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We introduce and validate a delensing framework for the Simons Observatory (SO), which will
be used to improve constraints on inflationary gravitational waves (IGWs) by reducing the lensing
noise in measurements of the B-modes in CMB polarization. SO will initially observe CMB by
using three small aperture telescopes and one large-aperture telescope. While polarization maps
from small-aperture telescopes will be used to constrain IGWs, the internal CMB lensing maps used
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to delens will be reconstructed from data from the large-aperture telescope. Since lensing maps
obtained from the SO data will be noise-dominated on sub-degree scales, the SO lensing framework
constructs a template for lensing-induced B-modes by combining internal CMB lensing maps with
maps of the cosmic infrared background from Planck as well as galaxy density maps from the LSST
survey. We construct a likelihood for constraining the tensor-to-scalar ratio r that contains auto-
and cross-spectra between observed B-modes and lensing B-mode template. We test our delensing
analysis pipeline on map-based simulations containing survey non-idealities, but that, for this initial
exploration, do not include contamination from Galactic and extragalactic foregrounds. We find that
the SO survey masking and inhomogeneous and atmospheric noise have very little impact on the
delensing performance, and the r constraint becomes σ(r) ≈ 0.0015 which is close to that obtained
from the idealized forecasts in the absence of the Galactic foreground and is nearly a factor of two
tighter than without delensing. We also find that uncertainties in the external large-scale structure
tracers used in our multi-tracer delensing pipeline lead to bias much smaller than the 1σ statistical
uncertainties.

I. INTRODUCTION

Measuring the polarization of the cosmic microwave
background (CMB) anisotropies will be at the forefront
of observational cosmology in the next decade. In par-
ticular, measurements of the curl component (B-modes)
in the CMB polarization will be of great importance, as
these provide us with a unique window to probe inflation-
ary gravitational waves (IGWs) and gain new insights
into the early universe [1–3]. CMB observations have
not yet confirmed the presence of these IGWs but have
placed upper bounds on the IGW amplitude. The best
current constraints on the IGW background, parameter-
ized by the tensor-to-scalar ratio r (at a pivot scale of
0.05 Mpc−1), are from the combination of BICEP/Keck
Array measurements and Planck and WMAP: r < 0.036
(2σ) [4, 5]. Several ongoing and upcoming CMB experi-
ments, including the BICEP Array [6], Simons Array [7],
Simons Observatory (SO) [8], LiteBIRD [9], and CMB-
S4 [10], are targeting a detection of IGW B-modes over
the next decade.

A high-precision measurement of the large-scale B-
modes can tightly constrain r [11]. The precision of the
IGW B-mode measurement is, however, limited by other
sources of B-modes. In addition to Galactic foregrounds
[12], gravitational lensing leads to B-modes from conver-
sion of part of the E-mode polarization [13]; these lensing
B-modes behave as an additional noise component when
constraining r. Indeed, the current best constraint on r
is limited by the lensing B-modes more than by Galactic
foregrounds at the low dust region [4]. Reducing statis-
tical uncertainties by subtracting off the lensing-induced
B-modes (or equivalent methods) – a process usually re-
ferred to as delensing – will hence be of critical impor-
tance for improving the constraints on r [14, 15]. To esti-
mate the lensing-induced B-modes in the survey region,
known as a B-mode template, the simplest method is
to combine the measured E-modes with a reconstructed
lensing map derived from CMB data, and multiple works
have studied this technique (e.g. [16–22]).

In addition to the lensing map measured internally
with CMB data [22–24], we can also use external mass
tracers that correlate with the CMB lensing signal ef-
ficiently, such as the cosmic infrared background (CIB)

[25, 26], radio and optical galaxies [27, 28], galaxy weak
lensing [29], and intensity mapping signals [30, 31]. In the
last few years, several analyses, beginning with Ref. [32],
have demonstrated delensing using real small-scale CMB
temperature and polarization data [20, 21, 33, 34]. Re-
cently, Ref. [35] (hereafter, BKSPT) demonstrated for
the first time B-mode delensing on the large scales rel-
evant for constraining IGWs using the CIB as a mass
tracer.

SO, which we focus on throughout this paper, is tar-
geting a measurement of r with the 1σ uncertainty,
σ(r) = 0.002. SO will measure the large-scale B-modes
with three small-aperture telescope (SAT) and delens
the large-scale B-modes by combining the lensing map
measured from the large-aperture telescope (LAT) and
external large-scale structure (LSS) tracers. Achieving
σ(r) = 0.002 will require removing approximately 70 %
of the lensing B-mode power spectrum, based on ideal-
ized forecasts building on Ref. [36]. However, it is an
open question whether a practical delensing method can
match this somewhat idealized forecast performance.

In real analyses, the delensing efficiency may be de-
graded by, e.g., the presence of survey boundaries, in-
homogeneous instrumental noise and atmospheric noise.
For example, the efficiency of the SPTpol B-mode de-
lensing at high multipoles is 19.7 % while the idealized
analytic estimate is 27 % [33].

Estimating the actual delensing performance including
realistic survey effects in SO is important given the sig-
nificant improvement in σ(r) we can hope to achieve with
delensing. For SO, the noise properties of the LAT used
for measuring the lensing map will be significantly dif-
ferent from those of the SAT, the B-modes from which
will be delensed and used to constrain r. This differ-
ence further complicates the situation. Other significant
practical concerns include the astrophysical uncertainties
inherent in our use of the external mass tracers. The SO
baseline delensing strategy utilizes external mass tracers,
i.e., LSS tracers, such as galaxies and CIB to enhance the
delensing performance; it is therefore important to eval-
uate the impact of the astrophysical uncertainties (e.g.,
redshift or bias uncertainties) associated with mass trac-
ers on σ(r) and mitigate the relevant uncertainties if nec-
essary [25, 35].
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FIG. 1. Flowchart of the SO delensing pipeline.

In this paper, we present a delensing framework for SO
(which relies on multi-tracer delensing), test it on simu-
lations, and address the practical concerns listed above.
Although accurate removal of Galactic foreground emis-
sion is of critical concern for IGW B-mode searches, we
shall not consider this issue here. Our aim is to validate
the delensing framework in the presence of realistic sur-
vey effects, the impacts of which would be difficult to
isolate if (residual) foregrounds were also included. The
impact of Galactic foreground on the SO large-scale B-
mode analysis has been explored in the SO overview pa-
per [36]. The integration of Galactic-foreground cleaning
and delensing has already been demonstrated by BKSPT,
and in future work we will explore this issue within the
context of SO.

This paper is organized as follows. In Sec. II, af-
ter briefly reviewing the lensing effect on the CMB, we
present the baseline multi-tracer strategy for SO delens-
ing. In Sec. III, we test our method with SO simulations
including realistic survey effects and show the expected
constraints on r. In Sec. IV, we discuss how to incor-
porate astrophysical uncertainties in mass tracers for de-
lensing. We conclude in Sec. V. Appendix A contains
technical details of the covariances of the auto- and cross-
power spectra of the B-mode template and the observed
B-modes, which are used in the likelihood to constrain
r.

II. LARGE-SCALE B-MODE DELENSING

In this section, we first briefly review CMB B-mode
delensing and introduce our notation. Then, we describe

our method for delensing SO data. Fig. 1 shows our
flowchart of the delensing pipeline.

