Polarized orbifolds associated to quantized Hamiltonian torus actions

Roberto Paoletti *

Abstract

Suppose given an holomorphic and Hamiltonian action of a compact torus T on a polarized Hodge manifold M. Assume that the action lifts to a quantizing line bundle, so that there is an induced unitary representation of T on the associated Hardy space. If in addition the moment map is nowhere zero, for each weight ν the ν -th isotypical component in the Hardy space of the polarization is finitedimensional. Assuming that the moment map is transverse to the ray through ν , we give a gometric interpretation of the isotypical components associated to the weights $k \nu, k \to +\infty$, in terms of certain polarized orbifolds associated to the Hamiltonian action and the weight. These orbifolds are generally not reductions of M in the usual sense, but arise rather as quotients of certain loci in the unit circle bundle of the polarization; this construction generalizes the one of weighted projective spaces as quotients of the unit sphere, viewed as the domain of the Hopf map.

1 Introduction

Let M be a d-dimensional connected complex projective manifold, with complex structure J. Let (A, h) be a positive holomorphic line bundle on (M, J); the curvature of the unique covariant derivative on A compatible with both the Hermitian metric h and the complex structures has the form $\Theta = -2\pi i \omega$, where ω is a Kähler form on (M, J). Let $dV_M := \omega^{\wedge d}/d!$ be the associated volume form on M.

Let A^{\vee} be the dual line bundle of A, endowed with the dual Hermitian metric h^{\vee} . As is well-known, positivity of (A, h) is equivalent to the unit

^{*}Address: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy; e-mail: roberto.paoletti@unimib.it

disc bundle $D \subset A^{\vee}$ being a strictly pseudoconvex domain [Gr]. We shall denote by $X := \partial D \subset A^{\vee}$ the unit circle bundle of h^{\vee} , and by $\alpha \in \Omega^1(X)$ the (normalized) connection 1-form on X. Thus, X is a principal S^1 -bundle on M, with the structure S^1 -action $\rho^X : S^1 \times X \to X$ given by clockwise fiber rotation. If $\pi : X \to M$ is the bundle projection, and $-\partial_{\theta} \in \mathfrak{X}(X)$ is the generator of ρ^X , then

$$d\alpha = 2\pi^*(\omega), \quad \alpha(\partial_\theta) = 1.$$
(1)

Let $dV_X := (\alpha/2\pi) \wedge \pi^*(dV_M)$ be the associated volume form on X

Then α is a contact form on X, and X is a CR manifold, with CR structure supported by the horizontal tangent bundle

$$Hor(X) := \ker(\alpha) \subset TX.$$
(2)

Let $H(X) \subseteq L^2(X)$ denote the Hardy space of X. Since ρ^X preserves α and the CR structure, it induces a unitary representation $\hat{\rho}^X$ of S^1 on H(X), given by

$$\hat{\rho}_{e^{\imath\vartheta}}^X(s)(x) := s\left(\rho_{e^{-\imath\vartheta}}^X(x)\right) = s\left(e^{\imath\vartheta}x\right) \quad \left(x \in X, \, e^{\imath\vartheta} \in S^1, \, s \in H(X)\right).$$

The induced isotypical decomposition is the Hilbert space direct sum

$$H(X) = \bigoplus_{k=0}^{+\infty} H(X)_k,$$
(3)

where

$$H(X)_k := \left\{ s \in H(X) : s\left(e^{i\theta} x\right) = e^{ik\theta} s(x) \quad \forall x \in X, e^{i\theta} \in S^1 \right\}.$$

It is well-known that there are natural unitary isomorphisms $H(X)_k \cong H^0(M, A^{\otimes k})$, the latter being the space of global holomorphic sections of $A^{\otimes k}$.

Furthermore, let $T \cong (S^1)^r$ be an *r*-dimensional compact torus, with Lie algebra and coalgebra \mathfrak{t} and \mathfrak{t}^{\vee} , respectively. We shall equivariantly identify $\mathfrak{t} \cong \mathfrak{t}^{\vee} \cong \mathfrak{k}\mathbb{R}^r$. Suppose given an Hamiltonian and holomorphic action $\mu^M : T \times M \to M$ of T on the Kähler manifold $(M, J, 2\omega)$. Let $\Phi : M \to \mathfrak{t}^{\vee} \cong \mathfrak{k}\mathbb{R}^r$ be the moment map.

