allows us to define the Perfect Total Matching Polytope.
Let PPT (G) be the convex hull of all perfect total matchings of G.

Proposition 23. Let G be a graph. The following inequalities are valid for PPT (G).

xv +
∑
e∈δ(v)

ye = 1 ∀v ∈ V (3.4)

xv + xw + ye = 1 ∀e = {v, w} ∈ E (3.5)

xv, ye ≥ 0 ∀v ∈ V, ∀e ∈ E. (3.6)

In practice, for any perfect total matching, the inequalities describing the feasible region
of TMP are all tight. In the following section, we introduce nontrivial facet-defining
inequalities for the Total Matching Polytope.

3.2 Clique inequalities

In the previous Section, we have proved that all the basic inequalities defining the
feasible region of the TMP are facet-defining. In this Section, we introduce some families
of nontrivial valid inequalities. First, we will show that the result obtained by Padberg
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in [66] for a maximal clique on the intersection graph of a set packing problem can be
extended to the Total Matching Polytope. This is because the total graph can be seen
equivalently as the intersection graph having as ground set all the elements of G. In
particular, Padberg shows that any maximal clique on the intersection graph induces
a facet-defining inequality for the corresponding set packing polytope. From the above
observation, any maximal clique on the total graph induces a facet-defining inequality
for PT (G). However, in the following, we propose direct novel proofs using only the
original graph G to show that certain families of valid inequalities that we propose are
facet-defining.

Theorem 36. Let G be a graph and let Kh be a maximal clique of G where h ≥ 3.
Then, the vertex-clique inequality ∑

v∈V (Kh)

xv ≤ 1 (3.7)

is facet-defining for PT (G).

Proof. Let G be a graph and let Kh ⊆ G be a maximal clique. We have to exhibit
n+m affinely independent points which belong to the face F induced by the inequal-
ity (3.7).We know that, since Kh is maximal, by Theorem 2.4 in [66] we can easily
construct n of such points belonging to F . Now, fix three distinct vertices u, v, w in
V (Kh) and define the total matchings T v

e := {v, e}, ∀e /∈ δ(v), the total matchings
Tw
e := {w, e},∀e ∈ δ(v) \ {{v, w}}, and T u

v,w := {u, {v, w}}. It is easy to see that all
the characteristic vectors of the total matchings constructed belong to F . In particular,
we have found in total n+m affinely independent points, since the matrix having the
columns the characteristic vectors found assumes the following form:[

Av B

0 Ie

]
,

where Av represents the vertex components of the n points and the columns of the
matrix B correspond to the restriction of the incidence vectors of the total matchings
constructed to the vertex entries indexed by the clique Kh. This completes the proof.

Observe that we cannot drop the cardinality constraint in Theorem 36. In fact,
suppose that there exists a maximal clique K2 induced by an edge e := {v, w}. Then,
the corresponding inequality reads as xv + xw ≤ 1, which is always dominated by the
facet-defining inequality xv + xw + ye ≤ 1.
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3.3 Congruent-2k3 cycle inequalities

We proved that the inequalities (3.1)–(3.3) are facet-defining for the Total Matching
Polytope, but as we expected due to the complexity of the associated problem, they
do not describe the complete convex hull. For instance, Figure 3.2 shows that using
only those inequalities, we have that for a cycle C of length 5, the point za =

1
3

for all
a ∈ V (C) ∪ E(C) belongs to PT (C) and it is a vertex. In [45], the author shows that
the size of a maximum total matching in a cycle of cardinality k ∈ N is equal to

⌊
2k
3

⌋
.

Hence, we introduce an inequality that cuts off these nonintegral solutions for cycles,
which we call the congruent-2k3 cycle inequality.

Proposition 24. Let Ck be an induced cycle. Then, if k ≡ 1 mod 3 or k ≡ 2 mod 3,
the congruent-2k3 cycle inequality defined as

∑
v∈V (Ck)

xv +
∑

e∈E(Ck)

ye ≤
⌊
2k

3

⌋
(3.8)

is facet-defining for PT (Ck).

Proof. Let F := {z ∈ PT (Ck) | λT z = λ0} be a facet of PT (Ck) such that F̃ := {z ∈
PT (Ck) | λ̃T z = λ̃0} ⊆ F where the inequality λ̃T z ≤ λ̃0 corresponds to the inequality
(3.8). We want to prove that there exists a ∈ R such that λ = aλ̃ and λ0 = aλ̃0. We
distinguish two cases based on the parity of the cycle. We label the vertices V (Ck) :=

{v0, . . . , vk−1}, so that vi is adjacent to vi−1 for i = 0, 1, . . . , k − 1 mod k , and the
edges E(Ck) := {e0, . . . , ek−1}, so that ei = {vi, vi+1} for i = 0, 1, . . . , k − 1 mod k.

Case 1: (k ≡ 1 mod 3). Consider the total matching T0 := {vi, ei+1 | 0 ≤ i ≤
k − 4, for i ≡ 0 mod 3}. This is a maximal total matching, since every element in
T0 is mutually nonadjacent. The number of elements of T0 is twice the numbers of
integers i satisfying the condition, that is, |T0| = 2(k−1)

3
, and, hence, χ[T0] ∈ F̃ and, in

particular, χ[T0] ∈ F . Note that the set {vk−2, ek−2} is not contained in T0, because
of our description of T0. Now, consider the total matchings T−

0 := (T0 \ {ek−3}) ∪
{vk−2} and T+

0 := (T0 \ {ek−3}) ∪ {ek−2}. In this way, we obtain two distinct total
matchings with the same cardinality, whose characteristic vectors belong to F̃ . Since
χ[T+

0 ] ∈ F and χ[T−
0 ] ∈ F , then λTχ[T0] = λTχ[T+

0 ] and λTχ[T0] = λTχ[T−
0 ], thus

λek−3
= λvk−2

= λek−2
, where λvi is the cost coefficient corresponding to the vertex

vi and λei is the coefficient relative to the edge ei = {vi, vi+1}. Now, consider the
function σ : C −→ C such that σ(vi) = vi+1 and σ(ei) = ei+1. Indeed, σ shifts
every element to the next position with respect to the ordering of the vertices and the
edges. Composing k−1 times the shifting function on T0, we obtain the following total
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matchings σ(T0), σ
2(T0), . . . , σ

k−1(T0). For a fixed i, denote σi(T0) := Ti. These are still
total matchings and each characteristic vector χ[Ti] ∈ F̃ . Notice also that Ti does not
contain {vi−2, ei−2}, for i = 1 the corresponding set is {vk−1, ek−1}. So, following the
same previous procedure, we deduce that λei−3

= λvi−2
= λei−2

for all i = 1, . . . , k − 1

mod k. This implies that there exists a ∈ R such that λ = a1. Then, since χ[Ti] ∈ F̃ ,
we have that λTχ[Ti] = a(1Tχ[Ti]) = aλ̃0. We conclude that, since (λ, λ0) = a(1, λ̃0),
λT z ≤ λ0 is a scalar multiple of the cycle inequality.
Case 2: (k ≡ 2 mod 3). Consider the total matching T0 := {vi, ei+1 | 0 ≤ i ≤ k − 5,

for i ≡ 0 mod 3} ∪ {vk−2}. Notice that now ek−2 /∈ T0. Also in this case χ[T0] ∈ F̃ ,
since |T0| = 2(k−2)

3
+ 1 =

⌊
2k
3

⌋
. We can construct other two total matchings with

the same cardinality T̂0 := (T0 \ {vk−2}) ∪ {ek−2} and T̃0 := (T̂0 \ {ek−4}) ∪ {vk−3}.
Note that χ[T̂0], χ[T̃0] ∈ F̃ , and so they also lie in F . Thus, λTχ[T̂0] = λTχ[T0] and
λTχ[T̂0] = λTχ[T̃0]. From the first equality, we deduce that λvk−2

= λek−2
and for the

second one, λvk−3
= λek−4

. We conclude as in the Case 1 by applying the shifting
function σ, so we have a scalar multiple of the cycle inequality.

A different proof of this result was first given by Trotter in [73]. By construction, it
is possible to notice that the total graph T (Ck) of a congruent-2k3 cycle is an antiweb
W (p, 3), where p = 2k with k ∈ N, and q = 3. If G is itself an antiweb, and if p and q

are relatively prime, then the antiweb inequalities are facet-defining. In our case, p = 2k

and q = 3, thus gcd(p, q) = 1 if and only if k ≡ 1, 2 mod 3. We give a direct proof
of Proposition (24), without using the total graph, since in the total graph we have a
loss in structure, in the sense that we cannot any longer distinguish among vertices and
edges of the original graph G. Using another direct proof, we proceed in proving the
following important observation.

Proposition 25. Let G be a graph and let C4 be the induced cycle of four vertices.
Then, the inequality: ∑

v∈V (C4)

xv +
∑

e∈E(C4)

ye ≤ 2 (3.9)

is facet-defining for PT (G).

Proof. Let F be the face induced by the inequality (3.9). Denote as V (C4) := {v0, v1, v2, v3}
and given a vertex v ∈ V (C4), let δ(v) := δ(V (C4)) ∩ δ(v). By Proposition (24), we
can find a set C of |V (C4)| + |E(C4)| affinely independent points belonging to the
face F . Now, consider a perfect matching M on C4, and define the total matchings
Ta := M ∪ {a},∀a /∈ δ(V (C4)) ∪ C4, T0,2 := {v0, v2} ∪ {e},∀e ∈ δ(v1) ∪ δ(v3), and
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T1,3 := {v1, v3} ∪ {f}, ∀f ∈ δ(v0) ∪ δ(v2), and, let S be the set of their incidence vec-
tors. By construction, each of the total matchings constructed contains exactly two
elements, this implies that the corresponding characteristic vectors belong to F . Then,
M := C ∪ S forms a set of n+m affinely independent points, since the matrix having
as columns vectors from S corresponds to the identity matrix whose support is not
contained in the elements of C4. This completes the proof.

Dahl in [16] provides an irredundant complete linear description of the Stable Set
Polytope for the class of antiwebs W (n, 3). He shows that besides the clique inequalities
and antiweb inequalities, other classes of facets can be obtained from the partition of
the vertices into intervals, which are defined as subsets of consecutive vertices. To this
end, we recall some definitions from his paper to derive facet-defining inequalities in
our setting. A 1-interval set is a subset U ⊆ V (W (n, 3)) being the union of intervals
I1, . . . , It separated by just one node; for instance, if n = 5 the set I = {{1, 2}, {4}} is
a 1-interval set. Dahl uses the notation U = I1 + · · · + It to indicate such a union of
intervals.

Theorem 37. [16] Let U = I1 + I2 + · · · + It ⊆ V (W (n, 3)) be a strict subset of V

(where Is are disjoint intervals). Then, the inequality
∑
v∈U

xv ≤ α(G[U ]) defines a rank

facet of PSTAB(W (n, 3)) if and only if

• U is a 1-interval set

• |Is| ≡ 1 mod 3, ∀s = 1, 2, . . . , t

• t is odd and t ≥ 3.

As mentioned earlier, when we deal with total matchings of a graph, we can strengthen
the result by showing that the class of facet-defining inducing inequalities for the anti-
web are facet-defining for the entire graph due to the structure of the initial graph with
respect to its corresponding total graph.

Proposition 26. Let G be any graph and let Ck ⊆ G be an induced cycle where k is
odd and k is not a multiple of 3. Then, the inequality

∑
e∈E(Ck)

ye ≤
k − 1

2
(3.10)

is facet-defining for PT (G).

Proof. Let F be the face induced by (3.10). Consider the total graph T (Ck), which coin-
cides as observed to W (2k, 3). Now, define the set U of vertices the edges e1, e2, e3, . . . , ek
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corresponding to the nodes of T (Ck), that is, Is = {es},∀s = 1, 2, . . . , k. Clearly, U
forms a 1-interval set satisfying the hypothesis of Theorem 37, thus the inequality (3.10)
is facet-defining for PT (Ck). This guarantees that there are |V (Ck)| + |E(Ck)| affinely
independent points belonging to F . Let M be any matching such that χ[M ] ∈ F .
Consider an element a ∈ D \ δ(V (Ck)), then T := M ∪ {a} is a total matching such
that χ[T ] ∈ F . Now, consider an element e ∈ δ(V (Ck)). Since we can pick at most
k−1
2

edges from Ck, there is a vertex v not covered by M , let e ∈ δ(v) ∩ δ(V (Ck)).
Then, define T := M ∪ {e}. This procedure can be extended to any vertex of the cycle
Ck, and therefore this holds for every edge e ∈ δ(V (Ck)). It is straightforward to see
that the matrix having as columns the incidence vectors of total matchings defined has
maximum rank. This completes the proof.

The result can be further generalized to any subset U ⊆ Ck which satisfies the
properties of Theorem 37. By taking any subset of edges, (that must be consecutive
in light of the Previous Theorem), the same property holds. The proof runs along the
same argument.

Proposition 27. Let U be a 1-interval set satisfying the hypotheses of theorem 37 and
corresponding to a subset of edges of Ck. Then,

∑
e∈U

ye ≤
|U | − 1

2

is facet-defining for PT (G).

In particular, we succeed in proving that if the graph is cubic, then the congruent-
2k3 cycle is facet-defining for the Total Matching Polytope of the entire graph. We
are mainly interested in the study of these graphs due to the conjectures attributed
to them. In what follows, the cubic graphs of our interest do not have trivial vertices,
that is, we may assume that every vertex out of an induced hole C has at most two
neighbors in C. This assumption allows stating the following Theorem.

Theorem 38. Let G be a cubic graph and consider an induced cycle Ck, k ≡ 1, 2

mod 3. Then,

∑
v∈V (Ck)

xv +
∑

e∈E(Ck)

ye ≤
⌊
2k

3

⌋

is facet-defining for PT (G).

Proof. We label the vertices and the edges as in the proof 24. Let λT z ≤ λ0 be a
congruent-2k3 cycle inequality and we denote as F the corresponding face associated
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with it. Notice that, since λT z ≤ λ0 is facet-defining for PT (Ck) by Propositon 24, this
implies that we have |V (Ck)|+ |E(Ck)| affinely independent points belonging to F . We
recall that NG(V (Ck)) is the set of neighbors of vertex set of Ck and, δ(V (Ck)) is the
set of edges with an end-point in V (Ck) and the other in V \ V (Ck). First, let T be
a maximum total matching of Ck and fix an element a /∈ Ck ∪ δ(V (Ck)) ∪NG(V (Ck)).
Then, Ta := T ∪ {a} is a total matching such that χ[Ta] ∈ F . We distinguish the cases
based on the parity of the cycle.