A. CMB lensing and lensing B-modes

The distortion effect of lensing on the primary CMB
temperature and polarization anisotropies is expressed
by a remapping. Denoting the primary temperature and
polarization anisotropies from the last-scattering surface
as Θ and Q ± iU , respectively, the lensed temperature
and polarization anisotropies in the sky direction n̂, are
given by (see, e.g., Ref. [37])

Θ̃(n̂) = Θ(n̂ + d(n̂)) , (1)

[Q̃± iŨ ](n̂) = [Q± iU ](n̂ + d(n̂)) , (2)

where tildes indicate lensed quantities and where d is the
deflection angle.1 In the Born approximation, d is given
by the gradient of the lensing potential ∇φ and is related
to the lensing convergence as ∇ · d = −2κ. (Here we
ignore all curl modes.) It is generally more convenient to
work with the scalar-valued E and B-modes rather than
the spin-2 Stokes parameters, Q and U . In harmonic
space, these are related by

Elm ± iBlm = −
∫

d2n̂ ±2Y
∗
lm(n̂)[Q± iU ](n̂) , (3)

where we denote the spin-2 spherical harmonics as

±2Ylm(n̂). Similarly with the spin-0 (scalar) spherical
harmonics, Ylm(n̂), the temperature and lensing poten-
tial maps are transformed into harmonic space as

Θlm =

∫
d2n̂ Y ∗lm(n̂)Θ(n̂) , (4)

κLM =

∫
d2n̂ Y ∗LM (n̂)κ(n̂) . (5)

Expanding the right-hand side of Eq. (2) up to first or-
der in the lensing potential, and then transforming the
Stokes Q/U parameters to E/B-modes with Eq. (3), the
B-modes of the lensed polarization field at linear order
in φ are given by [23]

Blens
lm = i

∑
l′m′

∑
LM

(
l l′ L
m m′ M

)
p−F

(2)
lLl′E

∗
l′m′κ∗LM , (6)

where we ignore the primary B-modes. The quantity in
round brackets is the Wigner-3j symbol, p+ (p−) is unity
if l + L+ l′ is an even (odd) integer and zero otherwise,

and F
(2)
lLl′ represents the mode coupling induced by the

1 See Ref. [38] for the detailed form that these lensing displace-
ments take on the spherical sky.
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lensing [23, 39]:

F
(s)
lLl′ =

2

L(L+ 1)

√
(2l + 1)(2l′ + 1)(2L+ 1)

16π

× [−l(l + 1) + l′(l′ + 1) + L(L+ 1)]

(
l l′ L
−s s 0

)
.

(7)

Equation (6) is known to be a good analytic approxi-
mation to the lensing B-modes on large scales [40, 41].
From Eq. (6), the lensing B-modes are simply expressed
in terms of a convolution between the unlensed E-modes
and lensing potential. Once we obtain an estimate for
the lensing map, we simply approximate the lensing B-
modes as a convolution of the Wiener-filtered E and lens-
ing maps as described below.

B. Internal CMB lensing map

From the lensed temperature and polarization maps,
we reconstruct the lensing potential φ using the
quadratic-estimator approach of Ref. [39].2 Lensing in-
duces off-diagonal elements of the covariance (l 6= l′ or
m 6= m′) between two lensed CMB anisotropy fields
(X,Y = Θ, E,B) as

〈X̃lmỸl′m′〉CMB =
∑
LM

(
l l′ L
m m′ M

)
fXYlLl′ κ

∗
LM , (8)

where the operation 〈. . .〉CMB denotes the ensemble av-
erage over the primary unlensed CMB anisotropies. The
response functions fXYlLl′ in Eq. (8) are defined as [39]3

fΘΘ
lLl′ = F

(0)
lLl′C

ΘΘ
l′ + F

(0)
l′LlC

ΘΘ
l , (9)

fΘE
lLl′ = p+F

(0)
lLl′C

ΘE
l′ + p+F

(2)
l′LlC

ΘE
l , (10)

fEElLl′ = p+F
(2)
lLl′C

EE
l′ + p+F

(2)
l′LlC

EE
l , (11)

fEBlLl′ = ip−F
(2)
l′LlC

EE
l . (12)

Here, F (s) is defined in Eq. (7), and CXYl is the angular
power spectrum of the unlensed CMB anisotropies. In
our analysis, we replace the unlensed CMB spectra with

their lensed counterparts, C̃XYl , giving a good approx-
imation to the non-perturbative response functions [43]
and mitigating higher-order biases in the power spectrum
of the lens reconstruction [44]. Equation (8) motivates

2 For the expected noise levels from SO, the improvements in pre-
cision of lensing reconstruction and delensing efficiency from ap-
plying more optimal, maximum-likelihood methods are negligi-
ble [42].

3 We ignore quadratic combinations with XY = ΘB and BB since
the signal-to-noise of the associated estimators is much lower
than that of the other quadratic estimators for SO noise levels.

the following form for a quadratic lensing estimator [39]:

(κ̂XYLM )∗ = AXYL
∑
ll′mm′

(
l l′ L
m m′ M

)
(fXYlLl′ )∗

∆XY
X lmY l′m′ ,

(13)

where we introduce ∆XY which is 2 if X = Y and 1
otherwise. Here, X and Y are observed anisotropies fil-
tered by their inverse variance. In the idealistic case, the
inverse-variance filtering is diagonal:

X lm = (ĈXXl )−1X̂lm , (14)

where X̂lm are the observed CMB anisotropies and ĈXXl
is their angular power spectra. We ignore the correla-
tion between Θ and E in the above filtering, making the
inverse-variance filtering diagonal in CMB anisotropies
as well. The normalization AXYL is then given by

AXYL =

{
1

2L+ 1

∑
ll′

|fXYll′L |2
∆XY ĈXXl ĈY Yl′

}−1

. (15)

For a realistic (anisotropic) survey, the diagonal filter-
ing approximation (in l) of Eq. (14) generally makes the
reconstruction sub-optimal. However, it also makes the
computational cost very low. As we show later, the recon-
struction and delensing performances for the SO surveys
are not degraded significantly compared to an isotropic
case (i.e., for the same total integration time, but dis-
tributed evenly over the survey region), even if we use
the diagonal approximation. Therefore, we choose the
diagonal filtering for our baseline analysis due to its low
computational cost.

In practice, it is necessary to subtract a mean-field
correction from the reconstruction since 〈κ̂XYLM 〉 becomes
non-zero due to, e.g., the survey boundary and inhomo-
geneous noise [45, 46]. In this paper, we estimate the
mean-field biases, 〈κ̂XYLM 〉, by averaging over simulation
realizations and subtract these estimates from the κ̂XYLM .

It is possible to combine the quadratic estimators to-
gether to improve the precision of the reconstruction. In
this paper, we construct a minimum variance (MV) esti-
mator following Ref. [39], i.e., the linear combination of
the individual estimators, κ̂MV

LM =
∑
XY α

XY
L κ̂XYLM , where

αL is determined so that the reconstruction noise of κ̂MV
LM

is minimized. Note that Ref. [47] showed that the use
of more optimal weights originally derived by [48] can
improve the signal-to-noise by around 10 % at L . 100
compared to the use of the MV estimator developed by
Ref. [39]. However, for delensing, the improvement is
not significant; delensing requires a lensing mass map at
intermediate scales, L ∼ 200–800 [25, 26], where the in-
crease in signal-to-noise from the more optimal weights
is only a few percent [47]. The impact of the sub-optimal
weights on the delensing performance is reduced further
since we combine with other LSS tracers, which are signif-
icant contributors on these delensing scales. Therefore,
in this paper, we use the linear combination of the esti-
mators of Ref. [39] to construct the CMB lensing map.
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C. External mass-tracer map

In addition to being reconstructed internally from the
CMB fields themselves, the lensing convergence field can
be estimated from observations of the LSS tracers such
as the spatial distribution of galaxies or the CIB [23, 25–
27, 31].

As proposed in Ref. [25, 49], different tracers can also
be linearly combined using weights designed to maximise
the cross-correlation between the co-added tracer and the
true convergence. Reference [25] determined that the
weights that achieve this are

ciL =
∑
j

(ρ−1)ijL ρ
jκ
L

√
CκκL
C κ̂

iκ̂i
L

, (16)

where the linearly combined tracer is κ̂comb
LM =

∑
i c
i
Lκ̂

i
LM .

Here, ρiκL is the cross-correlation coefficient, at multipole

L, between tracer κ̂i and the true convergence; ρijL is the

cross-correlation between tracers κ̂i and κ̂j ; and C κ̂
iκ̂i

L
is the angular power spectrum of tracer κ̂i. Qualita-
tively, on a given angular scale, this scheme brings to
the fore the tracers that best correlate with the under-
lying truth. In practice, this means that internal recon-
structions, which accurately reconstruct lensing on the
largest angular scales, can be supplemented with exter-
nal tracers on the small scales where they are dominated
by reconstruction noise. Figure 2 illustrates this for an
experiment with the characteristics of the Simons Obser-
vatory. Notice that information gleaned from Planck CIB
data (extracted using the GNILC algorithm [50, 51]), and
from a galaxy survey with the characteristics expected of
the Vera Rubin Observatory Legacy Survey of Space and
Time (LSST) “gold” sample (approximately 40 galaxies
per arcmin2) [52] enables the co-added tracer to maintain
a high degree of correlation with the true lensing conver-
gence on scales of 250 < L < 1000. This is of particular
importance for delensing, since it is those intermediate
and small-scale lenses located primarily at high redshifts
(see Fig. 3 of Ref. [37]) that are most relevant [53]. The
recent Planck lensing analysis demonstrates delensing by
combining the CMB lensing map with the GNILC CIB
map [54].