It is standard that μ^M and Φ generate an infinitesimal contact and CR action of \mathfrak{t} on X, so defined [Ko]. If $\xi \in \mathfrak{t}$, let $\xi_M \in \mathfrak{X}(M)$ be the Hamiltonian vector field induced by ξ on M, and define a vector field $\xi_X \in \mathfrak{X}(X)$ by setting

$$\xi_X := \xi_M^{\sharp} - \langle \Phi \circ \pi, \xi \rangle \, \partial_{\theta} \in \mathfrak{X}(X); \tag{4}$$

here $V^{\sharp} \in \mathfrak{X}(X)$ denotes the horizontal lift to X of a vector field $V \in \mathfrak{X}(M)$, with respect to α . The ξ_X 's are commuting contact vector fields on X, whose flow preserves the CR structure, and the map $\xi \mapsto \xi_X$ is a morphism of Lie algebras $\mathfrak{t} \to \mathfrak{X}(X)$.

Let us make the stronger hypothesis that μ^M lifts to an actual contact and CR action of T on X, $\mu^X : T \times X \to X$, and that $d\mu^X(\xi) = \xi_X$ for any $\xi \in \mathfrak{t}$. Then μ^X determines a unitary representation $\hat{\mu}^X$ of T on H(X), given by

$$\hat{\mu}_{\mathbf{t}}^{X}(s)(x) := s\left(\mu_{\mathbf{t}^{-1}}^{X}(x)\right) \quad (x \in X, \, \mathbf{t} \in T, \, s \in H(X)) \,. \tag{5}$$

By the Peter-Weyl Theorem [St], $\hat{\mu}^X$ induces a unitary and equivariant splitting of H(X) into isotypical components.

Let us regard any $\boldsymbol{\nu} \in \mathbb{Z}^r$ as an integral weight on T, associated to the character

$$\chi_{\boldsymbol{\nu}}(\mathbf{t}) := \mathbf{t}^{\boldsymbol{\nu}},$$

where for $\mathbf{t} = (t_1, \ldots, t_r) \in T$ we set $\mathbf{t}^{\boldsymbol{\nu}} := \prod_{j=1}^r t_j^{\nu_j}$. For any $\boldsymbol{\nu} \in \mathbb{Z}^r$, let us consider the $\boldsymbol{\nu}$ -th isotypical component

$$H(X)^{\hat{\mu}}_{\boldsymbol{\nu}} := \{ s \in H(X) : \hat{\mu}_{\mathbf{t}}(s) = \chi_{\boldsymbol{\nu}}(\mathbf{t}) \cdot s \quad \forall \mathbf{t} \in T \}.$$

Then we have an equivariant Hilbert space direct sum

$$H(X) = \bigoplus_{\boldsymbol{\nu} \in \mathbb{Z}^r} H(X)_{\boldsymbol{\nu}}^{\hat{\mu}}.$$
 (6)

In the special case where $T = S^1$, μ^M is trivial, and $\Phi = i$, $i \in \mathfrak{t}$ is mapped to $-\partial_{\theta}$, and so $\mu^X = \rho^X$; hence (6) reduces to (3), that is, $H(X)_k = H(X)_k^{\hat{\rho}}$ with k in place of $\boldsymbol{\nu}$.

In general, it may happen that $H(X)^{\hat{\mu}}_{\nu} \cap H(X)_{k} \neq (0)$ for several k's, so that $H(X)^{\hat{\mu}}_{\nu}$ does not correspond to a space of holomorphic sections of some power of A. Furthermore, $H(X)^{\hat{\mu}}_{\nu}$ may be infinite-dimensional. The latter circumstance does not occur, however, if $\mathbf{0} \notin \Phi(M)$ (see §2 of [P1]). We shall make the following Basic Assumption (henceforth referred to as BA):

Basic Assumption 1.1. Φ and ν satisfy the following properties:

- 1. $\boldsymbol{\nu} \neq \mathbf{0}$ is coprime, that is, l.c.d. $(\nu_1, \ldots, \nu_r) = 1$;
- 2. Φ is nowhere vanishing, that is, $\mathbf{0} \notin \Phi(M)$;
- 3. Φ is transverse to the ray $\mathbb{R}_+ \cdot i \boldsymbol{\nu}$, and $M_{\boldsymbol{\nu}} := \Phi^{-1}(\mathbb{R}_+ \cdot i \boldsymbol{\nu}) \neq \emptyset$.