Case 1: (k ≡ 1 mod 3). As shown in the proof of Proposition 24, for every
vertex v ∈ V (Ck) there exists a total matching excluding v. Denote by Tvi the total
matching which does not include the vertex vi. Then, we can construct the total
matchings T f

vi
:= Tvi ∪ {f}, f ∈ δ(vi) ∩ δ(V (Ck)),∀i ∈ {0, 1, . . . , k − 1}, such that

the corresponding characteristic vectors belong to F . Notice that G is cubic and by
assumption |NG(v)∩V (Ck)| ≤ 2,∀v ∈ V \V (Ck). If a vertex u ∈ NG(V (Ck)) has exactly
one neighbor vs ∈ V (Ck), then consider the total matching Tvs excluding the vertex vs

and construct T := Tvs ∪ {u}. It is easy to see that χ[Tu] ∈ F , since u is arbitrary, this
holds for all the vertices in NG(V (Ck)) with exactly one neighbor in Ck. Now, consider
the other case. Let {vi, vj} be the set of neighbors of a vertex z ∈ NG(V (Ck)). By
the previous observation, there exists a maximum total matching excluding the vertex
vi, for an arbitrary index i. Denote with d(v, w) the distance between two nodes of Ck

with respect to the ascending ordering of the vertices in Ck, that is, the length of the
path between v and w. If d(vi, vj) ≡ 0, 2 mod 3, construct a maximum total matching
Tvi := {vi+(3j+1), ei+(3j+2) | 0 ≤ j ≤ k−4

3
mod k}, otherwise if d(vi, vj) ≡ 1 mod 3

define Tvi := {ei+(3j+1), vi+(3j+3) | 0 ≤ j ≤ k−4
3

mod k}. By our description of Tvi ,
vj /∈ Tvi , hence Tz := Tvi ∪ {z} is a total matching of G. Since Tvi is a maximum total
matching of Ck, we have that χ[Tz] ∈ F , and this clearly holds ∀z ∈ NG(V (Ck)) by
applying the same argument. Now, observe that the matrix composed of the incidence
vectors of total matchings introduced previously and the affinely independent points
relative to Ck has maximum rank.

Case 2: (k ≡ 2 mod 3). The proof runs along a similar argument to the previous
case. Following the proof in 24 there exists a maximum total matching of Ck excluding
an edge or a vertex. Let Tvi be a total matching missing the vertex vi, and, Tei be
a total matching missing an edge ei. For all the edges e ∈ δ(V (Ck)), by construction
we can apply the same argument of the previous case, we can define a total matching
T ∪ {e}, where T is a maximum total matching of Ck. Now, let z ∈ NG(V (Ck)) and
{vi, vj} ∈ V (Ck) be the set of neighbors of u. If d(vi, vj) ≡ 0, 2 mod 3 consider the total
matching Ti := {ei+(3j+2), vi+(3j+4) | 0 ≤ j ≤ k−5

3
mod k}∪{ei}. If d(vi, vj) ≡ 1 mod 3

construct the total matching Ti := {vi+(3j+2), ei+(3j+3) | 0 ≤ j ≤ k−5
3

mod k} ∪ {ei}.
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Both are maximum total matchings of Ck, then Tz := Ti ∪ {z}. This implies that
χ[Tz] ∈ F , since z is arbitrary this holds for all the vertices. We conclude in the same
way as the previous case. This concludes the proof.

In the following, we derive other valid inequalities induced by standard well-known
subgraphs for the stable set polytope. We start first to derive the maximum size of
a total matching of the antiholes. In the following Proposition we only consider non-
degenerate antiholes, that is, no complement of C3 and C4 is allowed.

Proposition 28. Let H be an antihole of k vertices where k ≥ 5. Then:

αT (H) =

⌊
k

2

⌋
+ 1

Proof. Let V (H) = {v1, v2, . . . , vk} be the vertices of H. Let T be a total matching
of maximum size. Because every node is incident to each other vertex except for the
previous and the next node with respect to the sequence of vertices, T can contain
at most two nodes. W.l.o.g. suppose that v1, v2 ∈ T . Now, fixing two nodes in T ,
observe that a matching can contain at most k−2

2
edges if k is even and k−3

2
edges if k

is odd. Assume that k is even, then there exists a matching M := {{vk−i, v3+i} | i ≥
0, i = 0, 1, . . . , k

2
−4}∪{{v k

2
, v k+4

2
}, {v k+2

2
, v k+6

2
}}, otherwise define M ′ := {{vk−i, v3+i} |

i = 0, 1, . . . ,
⌊
k
2

⌋
− 2}. Thus, if k is even |T | = k−2

2
+ 2 = k+2

2
, instead if k is odd

|T | = k−3
2

+ 2 = k+1
2

. This completes the proof since the bound obtained is the best
possible by construction.

Proposition 29. Let H be an antihole of a graph G of k vertices. Then,

∑
v∈V (H)

xv +
∑

e∈E(H)

ye ≤
⌊
k

2

⌋
+ 1

is a valid inequality for PT (G).

Proposition 30. Let Wk be a wheel with k ≡ 1, 2 mod 3. Then:

αT (Wk) =

⌊
2k

3

⌋
+ 1

Proof. Let V (Wk) = {v1, v2, . . . , vk} ∪ {vc} the nodes of Wk, where vc represents the
central vertex of W . Since Ck is an induced subgraph of Wk, then a maximum total
matching T contains at most 2k

3
elements from Ck, hence |T | ≥

⌊
2k
3

⌋
. Construct a total

matching as in the proof 24, then it results that there exists a vertex vi ∈ Ck which
is not part of T . Since the central vertex is incident to all the vertices of the hole,
T ′ := T ∪{vc, vi} forms a total matching of size

⌊
2k
3

⌋
+1. This concludes the proof.
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Proposition 31. Let Wk be a wheel with k ≡ 1, 2 mod 3. Then the odd total wheel
inequality: ∑

v∈V (Wk)

xv +
∑

e∈E(Wk)

ye ≤
⌊
2k

3

⌋
+ 1

is a valid inequality for PT (G).

Notice that, the odd total wheel inequality is valid for the Total Matching Polytope
but it is not facet in any case, since it can be written as the sum of the facet-defining
inequality

xc +
∑
e∈δ(c)

ye ≤ 1,

and ∑
v∈V (Ck)

xv +
∑

e∈E(Ck)

ye ≤
⌊
2k

3

⌋
.

3.3.1 Separation of congruent-2k3 cycle inequalities

In this part, we deal with the problem of separating the inequalities given by the class
of the congruent-2k3 cycle inequalities. Given a fractional optimal solution of the LP
relaxation of the Total Matching Problem, the separation for the congruent-2k3 cycle
inequalities consists of either finding an inequality in this class that is violated by a
cycle inequality or proving that all inequalities are satisfied. To this end, we propose
an Integer Linear Programming formulation for solving this separation problem.

Let (cv, we) be the fractional optimal value to the current LP problem, and let xv

and ye denote the decision variables of the problem of finding a congruent-2k3 cycle in
a graph G. The separation problem involves maximizing the following value

α :=
∑
v∈V

cvxv +
∑
e∈E

weye −
⌊
2k

3

⌋
, (3.11)

where k is the cardinality of the cycle induced by the variables xv and ye. Hence, we
want to detect a maximum weighted cycle, where node and edge weights are (cv, we), and
the cycle contains a number of nodes that is not a multiple of three. Whenever α > 0,
we have found a violated cycle. Otherwise, all the congruent-2k3 cycle inequalities are
satisfied. Since k ≡ 1, 2 mod 3, we can express k = 3z + t where z ∈ Z and t ∈ {1, 2},
and we can rewrite the floor expression in (3.11) as follows

⌊
2k

3

⌋
=

⌊
2(3z + t)

3

⌋
=

{
2z if t = 1

2z + 1 if t = 2,

70



and, hence, we get ⌊
2k

3

⌋
= 2z + t− 1. (3.12)

Another important element of our ILP model for the separation of congruent-2k3 cycle
inequalities resides in the connectivity constraints, which we formulate exploiting the
ideas presented in [54], by setting a network flow model. Given the original graph G =

(V,E) the flow networks is defined as H = (V,A), where A :=
⋃

{i,j}∈E{(i, j), (j, i)}.
The network H has a single source node that introduces all the flow, while every node
that belongs to the cycle is the sink of a single unit of flow. However, we do not fix in
advance the source node, and we let variables si ∈ {0, 1} for i = 1, . . . , n to indicate
which node of H is the source. Then, we introduce the variables ui ∈ Z+ for every
vertex vi ∈ V to indicate the overall amount of flow originated at the only source node
i having si = 1. Indeed, we have that ui > 0 only for the sink node. The complete ILP
model for the separation of congruent-2k3 cycle inequalities is the following:

max
∑
v∈V

cvxv +
∑
e∈E

weye − (2z + t− 1) (3.13)

s.t.
∑
e∈δ(v)

ye = 2xv ∀v ∈ V, (3.14)

∑
v∈V

xv = 3z + t (3.15)

xi +
∑

(i,j)∈A

fij = ui +
∑

(j,i)∈A

fji ∀i ∈ V, (3.16)

n∑
i=1

si = 1 ∀i ∈ V, (3.17)

ui ≤ n · si ∀i ∈ V, (3.18)

fij ≤ n · ye ∀(i, j) ∈ A, (3.19)

ye, xv ∈ {0, 1} ∀v ∈ V, ∀e ∈ E, (3.20)

ui ∈ Z+ ∀i ∈ V, (3.21)

z ∈ Z+, t ∈ {1, 2}. (3.22)

The objective function (3.13) includes the relation specified in (3.12). Constraints (3.14)
ensure that the subgraph induced by the variables xv and ye is a union of disjoint
cycles, since every node has either degree zero or two. Constraints (3.15) impose the
congruence on the length of the cycle, which cannot be a multiple of three. Constraints
(3.16) impose the flow conservation at every node, and constraints (3.17) impose that a
single vertex is the origin of the flow. Constraints (3.18) impose that all the vertices but
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the source have ui = 0, that is, they do not originate any unit of flow. For every flow
variable fij, constraints (3.19) set the capacity of the flow variables to zero whenever
ye = 0, that is, whenever arc e is not included in the cycle.

The ILP model (3.13)–(3.22) permits us to look for the most violated congruent-2k3
cycle inequality by solving a single problem. Alternatively, we could solve a simplified
version of the separation problem by fixing in advance both the source node si and the
value of variable t. In this way, to find the most violated inequality, we have to solve
two (easier) subproblems for every node, for a total of 6n subproblems. However, each
subproblem reduces to a Shortest Path Problem defined on an auxiliary directed graph
having nonnegative weights, as shown in the proof of the following proposition.

Proposition 32. The separation problem of the congruent-2k3 cycle inequality is in
polynomial time solvable.

Proof. The separation problem consists of a sequence of 2n Minimum Weighted s, t-
Path problems from a source node s to the target node t of an auxiliary graph. Let
G = (V,E) be a weighted graph where (cv, we) are the optimal values of the current
LP relaxation. Starting from G = (V,E), we construct a weighted directed graph
H = (N,A) in the following way. For every vertex v ∈ V , we introduce three nodes
labelled as v0, v1, v2 in N . Now, for each edge e = {v, w} ∈ E, we introduce three
arcs ai ∈ A with respect to the permutation σ = (012), that is, ai = (vi, wσ(i)), with
i = 0, 1, 2. Observe that a path from v0 to v1 gives a path Pk of size k ≡ 1 mod 3, and
a path from v0 to v2 gives a path Pk of size k ≡ 2 mod 3. Next, we distinguish the two
cases.

Case 1: (k ≡ 1 mod 3) In this case, we have
⌊
2k
3

⌋
= 2(k−1)

3
, and the separation

problem reads as follows:

∃Ck :
2

3
|Ck| −

∑
v∈V (Ck)

cvxv −
∑

e∈E(Ck)

wexe <
2

3
.

Since we look for the most violated inequality, for each node v ∈ V , the separation
problem is equivalent to a Minimum Weighted s, t-Path Problem where the source is v0
and the target is v1. Now, we define the costs on the arcs as la=(i,j) :=

2
3
−ci−we={i,j}+1,

for every a = (i, j) ∈ A. We know that ci + cj + we={i,j} ≤ 1 due to feasibility of
constraints (3.2) and, hence, the costs are positive. Let P1 be a minimum weighted
path in H from v0 to v1. By construction, the path P1 in H corresponds to a cycle Ck

in G of length k ≡ 1 mod 3, where for each node vi ∈ N we consider the corresponding

72



node v ∈ V . If we sum up all the costs on the path P1, we obtain:

l(P1) :=
∑

(i,j)∈A(P1)

l(i,j) =
2

3
|P1| −

∑
i∈V (Ck)

ci −
∑

e∈E(Ck)

we + |P1|. (3.23)

Hence, the path P1 yields a violated congruent-2k3 cycle Ck in G if and only if l(P1)−
|P1| < 2

3
.

Case 2: (k ≡ 2 mod 3) In this case, we have
⌊
2k
3

⌋
= 2(k−2)

3
, and the separation

problem reads as follows:

∃Ck :
2

3
|Ck| −

∑
v∈V (Ck)

cvxv −
∑

e∈E(Ck)

wexe <
4

3
.

Hence, we have to find a minimum weighted path P2 from v0 to v2 for each node v in
V . We define the arc costs la as before, and we get a maximum violated cycle if and
only if l(P2)− |P2| < 4

3
.

In conclusion, by solving 2n shortest path problems on a directed graph with positive
weights, we get the most violated congruent-2k3 cycle inequalities in polynomial time.

In our case we have a generalization of the odd cycle inequalities by paths in tripar-
tite graphs, instead of bipartite graphs, see [62].

3.4 Even and odd clique inequalities

At this point, we focus on valid inequalities that can be derived by complete subgraphs
Kh of G, with h ≤ n. This leads to consider the following valid inequality.

Proposition 33. Let G be a graph, and let Kh a clique of order h ≤ n of G. Then,

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
⌈
h

2

⌉
(3.24)

is a valid inequality for PT (G).

In particular, when the subgraph Kh has even cardinality, we get the following
result.
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Proposition 34. Let Kh be a complete graph, where h ∈ N is an even number. Then,
the even-clique inequality defined as

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h

2
(3.25)

is facet-defining for the Total Matching Polytope PT (Kh).