D. Optimal combination of mass tracers

The optimal estimate of the CMB lensing potential is
obtained as a linear combination of the quadratic esti-
mators and external mass tracers. In practice, the an-
alytic weights in Eq. (16) could be no longer optimal
due to, e.g., an analysis mask and inhomogeneous noise
and residual foregrounds. Instead of using the analytic
optimal weights, our pipeline empirically evaluates the
weights, ciL, from smoothed auto- and cross-spectra de-
termined from simulations to mimic the actual proce-
dure that would likely be applied with new SO and LSST

10 100 1000
L

0.0

0.2

0.4

0.6

0.8

1.0

i L

Internal Reconstruction

LSST gold

GNILC CIB

All coadded

FIG. 2. Correlation coefficients of the true CMB lensing field
with several LSS tracers, and with a co-added tracer. On large
angular scales, correlation between the CIB map extracted
from Planck data using the GNILC algorithm drops due to the
presence of residual CIB in the dust maps (which, in turn, gets
filtered out of the CIB maps). Fortunately, on those scales in-
ternal techniques can very accurately reconstruct lensing, as
shown here for a projected minimum-variance quadratic es-
timator reconstruction with SO (goal) noise levels [36] and
standard internal-linear-combination (ILC) foreground clean-
ing. On the other hand, the relevance of shot noise on small
scales means that the correlation with the CIB decreases for
large L. The forecasted curves involving LSST galaxies corre-
spond to the case where tomographic observations of galaxies
in the “gold” sample are divided into six redshift bins. The
auto- and cross-spectra of mass tracers for this plot are taken
from Ref. [49].

data. We compute ciL from the covariance of mass trac-
ers and the input κ. The Wiener-filtered mass map,
κ̂comb, is then obtained as defined in the previous sub-
section. Here, the indices of the mass tracers, i, in-
clude the ΘΘ, ΘE, EE and EB quadratic estimators
for CMB lensing reconstruction, the galaxy overdensity
density at six tomographic redshift bins with edges at
z = [0, 0.5, 1, 2, 3, 4, 7], and the CIB. When combining
mass tracers, we restrict the full-sky mass-tracer maps
(galaxies at each photo-z bin and the CIB) to the region
surveyed by the LAT (see Fig. 3). We do not take into
account correlations between different L.

E. Lensing B-mode template construction

On large scales, we estimate the lensing B-modes as

Btemp
lm = i

∑
l′m′

∑
LM

(
l l′ L
m m′ M

)
p−F

(2)
lLl′(Ê

WF
l′m′)∗(κ̂comb

LM )∗ ,

(17)

where ÊWF
lm are the Wiener-filtered, observed E-modes.

This first-order lensing template built from lensed E-
modes is indistinguishable for our purposes from an opti-
mal ‘remapping’ method, and will continue to be so until
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Large Aperture Telescope
Normalized Hit Count Map

0 1

Small Aperture Telescope
Normalized Hit Count Map

0 1

FIG. 3. Normalized SO hit-count maps multiplied by the nominal Galactic binary masks for the LAT (left) and SAT (right)
regions. The LAT and SAT Galactic masks coincide with those currently used in the preparations for the LAT lensing and SAT
B-mode analyses by the SO Collaboration, respectively. The hit count maps are obtained from the map-based SO simulation
packagea which are one of the possible scan strategies for SO, although work is ongoing to optimize the strategy further for a
range of SO science goals.

a https://github.com/simonsobs/map_based_simulations

the fidelity of κ̂ and ÊWF allow for residuals to be as low
as O(1 %) of the original lensing B-mode power [41].

To construct the optimal lensing B-mode template, we

compute the Wiener-filtered E-modes, ÊWF
lm , which are

obtained by solving the following equation [55]:[
1 +

∑
t,ν

C1/2bt,νY
†N−1

t,νYbt,νC
1/2

]
(C−1/2xw)

=
∑
t,ν

C1/2bt,νY
†N−1

t,νdt,ν . (18)

Here, t and ν are indices for the input maps specifying
telescope type (LAT or SAT) and frequency (93, 145, or
225 GHz), respectively. The vector xw has as its compo-
nents the harmonic coefficients of the Wiener-filtered E-
and B-modes, C is the diagonal signal covariance of the
lensed E- and B-modes in spherical-harmonic space, and

bt,ν is the beam function, The matrix C1/2 is defined so
that its square is equal to C. The real-space vector dt,ν
contains the Stokes Q and U maps observed by telescope
t at frequency ν, and Nt,ν is the covariance matrix of
the instrumental noise in these maps. The matrix Y is
defined so that it transforms the multipoles of the E- and
B-modes into real-space maps of the Stokes parameters
Q and U . Solving Eq. (18) for xw is computationally de-
manding and we adopt the conjugate gradient inversion
algorithm [56]. At unobserved pixels, we assign infinite
noise in the noise covariance. In this paper, we do not
include any extragalactic foregrounds, but in practice,
we should include masks for extragalactic contaminants

as unobserved pixels. Note that constructing ÊWF
lm in

this way naturally combines the SAT and LAT polariza-
tion measurements optimally. It also combines the maps
across frequencies optimally under the assumption that
foreground emission is negligible. In practice, it may be

necessary to work with foreground-cleaned maps from the
SAT and LAT rather than individual frequency maps. In
this case, the instrument noise entering in Eq. (18) should
be generalised to describe the noise in the foreground-
cleaned maps.

When constructing ÊWF
lm , we assume that the noise co-

variance matrix in real space, Nt,ν , is diagonal, although
the actual simulations have noise correlations between
different pixels due to atmospheric noise. The diagonal
elements of the noise covariance are taken to be of the
form σ2

t,ν/Ht(n̂) where Ht(n̂) is the normalized hit count
and σt,ν is the white-noise level of each map t, ν. The hit
count is assumed to be the same for all frequency maps
of a given telescope. The above filtering naturally takes
into account the large difference between SAT and LAT
hit-count maps as shown in Fig. 3. We show below that
this assumption of diagonal noise covariance is sufficient
to achieve good delensing performance.

F. Likelihood for constraining IGWs

Here we describe the approach we take to implement
delensing and constrain the tensor-to-scalar ratio using
the lensing B-mode template. The choice of delensing
approach depends on how the observed B-mode maps
across frequencies are to be combined to clean fore-
grounds. Several schemes for such cleaning are being
pursued within SO (see, e.g., [36]), but here we focus
on the cross-spectral approach. This compresses the fre-
quency maps into their auto- and cross-spectra and mod-
els these as the sum of CMB signal, instrumental noise
and parametrized foreground spectra. An approximate
likelihood for these spectra is constructed, which is com-
bined with priors on the foreground parameters to obtain

https://github.com/simonsobs/map_based_simulations
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parameter constraints. The cross-spectral approach has
been demonstrated on B-mode data from BICEP/Keck
Array (e.g., [57]) and on simulated SO data in [58]. De-
lensing is simply incorporated in this framework by view-
ing the template as an additional “frequency channel”.
The auto-spectrum of the template, and its cross-spectra
with the frequency maps, are included in the likelihood
along with the cross-frequency spectra. This spectral ap-
proach for combined foreground cleaning and delensing
has recently been demonstrated on data in BKSPT.

Since we do not consider foreground cleaning in this
work, we work with a single B-mode map from the SAT
and the lensing B-mode template. For the former, we
adopt noise levels appropriate to a coaddition of the
93, 145 and 225 GHz frequency channels assuming that
the remaining frequency channels are used to clean fore-
grounds (with the noise level in the cleaned map being
similar to the coaddition we consider). We construct the
auto- and cross-spectra between the observed B-mode
map and the lensing template over the region common
to the SAT and LAT surveys. To minimise the addi-
tional variance from leakage of E-modes due to the sur-
vey boundary, we use the pure-B-mode formalism [59] as
implemented in the NaMaster code4. We use an apodiza-
tion length of 8 deg., but do not otherwise weight the
data to account for noise inhomogeneities. In practice,
the noise varies significantly (see Fig. 3) as the SAT scan
strategy concentrates integration time on around 10 % of
the sky in a region of low Galactic foreground emission.
Given this, adopting a more optimal weighting in the
construction of the pure-B-modes might improve perfor-
mance somewhat and also lessen the demands on fore-
ground cleaning in analysis of the real data. For exam-
ple, combining with Planck data to get the larger-scale
E-modes [60], or adopting the optimal Wiener filtering
of Eq. (18), would provide a more optimal measurement
of the SAT B-modes. Binned estimates of the auto- and
cross-spectra are used in an approximate likelihood fol-
lowing [61], which accounts for the non-Gaussian form of
the likelihood on large scales where there are few modes.
The likelihood requires model auto- and cross-spectra,
and the covariance of the measured spectra in a fiducial
model. We now describe how these are calculated.