If the previous properties are satisfied, then μ^X is generically locally free [P1]; perhaps after replacing T with its quotient by a finite subgroup, we may and will assume without loss of generality that μ^X is generically free.

Let us assume that BA holds. Then $H(X)_{k\nu}^{\hat{\mu}} = (0)$ for all $k \leq 0$ (§2 of [P1]). We are interested in the sequence of spaces of finite-dimensional vector spaces $(H(X)_{k\nu}^{\hat{\mu}})_{k=1}^{+\infty}$ associated to the weights on the ray $\mathbb{R}_+ \cdot \nu$. The corresponding 'equivariant Szegö projectors' $\Pi_{k\nu}^{\hat{\mu}} : L^2(X) \to H(X)_{k\nu}^{\hat{\mu}}$ are smoothing operators (that is, they have \mathcal{C}^{∞} integral kernels). Furthemore, $M_{\nu} \subseteq M$ is a *T*-invariant coisotropic connected compact submanifold of real codimension r-1 [P1]. The local and global asymptotics for $k \to +\infty$ of the integral kernels $\Pi_{k\nu}^{\hat{\mu}}$ and their concentration behaviour along M_{ν} were studied in [P1], [P2], and related variants in the presense of additional symmetries where investigated in [Ca].

Our present aim is to clarify the geometric significance of the sequence $(H(X)_{k\nu}^{\hat{\mu}})_{k=1}^{+\infty}$, generalizing the interpretation of the sequence $(H(X)_k)$ in terms of the spaces $H^0(M, A^{\otimes k})$. We shall prove the following:

Theorem 1.1. Assume BA holds. Then there exists a (d+1-r)-dimensional compact complex orbifold N_{ν} , and a positive holomorphic orbifold line bundle B_{ν} on N_{ν} , naturally constructed from A, ν and Φ , such that the following holds:

- 1. for $k \geq 1$, there is a natural injection $\delta_k : H(X)_{k\nu}^{\hat{\mu}} \hookrightarrow H^0(N_{\nu}, B_{\nu}^{\otimes k});$
- 2. δ_k is an isomorphism if $k \gg 0$.

Corollary 1.1. If $k \gg 0$,

$$\dim H(X)_{k\,\boldsymbol{\nu}}^{\hat{\mu}} = \chi(N_{\boldsymbol{\nu}}, B_{\boldsymbol{\nu}}^{\otimes k}).$$

Obviously with no pretense of exhaustiveness, discussions of orbifolds and orbifold line bundles (also known as V-manifolds and line V-bundles) can be found in [S1], [S2], [B], [Ka], [ALR], [BG]; specific treatments of Hamiltonian actions on symplectic orbifolds can be found in [LT] and [MS].

The geometric significance of the Theorem lies in the relation between the polarized orbifold (N_{ν}, B_{ν}) and the 'prequantum data' (A, Φ, ν) . It is therefore in order to outline how the former is constructed from the latter. The following statements will be clarified and proved in §2.

Let $\tilde{T} \cong (\mathbb{C}^*)^r$ be the complexification of T. Then μ^X extends to an holomorphic line bundle action $\tilde{\mu}^{A^{\vee}} : \tilde{T} \times A^{\vee} \to A^{\vee}$. Let A_0^{\vee} be the complement of the zero section in A^{\vee} , and let $A_{\nu}^{\vee} \subset A_0^{\vee}$ be the inverse image of M_{ν} . Let $\tilde{A}_{\nu}^{\vee} := \tilde{T} \cdot A_{\nu}^{\vee}$ be its saturation under $\tilde{\mu}^{A^{\vee}}$.