Proof. Let G = Kh be a complete graph, where h = 2l for l ∈ N and let V (Kh) :=

{v1, v2, . . . , v2l} and E(Kh) := {ei,j = {vi, vj} | ∀i, j ∈ {1, 2, . . . , 2l}, i ̸= j}. First,
we show that the even-clique inequalities are valid for PT (G). Since Kh is a complete
graph of even order, it admits a perfect matching M . Notice that any stable set S

intersects Kh in at most one vertex, thus a maximum total matching T can be obtained
by a perfect matching, or by deleting from a perfect matching an edge e = {i, j} and
adding one of its endpoints. This implies that |T | ≤ l. Next, we prove that the face
induced by an even-clique inequality is facet-defining. To this end, consider a face
F := {z ∈ PT (G) | λT z = λ0} and let F ′ := {z ∈ PT (G) | λ̃T z = λ̃0}, where λ̃T z ≤ λ̃0

corresponds to the even-clique inequality. Suppose that F ′ ⊆ F , we want to show
that every inequality of F is a scalar multiple of the even-clique inequality. Place the
vertices v1, v2, . . . , v2l−1 at equal distances on a circle and place v2l in the center. Starting
from this configuration, we show a decomposition of Kh into disjoint union of perfect
matchings, such that E(Kh) = M1∪M2∪· · ·∪Mh−1. Notice also that a perfect matching
M can be naturally identified as a total matching. Now, fix an index i and consider
the edge that connects a vertex vi to the center v2l of the circle, we call ci = {vi, v2l}
the central edge, and consider the set of edges Ei := {ei+j,i−j = {vi+j, vi−j} | ∀j ∈
{1, . . . , h

2
− 1}}, where the indexes run modulo h− 1. It turns out that Mi := Ei ∪{ci}

is a perfect matching. In this way, repeating the same construction we can form h− 1

distinct perfect matchings Mi, with χ[Mi] ∈ F ′, for all i ∈ {1, 2, . . . , 2l − 1}. Now, we
can construct a total matching with the same cardinality of the perfect matchings just
constructed. Consider an edge e = {vj, vk} ∈ Mi of a fixed perfect matching Mi. Then,
Tk := (Mi \ {ej,k}) ∪ {vk} and Tj := (Mi \ {ej,k}) ∪ {vj} are total matchings. Observe
that χ[Tj] ∈ F ′ and χ[Tk] ∈ F ′, in particular these characteristic vectors lie on F . This
implies that λvj = λvk = λej,k , since λTχ[Tj] = λTχ[Tk] = λTχ[Mi], where we denote
as λa the cost coefficient for the element a ∈ D = V ∪ E. In particular, we apply this
construction for all the edges of the same perfect matching Mi. Repeating the same
argument for all the perfect matchings in the decomposition, we obtain that λv = λe

for e ∈ δ(v), ∀v ∈ V , and since the cost coefficients for the endpoints of each edge are
the same by construction, and we consider only perfect matchings (we can touch each
vertex), we deduce that there exists a ∈ R such that λ = a1. Thus, this implies that
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λ0 = ah
2
. We conclude that λT z ≤ λ0 is a scalar multiple of the even-clique inequality

since (λ, λ0) = a(1, h
2
). This completes the proof.

Now, we are ready to prove the main theorem of this section.

Theorem 39. Let G be a graph, and let Kh be a complete subgraph of G, where h is
even. Then, the even-clique inequality defined as

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h

2

is facet-defining for the Total Matching Polytope PT (G).

Proof. Let Kh be a complete subgraph of even order of G. We denote as F the face
induced by the even-clique inequality. By Proposition 34, we can find |V (Kh)|+|E(Kh)|
affinely independent points satisfying at equality the even-clique inequality. Now, fix
a perfect matching M of G[V (Kh)]. Since M ∩ {u} = ∅ for every u /∈ V (Kh), Tu :=

M ∪ {u} is a total matching. Observe that, χ[Tu] ∈ F . Thus, the set of characteristic
vectors {χ[Tu] | ∀u /∈ V (Kh)} is contained in F and the corresponding |V \V (Kh)| points
are affinely independent. Clearly, it is easy to see that they are still affinely independent
with respect to the previous points, so we have n points up to now. Similarly, Te :=

M ∪ {e} for every e /∈ δ(V (Kh)) ∪ E(Kh) is a total matching, since M ∩ {e} = ∅.
Consequently, also the set of vectors {χ[Te] | ∀e /∈ δ(V (Kh) ∪ E(Kh)} is contained
in F , and the corresponding points are affinely independent. Now, let S := {v ∈
V (Kh) | δ(V (Kh)) ̸= ∅}. We can construct a total matching Ts := (Ms \ {e}) ∪ {s},
where e = {s, s} ∈ E(Kh), s ∈ S and Ms is a perfect matching of G[V (Kh)] with
one end-point in s. Then, Tes := Ts ∪ {es} for every es ∈ δ(V (Kh)) ∩ δ(s), is a total
matching whose characteristic vector lies on F . Repeating the same construction for
all the edges es ∈ δ(V (Kh)), we can obtain distinct total matchings for every s ∈ S

whose characteristic vectors belong to F , where the corresponding points are affinely
independent. In this way, we have found n +m affinely independent points belonging
to F , since we can rearrange the rows of the matrix having as columns these points in
such a way that we get the following form: AKh

BKh
CKh

0 Ĩv 0

0 0 Ĩe

 ,

where the matrices AKh
, BKh

, CKh
have dimension |V (Kh)|×|E(Kh)| and correspond to

the vertex and edge components of Kh. The rest of the blocks are the zero and identity
matrices of the remaining vertex and edge components. This completes the proof.
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Figure 3.3: Five perfect matchings of K6

Proposition 35. Let G be a graph, and let Kh be a complete subgraph of G, where h

is odd. Then, the odd clique inequality defined as

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h+ 1

2 (3.26)

is valid for the Total Matching Polytope PT (G), but it is not facet-defining.

Proof. Let Kh be a clique of odd order. Since in a total matching of Kh we can pick
at most one vertex, and the size of the largest matching is h−1

2
, we can take at most

h−1
2

+ 1 = h+1
2

elements of a total matching, as shown in Figure 3.4. Therefore, this
implies that the odd clique inequality is valid for PT (G). Now, we prove that it is
not facet-defining. Adding a vertex u to the clique Kh, we can form a clique of even
order Kh+1 := (V (Kh+1), E(Kh+1)), where V (Kh+1) := V (Kh) ∪ {u} and E(Kh+1) :=

E(Kh) ∪ {e = {u, v} | v ∈ V (Kh)}. Then, the inequality

∑
v∈V (Kh)

xv +
∑

e∈E(Kh)

ye ≤
h+ 1

2

is dominated by ∑
v∈V (Kh+1)

xv +
∑

e∈E(Kh+1)

ye ≤
h+ 1

2

This completes the proof.

We stress that, even if the odd clique inequality is maximal it remains not facet-
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Figure 3.4: A complete K5 graph. In green, a possible maximal total matching.

defining. Indeed, suppose that Kh is a maximal clique of odd order. We know that∑
v∈V (Kh)

xv ≤ 1

is facet-defining, and it is easy to notice that the following is a valid inequality for the
Total Matching Polytope

∑
e∈E(Kh)

ye ≤
h− 1

2
.

Thus, the sum of the two inequalities gives the odd-clique inequality.

3.4.1 Separation for the even-clique inequalities

We propose the following ILP model to detect a maximum violated even-clique, which
is based on the maximum edge weighted clique model discussed in [70]:

max
∑
v∈V

cvxv +
∑
e∈E

weye − z (3.27)

s.t. xv + xw ≤ 1 ∀{v, w} ∈ E, (3.28)∑
v∈V

xv = 2z, (3.29)

ye ≤ xv ∀e = {u, v} ∈ E, (3.30)

ye ≤ xu ∀e = {u, v} ∈ E, (3.31)

xv + xu ≤ ye + 1 ∀e = {u, v} ∈ E, (3.32)

xv, ye ∈ {0, 1} ∀v ∈ V, ∀e ∈ E, (3.33)

z ∈ Z, (3.34)

where we recall that E represents the complement of E(G). Since we want to detect
a clique of even order, we introduce the integer variable z ∈ Z. If the optimal so-
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lution is greater than zero, we get a maximally violated even-clique inequality. The
constraints (3.28) are equivalent to imposing the condition that we can select at most
one vertex from a maximal stable set in the clique found. Whereas, the constraints
(3.30)–(3.32) ensure that if both the end-points of an edge are selected in the solution,
the corresponding edge must be included in the clique. In [70], it is proven that finding
a maximum weighted edge clique is NP-hard. Consequently, the problem (3.27)–(3.33)
is NP-hard in general, and it contains the maximum edge weighted clique as a special
case.

In the following Chapter, we focus more in detail on the facial structure of the Total
Matching Polytope for specific classes of graphs for which the corresponding linear
description has been derived. We succeeded in proving the results by providing new
families of facet-defining inequalities for the graph considered.
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4. Total Matching Polytope for bipartite graphs

Motivated by the study of the Stable Set Polytope and the Matching Polytope for
bipartite graphs, we want to study the Total Matching Polytope for these classes of
graphs 1. For this reason, we mainly focus on the facial structure of PT (G) for bipartite
graphs. In this Chapter, we introduce two new families of facet-defining inequalities for
the Total Matching Polytope, and we derive complete characterizations for trees and
complete bipartite graphs.

4.1 Total Matching Polytope for trees

Since computing αT (G) is polynomial for trees, we study the linear description of such
graphs. Together with a result from [77], Proposition 20 already allows us to charac-
terize PT (G) when G is a tree.

Theorem 40. Let G be a tree. Then a complete and irredundant description of PT (G)

is given by

PT (G) :=

{
(x, y) ∈ R|V |+|E|

+ : xv +
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V,

xv + xw + ye ≤ 1 ∀e = {v, w} ∈ E

}
.

Hence, the optimization problem on PT (G) for a tree graph can be solved in polynomial
time.

Proof. Consider the total graph T (G) of G. In [77, Theorem 5], it is proved that a
graph is a tree if and only if its total graph is chordal. Hence, we have

PT (G) = PSTAB(T (G)) =

{
x ∈ R|V (T (G))| :

∑
v∈K

xv ≤ 1 ∀K ∈ K ⊆ V (T (G)),

xv ≥ 0 ∀v ∈ V (T (G))

}
,

where the first equality follows by Proposition 20 and the second since chordal graphs
are perfect graphs (see, e.g., [72]). Let K be a maximal clique in T (G). Since G has
no cycles, the preimage of K corresponds in G to either a node and its neighborhood,

1The results of this Chapter are obtained in collaboration with Professor Yuri Faenza during my
visiting research period at Columbia University.
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or to an edge and its endpoints. Hence, a maximal clique inequality corresponds to a
total vertex inequality (3.1) or to a total edge inequality (3.2), completing the proof of
the first statement. For the second, observe that the total vertex inequalities and total
edge inequalities are O(|V | + |E|). To observe that the description is non-redundant,
we recall that we have shown in Proposition 21 that the total vertex inequalities and
the total edge inequalities define facets.

Theorem 40 gives an alternative polyhedral proof of the fact that a maximum total
matching in a tree can be found in polynomial time, and in fact shows that even the
weighted version of the problem (with weights defined over the elements of the tree)
can be solved in polynomial time.

4.2 Balanced biclique inequalities

In this Section, we introduce a new class of facets based on complete bipartite graphs,
where each vertex bipartition has the same size. Our treatment starts with the obser-
vation that the total edge facet-defining inequality (3.2) can be seen as induced by a
balanced biclique K1,1. We next derive a generalization of these inequalities, and we
show that they are facet-defining for any graph.

Theorem 41. Let G be a graph and Kr,r be an induced balanced biclique of G. Then,
the balanced biclique inequality:∑

v∈V (Kr,r)

xv +
∑

e∈E(Kr,r)

ye ≤ r (4.1)

is facet-defining for PT (G).

Proof. Let V (Kr,r) be the union of the disjoint sets R, S, where R := {v1, . . . , vr}
and S := {w1, . . . , wr}. The validity of the inequality follows from νT (Kr,r) = r [45].
Let F̃ = {z ∈ PT (G) | πT z = π0} be the face of PT (G) defined by (4.1), and let
F = {z ∈ PT (G) | λT z = λ0} be a facet of PT (G) such that F̃ ⊆ F . We want to prove
that there exists a ∈ R such that (λ, λ0) = a(π, π0).

Let e = {u, v} ∈ E[Kr,r] and define the total matchings Tv := (S \ {v}) ∪ {e} and
Tu := (R \ {u}) ∪ {e}. Note that, since |Tu| = |Tv| = |S| and χ[S] ∈ F̃ ⊆ F , we
have χ[Tu], χ[Tv] ∈ F̃ ⊆ F . Hence, λTχ[S] = λTχ[Tu] = λTχ[Tv] = λ0. We deduce
therefore that λu = λv = λe. Since e ∈ E[Kr,r] arbitrarily, we deduce λu = λv = λe

∀u ∈ R, v ∈ S, e ∈ E[Kr,r]

Now, consider w /∈ (R ∪ S ∪ E[Kr,r]) to be an element of G. Let M be a perfect
matching of Kr,r. Note that at least one of T1 := R ∪ {w} and T2 := S ∪ {w}, and
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T3 := M ∪ {w} is a total matching. Without loss of generality, assume that T1 is a
total matching. χ[T1] is a point of PT (G) that dominates χ[R] componentwise. Observe
that PT (G) is a full-dimensional down-monotone polytope and F is not induced by a
nonnegative inequality since λ has at least two non-zero coefficients. Since χ[R] ∈ F ,
we have χ[T1] ∈ F , [72]. This implies that λw = 0. This completes the proof since we
have proved that (λ, λ0) = a(π, π0).

Separation of balanced biclique inequalities

We next address the problem of separating balanced biclique inequalities of fixed car-
dinality. The following problem is NP-Complete [67].

Name: Weighted Edge Biclique Decision Problem (WEBDP).
Input: A complete bipartite graph G with edge weights u ∈ Z|E|, a number k ∈ N.
Decide: If there exists a subgraph of G that is a biclique with vertex partition (R, S)

such that
∑

e∈R×S u(e) ≥ k.

The previous result implies that the following problem is NP-Complete.

Name: Weighted Edge Biclique Decision Problem of fixed Cardinality (WEBDPC).
Input: A complete bipartite graph G(V,E) with edge weights u ∈ N|E|, a number k ∈ N
and q ≤ |V |.
Decide: If there exists a subgraph of G that is a biclique with vertex partition (R, S),
|R| = |S| = q, such that

∑
e∈R×S u(e) ≥ k.

Indeed, WEBDPC is clearly in NP. Suppose we want to solve WEBDP on input G, u, k.
Let u′ ∈ {N ∪ {0}}|E| defined as u′

e = ue + ∥u∥∞ for e ∈ E(G). For q = 1, . . . , |V (G)|
solve an instance of WEBDPC with input G, u′, k + q2∥u∥∞, q. Suppose any of those is a
yes-instance. Then G has a biclique with vertex partition (R, S), |R| = |S| = q, that
satisfies ∑

e∈R×S

u′(e) ≥ k + q2∥u∥∞ ⇔ �����
q2∥u∥∞ +

∑
e∈R×S

u(e) ≥ k +�����
q2∥u∥∞.