1. Model spectra

For the likelihood analysis, we need to model the auto-
spectrum of the B-mode lensing template and its cross-
spectrum with the observed B-modes. For an isotropic
survey, these can be calculated simply (see Sec. IV). How-
ever, in a realistic set-up they are not straightforward
to model because of, e.g., the inhomogeneous Wiener-
filtering applied to E-modes. In the likelihood analysis,

4 https://namaster.readthedocs.io/en/latest/index.html

therefore, we model these spectra with the means of sim-
ulation realizations. This approach is also convenient if
the analysis includes more complicated realistic effects in
the mass tracers. We similarly use the mean of simula-
tions of noisy, lensing B-modes to model the observed B-
mode auto-spectrum, to capture properly complications
due to noise inhomogeneity. Note that we can also avoid
the noise complications in the observed B-mode auto-
spectrum by using the cross-correlations between split
data, and our choice of modeling the observed B-mode
spectrum does not undermine any of our results. We add
to this spectrum a theory tensor spectrum, parameter-
ized by the tensor-to-scalar ratio r. These mean spectra
(with r = 0) are used for the fiducial spectra that are
also needed in the likelihood.

2. Covariances

As noted earlier, the approximate likelihood that we
use requires a set of fiducial angular power spectra and
their covariances [61]. These can be obtained either from
simulations or analytically. In our analysis, we use the
covariance derived from simulations. Simulated covari-
ances, which fully capture the effects of masking and in-
homogeouneous noise, are expensive to compute given
that we require the Monte-Carlo error to be small in or-
der to resolve the small correlations between bandpowers
[22, 62, 63]. Hence, as a cross-check, we also compare our
results based on simulated covariances with those based
on the analytic covariances presented in Appendix A.

G. Summary of delensing procedure and likelihood

For convenience, we summarise the steps we take to
produce a B-mode lensing template and how this is used
to implement delensing within the likelihood framework.

• We first prepare the lensing mass map. We com-
bine the CMB lensing map reconstructed from the
foreground-cleaned and Wiener-filtered LAT tem-
perature and polarization maps, with the external
mass tracer data from galaxy counts and the CIB.

• We also prepare the Wiener-filtered E-modes by
combining LAT and SAT polarization maps as in
Eq. (18).

• The above two maps are combined to form the lens-
ing B-mode template as in Eq. (17). The multi-

poles Btemp
lm are projected to a real-space polariza-

tion map.

• The polarization observed with the SAT, and the
lensing template map, are projected onto pure B-
modes over the region common to the LAT and
SAT surveys. Their auto- and cross-spectra are
used in an approximate, cross-spectral likelihood.

https://namaster.readthedocs.io/en/latest/index.html
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Note that this approach is the same as the BKSPT
analysis.

• Generally, we would include SAT B-modes at all
observing frequencies in the cross-spectral likeli-
hood, and constrain simultaneously the tensor-to-
scalar ratio, r, Galactic foreground-related param-
eters, and (potentially) parameters describing un-
certainties in the expected B-mode lensing power
and the auto- and cross-power of the lensing tem-
plate (to incorporate the uncertainty of the mass
tracer). In this paper, however, we ignore Galactic
foregrounds and only constrain r since our purpose
is to see the impact of the practical effects in the
lensing template construction on the r constraint.
The impact of uncertainties in the mass tracer are
discussed in Sec. IV.

III. SIMULATED DELENSING
PERFORMANCE: CONSTRAINTS ON

INFLATIONARY GRAVITATIONAL WAVES

A. Simulations

For CMB maps, we use the pre-computed data ob-
tained from the map-based SO simulation package.5

The signal maps are convolved with a symmetric Gaus-
sian beam at each frequency whose FWHM is given by
Ref. [36]. The noise maps are generated using the map-
based simulation package at each frequency for the LAT
and SAT using a model of the instrumental and atmo-
spheric noise spectra and hit-count maps. This allows ef-
ficient production of a large number of simulations, which
would otherwise be computationally expensive if relying
on simulated time-ordered data. The knee frequency for
the 1/f polarization noise for the SAT, due primarily to
atmospheric leakage and electronic noise, is chosen to be
the “pessimistic case” of Ref. [36]. This choice means
that the results of the r constraint we obtain below are
actually conservative. The model implements a damping
of the large-scale power at l < lroll to account for the
filtering process applied in an actual analysis to reduce
the atmospheric noise contamination of the large-scale
modes. We set lroll = 50 for both SAT and LAT which
equals to the knee multipole of the 1/f noise in the pes-
simistic case and do not use CMB multipoles at l < lroll in
the following analysis. We do not include Galactic and
extragalactic foregrounds in the simulations. Thus, we
also do not include the point-source masks. We generate
100 realizations of the lensed CMB and noise at 93, 145
and 225 GHz for this work. The effective white noise lev-
els in temperature at each frequency are 8.0µK-arcmin
(93 GHz), 10µK-arcmin (145 GHz), and 22µK-arcmin
(225 GHz) for the LAT, and 2.6µK-arcmin (93 GHz),

5 https://github.com/simonsobs/map_based_simulations

3.3µK-arcmin (145 GHz), and 6.3µK-arcmin (225 GHz)
for the SAT [36]. Note that for the LAT, which does not
employ a rotating half-wave plate, the dominant source
of the noise is the 1/f component at l . 1000. We do
not use other frequencies since these have much larger in-
strumental noise and do not help improve the delensing
efficiency.

We show in Fig. 3 the hit-count maps used for our sim-
ulation, which are one of the possible scan strategies be-
ing investigated for SO. Although the scan strategy is still
to be finalised, we adopt the hit-count maps shown in the
figure for this work. The disparity between the LAT and
SAT hit-count maps is intentional: most of the science
to be done with LAT maps is sample-variance-limited at
SO noise levels, even if the largest observable sky area
is surveyed, and so calls for a wide survey with roughly
uniform coverage; for the SAT, B-mode observations will
likely be foreground-, lensing- and noise-limited, which
leads one to concentrate integration time in a smaller re-
gion of low Galactic foreground emission. As we show be-
low, we achieve performance of delensing and constraints
on r similar to that obtained in idealized forecasts, i.e.,
the dissimilarity of the LAT and SAT hit-count maps
does not significantly impact delensing and constraints
on r.

Figure 4 shows the noise angular power spectra for ΘΘ,
EE and BB measured from simulations for the baseline
and goal noise levels introduced in Ref. [36]. Pixels are
weighted by the square root of the number of hits when
computing these spectra. Note that, with such weight-
ing, the spectra for inhomogeneous white noise is the
same as if the hits were distributed uniformly, i.e., an
isotropic survey. The harmonic-space maps at each fre-
quency are coadded with weighting given by the inverse
variance computed from the noise spectra at each fre-
quency. Note that we do not compute the temperature
power spectrum for the SAT since we only use the SAT
polarization in this work. In temperature, the atmo-
spheric noise becomes significant below l ' 1000. The
LAT B-mode power spectrum is dominated by noise on
all scales, but the SAT spectrum is signal dominated (by
lensing) on large scales.

For external tracers, we generate Gaussian realizations
of matter tracers that are appropriately correlated with
a reference realization of the CMB lensing convergence
map. To do this, we use the method and code presented
in Appendix F of Ref. [64]. Note that we do not include
non-Gaussianity from the non-linear growth of density
fluctuations in our simulations. It is known that non-
Gaussianity of the CMB lensing convergence has a neg-
ligible impact on the power spectrum of the lensing B-
mode template and covariance of the delensed B-modes
[65]. As shown in Ref. [65], the same would be true when
combining with matter tracers, despite potential compli-
cations from these typically being at lower redshift and
from non-linear biasing. This is because the delensing
utilizes mass tracers at high redshifts where the trac-
ers are well correlated with the CMB lensing mass map

https://github.com/simonsobs/map_based_simulations
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FIG. 4. Noise angular power spectra for temperature anisotropies (left), E-mode polarization (middle) andB-mode polarization
(right) computed from the SO map-based simulations after a pixel weighting with the square root of the hit count map and
beam deconvolution. The blue and orange lines show the spectra obtained from the LAT and SAT maps, respectively. The
solid lines are for the baseline noise case and the dashed for the goal (see Ref. [36]). We show the optimally coadded noise
spectra from 93, 145 and 225 GHz. The black solid lines are the model, lensed CMB spectra (with r = 0). Note that we only
use polarization from the SAT.

and the non-linear growth is much less important. Ad-
ditionally, the lensing B-modes on large angular scales
(l ≤ 100) are most efficiently produced by intermediate
scales of lensing mass (300 . L . 400) [25, 26] where the
non-linear growth is not significant.

B. Lensing reconstruction

We first show the results of the internal lensing re-
construction from the CMB. To avoid the delensing bias
on the scales of interest (see, e.g., Ref. [16, 18, 19, 22]),
only the multipoles between l = 301 and 4096 are taken
into account in the calculation of the lensing reconstruc-
tion. For temperature, we further remove l ≤ 500 to
suppress contamination from atmospheric noise without
significant loss of signal-to-noise [17] and l ≥ 3000 to
avoid expected contribution from the extragalactic fore-
grounds [66].

Figure 5 shows the analytic estimates of the κ noise
power of the internal CMB lensing reconstructions for the
two noise cases computed from the CMB noise spectra.
The CMB instrumental noise power spectra are obtained
from the simulations as shown in Fig. 4. Most of the
signal-to-noise of the reconstructed lensing map comes
from the ΘΘ, ΘE and EE quadratic estimators for the
baseline noise case. For the goal noise level, the EB
estimator becomes also important to improve the signal-
to-noise of the lensing.

Figure 6 shows the reconstructed lensing map cross-
correlated with the input lensing map. We divide the
spectra by W2 ≡

∫
d2n̂W 2(n̂) to account for the mis-

normalization by the survey window [45]. In the case
of the ΘΘ quadratic estimator, the power spectrum of
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L

10−8

10−7
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N
κ
κ

L

ΘΘ
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Signal

Baseline (Solid)

Goal (Dashed)

FIG. 5. Analytic estimate of the lensing reconstruction noise
using Eq. (15) for each individual quadratic estimator using
the baseline (solid) and goal (dashed) instrumental noise spec-
tra from simulations. Note that Eq. (15) is actually for the
normalisation and usually used for noise spectrum in a fore-
cast, but in general differs from the actual noise spectrum.
Given the neglect of TE in the inverse-variance filtering, the
“analytic noise” given here is considered as a rough estimate
of the noise power for the quadratic estimator. For reference,
we also show the analytic noise curve for the MV estimator of
Ref. [39]. The solid black curve shows the lensing convergence
power spectrum.

the mean-field becomes larger than the signal at L ≤ 60.
On the other hand, the reconstructed lensing map with
the EB estimator does not have a significant mean-field
bias on all scales because 〈EB〉 = 0 by parity symme-
try [46]. The difference between the input κ spectrum
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FIG. 6. Reconstructed lensing map cross-correlated with the input lensing map using ΘΘ (left) and EB (right) quadratic
estimators (magenta points). We also show the normalization (green dashed), noise (green solid), input lensing spectrum (black
solid), and mean-field bias (blue). We use the baseline noise simulation. The mean-field bias in EB estimator is very small
and not shown in the plot. The error bars denote representative of scatter in one simulation.

and the cross-spectrum between input and reconstruc-
tion is within 5 % at L & 20 for all of the quadratic
estimators. This difference becomes larger than 10 % on
large scales, L . 10, which could be due to the presence
of mode mixing induced by the survey mask, which is not
corrected on large scales with our simple prescription for
accounting for the survey mask, and higher-order lensing
corrections [43, 44]. The bias is usually corrected by a
Monte Carlo simulation. Delensing, however, does not
require the large-scale modes and we only use L ≥ 20.

C. Lensing template construction

Next, we show how significantly the SO inhomogeneous
noise and survey geometry impacts the construction of
the lensing B-mode template. In this section, the lensing
template is built using the reconstructed lensing map at
20 ≤ L ≤ 2048 and E-modes at 50 ≤ l ≤ 2048.

Figure 7 shows the correlation coefficients between the
input E/B-modes and Wiener-filtered “observed” E/B-
modes, both of which are projected onto the region of
overlap between the SAT and LAT surveys. Several op-
tions for the Wiener filtering are compared. We see that
the full Wiener-filtered LAT E-modes have better corre-
lation with the input by around 5–10 % than if the sim-
pler diagonal filtering is used. Optimally combining E-
modes from the SAT and LAT polarization maps further
improves the correlation with the input E-mode map,
which is close to unity for l . 1000. The improvement
of the correlation at l . 500 is important for the opti-
mal lensing template because a significant fraction of the
large-scale lensing B-modes are produced by E-modes at
these scales. On the other hand, the LAT B-modes are
dominated by noise and optimal filtering does not signif-
icantly recover the correlation with the input B-modes.

Figure 8 shows two B-mode maps: the lensing B-mode

template map; and the input B-mode map. Both maps
are projected onto the region of overlap of the SAT and
LAT surveys. We only include the multipoles between
20 ≤ l ≤ 128. The lensing B-modes in the template
are suppressed due to the Wiener filtering process. We
quantify this suppression by the cross-correlation of the
template and input lensing B-modes divided by the input
B-mode auto power spectrum. The ratio becomes ∼ 0.7
using only large scales (50 ≤ l ≤ 190). Thus, the input
B-mode map is further multiplied by 0.7 to correspond
to the expected lensing B-mode signal in the template.
The correlation between the two maps in the figure can
be seen by eye.

Figure 9 shows the fraction of power left over after de-
lensing B-modes in the region where the SAT and LAT
surveys overlap. We consider the following delensing pro-
cedure:

Bdel
lm ≡ B̂lm − αlBtemp

lm , (19)

where αl is determined so that the variance of Bdel is
minimized:

αl ≡
CBB,cross
l

CBB,temp
l

. (20)

Here, CBB,cross
l is the cross-power spectrum of the tem-

plate and the input lensing B-modes, and CBB,temp
l and

ĈBBl are the power spectra of the template and the ob-
served B-modes, respectively. We ignore the dependence
of α on m. In an idealistic case, αl = 1. The angular
power spectrum of Bdel

lm is then given by:

CBB,del
l = ĈBBl

[
1− (CBB,cross

l )2

ĈBBl CBB,temp
l

]
. (21)

The B-mode spectra, ĈBBl , CBB,cross
l and CBB,temp

l , are
computed over the region of overlap as follows. First, we
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FIG. 7. Left: Square of the correlation coefficient, ρ2l , between the Wiener-filtered E-modes and the input E-mode-only map,
computed over the region of overlap of the SAT and LAT surveys, for the baseline noise case. Full (C−1) filtering using only
the LAT data is shown in blue; simple diagonal (in harmonic space) filtering of the LAT data in green; and full C−1 filtering
of the LAT and SAT data in orange. Note that “LAT+SAT” is only computed up to l = 2048 since it is used only for the
E-modes in the lensing template construction. The correlation coefficient is close to unity for l . 1000 by applying LAT +
SAT C−1 filtering, meaning that it is close to optimal (i.e., signal-dominated) for l . 1000. Right: Same as the left panel, but
for B-modes.
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FIG. 8. Left: Lensing B-mode template (scalar) map projected onto the region of overlap of the SAT and LAT surveys. The
multipoles between 20 ≤ l ≤ 128 are included. A zoomed map is also plotted in the section. Right: Same as the left panel, but
for the input B-mode map multiplied by 0.7 which corresponds to the fraction of lensing B-modes removed by delensing (see
text). One can visually see the correlation of these two maps.

construct the mask for the overlap region by simply mul-
tiplying the binary masks of each survey. We then multi-
ply the Stokes parameters constructed from lensing tem-
plate B-mode map and the input lensing B-mode map
by this (binary) survey mask with a 5-degree apodization
and compute spectra from these masked maps. We do
not apply any purification since we use the B-mode-only

maps. We do not include noise in B̂ and ĈBB is simply
the lensing B-mode spectrum. Figure 9 shows the follow-
ing three cases for either the baseline (magenta) or the
goal (blue) noise scenarios: (1) the realistic case using the
SO map-based simulations (solid lines); (2) a relatively
idealistic case in which all maps are full sky and the in-

strumental noise is isotropic with power spectrum equiv-
alent to that obtained from the simulations (see Fig. 4),
but the spectra are still computed over the overlap region
(dashed lines); and (3) the case in which the template is
constructed using only LAT E-modes (dot-dashed lines).
In the realistic case (solid), the fraction of the lensing B-
mode power left over after delensing is roughly 30–35 %
depending on angular scales. The results imply that our
pipeline gives reconstructed lensing B-modes that are al-
most as correlated with the actual lensing B-modes as in
the case of an isotropic survey. In particular, the amount
of delensing is close to that given in Ref. [36] (30 % resid-
ual power for the goal noise levels). Comparing cases (1)
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FIG. 10. Same as Fig. 9 but with delensing using only the
CMB lensing map (blue), galaxies from LSST (green) or the
CIB (cyan), or their optimal combination (magenta), for the
baseline (solid) and goal (dashed) noise levels. The LSST
galaxies make the most significant contribution to delensing.