Hence, G, u, k is a yes-instance for WEBDP if and only if one of the |V (G)| instances of
WEBDPC defined above is a yes-instance, concluding the proof.

We next show that NP-completeness of WEDPC implies NP-completeness of the fol-
lowing.

Name: Separation Problem for Balanced Biclique Inequalities of a Given Size in com-
plete bipartite graphs (SPBBIGS)
Input: A complete bipartite graph G(R′ ∪ S ′, E), a point (x∗, y∗) ∈ Q|V |+|E|

+ , r ∈ N,
r ≤ |R′|.
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Decide: If there exists a violated biclique inequality of PT (G) of G with r nodes on
each side of the partition, that is, there exist R ⊆ R′, S ⊆ S ′, |R| = |S| = r such that:∑

v∈R∪S

x∗
v +

∑
e∈R×S

y∗e > r. (4.2)

Clearly SPBBIGS belongs to NP. Suppose we have an algorithm for SPBBIGS, we
show an algorithm for WEBDPC. Let G, u, k, q be an input to WEBDPC, where G has vertex
bipartition (R′, S ′). Define y∗e = ue

q
k−1

for each edge e of G, x∗ = 0, and run the
algorithm for SPBBIGS on G, x∗, y∗, r = q. Suppose there exists an inequality of the
form (4.2) separating (x∗, y∗). Then for some R ⊆ R′, S ⊆ S ′, we have

q

k − 1

∑
e∈R×S

ue =
∑

e∈R×S

y∗e =
∑

v∈R∪S

x∗
v+

∑
e∈R×S

y∗e > r = q ⇔
∑

e∈R×S

ue > k−1 ⇔
∑

e∈R×S

ue ≥ k,

thus giving a positive answer to WEBDPC. Similarly, if no inequality of the form (4.2) is
violated, we have

∑
e∈R×S ue < k, for all R ⊆ R′, S ⊆ S ′, |R| = |S| = r = q.

4.3 Non-balanced biclique inequalities

Now, consider a general non-balanced biclique Kr,s, with s > r, of a graph G. By
mimicking (4.1), it is natural to guess that∑

v∈V (Kr,s)

xv +
∑

e∈E(Kr,s)

ye ≤ s. (4.3)

defines a facet. This inequality is indeed valid but not facet-defining. In fact, since Kr,r

is an induced subgraph of Kr,s, the inequality can be written as the sum of∑
v∈V (Kr,r)

xv +
∑

e∈E(Kr,r)

ye ≤ r.

and of the following inequalities∑
e∈δ(w)

ye + xw ≤ 1, ∀w ∈ V (Kr,s) \ V (Kr,r).

We next give a strengthening of (4.3) and show that it defines a facet when G is a
bipartite graph. From now on, let Kr,s be a non-balanced biclique such that V (Kr,s) =

R ∪ S where R := {v1, v2, . . . , vr} and S := {w1, w2, . . . , ws} be the partition of the
vertices, with s > r.
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Proposition 36. Let Kr,s with s > r > 1 be a non-balanced biclique. Then, for all
t ∈ R, the non-balanced lifted biclique inequality:∑

i∈R

αixi +
∑
j∈S

xj +
∑

e∈E(Kr,s)

ye ≤ s (4.4)

where:

αi =

{
s− (r − 1) if t = vi,

1 otherwise.

is facet-defining for PT (Kr,s).

Proof. W.l.o.g., assume t = v1. Let N be the vertices of PT (Kr,s). We show that lifting
the (clearly) valid inequality

∑
v∈S

xv+
∑

e∈E(Kr,s)

ye ≤ s of P ′ := PT (Kr,s)∩{xv = 0, v ∈ R}

we obtain (4.4), thus showing that (4.4) is valid. We perform a sequential lifting [62,
79] of the coefficients of {xv}v∈R following the ordering 1, 2, . . . , r of subscripts of nodes
in R. Now, consider the largest coefficient relative to xv1 :

αv1 := s−max

{ ∑
i∈S

xi +
∑

e∈E(Kr,s)

ye

}
s.t. xv1 = 1, z ∈ N,

xj = 0, j ∈ R \ {v1}.

αv1 = s− (r− 1), since we can take a matching of size r− 1, while any total matching
T with v1 ∈ T does not contain any vertex from S or edge incident to v1. Now, we
claim that αi = 1 for i ∈ {v2, v3, . . . , vr}.

αv2 := s−max

{∑
j∈S

xj +
∑

e∈E(Kr,s)

ye + (s− r + 1)xv1

}
s.t. xv2 = 1, z ∈ N,

xj = 0, j ∈ R \ {v1, v2}.

Now, fixing the vertex v2, it is easy to see that αv2 is achieved by setting (x, y) =

χ[M2∪{v1}], where M2 is a matching of size r− 2 in G[R∪S \ {v1, v2}]. Thus αv2 = 1.
Iteratively, at the step i of the sequence we have:
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αvi := s−max

{∑
j∈S

xwj
+

∑
e∈E(Kr,s)

ye + (s− r + 1)xv1 +
i−1∑
ℓ=2

xvℓ

}
s.t. xvi = 1, z ∈ N,

xj = 0, j ∈ R \ {v1, . . . , vi−1}.

Repeating the same reasoning we obtain that αvi = 1, and conclude that (4.4) is valid
for PT (G).

Now let F = {z ∈ PT (G) | λT z = λ0} be a facet of PT (G) such that F̃ ⊆ F . By
repeating the same argument as in the proof of Theorem 41, we deduce that λv = λw =

λe for all v ∈ R \ {v1}, w ∈ S, e ∈ E[Kr,r].

For the coefficient λv1 , χ[R] = χ[S] implies that λv1 +
r∑

i=2

λvi =
s∑

j=1

λwj
, thus λv1 =

(s− r + 1)λv2 . This completes the proof.

v2

v1

v5

v4

v3

Figure 4.1: Biclique K2,3

Now, we can see an easy direct application for the biclique K2,3, see Figure 4.1. The
corresponding inequalities read as follows:

2xv1 + xv2 + xv3 + xv4 + xv5 +
∑

e∈E(K2,3)

ye ≤ 3,

xv1 + 2xv2 + xv3 + xv4 + xv5 +
∑

e∈E(K2,3)

ye ≤ 3.

The following Proposition shows that, in a bipartite graph G, the lifting procedure
exposed in Proposition 36 is exhaustive and maximal, that is, it generates all the
possible facet-defining induced biclique inequalities.

Theorem 42. Let G be a bipartite graph. Then, the non-balanced lifted biclique in-
equalities (4.4) are facet-defining for PT (G).
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Proof. Let V (G) := A1∪A2 be the partition of the vertices of G and V (Kr,s) := R∪S a
non-balanced biclique of G. We denote by F the face induced by a non-balanced lifted
biclique inequality. By Proposition 36, we have a set S of |V (Kr,s)|+ |E(Kr,s)| affinely
independent points that lie in F whose support is contained in the elements of Kr,s.
We show that, for each element d of G with d /∈ Q := R ∪ S ∪ E[Kr,r], there is a total
matching Md such that χ[Md] ∈ F and S ∪ {Md}d∈(V ∪E)\Q is linearly independent.

Let d be an element of G with d /∈ Q. If d is not adjacent to S, let Md = S ∪ {d}.
Else, d is not adjacent to R since G is bipartite, and we let Md = R∪ {d}. The matrix
having as columns vectors from S ∪d∈(V ∪E)\Q Md has the following form: AKr,s BKr,s CKr,s

0 Ĩv 0

0 0 Ĩe

 ,

where AKr,s , BKr,s , CKr,s represent the components of elements of Kr,s, and Ĩv, Ĩe are
identity matrices of appropriate size. Since the matrix has maximum rank, the thesis
follows.

4.4 Complete Description for the Total Matching Poly-
tope of complete bipartite graphs

In this Section, we show that the inequalities from Theorem 41 and Theorem 42, to-
gether with nonnegative inequalities and total vertex and total edge inequalities give
a complete and non-redundant description of PT (G) when G is a complete bipartite
graph. Our argument is as follows. In Section 4.4.1 we give a simple algorithm for
solving the maximum weighted total matching problem on a complete bipartite graph
G. In Section 4.4.2, we use this algorithm and Balas’ classical theorem on the convex
hull of the union of polytopes to give an extended formulation QT (G) for PT (G). Then,
in Section 4.4.3, we study the projection cone associated to QT (G) to deduce the main
result.

Theorem 43. A complete and non-redundant description of PT (Kr,s) is defined by:

• Total vertex and total edge inequalities (3.1) – (3.3),

• Balanced biclique inequalities (4.1),

• Non-balanced lifted biclique inequalities (4.4).
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4.4.1 Algorithm

A total matching containing a vertex from R (resp. S) cannot contain any vertex from
S (resp. R). Thus, a total matching T of Kr,s satisfies at least one of T ∩ R = ∅ and
T ∩ S = ∅. For U ∈ {R, S}, let T (Kr,s) \ U be the subgraph of T (Kr,s) obtained by
removing edges corresponding to U .

We can solve the maximum weighted total matching problem by solving the maxi-
mum weighted stable set on T (Kr,s) \ U for U ∈ {R, S}, and selecting the solution of
maximum weight. The next lemma shows that such graphs have a special structure.

Lemma 4. Let U ∈ {R, S}. The graph T (Kr,s) \ U is perfect.

Proof. Suppose w.l.o.g. that U = S. We denote by (ri, sj) the edge-vertex associated to
the edge e = {vi, wj} of the original graph Kr,s and with ri the node-vertex correspond-
ing to the vertex vri . We prove that there neither T (Kr,s) \ S nor T (Kr,s) \ S contain
an odd cycle with 5 or more nodes. The statement then follows from the well-known
characterization of perfect graphs [9].

We start with T (Kr,s) \ S. By construction, every vertex ri ∀i = 1, . . . r lies in
exactly one clique and it is not adjacent to any other node. Thus, no odd cycle C

with at least 5 nodes contains a vertex ri. Hence, C contains only vertices of the kind
(ri, sj). We call ri (resp. sj) the first (resp. second) component of the vertex. Note that
no three consecutive vertices of C can share the same first or second component; on the
other hand, two consecutive vertices of C must share the first or the second component.
Hence, if we let C = {v0, . . . , vk−1}, we can assume that, for i odd, vi shares the first
component with vi+1 and the second component with vi−1 (indices are taken modulo
k). However, this contradicts k being odd.

We now focus on T (Kr,s) \ S. Let C = {v0, . . . , vk−1}, k ≥ 5 be an odd cycle in
T (Kr,s) \ S. First, observe that V (C) ∩ R = ∅. Indeed, suppose by contradiction that
ri ∈ V (C) ∩ R, and let wlog ri = v0. Then v⌈ k

2
⌉ = (ri, sj) and v⌊ k

2
⌋ = (ri, sℓ) for some

indices j, ℓ. Then v⌈ k
2
⌉ and v⌊ k

2
⌋ are not adjacent in T (Kr,s) \ S, a contradiction.

Hence, V (C) ∩R = ∅, and let wlog v0 = (r1, s1). We distinguish two cases.
First, assume that k = 5. Since v2, v3 are not adjacent to v0 but they are adjacent

to each other, we can assume wlog that v2 = (r1, s2), v3 = (r2, s1). Since v1 is adjacent
to v0 but not to v3, we must have v1 = (r2, st), with t ̸= 1. Since v1 is adjacent to v2,
t ̸= 2. Symmetrically, v4 = (rp, s2) with p ̸= 1, 2. On the other hand, v1 and v4 are not
adjacent, hence they must share one of their two components. Hence either t = 2 or
p = 2, a contradiction.

Now assume k ≥ 7. Similarly to the above, v⌊ k
2
⌋ = (r1, s2), v⌈ k

2
⌉ = (r2, s1). Since

v⌊ k
2
⌋−1 is not adjacent to v0 or v⌈ k

2
⌉, we must have v⌊ k

2
⌋−1 = (rt, s1) for t ̸= 1, 2. Sym-
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metrically, v⌈ k
2
⌉+1 = (r1, sp) for p ̸= 1, 2. Again, using the fact that v⌊ k

2
⌋−1 and v⌈ k

2
⌉+1

are not adjacent, we deduce t = 1 or p = 1, a contradiction.

Lemma 4 allows us to use classical semidefinite techniques [31] to solve the maximum
weighted stable set problem on T (Kr,s) \ U for U ∈ {R, S}. However, in our case we
do not need to employ semidefinite programming, because of the following.

Observation 1. Let U ∈ {R, S}. The cliques of T (Kr,s) \U correspond in G either to
a node in {R, S} \ {U} and the edges incident to it, or to edges incident to a node in
U . In particular, T (Kr,s) \ U has O(|R|+ |S|) maximal cliques.

As a consequence, we are able to solve the problem by means of linear programming
techniques.

We stress the fact that if we consider T (Kr,s) instead of T (Kr,s) \U for U ∈ {R, S},
the graph is no longer perfect. For instance, the total graph T (K2,2) contains an odd-
hole. As shown in Figure 4.2 the cycle induced by the red vertices corresponds to an
induced odd-hole C5.

Figure 4.2: Total graph of K2,2
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4.4.2 Extended formulation

Define the two polytopes

PR := {z ∈ PT (Kr,s) : xv = 0 for v ∈ S},
PS := {z ∈ PT (Kr,s) : xv = 0 for v ∈ R}.

Following the discussion from Section 4.4.1, we can write P = conv(PR ∪ PS). Using
Lemma 4, we can describe PR completely using cliques inequalities:

PR =

{
x ≥ 0 :

∑
v∈K

xv ≤ 1, ∀K ∈ K ⊆ V (T (Kr,s) \ S)
}
.

In turns, Observation 1 allows for a simple description of PR (and symmetrically, of
PS). We deduce the following.

Corollary 5.

PR :=

{
(x, y) ∈ R|R|+|E|

+ : xv+
∑
e∈δ(v)

ye ≤ 1, ∀v ∈ R;
∑

e∈δ(w)

ye ≤ 1, ∀w ∈ S

}
,

PS :=

{
(x, y) ∈ R|S|+|E|

+ : xw+
∑

e∈δ(w)

ye ≤ 1, ∀w ∈ S;
∑
e∈δ(v)

ye ≤ 1, ∀v ∈ R

}
.

Balas showed that the convex hull of the union of two polytopes has an extended
formulation that can be described in terms of the original formulations of the polytopes.

Theorem 44. [2] Let P1 = {x ∈ Rn : A1x ≤ b1}, P2 = {x ∈ Rn : A2x ≤ b2} be
polytopes. Then P := conv(P1 ∪ P2) satisfies P = Projx(Q), where

Q :=

{
(x, x1, x2, λ1, λ2) ∈ R3n+2 : A1x1 ≤ λ1b1,

A2x2 ≤ λ2b2,

x = x1 + x2,

λ1 + λ2 = 1,

λ1, λ2 ≥ 0.