(solid) and (2) (dashed), the impact of the realistic inho-
mogeneous instrumental noise is small. The figure also
indicates that adding E-modes from the SAT further re-
duces the lensing contribution by more than 5 % and its
benefit is not completely negligible.

Figure 10 shows the individual contributions to the
residual B-mode power after delensing with different
tracers. LSST galaxies contribute most to delensing,

FIG. 11. Demonstration of constraining the tensor-to-scalar
ratio, r, with the cross-spectral (or “cross-correlation”) ap-
proach in which all of the auto- and cross-power spectra be-
tween the observed B-modes and the lensing B-mode tem-
plate are used in the likelihood analysis (solid blue line; see
Sec. II F). For comparison, we also show (in dashed) the
case without the lensing B-mode template, i.e., no delens-
ing. Note that we extend the likelihood into the unphysical
region r < 0 for illustration in the figure. The constraints on r
are σ(r) = 0.003 for the no-delensing case and σ(r) = 0.0015
with the lensing B-mode template, respectively.

while the reconstructed CMB lensing map and CIB have
similar contributions.

D. Constraining IGWs

Using the lensing B-mode template, we perform a
likelihood analysis to determine the expected constraint
on the tensor-to-scalar ratio, r, using the MBS simula-
tions. The results are shown in Fig. 11. As described in
Sec. II F, we compute the auto- and cross-power spectra
of B-modes obtained from the SAT region and from the
lensing template using the pure-B-mode formalism [59],
and use these in an approximate likelihood. We use B-
mode multipoles between l = 50 and 200. Since our
purpose is to see the impact of practical effects in the
construction of the lensing template on the constraint on
r, we only consider one parameter, r, for simplicity, and
ignore the Galactic foreground complexity.

We show two cases, with and without the lensing tem-
plate in the likelihood. The 1σ constraint on r with
delensing is σ(r) = 0.0015, which is close to the expecta-
tion from the ideal (isotropic) case and is nearly a factor
of two improvement from the no-delensing case. This in-
dicates that the non-idealities from non-white noise and
masking do not significantly degrade the delensing per-
formance which is enough to reproduce the constraint
on r expected from the idealized forecast, up to possible
Galactic foreground non-idealities.
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IV. UNCERTAINTIES IN EXTERNAL TRACER
SPECTRA

In this section, we study the impact of uncertainties in
the spectra of external mass tracers on our efforts to con-
strain primordial B-modes. For a more thorough study of
possible systematic effects arising when the CIB is used
as the matter proxy for delensing, we refer the reader to
Refs. [35, 64].

Evaluating the model spectra of Sec. II F 1 requires
knowledge of the auto-spectra and cross-spectra with
CMB lensing of each of the tracers involved. In prac-
tical applications, the tracer spectra will likely be deter-
mined by fitting a smooth curve to measurements, and
hence will be uncertain to some degree. It is important,
then, to quantify accurately this uncertainty, as other-
wise we run the risk of mistaking non-trivially-shaped
lensing residuals for a primordial signal, and thus bias-
ing constraints on r [25]. In this section, we explore this
possibility quantitatively.

Before proceeding further, we note that this issue will
also mean that, in principle, the weighting scheme sum-
marised in Eq. (16) will be sub-optimal whenever the
fiducial spectra deviate from the truth. However, we ig-
nore this effect because the corrections are second-order
in the error of the weight function and are therefore
small [25].

For a quantitative analysis in this section, we first de-
rive basic equations for the relevant B-mode power spec-
tra. We do this in the flat-sky approximation as it has
been shown that, on the angular scales relevant for SO,
the approximation is in very good agreement with the ex-
act curved-sky result (to within around 1 %) [40]. First of
all, we model the cross-correlation of observed B-modes
with a leading-order lensing B-mode template formed
from Wiener-filtered E-modes and a co-added mass map
that involves both internally and externally estimated
mass tracers. In the flat-sky approximation, the E and
B-modes are given as the spin-2 Fourier transform of the
Stokes Q and U maps [67]:

El ± iBl =

∫
d2n̂ e−in̂·l[Q± iU ](n̂)e∓2iψl , (22)

where ψl is the angle that l makes with the axis defining
positive Stokes Q. Proceeding analogously to the full-sky
case, we expand the lensed E and B-modes to first order
in κ to obtain [67]:

Blens
l =

∫
d2l′

(2π)2
W (l, l′)El′κl−l′ , (23)

where κl are the Fourier modes of the lensing convergence
map and

W (l, l′) ≡ 2
l′ · (l− l′)

|l− l′|2 sin 2 (ψl − ψl′) . (24)

Equation (23) is the flat-sky analogue of Eq. (6). We
compute the lensing B-mode template by replacing the

true El and κl with the Wiener-filtered, measured E-

modes, ÊWF
l , and the optimally-combined matter tracer

map, κ̂comb
l , in Eq. (23):

Btemp
l =

∫
d2l′

(2π)2
W (l, l′)ÊWF

l′ κ̂comb
l−l′ . (25)

We assume that the unlensed E-modes and lensing con-
vergence are Gaussian distributed and uncorrelated with
each other, and the Wiener-filtering is diagonal in l, i.e.,

WE
l ≡

C̃EEl

C̃EEl +NEE,fid
l

, (26)

where NEE,fid
l is a fiducial E-mode noise spectrum.

Then, to O(κ2), the cross-spectrum is

CBB,cross
l =

∫
d2l′

(2π)2
W 2(l, l′)WE

l′ C
EE
l′ Cκκ̂

comb

|l′−l|

=

∫
d2l′

(2π)2
W 2(l, l′)WE

l′ C
EE
l′ Cκκ|l′−l|ρ

2
|l′−l| ,

(27)

where we consider the terms up to O(κ2) and use the
unlensed E-mode power spectrum to describe the cross-
power spectrum. The correlation coefficient is given by:

ρL ≡
Cκκ̂

comb

L√
CκκL C κ̂

combκ̂comb

L

=

√
Cκκ̂

comb

L

CκκL
. (28)

The second equality here follows from κ̂comb
LM involving

the Wiener-filtered combination of tracers (see Sec. II C).
Note that evaluating the cross-power spectrum with the
lensed E-mode power spectrum instead of the unlensed
E-mode power spectrum makes very little difference as
the acoustic peaks are smoothed out in the convolution
integral. Note also that the contributions at the fourth-
order of κ are significantly suppressed in the template
delensing method due to a cancellation of terms, and the
expressions here are quite accurate (see Ref. [41] for de-
tails). On the other hand, under the same set of assump-
tions, the auto-spectrum of the template can be modeled,
to O(κ2), as

CBB,temp
l =

∫
d2l′

(2π)2
W 2(l, l′)CÊ

WFÊWF

l′ C κ̂
combκ̂comb

|l′−l|

=

∫
d2l′

(2π)2
W 2(l, l′)WE

l′ C
EE
l′ Cκκ|l′−l|ρ

2
|l′−l| ,

(29)

which equals CBB,cross
l .

Next, consider the angular power spectrum of resid-
ual lensing B-modes after delensing (i.e., subtracting the
template from the observed B-modes) with the co-added
tracer, κ̂comb

LM . We choose this as our case study because
the insights we gather from this simpler analysis should
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ultimately be applicable to one that combines all the indi-
vidual auto- and cross-spectra of templates and observa-
tions, in the way of the BKSPT analysis followed earlier
in this paper.

To leading order in lensing, this is

CBB,res
l =

∫
d2l′

(2π)2
W 2 (l, l′)

[
CEEl′ Cκκ|l−l′|

− 2CEEl′ WE
l′

∑
i

ci|l−l′|C
κκ̂i

|l−l′|

+
(
CEEl′ +NEE

l′
) (
WE
l′
)2

×
∑
i

∑
j

ci|l−l′|c
j
|l−l′|C

κ̂iκ̂j

|l−l′|

]
, (30)

where the weights, cil, are calculated using fiducial spec-
tra and we have not simplified further to allow for the
case where the fiducial spectra differ from the truth.

In the case where the true spectra deviate from the
fiducial model, we parametrise the true spectra as follows:

Cκκ̂
i

l = Cκκ̂
i,fid

l + ∆Cκκ̂
i

l , (31)

C κ̂
iκ̂j

l = C κ̂
iκ̂j ,fid

l + ∆C κ̂
iκ̂j

l , (32)

We allow for errors in the cross- and auto-spectra of the
external tracers, and in the cross-spectra of the external
tracers with the true κ and with the internally recon-
structed κ, which we assume to be equal as the fiducial
cross-spectra are calibrated on the same empirical spec-
tra. We thus have

∆Cκκ̂
i

l = ∆C κ̂κ̂
i

l (κ̂i 6= κ̂) , (33)

where κ̂ is the internal reconstruction. On the other
hand, we assume the fiducial model is correct for the
auto-spectrum of the internal reconstruction and its
cross-spectrum with the true κ, since these can be pre-
dicted to high accuracy from first principles; hence,

∆Cκκ̂l = ∆C κ̂κ̂l = 0 . (34)

For the case of n external tracers, we sample the n(n +

3)/2 distinct deviations, ∆C κ̂κ̂
i

l and ∆C κ̂
iκ̂j

l for κ̂i and κ̂j

not equal to κ̂, as zero-mean, Gaussian variables drawn
from the appropriate covariance matrix. We model this
with the covariances of the relevant empirical bandpow-
ers. Using bins of width ∆l and a fraction fsky of the
sky, the bandpower covariances are

〈∆C κ̂iκ̂jl ∆C κ̂
mκ̂n

l 〉 =
1

(2l + 1)∆lfsky

×
(
C κ̂

iκ̂m

l C κ̂
j κ̂n

l + C κ̂
iκ̂n

l C κ̂
j κ̂m

l

)
. (35)

For spectra involving the CIB, we use measurements from
Planck; for those involving internal reconstructions, we
assume SO goal noise levels; and for the galaxies, we
adopt the noise levels forecasted for the LSST gold sam-
ple. When calculating elements of the covariance matrix

not involving lensing, we set fsky = 0.05; on the other
hand, for elements featuring the cross-spectra of external
tracers with lensing, we assume a larger footprint with
fsky = 0.4. We also choose ∆l = 1, and consider multi-
poles ranging approximately between 60 < l < 1500.

We can use Eq. (30), with Cκκ̂
i

l replaced by ∆Cκκ̂
i

l

and C κ̂
iκ̂j

l by ∆C κ̂
iκ̂j

l , to study possible deviations of the
true lensing B-mode residual from a model constructed
around the fiducial tracer spectra (that is, the same one
used to calculate the weights). Several realizations of
such deviations, consistent with the estimated measure-
ment errors, are shown in Fig. 12. We see that the
combination of external tracers with internal reconstruc-
tions (for which the correlation with lensing on large-
scale scales is known very accurately) leads to residu-
als that are rather flat, significantly more so than in
the case where external tracers alone are used. This
behaviour arises since the contribution of deviations in
the tracer power spectra on small scales combine with
the small-scale E-mode power to produce B-mode power
that behaves as white noise on large scales. This is not
the case for spectral deviations on large scales, but these
are suppressed in the optimal combination with an inter-
nal lensing reconstruction and so contribute little. This
suggests that uncertainties in tracer spectra can be in-
tegrated into our constraints on r by means of a simple
marginalization procedure involving a single parameter
governing the amplitude of a white-noise residual. Refer-
ence [25] studied this procedure in the case where the CIB
is the only tracer, finding that the uncertainty grows only
moderately. Given that the residuals we see arise when
co-adding multiple tracers are significantly flatter than
when the CIB is used by itself, we expect the degrada-
tion in constraining power to be even smaller.

The residuals due to improper modeling shown in
Fig. 12 can be propagated to errors in estimates of r
using the relation (e.g., [68])

∆r̂ =

 lmax∑
l=lmin

[
CBB,prim
l (r = 1)

]2
Var

(
CBB,del
l

)

−1

×
lmax∑
l=lmin

CBB,unmodeled
l CBB,prim

l (r = 1)

Var
(
CBB,del
l

) . (36)

Here, CBB,prim
l (r = 1) is the angular power spectrum of

primordial B-modes with r = 1, Var(CBB,del
l ) is the vari-

ance of the power spectrum of delensed B-modes (which
we assume to be Gaussian, free of foregrounds, and to
feature a level of experimental noise appropriate for the
93 GHz channel of the SO SATs in the goal scenario)

and CBB,unmodeled
l is the part of the delensed B-mode

spectrum that we have not modeled – in this case, due
to incorrect modeling of the external tracer spectra. In
Fig. 13, we compare the estimated shifts for ten random
realizations to the standard deviation (assuming r = 0)
expected of an experiment covering 5 % of the sky, with
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FIG. 12. Impact of uncertainties in the tracer spectra on the power spectrum of B-mode lensing residuals after delensing.
We quantify this by perturbing the true auto-spectra of the external tracers and their cross-spectra with lensing and with each
of the other tracers about the fiducial spectra, with errors drawn from a Gaussian distribution consistent with the covariance
matrix described in the text. Left: the case where delensing is performed using only CIB maps, with spectra as measured by
Planck GNILC. Right: the Planck CIB maps are co-added with LSST galaxies (gold sample) and SO internal reconstructions.
It is readily apparent that co-adding external tracers with internal reconstructions mitigates possible shapes in the residuals
that might be confused with a primordial component. For comparison, a primordial signal with r = 0.001 is shown in black.

the noise levels of the SO SATs, and in the limit of no
foreground BB power and a removal of lensing as appro-
priate for delensing with the CIB alone or in the multi-
tracer approach described above. We use lmin = 50 and
lmax = 200. We see that the shifts induced by uncertainty
in the tracer spectra are typically small compared to the
statistical precision afforded by SO. Figure 14 illustrates
this further by comparing the distribution of shifts in r
to the SO statistical uncertainty for the case of r = 0.
We find that the additional uncertainties on estimating
r are σ(r) . 2× 10−4.

V. SUMMARY AND CONCLUSION

We have developed a delensing methodology and
pipeline for SO and tested its performance in the pres-
ence of the realistic survey effects. We showed that, even
in the presence of survey boundaries, inhomogeneous in-
strumental and atmospheric noise, the delensing method
we developed produces a statistical error on the tensor-
to-scalar ratio, σ(r), which is close to the ideal case of an
isotropic survey of the same duration. We also discussed
potential errors associated with uncertainties in the spec-
tral modeling of external mass tracers, by extending the
study of Ref. [25]. We showed that when combining an
internal lensing reconstruction with external tracers, the
impact of these tracer uncertainties is nearly flat resid-
uals in the modeled delensed B-mode power spectrum,
and can be captured with a single nuisance parameter.

Marginalising over such a parameter, with a prior in-
formed by plausible errors in the modeling of the spectra
of the external tracers, leads to additional uncertainties
on r as σ(r) . 2× 10−4 and should have negligible effect
on the r constraint from SO.

We generated our simulation realizations from a map-
based approach and did not include any instrumental
systematic effects. Although Ref. [69] explored the re-
sponse of the residual B-mode power spectrum to ob-
servational systematic effects in a simple experimental
setup, the impact of the instrumental systematics is not
yet quantified accurately in the case of SO as doing so
would require more realistic simulations at the level of
the time-ordered data. In our study, we did not consider
the point-source masks in CMB maps which could lead to
a large mean-field bias in the reconstructed lensing map
and a large reconstruction noise around the masks if we
use the isotropic filtering to CMB. These bias would be,
however, significantly mitigated by applying the optimal
filtering (see e.g. Refs. [45, 46, 70]). We used idealised,
full-sky external mass-tracer simulations, which we pro-
jected onto the LAT region. In practice, reality may be
more complicated. For example, residual foregrounds in
maps of the CIB will vary across the sky and could lead
to a bias in delensing [64], as may the depth of galaxy
surveys. A more quantitative study requires realistic sim-
ulations of each mass tracer, which will be addressed in
future work.