}
When applied to PR, PS defined as above, Theorem 44 gives the following extended

formulation for PT (Kr,s), where, for later usage, we also report the dual multipliers.
Note that below we used the fact that node variables xv for v ∈ R (resp. xw for w ∈ S)
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do not appear in PS (resp. PR), allowing us to reduce the number of variables. Edge
variables ye for e ∈ E appear in both PR and PS, but we use the equality ye = y1e + y2e
to project out y2e for e ∈ E. Similarly, we use λ1 + λ2 = 1 to project out λ2.

Corollary 6.

Q :=

{
(x, y, λ1, λ2, y

1
e) ∈ R|V |+|E|+1+1+|E|

+ : xv+
∑
e∈δ(v)

y1e − λ1 ≤ 0 ∀v ∈ R, [u1
v]∑

e∈δ(w)

y1e − λ1 ≤ 0 ∀w ∈ S, [u1
w]

xw+
∑

e∈δ(w)

(ye − y1e) + λ1 ≤ 1 ∀w ∈ S, [u2
w]∑

e∈δ(v)

(ye − y1e) + λ1 ≤ 1 ∀v ∈ R, [u2
v]

− y1e ≤ 0 ∀e ∈ E, [u1,≥
e ]

− ye + y1e ≤ 0 ∀e ∈ E, [u2,≥
e ]

− λ1 ≤ 0, [uλ1 ]

λ1 ≤ 1 [uλ2 ]

}
.

4.4.3 Projection

In order to project the extended formulation defined in the previous Section, we study
the associated projection cone. Let us start by recalling the connection between the
projection cone and the description in the original space.

Theorem 45. [14, Theorem 2.1] Let Q := {(x, z) ∈ Rn
+ × Rp | Ax + Bz ≤ d} where

A,B have m rows, and define its projection cone CP := {u ∈ Rm | uTB = 0, u ≥ 0}.
The projection of Q onto the x-space is

Projx(Q) = {x ∈ Rn
+ | uTAx ≤ uT b,∀u ∈ CP}.

By applying Theorem 45 to Corollary 6, we can obtain a description of P in the
original space.

Lemma 5. Let P := PT (Kr,s). Then

P = {(x, y) ∈ Rn+m
+ :

∑
v∈R

u1
vxv+

∑
w∈S

u2
wxw+

∑
e={v,w}∈E

min
j=1,2

(uj
v+uj

w)ye ≤ max
j=1,2

∑
w∈V

uj
w,∀u ∈ Y }

89



where Y is the set of vectors u ∈ R2(|R|+|S|)
+ that satisfy 2(|R| + |S|) − 1 linearly inde-

pendent constraints from the set

u = 0

u1
v + u1

w = u2
v + u2

w for v ∈ R,w ∈ S. (4.5)∑
v∈V

u1
v =

∑
v∈V

u2
v.

Proof. We first claim that the projection cone associated to the extended formulation
for P as in Corollary 6 is given by

CP :=

{
u : u1

v + u1
w − u1,≥

e = u2
v + u2

w − u2,≥
e ,∀e = {v, w} ∈ E (4.6)∑

v∈V

u1
v + uλ1 =

∑
v∈V

u2
v + uλ2 (4.7)

u ≥ 0

}
. (4.8)

Consider the constraint matrix B of the description associated with the additional
variables. Since we want to project out the additional variables, we multiply the dual
multipliers (which correspond to the variables of the projection cone) with each row
of B. By summing up along the same column corresponding to a fixed edge variable
y1e , we obtain (4.6). Similarly, the same procedure holds for projecting the variable
λ1 out along the corresponding column, as to obtain (4.7). The claim then follows by
rearranging.

Using Theorem 45, all valid inequalities in the description of P have the following
form: ∑

v∈R

u1
vxv +

∑
w∈S

u2
wxw +

∑
e={v,w}∈E

(u2
v + u2

w − u2,≥
e )ye ≤

∑
w∈V

u2
w + uλ2 (4.9)

where u is an extreme ray of CP . Note that by (4.6), we have u2
v + u2

w − u2,≥
e =

u1
v + u1

w − u1,≥
e for e ∈ E and by (4.7), we have

∑
w∈V

u2
w + uλ2 =

∑
w∈V

u1
w + uλ1 .

We first claim that, we can assume that, for e ∈ E, at least one of u1,≥
e , u2,≥

e is
equal to 0. Indeed, since they are nonnegative, if they are both strictly positive we can
decrease both by min{u1,≥

e , u2,≥
e } > 0 and obtain a stronger inequality (4.9). Similarly,

at most one of uλ1 , uλ2 = 0. Hence, we can rewrite (4.9) as∑
v∈R

u1
vxv +

∑
w∈S

u2
wxw +

∑
e={v,w}∈E

min
j=1,2

(uj
v + uj

w)ye ≤ max
j=1,2

∑
w∈V

uj
w. (4.10)
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Let u be an extreme ray of CP . We first claim that the vector obtained from u by
projecting out {u1,≥

e , u2,≥
e }e∈E, uλ1 , uλ2 is a nonnegative vector that satisfies 2(|R|+|S|)−

1 linearly independent constraints from (4.5). By construction, u satisfies at equality
a set S of 2(|R| + |S|) + 2|E| + 1 linearly independent constraints from (4.6)–(4.8).
By basic linear algebra, any set of linearly independent constraints from (4.6)–(4.8)
tight at u can be enlarged to a linearly independent set of inequalities tight at u of
maximum cardinality. Hence we can assume w.l.o.g. that S contains the following set
S ′ of linearly independent constraints. For e ∈ E, if u2,≥

e = u1,≥
e = 0, then constraints

u2,≥
e = 0, u1,≥

e = 0 belong to S ′. Else, from what argued above, we have uj,≥
e > 0

and u3−j,≥
e = 0 for some j ∈ {1, 2}, and S ′ contains uj,≥

e = 0 and u1
v + u1

w − u1,≥
e =

u2
v + u2

w − u2,≥
e . Similarly, either uλ1 = 0 and uλ2 = 0 belong to S ′, or one of them and∑

v∈V u1
v + uλ1 =

∑
v∈V u2

v + uλ2 belong to S ′. It is easy to see that constraints in S ′

are linearly independent, hence S \ S ′ is a set of 2(|R| + |S|)− 1 linearly independent
constraints.

Note that an inequality (4.6) belongs to S \ S ′ only if both the variables u1,≥
e and

u2,≥
e appearing in its support are set to 0. In particular u satisfies u1

v + u1
w = u2

v + u2
w.

Similarly, constraint (4.7) belongs to S \ S ′ only if
∑

v∈V u1
v =

∑
v∈V u2

v. Hence, u

satisfies at equality 2(|R|+ |S|)−1 linearly independent constraints from (4.5), and the
claim follows.

Conversely, any nonnegative vector in the components {u1
v, u

2
v}v∈V that satisfies any

set of constraints from (4.5) can be extended to a vector of CP by appropriately adding
components u1,≥

e , u2,≥
e , uλ1 , uλ2 , concluding the proof.

We call a vector u that belongs to the set Y defined in Lemma 5 valid, and an
inequality that is obtained in the description of P given in Lemma 5 from a valid u

legal.
We moreover call a valid u minimal if the following properties hold:

• All its components are integer numbers with gcd 1.

• The inequality associated to u (as in Lemma 5) defines a facet of P different
from (3.1)–(3.3), and

• There is no valid u′ whose associated inequality is equivalent up to nonnegative
scaling to the one associated to u, but the support of u′ is strictly contained in
the support of u.

We say that a set of 2(|R|+ |S|)−1 linearly independent constraints from (4.5) support
a valid u if they are tight at u.
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For a set S supporting a valid vector u, we let G(S) be the graph that contains all
vertices of Kr,s, colors a vertex v blue (resp. red) if u1

v = 0 (resp., u2
v = 0) belongs to

S, and contains edge vw if u1
v + u1

w = u2
v + u2

w belongs to S. Note that a node can be
colored both blue and red in G(S) - we call such nodes bicolored. A node that is colored
with exactly one of red and blue is monochromatic. A connected component of G(S)
is non-trivial if it contains at least two nodes.

Let S be the set of constraints supporting a valid, minimal vector Y , and let aTx ≤ b

be the inequality associated to u. S is called canonical if:

• It maximizes the number of colors used for nodes,

• subject to the previous condition, it maximizes the number of edges of G(S).

Notice that, to obtain a valid description of P , it is enough to describe canonical sets
of inequalities associated to minimal, valid vectors, and add to those inequalities (3.3)–
(3.2). For simplicity of notation, in the treatment of the following Lemma we denote
equivalently an edge e = {v, w} or vw.

Lemma 6. Let u ∈ Y be minimal, let S be a canonical set supporting it, and I be the
set of isolated nodes of G(S). Then:

1. G(S) does not have cycles.

2. G(S) contains at least one edge.

3. Let u1
v = 0 (resp. u2

v = 0) for some v ∈ V . Then v is colored blue (resp. red).

4. For each edge e = {v, w} of G(S), v and w are monochromatic and colored with
opposite colors.

5. If
∑

v∈V u1
v =

∑
v∈V u2

v does not belong to S, there is exactly one connected compo-
nent in G(S), all its nodes are monochromatic, and all nodes from I are bicolored.

6. If
∑

v∈V u1
v =

∑
v∈V u2

v belongs to S, there is exactly one connected component in
G(S), all its nodes are monochromatic, and all nodes from I are bicolored, except
one that is monochromatic.

Proof. 1. Since Kr,s is bipartite, any cycle C in G(S) must be even. Alternatively
summing and subtracting the equalities corresponding to edges of C, we obtain 0 = 0,
contradicting linear independence.

2. Suppose the thesis does not hold. Then the only constraints in S are nonneg-
ativity constraints and, possibly,

∑
v∈V u1

v =
∑

v∈V u2
v. Suppose first that

∑
v∈V u1

v =
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∑
v∈V u2

v is not contained in S. Then all nodes of G(S) except one are bicolored. Let
v ∈ V be the only node that is not bicolored, and assume w.l.o.g. that v is colored
red. If u1

v = 0, then u is the zero vector, which is clearly not minimal. Hence, assume
u1
v > 0. Then the inequality corresponding to u is dominated by the total edge inequal-

ity corresponding to vw for some w in the neighborhood of w, hence showing that u is
not minimal.

Hence, assume that
∑

v∈V u1
v =

∑
v∈V u2

v belongs to S. Then all nodes are bicolored
except 2. Since u is not the zero vector and S is canonical, there must be nodes v, v′

(possibly v = v′) with u1
v = u2

v′ > 0. If v are on the opposite side of the bipartition,
then we can replace

∑
v∈V u1

v =
∑

v∈V u2
v with the constraint corresponding to edge vv′,

showing that S is not canonical. Hence, assume that v, v′ are on the same side of the
bipartition. Then the inequality corresponding to u is again dominated by the edge
inequality corresponding to vw for some w in the neighborhood of w, hence showing
that u is not minimal.

3. Suppose w.l.o.g. that u1
v = 0 but v is not colored blue. By part 2, G(S) has at least

one edge. If u1
v = 0 is linearly independent from constraints in S, then we can replace

some edge constraint in S with u1
v = 0, contradicting the canonicity of S. Hence u1

v = 0

can be generated by constraints in S. Note that a minimal set of equations generating
u1
v = 0 must contain either an edge constraint incident to v, or

∑
v∈V u1

v =
∑

v∈V u2
v,

since those are the only other constraints whose support contains u1
v. Hence, we can

replace the one among those that appears in S with u1
v = 0, contradicting the canonicity

of S.

4. We first show that v, w, cannot be colored with the same color. Suppose w.l.o.g.
both v, w are colored blue. In particular, u1

v = u1
w = 0. Since vw is an edge of G(S), we

have u2
v + u2

w = 0, which by nonnegativity of u implies u2
v = u2

w = 0. By part 3, u1
v = 0,

u2
v = 0, u1

w = 0, u2
w = 0 belong to S. By hypothesis, u1

w + u1
w = u2

w + u2
w also belongs

to S, contradicting the fact that S is linearly independent.

We conclude the proof by showing that both v, w are colored. Suppose by contra-
diction that this is not the case. Let C be the connected component of v, w in G(S).
By part 1, C contains k ∈ N nodes and k − 1 edges. S contains at least 2k − 1 con-
straints whose support intersects the variables associated to nodes of C. Suppose first∑

v∈V u1
v =

∑
v∈V u2

v does not belong to S. Then the only such constraints are the k−1

edge constraints, and the nonnegativity constraint associated to nodes of C. Since a
node of C is not colored, there must be some node of C that is bicolored, call it v′.
Then u1

v′ = u2
v′ = 0. Let w′ be a node adjacent to v′ in C. Since we showed above that

two adjacent nodes cannot be colored with the same color, w′ is not colored. Using
the constraints on edges of C, we obtain u1

w′ = u2
w′ . If u1

w′ = u2
w′ = 0, using part 2 we
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deduce that w′ is colored, a contradiction. Hence, u1
w′ = u2

w′ > 0. Let u′ be obtained
from u by setting (u′)1w′ = 0. Then the inequality associated to u is dominated by a
conic combination of the inequality associated to u′ and inequality (3.1) associated to
w′, a contradiction.

Now suppose
∑

v∈V u1
v =

∑
v∈V u2

v belongs to S, and let v be uncolored. If u1
v = 0

or u2
v = 0, the thesis follows by part 3 above. Hence, u1

v, u
2
v > 0. Let α = min{u1

v, u
2
v},

and let u′ be the vector obtained from u by decreasing u1
v, u

2
v by α. Then the inequality

associated to u can be obtained as a conic combination of the total vertex inequality
associated to v and the inequality associated to u′.

5. We know by part 4, that G has a non-trivial connected component C, and that
all its nodes are monochromatic. Let k be the number of nodes of C. By part 1, C
has k − 1 edges, and by part 2, the total number of colors used in nodes from C is
exactly k. Since

∑
v∈V u1

v =
∑

v∈V u2
v does not belong to S, there are at most 2k − 1

constraints from S supported over some of the 2k variables indexed over nodes of C.
Hence, no other non-trivial connected component of G(S) exists. Since S contains
2(|V |) − 1 − (2k − 1) = 2(|V | − k) more constraints, every node not in C must be
isolated and bicolored.

6. By applying an argument similar to part 5 above, we deduce that, for each
connected component C of G(S) with k nodes, there are at most 2k − 1 constraints
from S whose support is contained on the set of variables corresponding to nodes from
C. There is one more constraint in S that involves variables associated to nodes in C,
and this is

∑
v∈V u1

v =
∑

v∈V u2
v. Hence, we distinguish the following cases:

a) There are exactly two connected components in G(S), all its nodes are monochro-
matic, and all nodes from I are bicolored.

b) There is exactly one connected component in G(S), all its nodes are monochromatic,
and all nodes from I are bicolored, except one that is monochromatic.

We conclude the proof by showing that a) cannot happen. Indeed, let Cα and Cβ

be the two connected components. Since all nodes of each connected component are
monochromatic, all non-zero variables associated to vertices of Cα (resp. Cβ) have the
same value α (resp. β). Let Rα, Sα (resp. Rβ, Sβ) be the two sides of the bipartition
of component Cα (resp. Cβ). We assume without loss of generality that α = 1 ≤ β and
|Rβ| ≤ |Sβ|.

Recall that nodes from Rα, Sα (resp. Rβ, Sβ) have distinct colors. Using∑
v∈Cα∪Cβ

u1
v =

∑
v∈V

u1
v =

∑
v∈V

u2
v =

∑
v∈Cα∪Cβ

u2
v,
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the inequalities associated to the different possible colorings are as follows. If both
nodes from Rα, Rβ are red, then the inequality corresponding to u is∑
v∈Rα∪Sα

xv+
∑

v∈Rβ∪Sβ

βxv+
∑

vw∈((Sα∪Sβ)×(Rα∪Rβ))\(Sβ×Rβ)

yvw+
∑

vw∈Sβ×Rβ

βyvw ≤ |Rα|+β|Rβ|.

(4.11)
If both nodes from Rα, Rβ are blue, then the inequality corresponding to u is∑

vw∈((Sα∪Sβ)×(Rα∪Rβ))\(Sβ×Rβ)

yvw +
∑

vw∈Sβ×Rβ

βyvw ≤ |Rα|+ β|Rβ|, (4.12)

which is clearly dominated by (4.11). If nodes from Rα are red and nodes from Rβ are
blue, then the inequality corresponding to u is∑

v∈Rα∪Sα

xv +
∑

vw∈Sα×Rα

yvw +
∑

vw∈Sβ×Rβ

βyvw ≤ |Rα|+ β|Sβ|, (4.13)

which is also dominated by (4.11) since |Rβ| ≤ |Sβ|. The last case is when nodes from
Rα are blue and nodes from Rβ are red, and the inequality corresponding to u is∑

v∈Rβ∪Sβ

βxv +
∑

vw∈Sα×Rα

yvw +
∑

vw∈Sβ×Rβ

βyvw ≤ |Rα|+ β|Sβ| (4.14)

which is again dominated by (4.11).

Hence, we can assume that nodes from Rα ∪ Rβ are colored red. Moreover, |Rβ| ≤
|Sβ| with β ≥ 1 and |Rα| + β|Rβ| = |Sα| + β|Sβ| implies |Rα| + |Rβ| > |Sα| + |Sβ|.
Clearly, |Rα| > |Sα| (and |Rβ| < |Sβ|), that is, each connected component has not the
same size with the respect to the same partition of vertices. Suppose β > 1, then the
inequality associated to u is as follows∑

v∈Rα∪Sα

xv +
∑

v∈Rβ∪Sβ

βxv +
∑

vw∈(Rα∪Rβ)×(Sα∪Sβ)

yvw ≤ |Rα|+ β|Rβ| (4.15)

Let Fβ be the face induced by the inequality (4.15), and consider a non-balanced lifted
biclique inequality defined as follows. Consider a vertex w ∈ Sβ such that its coefficient
is θ := |Rα|+ |Rβ| − (|Sα|+ |Sβ|) + 1.∑

v∈Rα∪Sα

xv +
∑

v∈Rβ∪(Sβ\{w})

xv + θxw +
∑

vw∈(Rα∪Rβ)×(Sα∪Sβ)

yvw ≤ |Rα|+ |Rβ| (4.16)

Let Fθ be the face induced by (4.16).
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We claim that Fβ ⊆ Fθ but the equality does not hold, that is, Fβ is strictly contained
in Fθ, and this proves that the inequality is not facet-defining. Let Fβ := {z ∈ PT (G) :

λT z = λ0} and Fθ := {z ∈ PT (G) : λ̃T z = λ̃0}. Let z be an integer vector in Fβ.
Then, z must be the incidence vector of a maximal total matching of the form

TR := Rβ∪Tα, TS := Sβ∪Tβ, where Tα and Tβ are total matchings induced respectively
by G[Rα ∪ E[Sα ∪ Sβ]] and G[E[Rα ∪ Rβ] ∪ Sα]. Since each of the incidence vectors
defined includes either the vertex w and it is maximal, or corresponds to a maximal
total matching in a non-balanced biclique, we have that z ∈ Fθ.

Now, consider the incidence vector of the maximal total matching T := Sβ ∪ Mβ,
with w ∈ Sβ, where Mβ is a perfect matching induced on G[Rβ ∪ Sβ] (this exists since
|Sβ| > |Rβ|), and Sβ is the set of vertices not covered in Sβ by Mβ. Then, χ[T ] ∈ Fθ,
but χ[T ] /∈ Fβ. This concludes the proof, since we have shown that case (a) does not
hold.

We can now complete the proof of Theorem 43.
Let S be a canonical set. Assume first

∑
v∈V u1

v =
∑

v∈V u2
v does not belong to

S. Then by Lemma 6, part 5, G(S) has exactly one non-trivial connected component
(whose nodes are all monochromatic) and all other nodes are bicolored. By Lemma 6,
part 4, nodes from C from the opposite side of the bipartition are colored with different
colors. Hence, for some j ∈ {1, 2}, we have uj

v = u3−j
w = 1 and u3−j

v = uj
w = 0 for all

v ∈ R′ := R ∩ V (C), w ∈ S ′ := S ∩ V (C). If j = 2, the inequality we obtain is∑
e={v,w},v∈R′,w∈S′

ye ≤ max{|R′|, |S ′|},

while if j = 1 the inequality we obtain is∑
v∈R′

xv +
∑
w∈S′

xw +
∑

e={v,w},v∈R′,w∈S′

ye ≤ max{|R′|, |S ′|}.

All such inequalities coincide or are dominated by the balanced and non-balanced bi-
clique inequalities associated to the pair R′, S ′. Now, assume that

∑
v∈V u1

v =
∑

v∈V u2
v

belongs to S. By Lemma 6, part 6, G(S) has exactly one nontrivial component C in-
duced by all monochromatic nodes, and let v be the monochromatic node in the trivial
component. Let R′ := R ∩ V (C) and S ′ := S ∩ V (C). W.l.o.g. assume that |R′| < |S ′|
and all nodes in R′ are colored red (consequently, the other vertex bipartition S ′ receives
color blue). Similarly as the previous case, for some j ∈ {1, 2}, we have uj

v = u3−j
w = 1

and u3−j
v = uj

w = 0 for all v ∈ R′, w ∈ S ′. We may assume that v is colored red, for
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otherwise, by using
∑

v∈V u1
v =

∑
v∈V u2

v we obtain u = 0, a contradiction. Then, by
a simple computation we derive that u1

v = (|S ′| − |R′|). If j = 2 we conclude as the
previous case. If j = 1, the vector associated to u is∑

v∈R′

xv + (|S ′| − |R′|)xv +
∑
w∈S′

xw +
∑

e={v,w},v∈R′,w∈S′

ye ≤ max{|R′|, |S ′|} = |S ′|,

which is exactly the non-balanced lifted biclique inequality induced on G[(R′∪{v})∪S ′]

such that the coefficient of v equal to |S ′| − |R′|.

We have shown therefore that all the inequalities induced by the vectors u associated
with a canonical set S are dominated, or, correspond to the list of balanced and non-
balanced lifted biclique inequalities of Theorem 43.

4.4.4 An ILP model for the Separation of balanced biclique in-
equalities

We conclude the Chapter by proposing an Integer Linear Programming model for the
separation of a balanced biclique inequality. Since we mostly refer to bipartite graphs
in this Chapter, we want to specialize the formulation for bipartite graphs.

Let (cv, we) be the fractional optimal value to the current LP problem, and let xv and
ye denote the decision variables of the problem of finding a balanced biclique inequality
in a graph G. The separation problem asks for maximizing the following quantity

β :=
∑
v∈V

cvxv +
∑
e∈E

weye − k, (4.17)

where k is the cardinality of the balanced biclique induced by the variables xv and ye.
Thus, we want to detect a maximum weighted balanced biclique, where node and edge
weights are (cv, we). Whenever β > 0, we have found a violated balanced biclique.
Otherwise, all the balanced biclique inequalities are satisfied. Given a bipartite graph
G = (A ∪ B,E) we introduce binary variables xv,∀v ∈ V and ye,∀e ∈ E to denote
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whether they are part of the selected biclique. The complete model reads as follows.

max
∑
v∈V

cvxv +
∑
e∈E

weye − k (4.18)∑
v∈A

xv =
∑
w∈B

xw, (4.19)∑
v∈A

xv = k, (4.20)

xv + xw ≤ 1 ∀v ∈ A,∀w /∈ A ∪NG(v), (4.21)

ye ≤ xv ∀e = {v, w} ∈ E, (4.22)

ye ≤ xw ∀e = {v, w} ∈ E, (4.23)

xv + xw ≤ ye + 1 ∀e = {v, w} ∈ E, (4.24)

k ∈ Z+. (4.25)

Constraint (4.19) ensures that the cardinality of the selected biclique is balanced, that
is, the size of each vertex bipartition is the same. The constraints of type (4.21) impose
that the graph induces a biclique, the constraints (4.22)–(4.24) assure that if the two
end-points are selected then the edge connecting them must be selected. Let β be the
optimal solution to this model. Finally, if β > 0 we have found a violated biclique
inequality.
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5. Total Coloring and Computational Results

In this Chapter, we present the Total Coloring Problem from a polyhedral point of view.
We introduce two Integer Linear Programming models for the Total Coloring Problem,
the first based on an assignment model, and, the latter is a set covering formulation
based on the idea of covering the elements of the graph by the minimum number of
maximal total matchings.

5.1 Total Coloring: Assignment model

Let G = (V,E) be a graph and let K be the set of available colors, with |K| ≥ ∆(G)+1.
We introduce binary variables xvk ∈ {0, 1} for every vertex v and binary variables
yek ∈ {0, 1} for every edge e to denote whether they get assigned color k. Besides, we
introduce the binary variables zk to indicate whether any element uses color k. Using
these variables, our assignment ILP model for the TCP is as follows.

χT (G) := z
(A)
IP = min

∑
k∈K

zk (5.1)

s.t.
∑
k∈K

xvk = 1 ∀v ∈ V, (5.2)∑
k∈K

yek = 1 ∀e ∈ E, (5.3)

xvk +
∑
e∈δ(v)

yek ≤ zk ∀v ∈ V, ∀k ∈ K, (5.4)

xvk + xwk + yek ≤ zk ∀e = {v, w} ∈ E,∀k ∈ K, (5.5)

xvk ∈ {0, 1} ∀v ∈ V, ∀k ∈ K, (5.6)

yek ∈ {0, 1} ∀e ∈ E,∀k ∈ K. (5.7)

The objective function (5.1) minimizes the number of used colors. Constraints (5.2)–
(5.3) ensure that every vertex and every edge get assigned a color. Constraint (5.4)
enforces that all edges e incident to a vertex v, and the vertex v itself, take a different
color; at the same time, the constraints guarantee that the corresponding variable zk is
set to 1 whenever color k is used by at least an element of G. Constraint (5.5) imposes
that for each edge e = {i, j} at most one element among {e, i, j} can take color k, and
it sets the corresponding variable zk accordingly. If we relax the integrality constraints
(5.6) and (5.7), we get a Linear Programming relaxation. We denote the optimal value
of the LP relaxation by z

(A)
LP .
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The LP relaxation of model (5.1)–(5.7) yields the following lower bound.

Proposition 37. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z
(A)
LP ≥ ∆+ 1.

Proof. Let xvk = yek = 1
∆+1

for k = 1, . . . ,∆ + 1, zk = 1 for k = 1, 2, . . . ,∆ + 1 and
xvk = 0, yek = 0 for k > ∆ + 1,∀v ∈ V, ∀e ∈ E. Notice that this assignment gives a
feasible solution for the LP relaxation of (5.1)–(5.7). Since |K| ≥ ∆+ 1, the assertion
follows immediately.

This Section aims to analyze the polyhedral properties of the relaxation of the
assignment formulation just introduced. Let PTC(G) be the total coloring polytope
defined as the convex hull of all feasible solutions associated with the assignment model.
To understand the properties of the PTC(G), we start by finding a minimal equation
system for PTC(G) and determining its dimension.

Let also PV C(G) be the vertex coloring polytope, defined as the convex hull of all
characteristic vectors of proper vertex colorings induced by the standard assignment
model on the vertices known in the literature, see the model (2.10) in Chapter 2. Since
there is a one-to-one mapping between total matchings of G and stable sets of the total
graph T (G), a proper vertex coloring corresponds to a total coloring of the initial graph
G. Hence, we derive the following observation.

Proposition 38. Let G be a graph. Then, PTC(G) = PV C(T (G)).

The authors in [12] provide a minimal defining system for PV C(G), which is given
by the equality constraints of type (5.2). It follows that dim(PV C(G)) = n2. Hence, we
derive the following Corollary.

Corollary 7. The dimension of PTC(G) is (n+m)2.

In the same paper, the authors show the following

Proposition 39. [60] Let K be a maximal clique of G. Then, for a fixed color k0∑
v∈V

xvk0 ≤ zk0

is facet-defining for PV C(G).

Using this Proposition we prove the following
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Proposition 40. The inequalities:

xvk +
∑
e∈δ(v)

yek ≤ zk ∀v ∈ V, ∀k ∈ K,

xvk + xwk + yek ≤ zk ∀e ∈ E,∀k ∈ K.

are facet-defining for PTC(G).

Proof. Consider the total graph T (G) of the original graph G. Now, consider a vertex
v ∈ V and an edge e := {u,w} ∈ E. By construction of T , the subgraphs T [δ(v)∪{v}]
and T [e ∪ {u,w}] in T correspond to cliques K|δ(v)|+1 and K3 respectively. It is easy
to see that they correspond to maximal cliques of T (G). Now, by Proposition 39, we
deduce that they are facet-defining for PTC(G).

5.2 Total Coloring: Set Covering model

The assignment model (5.1)–(5.7) is easy to write, but it suffers from symmetry issues:
any permutation of the color classes indexed by k generates the same optimal solution
[58, 40]. To overcome this issue and to get a stronger LP lower bound, we introduce
a set covering formulation based on maximal total matchings. A total matching is
(inclusion-wise) maximal if it is not a subset of any other total matching. Note that
the number of maximal total matchings in a graph is strictly less than the number of
total matchings.