This paper focuses on application of multi-tracer de-
lensing for SO. This approach is, however, expected also
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FIG. 13. Impact on the inferred tensor-to-scalar ratio r, as a function of input signal, of deviations from the fiducial model of
the spectra of the external tracers used for delensing. We show results for ten different, random fluctuations of the tracer spectra
consistent with measurement errors (see text) in the case of delensing with only the CIB (left) or the multi-tracer approach
with CIB, an internal reconstruction and galaxies (right). (Note the overlap of some of the lines). We constrain r using scales
lmin = 50 and lmax = 200. In general, the effect of modeling errors is small compared to the statistical uncertainty of SO. To
show this, we plot as the shaded, grey region the ±1σ uncertainty for r = 0 of an experiment covering 5 % of the sky with the
noise level of the SO SAT’s 93 GHz channel, no foregrounds and delensing as allowed by each of the tracer combinations, in
the case where r is constrained over the multipole range described above. For comparison also, the dotted lines show the size
of the bias on r if residual dust B-modes in the SO SAT maps (as forecasted by Ref. [36]) are not modeled in the BB power
spectrum.

to be important for LiteBIRD [9] and CMB-S4 [11] to
enhance the sensitivity to IGWs. Therefore, the delens-
ing methodology we presented in this paper may be also
useful for delensing in these future CMB experiments.
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Appendix A: Analytic Power Spectrum Covariances

In this section, we provide analytic models for the covariances of the different combinations of spectra involved in
the inference of section II F. These serve as a complement and cross-check of simulated covariances.

1. Delensed B-mode power spectrum covariance

In order to calculate the power spectrum covariance of delensed B-modes, we employ the following covariance [74]
which is an extension of the lensing B-mode covariance by [63]:

Cov
(
CBB,del
l , CBB,del

l′

)
=

2

2l + 1
δll′
(
CBB,del
l

)2

+ CovNG

(
CBB,del
l , CBB,del

l′

)
, (A1)

where:

CovNG

(
CBB,del
l , CBB,del

l′

)
=
∑
L

2

2L+ 1

[
∂CBB,del

l

∂CEEL

(
CEEL

)2 ∂CBB,del
l′

∂CEEL
+
∂CBB,del

l

∂CκκL
(CκκL )

2 ∂C
BB,del
l′

∂CκκL

]
, (A2)

is the non-Gaussian part of the covariance. This expression assumes 1) that the E-modes are cosmic-variance limited,
2) that the noise in the matter tracer is uncorrelated with the lensing convergence and the CMB and 3) that CEEl , Cκκl
and the noise spectrum all have Gaussian covariance.
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Now, under the assumption that the E-modes are limited by cosmic variance, the power spectrum of delensed
B-modes is [25]:

CBB,del
l =

1

2l + 1

∑
l′l′′

(
p−F

(2)
ll′′l′

)2

CEEl′ Cκκl′′
(
1− ρ2

l′′
)
, (A3)

where ρL is the cross-correlation coefficients of our co-added tracer with the true CMB lensing. When taking the
derivatives of equation (A2), ρL can be regarded as a constant, which means that:

∂CBB,del
l

∂CκκL
=
(
1− ρ2

L

) ∂C̃BBl
∂CκκL

, (A4)

and:

∂CBB,del
l

∂CEEL
=
∂C̃BBl
∂CEEL

∣∣∣∣∣
Cκκ=(1−ρ2)Cκκ

. (A5)

In order to evaluate this last expression, we use an expression in the style of equation (27) of [75].
With these insights in hand, the covariance of equation (A1) can be evaluated by modifying existing codes such as

LensCov [76] which compute the power spectrum covariance of lensed CMB fields.

2. Cross-spectral approach

In this section, we calculate the covariance of all auto- and cross-spectra of the observed and template B-modes.
The covariance is needed when writing down the cross-spectral approach detailed in section II F. Although our analysis
uses the analytic covariance, we also cross-check the results using the analytic covariance described in this section.

a. Covariance of cross-spectrum

In section II F 1, we saw that, to leading order, the cross-spectrum between lensing and template B-modes can be
modeled as:

CBB,cross
l =

1

2l + 1

∑
l′l′′

(
p−F

(2)
ll′′l′

)2

CEEl′ Cκκl′′ ρ
2
l′′ . (A6)

Proceeding analogously to how the lensing B-mode power spectrum covariance is calculated, we approximate the
non-Gaussian part of the covariance as:

CovNG

(
CBB,cross
l , CBB,cross

l′

)
≈
∑
L

1

2L+ 1

[
∂CBB,cross

l

∂CEEL
2
(
CEEL

)2 ∂CBB,cross
l′

∂CEEL
+
∂C̃BBl
∂CκκL

Var
(
Cκκ

WF

L

) ∂C̃BBl′
∂CκκL

]
. (A7)

where κWF is the Wiener-filtered tracer map. As determined in [25], for a single tracer, this takes the form κWF
l =

(CκIl /CIIl )Il, where I is the tracer itself, so:

Cκ
WFκWF

l =

(
CκIl
CIIl

)2

CIIl =

(
CκIl
CIIl

)
CκIl = Cκκ

WF

l . (A8)

We can now use the correlation between the tracer and lensing, defined as ρl = CκIl /
√
Cκκl CIIl , to rewrite Cκ

WFκWF

l =

Cκκ
WF

l = ρ2
lC

κκ
l . Under the assumption of Gaussianity of the lens power spectrum, the variance we are after can be

computed using the usual prescription for Gaussian covariance:

CovGaGb,GcGdll′ =
δll′

2l + 1

[
CGaGcl CGbGdl + CGaGdl CGbGcl

]
, (A9)
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yielding:

Var
(
Cκκ

WF

L

)
=

1

2l + 1

[
CκκL Cκ

WFκWF

L + Cκκ
WF

L Cκκ
WF

L

]
(A10)

=
1

2l + 1

(
ρ2
L + ρ4

L

)
(CκκL )2 . (A11)

Finally:

CovNG

(
CBB,cross
l , CBB,cross

l′

)
≈
∑
L

1

2L+ 1

[
∂C̃BBl
∂CEEL

∣∣∣∣∣
Cκκ=ρ2Cκκ

2
(
CEEL

)2 ∂C̃BBl′
∂CEEL

∣∣∣∣∣
Cκκ=ρ2Cκκ

+
∂C̃BBl
∂CκκL

(
ρ2
L + ρ4

L

)
(CκκL )

2 ∂C̃
BB
l′

∂CκκL

]
. (A12)

In addition to this, the full covariance receives a purely Gaussian contribution. Including it, we obtain:

Cov
(
CBB,cross
l , CBB,cross

l′

)
=

1

2l + 1
δll′

[
C̃BBl CBB,temp

l +
(
CBB,cross
l

)2
]

+ CovNG

(
CBB,cross
l , CBB,cross

l′

)
. (A13)

b. Covariance of template auto-spectrum

To leading order, the auto- and cross-spectra are equal, CBB,temp
l = CBB,cross

l . This time, the non-Gaussian part
of the covariance can be approximated as:

CovNG

(
CBB,temp
l , CBB,temp

l′

)
≈
∑
L

1

2L+ 1

[
∂CBB,temp

l

∂CEEL
2
(
CEEL

)2 ∂CBB,temp
l′

∂CEEL

+
∂C̃BBl
∂CκκL

Var
(
Cκ

WFκWF

L

) ∂C̃BBl′
∂CκκL

]
(A14)

≈
∑
L

2

2L+ 1

[
∂CBB,temp

l

∂CEEL

(
CEEL

)2 ∂CBB,temp
l′

∂CEEL

+
∂C̃BBl
∂CκκL

(
ρ2
LC

κκ
L
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and the full covariance is:

Cov
(
CBB,temp
l , CBB,temp

l′

)
=

2

2l + 1

(
CBB,temp
l

)2

+ CovNG

(
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l′

)
. (A16)

c. Cross-covariance of lensing and template auto-spectra

The non-Gaussian part of the covariance can be approximated as:
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(A17)
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and the full covariance is:

Cov
(
C̃BBl , CBB,temp

l′

)
=

2

2l + 1
δll′
(
CBB,cross
l

)2

+ CovNG

(
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)
. (A19)
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d. Cross-covariance of lensing auto- and template cross-spectra

The non-Gaussian part of the covariance can be approximated as:

CovNG

(
C̃BBl , CBB,cross

l′

)
≈ CovNG

(
C̃BBl , CBB,temp

l′

)
, (A20)

and the full covariance is:

Cov
(
C̃BBl , CBB,temp
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)
=

2
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BB
l CBB,cross

l + CovNG

(
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l′

)
. (A21)

e. Cross-covariance of template auto- and cross-spectra

The non-Gaussian part of the covariance can be approximated as:

CovNG

(
CBB,temp
l , CBB,cross

l′

)
≈ CovNG

(
CBB,temp
l , CBB,temp

l′

)
, (A22)

and the full covariance is:
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(
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)
=
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BB,temp
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(
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)
(A23)

= Cov
(
CBB,temp
l , CBB,temp

l′

)
. (A24)
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