Let T be the set of all maximal total matchings of G. Let λt be a binary decision
variable indicating if the matching t ⊂ T is selected (or not) for representing a color
class. The 0–1 parameter avt indicates if vertex v is contained in the total matching
t. Similarly, the 0–1 parameter bet = 1 indicates if edge e is contained in the total
matching t. The following set covering model is a valid formulation for the TCP.

χT (G) = z
(C)
IP := min

∑
t∈T

λt (5.8)

s.t.
∑
t∈T

avtλt ≥ 1 ∀v ∈ V (5.9)∑
t∈T

betλt ≥ 1 ∀e ∈ E (5.10)

λt ∈ {0, 1} ∀t ∈ T . (5.11)

Given an optimal solution of the previous problem, whenever an element of G appears
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Figure 5.1: A total coloring of a cycle of length 5 with k = 4 = ∆(G) + 2 colors.
The optimal value of the LP relaxation of the assignment model (5.1)–(5.7) is equal
to z

(A)
LP = 3, while the optimal value of the LP relaxation of the set covering model

(5.8)–(5.11) is equal to z
(C)
LP = 10

3
.

in t > 1 maximal total matchings, it is always possible to recover a proper total coloring
by removing the element from t − 1 of those total matchings. Note that the covering
model has an exponential number of variables, one for each maximal total matching in
G. We denote by z

(C)
LP the optimum value of the LP relaxation of problem (5.8)–(5.11).

If we introduce the dual variables αv for constraints (5.9) and the variables βe for
constraints (5.10), we can write the dual of the set covering LP relaxation as follows.

z
(C)
LP := min

∑
t∈T

λt s.t. (5.9)–(5.10), λt ≥ 0, ∀t ∈ T (Primal) (5.12)

= max
∑
v∈V

αv +
∑
e∈E

βe (Dual) (5.13)

s.t.
∑
v∈V

avtαv +
∑
e∈E

betβe ≤ 1 ∀t ∈ T (5.14)

αv, βe ≥ 0 ∀v ∈ V, ∀e ∈ E. (5.15)

For this LP covering relaxation, the following proposition holds.

Proposition 41. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z
(C)
LP ≥ ∆(G)+1.

Proof. Consider a vertex v of maximum degree, and let ∆(G) = k, where NG(v) :=

{v1, ..., vk} and δ(v) := {e1, ..., ek}. Consider the total matching T0 := {v}, and the
additional k distinct total matchings Ti := {vi, ei+1} for all i = 1, . . . , k − 1 and Tk :=

{vk, e1}. Hence, we have k + 1 total matchings, which can be used to define a feasible
dual solution: we set αv = 1, αvi = βei+1

= 1
2

for all i = 1, . . . , k− 1 and αvk = βe1 =
1
2
.

Thus, summing up all these dual values in the dual objective function, we get the valid
lower bound result z

(C)
LP ≥ ∆(G) + 1.

The example in Figure 5.1 shows that the optimal value of the LP relaxation of
the set covering model can be tighter than the value of the LP assignment relaxation.
Next, we prove that the LP covering relaxation always provides a lower bound at least
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as strong as that of the LP assignment relaxation. Our proof uses the equivalence of
the set covering relaxation z

(C)
LP with a set partitioning relaxation, where the inequality

constraints (5.9)–(5.10) are replaced with equality constraints. Herein, we denote by
z
(P )
LP the optimal value of the LP partitioning relaxation. The proof of the following

result is straightforward.

Lemma 7. z
(C)
LP = z

(P )
LP .

We are now ready to prove the following proposition.

Proposition 42. Let G = (V,E) be a graph. Then, we have χT (G) ≥ z
(C)
LP ≥ z

(A)
LP ≥

∆+ 1.

Proof. It suffices to prove that the set covering model (5.8)–(5.11) can be obtained
by applying the Dantzig-Wolfe reformulation of the assignment model (5.1)–(5.7). We
exploit the block structure of the constraint matrix. First, we group the variables by a
fixed color k ∈ K. Let uk := (xv1k, xv2k, . . . , xvnk, ye1k, ye2k, . . . , yemk, zk) be the vector
associated to the decision variable of the assignment model and let z := (z1, . . . , zk).
We notice that the constraint matrix has the following block structure:

min 1Tz

s.t.

A1u1+ A2u2+ . . . +A|K|u|K| = 1

B1u1 ≤ 0

B2u2 ≤ 0
. . .

B|K|u|K| ≤ 0

uk ∈ {0, 1}n+m+1,∀k = 1, 2, . . . , |K|.

The corresponding sub-block matrices can be written as:

Aj =

[
Iv,j 0n×(m+1)

0m×n Ie,j

]
, Bj =

[
Iv Bv,j

Be,j Ie

]
.

The blocks Aj for j = 1, . . . , |K| correspond to the constraint matrices of (5.2)–(5.3),
where Iv,j is the identity matrix relative to the vertex components, and Ie,j is the identity
matrix relative to the edge components with one more column with all zeros. The
blocks Bj for j = 1, . . . , |K| correspond to constraints (5.4)–(5.5), where Bv,j and Be,j

are the edge-vertex incidence matrix and the vertex-edge incidence matrix respectively,
both with one more column of all minus ones indicating the color j. Notice that the
blocks A1 = A2 = · · · = A|K| and B1 = B2 = · · · = B|K| are identical, since they
are incidence matrices of the same graph. Now, define Pt := {wt ∈ {0, 1}n+m+1 |
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Btwt ≤ 0} for t = 1, . . . , |K|. Thus, for a fixed k ∈ K, we can express ut =
∑
j∈Pk

λt
jwj

such that
∑
j∈Pt

λt
j = 1, where the variables λt

j for j = 1, . . . , |Pt| correspond to the

convexity coefficients with respect to the points of conv(Pt). In order to guarantee the
integrality of the solution and to select exactly one of the feasible solution, we impose
that λt

j ∈ {0, 1} for j = 1, . . . , |K|. Since we cannot distinguish between colors and
the blocks Bj are the same, we have the same feasible regions, and thus, we can define
P := P1 = P2 = · · · = P|K|. Let Av,j be the upper block matrix corresponding to the
vertex components of Aj and Ae,j be the below block matrix corresponding to the edge
components, then we can rewrite the model as:

min

|K|∑
j=1

∑
t∈P

λj
twt (5.16)

s.t.
|K|∑
j=1

∑
t∈P

(Av,jwt)λ
j
t = 1 (5.17)

|K|∑
j=1

∑
t∈P

(Ae,jwt)λ
j
t = 1 (5.18)∑

t∈P

λj
t = 1 ∀j ∈ K (5.19)

λj
t ∈ {0, 1} ∀t ∈ P, ∀j ∈ K. (5.20)

Notice that Av,jwt = Av,t and Ae,jwt = Ae,t, where Av,t = (avt,0m)v∈V and Ae,t =

(0n, aet)e∈E are characteristic vectors of a total matching t, since each element belonging
to the same color class corresponds to a total matching. From the previous observation,

we can replace for every t ∈ P , λt :=
|K|∑
j=1

λj
t . In addition, since we can select at most

one total matching t ∈ P for every color class j ∈ K, we replace constraint (5.19) with
λt ∈ {0, 1}. The final integer program with the Dantzig-Wolfe reformulation becomes:

min
∑
t∈P

λt (5.21)

s.t.
∑
t∈P

avtλt = 1 ∀v ∈ V, (5.22)∑
t∈P

aetλt = 1 ∀e ∈ E, (5.23)

λt ∈ {0, 1} ∀t ∈ P. (5.24)

where P represents the set of all possible total matchings.
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We remark that the set partitioning model has been obtained by applying Dantzig-
Wolfe decomposition to the assignment formulation, keeping constraints (2) and (3) in
the master and moving constraints (4) and (5) to the subproblem. For a detailed survey
of this technique, we refer the reader to [4].

We can solve problem (5.12), or equivalently its dual (5.13)–(5.15), by considering
a subset T̄ ⊂ T , and by applying a Column Generation algorithm, where looking for a
primal negative reduced cost variables corresponds to look for a violated dual constraint
[52, 4, 20, 33]. Given a dual feasible solution ᾱ and β̄, the separation problem of the
dual constraints (5.14) reduces to the following Maximum Weighted Total Matching.

αT (G, ᾱ, β̄) := max
∑
v∈V

ᾱvxv +
∑
e∈E

β̄eye (5.25)

s.t. xv +
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V, (5.26)

xv + xw + ye ≤ 1 ∀e = {v, w} ∈ E, (5.27)

xv, ye ∈ {0, 1} ∀v ∈ V, ∀e ∈ E. (5.28)

Note that constraints (5.26) and (5.27) together define the valid constraints for total
matchings of G. In addition, whenever the optimal value αT (G, ᾱ, β̄) > 1, the corre-
sponding total matching gives a violated constraint (5.14). That is, problem (5.25)–
(5.28) is the pricing subproblem for solving our set covering model by Column Gener-
ation.

In the next section, we provide computational results based on the Integer Linear
Programming model introduced and we discuss new line of future research.

5.3 Computational results

This Section presents computational results for the two relaxations of TCP presented
in Section 5.1 and for the relaxations of TMP based on different valid (facet) inequal-
ities discussed in Sections 3.1 and 3.2. The results for the TCP are obtained with a
Column Generation algorithm based on model (5.13)–(5.15), which are compared with
the results provided by the LP assignment model (5.1)–(5.7). The results for the TMP
aim to compare the strength of the families of valid (facet) inequalities discussed in this
paper. For both problems, the goal of the computational tests is to compare the bound
strengths, that are, lower bounds for TCP and upper bounds for TMP.

Datasets First, we tested our algorithms on a few named graphs: the cycle C5, the
complete graph K12, and the classical Petersen, Chvatal, Tutte, and Watkins graphs.
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Then, after running preliminary tests on a large set of graphs from the literature, we
decided to focus on a small set of graphs to evaluate the relaxations of TCP. In practice,
we observed that most of the graphs from the literature are of Type-1, that is, they
have χT (G) = ∆(G)+1 (see, [78]). For this class of graphs, the naive lower bound equal
to ∆(G) + 1 is tight, and the contribution of any LP relaxation is minimal. Hence, we
have selected 11 cubic graphs of Type-1 and 11 Snark graphs of Type-2, those having
χT (G) > ∆(G) + 1, downloaded from the House of Graph library1, first introduced
in [7], and named graph_N. The Snarks graphs are cyclically 4-edge-connected graphs
with χ′(G) = 4. For Type-2 graphs, we show that the set covering model (5.13)–
(5.15) provides better lower bounds than the assignment model (5.1)–(5.7). Finally,
we consider random cubic graphs of different sizes and random sparse graphs with 80
vertices but different edge densities for evaluating the total matching relaxations.

Implementation Details We have implemented in Python a Column Generation
algorithm for the TCP and a Cutting Plane algorithm for the TMP. We use Gurobi 9.1.1
for solving both the master, the pricing, and the different cut-separation subproblems.
The experiments are run on a Dell Workstation with a Intel Xeon W-2155 CPU with
10 physical cores at 3.3GHz and 32 GB of RAM. The source code and the dataset is
freely available on GitHub at https://github.com/stegua/total-matching.

5.3.1 Total Coloring Lower Bounds

Table 5.1 reports our results for comparing the bound strength achieved by the LP
relaxation of model (5.8)–(5.11) (LP, 6-th column) and the LP relaxation of the set
covering model (SC-LP, 7-th columnn). The first columns give for each graph the num-
ber of vertices n and of edges m, the maximum degree ∆(G), and the total chromatic
number χT (G). The last two columns report the number of column generation iter-
ations (CG iter) and the total runtime in seconds. For all Type-1 graphs, the trivial
lower bound ∆(G) + 1 is already equal to χT (G), and the contribution of the LP re-
laxation in terms of bounds is null. On the contrary, for all Type-2 graphs, the lower
bounds provided by the column generation algorithm are higher than those obtained
with the assignment model: this provides computational evidence that the inequality
z
(C)
LP ≥ z

(A)
LP in Proposition 3 is not always tight.

1See https://hog.grinvin.org/
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Graph Name n m Type ∆(G) χT (G) LP SC-LP CG iter Runtime
Cycle C5 5 5 Type-2 2 4 3.00 3.33 22 0.00
Complete K12 12 66 Type-2 11 13 12.00 13.00 156 0.38
Petersen 10 15 Type-1 3 4 4.00 4.00 61 0.00
Chvatal 12 24 Type-1 4 5 5.00 5.00 95 0.01
Tutte 46 69 Type-1 3 4 4.00 4.00 777 11.35
Watkins 50 75 Type-1 3 4 4.00 4.00 686 9.10
graph_6921 20 30 Type-1 3 4 4.00 4.00 164 0.08
graph_1008 22 33 Type-1 3 4 4.00 4.00 219 0.17
graph_1012 22 33 Type-1 3 4 4.00 4.00 207 0.16
graph_3334 26 39 Type-1 3 4 4.00 4.00 279 0.37
graph_20015 30 45 Type-1 3 4 4.00 4.00 314 0.56
graph_3383 36 54 Type-1 3 4 4.00 4.00 438 1.50
graph_22470 38 57 Type-1 3 4 4.00 4.00 459 1.83
graph_25159 44 66 Type-1 3 4 4.00 4.00 583 6.44
graph_1338 50 75 Type-1 3 4 4.00 4.00 691 7.01
graph_1427 50 75 Type-1 3 4 4.00 4.00 704 7.30
graph_1389 60 90 Type-1 3 4 4.00 4.00 1010 21.15
graph_6630 22 31 Type-2 3 5 4.00 4.08 185 0.14
graph_6710 40 60 Type-2 3 5 4.00 4.08 459 2.70
graph_6714 40 60 Type-2 3 5 4.00 4.08 429 2.19
graph_6720 40 60 Type-2 3 5 4.00 4.08 444 2.89
graph_6724 40 60 Type-2 3 5 4.00 4.08 441 2.60
graph_6728 40 60 Type-2 3 5 4.00 4.08 458 2.85
graph_6708 40 60 Type-2 3 5 4.00 4.08 456 3.03
graph_6712 40 60 Type-2 3 5 4.00 4.08 439 2.67
graph_6718 40 60 Type-2 3 5 4.00 4.08 445 2.66
graph_6722 40 60 Type-2 3 5 4.00 4.08 435 2.51
graph_6726 40 60 Type-2 3 5 4.00 4.08 456 2.80

Table 5.1: Comparing lower bounds of TCP obtained with two different relaxations:
LP refers to the relaxation of (5.8)–(5.11), while SC-LP refers to (5.13)–(5.15).

5.3.2 Total Matchings Lower Bounds on Snark Graphs

Table 5.2 presents the computational results on the total matching problem for 11
snark (cubic) graphs of Type-2. For each graph, the table reports the number of
vertices n and of edges m, the matching number ν(G), the stable set number α(G), and
the total matching number αT (G). Then, we report the upper bounds obtained with
the basic inequalities (3.1)–(3.3) (column Basic), the upper bounds obtained separating
only vertex-clique inequalities (3.7) (column Clique), and separating only congruent-2k3
cycle inequality (3.8) (column Cycle-2k3). For the latter inequality, we also report the
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Snark Graphs Upper bounds Number of cuts
Name n m ν(G) α(G) αT (G) Basic Clique Cycle-2k3 Percentage Clique Cycle-2k3
graph_6630 22 31 11 9 13 15.23 15.23 14.24 9.5% 0 19
graph_6710 40 60 20 17 26 28.00 28.00 27.24 4.8% 0 24
graph_6714 40 60 20 16 26 28.00 28.00 27.13 4.3% 0 26
graph_6720 40 60 20 16 26 28.00 28.00 27.23 4.7% 0 25
graph_6724 40 60 20 16 26 28.00 28.00 27.21 4.6% 0 27
graph_6728 40 60 20 16 26 28.00 28.00 27.20 4.6% 0 22
graph_6708 40 60 20 17 26 28.00 28.00 27.20 4.6% 0 29
graph_6712 40 60 20 16 26 28.00 28.00 27.20 4.6% 0 29
graph_6718 40 60 20 16 26 28.00 28.00 27.19 4.6% 0 24
graph_6722 40 60 20 16 26 28.00 28.00 27.14 4.4% 0 27
graph_6726 40 60 20 16 26 28.00 28.00 27.21 4.7% 0 32

Table 5.2: Total Matching results for 11 Snark (cubic) graphs: Upper bounds and
number of generated cuts.

percentage of the optimality gap, computed as UB−αT (G)
αT (G)

×100. Since Snark graphs have
no cliques violated, the only inequalities that improve the bounds are the congruent-2k3
cycle inequalities. Notice that we did not even try to separate even-clique inequalities
for this family of graphs since Snark graphs are a special case of cubic graphs, and
they cannot have cliques with cardinality larger than three. The results presented
in the next paragraphs will show for which type of graphs the vertex-clique and the
even-clique inequalities begin to play a role.

5.3.3 Total Matchings Lower Bounds on Cubic Graphs

Table 5.3 presents the computational results on 6 random cubic graphs. For each graph,
the table gives the number of nodes n and of edges m, the matching number ν(G), the
stable set number α(G), and the total matching number αT (G). From the 6-th to the
9-th columns we report the upper bound obtained with the LP relaxation (3.1)–(3.3)
(column Basic), starting with (3.1)–(3.3) and separating only constraints (3.7) (column
Clique), starting with (3.1)–(3.3) and separating only constraints (3.8) (column Cycle-
2k3), and starting with (3.1)–(3.3) and separating both (3.7) and (3.8) (column All).
For the same combinations of inequalities, the last four columns report the percentage
optimality gap computed with respect to αT (G).

We remark that on random cubic graphs, which are very sparse graphs, the congruent-
2k3 cycle inequalities close a larger fraction of the optimality gap than the vertex-clique
inequalities.

Table 5.4 reports the average results for our algorithm based on vertex-clique con-
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Cubic Graphs Upper bounds Percentage optimality gap
n m ν(G) α(G) αT (G) Basic Clique Cycle-2k3 All Basic Clique Cycle-2k3 All

50 75 25 22 34 35.00 34.92 34.41 34.33 2.94% 2.70% 1.20% 0.98%
60 90 30 26 40 42.00 42.00 41.27 41.27 5.00% 5.00% 3.18% 3.18%
70 105 35 30 47 49.00 48.95 48.28 48.25 4.26% 4.15% 2.71% 2.66%
80 120 40 35 54 56.00 55.95 55.51 55.46 3.70% 3.61% 2.79% 2.70%
90 135 45 39 61 63.00 62.78 62.29 62.05 3.28% 2.91% 2.12% 1.73%

100 150 50 44 68 70.00 69.85 69.08 69.03 2.94% 2.72% 1.58% 1.52%

Table 5.3: Total Matching results for six cubic graphs: Comparison of upper bounds
and of the percentage optimality gaps.

Cubic Graphs Mean of violated cuts Mean of percentage gap
n m density Clique Cycle-2k3 All Basic Clique Cycle-2k3 All

50 75 6.1% 0.9 24.9 25.1 3.88% 3.75% 2.14% 2.06%
60 90 5.1% 1.3 25.3 27.4 3.72% 3.54% 2.20% 2.10%
70 105 4.3% 2.1 27.3 27.6 4.04% 3.81% 2.79% 2.65%
80 120 3.8% 1.8 28.1 29.9 3.70% 3.52% 2.55% 2.44%
90 135 3.4% 1.5 30.1 32.3 3.45% 3.32% 2.21% 2.11%

100 150 3.0% 1.8 30.3 33.0 3.09% 2.95% 2.05% 1.96%

Table 5.4: Comparison of maximal clique inequality and congruent-2k3 cycle inequal-
ities: Average results of the number of violated cuts and percentage optimality gap.
Each row reports the average over 10 random instances of the same size.

straints and congruent-2k3 cycle inequalities. The purpose of the table is to show the
average strength in terms of bound strength for both families of inequalities. For each
row of the table, we report the average over 10 random instances of the number of
violated cuts identified by our algorithm and of the percentage gap with respect to
the optimal solution. We remark that the number of vertex-cliques is limited, with an
average of violated cuts ranging 0.9 to to 2.1. The number of violated congruent-2k3
cycle inequalities is in average much larger, but the percentage gap of the upper bound
is only slightly better. Again, combining both vertex-cliques and congruent-2k3 cycle
inequalities, the average percentage gap of the upper bound is always stronger than for
the two families taken separately.

5.3.4 Total Matchings Lower Bounds on Random Graphs

We finally present the results of TMP comparing the LP relaxations based on different
valid inequalities. We use random graphs with 80 vertices and an edge density ranging
from 5% up to 25%. We do not report results for larger edge density because the cut
strength has no more impact. Table 5.5 reports in the first column the percentage graph
density. In the remaining columns, the table gives the numbers for ν(G), α(G), and
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Random Graphs Upper bounds Percentage optimality gap
den ν(G) α(G) αT (G) Basic Clique Cycle-2k3 Even-C All Basic Clique Cycle-2k3 Even-C All
5% 39 40 58 58.90 58.89 58.79 58.90 58.78 1.54% 1.54% 1.37% 1.54% 1.34%
10% 40 28 54 58.12 55.56 57.14 58.12 55.52 7.63% 2.89% 5.82% 7.63% 2.81%
15% 40 21 50 58.95 53.23 57.76 58.90 53.23 17.90% 6.47% 15.51% 17.80% 6.47%
20% 40 18 49 59.28 51.16 58.49 59.04 51.16 20.98% 4.42% 19.36% 20.49% 4.42%
25% 40 16 48 59.41 49.97 58.78 59.02 49.97 23.78% 4.11% 22.46% 22.96% 4.11%

Table 5.5: Total Matching results for five random graphs with 80 vertices and different
edge density (column den): Comparison of upper bounds and of percentage optimality
gaps.

αT (G). Regarding the upper bounds and the percentage optimality gap, in addition to
the vertex-clique and the congruent-2k3 inequalities, we also consider the even-clique
inequalities (39) (column Even-C). We notice that on very sparse graphs, the congruent-
2k3 cycle inequalities close a large fraction of the optimality gap. However, as soon as
the graphs become denser, the vertex-clique inequalities play a crucial role in reducing
the upper bounds (and hence reducing the percentage optimality gap). On dense graphs,
the even-clique inequalities reduce the upper bounds, but only marginally, and they are
not as effective as the vertex-clique inequalities, despite being facet-defining.

Table 5.6 reports more extensive results for random graphs: in each row, the table
gives the average over 10 random graphs with the same density the number of violated
cuts and the percentage optimality gap. For very sparse graphs, combining several
families of inequalities pays off in terms of upper bound. However, on dense random
graphs, it appears that only the vertex-clique inequalities are very effective in reducing
the optimality gap. For instance, on graphs with an edge density of 25% (last row
of Table 5.6), by separating a mean of 131.1 cuts, we get a mean optimality gap of
6.3%. At the same time, we have an average of 831.7 violated congruent-2k3 cycle
inequalities achieving an optimality gap of 25.22%, and an average of 232.5 even-clique
violated inequalities for a gap of 25.64%. Indeed, vertex-clique inequalities are the most
effective in reducing the upper bounds.

5.4 Hunting of cubic graphs of Type 2

We dedicate this Section to introducing a new method based on an Integer Linear
Programming model to generate cubic graphs which are of interest for the conjectures
in the total coloring’s folklore. In [7], the authors raise the question of whether a cubic
graph of Type 2, that is, with χT (G) = ∆(G) + 2, and with girth greater than 4 exists,
where we recall that the girth is defined as the length of the smallest cycle in the graph.
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Mean of violated cuts Mean of percentage gap
den Clique Cycle-2k3 Even-C All Basic Clique Cycle-2k3 Even-C All
5% 2.3 14.8 0.0 12.1 1.08% 0.86% 0.86% 1.08% 0.86%

10% 44.1 166.6 0.8 112.5 9.52% 4.61% 8.06% 9.52% 4.55%
15% 95.5 590.8 15.9 137.9 17.93% 5.74% 15.56% 17.68% 5.74%
20% 117.0 669.1 75.3 142.6 20.96% 4.61% 19.31% 20.48% 4.61%
25% 131.1 831.7 232.5 153.0 26.48% 6.30% 25.22% 25.64% 6.30%

Table 5.6: Comparison of the strength of valid inequalities for total matching: Average
results of the number of violated cuts and percentage optimality gaps for random graphs
with 80 vertices and different edge density. Each row reports the average over 10 random
instances of the same size.

In the same paper, they show by means of computational results that every every known
Type 2 cubic graph contains a square or a triangle, and a candidate Type 2 cubic graph
with a girth greater than 4 must have at least 34 vertices. For this reason, we want to
investigate if there exists a possible cubic graph with these properties. To try to answer
the question, we propose a MILP model to construct such cubic graphs. Given a set
V of vertices, with |V | = n, we introduce the binary variables ye,∀e ∈ E to denote
whether the edge e is selected or not in the candidate cubic graph. The feasibility
model is the following:∑

e∈δ(v)

ye = 3 ∀v ∈ V, (5.29)

∑
(v0,j)∈δ(v0)

fv0j = n− 1, (5.30)

fij ≤ (n− 1)ye ∀e = {i, j} ∈ E, (5.31)∑
(i,j)∈δ(v)

fij =
∑

(j,i)∈δ(v)

fji − 1 ∀v ∈ V \ {v0}, (5.32)

yij + yjk + yki ≤ 2 ∀i, j, k ∈ V, (5.33)

yij + yjk + ykl + yli ≤ 3 ∀i, j, k, l ∈ V, (5.34)

ye ∈ {0, 1} ∀e ∈ E, (5.35)

fij ≥ 0 ∀e ∈ E,∀k ∈ K. (5.36)

The constraints (5.29) assure that every node has degree 3. Then, we impose the
connectivity constraints as a network flow model D = (N,A). We add the variables
flow fij representing the flow of whatever it is from i to j across the edge between
them. We choose an arbitrary vertex v0 as a source node and every other vertex is
a sink with demand equals 1. Hence, constraint (5.30) imposes that the overall flow
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is distributed on each node of the graph and the flow on each edge cannot exceed the
capacity equal to the n−1, see (5.31). We then impose the flow conservation constraint
on each node, by taking into account that we spend a unit of flow by passing through
each vertex. The constraints (5.33)–(5.34) impose that the girth must be at least 5.
In fact, to eliminate cycles of length 3, for every tuple of 3 vertices we can pick at
most two edges, for cycles of length 4 whereas we pick at most 3 edges among the four
candidates. Hence, a feasible solution to this model represents a cubic graph with girth
at least 5. We stress the fact that the model proposed is innovative, in the sense that,
we are able to generate (new) cubic graphs with a fixed cardinality of vertices.

The tests are conducted as follows. First, the instances are provided through the
model, and then, we test if there exists a cubic graph of type 2 from the list gener-
ated. Since we deal with graphs of small dimensions, it is not time-consuming and for
this reason, we decide to test each graph with the Assignment Model proposed in the
previous Section. We have implemented the model in Python using the Gurobi Solver
9.1.1. The enumeration carried out by Gurobi for the ILP model has been customized
setting specific parameters of the Gurobi Optimizer. We rely on the PoolSolutions
parameter to limit the size of solutions to collect and retain during the process. This
allows us to have more control over the quality of searching. In our case, we want to
generate 200 instances. We then impose the search approach in retrieving the solutions
with the parameter PoolSearchmode. We have chosen to do a systematic search for the
number of desired best solutions setting the parameter equals to 2. Notice that when
the parameter is set to 2 the MIP solver succeeded in finding the desired number of best
solutions, or it proved that the model does not have many distinct feasible solutions.
Moreover, we restrict the search space by setting a gap for the worst possible solution
found along the process. We generate 200 random instances of cubic graphs with girth
5 with 38, 40 and 42 vertices. All these graphs are of type 1, that is, χT (G) = 4.
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Conclusions

In this thesis, we have proposed polyhedral approaches to Total Matching and Total
Coloring Problems. For the Total Matching Problem, our contribution includes the
characterization of several families of valid inequalities for the Total Matching Poly-
tope. We have shown in Chapter 3 that certain classes of inequalities introduced are
facet-defining for the Total Matching Polytope. In particular, in Chapter 4 we have
found a complete linear description for trees and complete bipartite graphs, and, we
have introduced families of facet-defining inequalities which characterize completely the
Total Matching Polytope for the latter class of graphs. Such a result is obtained by
using extended formulation techniques and the projection of the corresponding higher
dimension polytope onto the original space. Furthermore, the new extended formu-
lation introduced has a polynomial number of constraints. We have introduced two
ILP models for the Total Coloring Problem, the assignment model and the set covering
model. The latter is based on maximal total matchings, and we have shown how to get
the second model by applying a Dantzig-Wolfe reformulation to the first.

As future work, we plan to give a complete linear description of the Total Matching
Polytope for further classes of graphs for which the TMP can be computed in polynomial
time, such as the class of bipartite permutation graphs. Roughly speaking, the family
of bipartite permutation graphs can be described as the union of complete bipartite
graphs. Such a decomposition would suggest a nice complete characterization of the
PT (G) when G is a bipartite permutation graph. Furthermore, since we have a complete
description of the Stable Set Polytope for chordal graphs, our research direction that
we intend to pursue is to study new facet-defining inequalities that will completely
describe the Total Matching Polytope for chordal, and likely, for other known classes
as quasi-line and claw-free graphs. Computationally, as future development, it will be
of interest to implement a complete branch-and-price algorithm for the Total Coloring
Problem and a complete branch-and-cut algorithm for the Total Matching Problem.
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