Then $\tilde{\mu}^{A^{\vee}}$ is proper and locally free on \tilde{A}^{\vee}_{ν} , and $N_{\nu} = \tilde{A}^{\vee}_{\nu}/\tilde{T}$. Thus the projection $p_{\nu} : \tilde{A}^{\vee}_{\nu} \to N_{\nu}$ is a principal V-bundle with structure group \tilde{T} over N_{ν} [S2].

Furthermore, $\chi_{\nu} : T \to S^1$ extends to a character $\tilde{\chi}_{\nu} : \tilde{T} \to \mathbb{C}^*$; the datum of p_{ν} and $\tilde{\chi}_{\nu}$ determines the orbifold line bundle B_{ν} . Similarly, $B_{\nu}^{\otimes k}$ (or $B_{k\nu}$) denotes the orbifold line bundle associated to p_{ν} and $\tilde{\chi}_{k\nu} = \tilde{\chi}_{\nu}^{k}$.

We can give the following alternative algebro-geometric characterization of \tilde{A}_{ν}^{\vee} . Let $\nu^{\perp} \subset \mathbb{R}^{r}$ be the orthocomplement of ν with respect to the standard scalar product, and consider the (Abelian) subalgebra $i \nu^{\perp} \leq \mathfrak{t}$. Let $T_{\nu^{\perp}}^{r-1} \leq T$ be the corresponding subtorus, $\tilde{T}_{\nu^{\perp}}^{r-1} \leq \tilde{T}$ be its complexification. The restriction of $\tilde{\mu}^{M}$ to $\tilde{T}_{\nu^{\perp}}^{r-1}$ is an holomorphic action $\tilde{\gamma}^{M}$ of $\tilde{T}_{\nu^{\perp}}^{r-1}$ on (M, J), with a built-in complex linearization $\tilde{\gamma}^{A^{\vee}} : \tilde{T}_{\nu^{\perp}}^{r-1} \times A^{\vee} \to A^{\vee}$. Let $\tilde{M}_{\nu} \subseteq M$ be the locus of (semi)stable points of $\tilde{\gamma}^{M}$; then \tilde{A}_{ν}^{\vee} is the inverse image of \tilde{M}_{ν} in A_{0}^{\vee} .

Up to a natural isomorphism, an alternative description of N_{ν} is as follows. Let $X_{\nu} := \pi^{-1}(M_{\nu})$. Then *T* acts locally freely on X_{ν} , and $N_{\nu} \cong X_{\nu}/T$. This description is instrumental in describing the positivity of B_{ν} and the Kähler structure of N_{ν} .

When r = 1, $M = \mathbb{P}^d$, and A is the hyperplane line bundle with the standard metric, we have $X_{\nu} = X = S^{2d+1}$; thus the previous construction generalizes the one of weighted projective spaces (see also the discussions in in [P2] and [P3]).

2 Preliminaries

This section is devoted to a closer description of the geometric setting, and to the statement and proof of a series of geometric results that will combine into the proof of Theorem 1.1.

Notation 2.1. We shall adopt the following notation and conventions.

- 1. If a Lie group G with Lie algebra \mathfrak{g} acts smoothly on a manifold R, for any $\xi \in \mathfrak{g}$ we shall denote by $\xi_R \in \mathfrak{X}(R)$ the vector field on R generated by ξ .
- 2. If $r \in R$ and $\mathfrak{l} \subseteq \mathfrak{g}$ is a vector subspace, we shall set

$$\mathfrak{l}_R(r) := \left\{ \xi_R(r) \, : \, \xi \in \mathfrak{l} \right\} \subseteq T_r R.$$

3. Given an isomorphism $T \cong (S^1)^r$, we have $\mathbf{t} \cong i \mathbb{R}^r$. If we identify the Lie algebra $\tilde{\mathbf{t}}$ of $\tilde{T} \cong \mathbb{R}^r_+ \times T$ with $\mathbb{C}^r \cong \mathbb{R}^r \oplus i \mathbb{R}^r$, \mathbf{t} corresponds to the imaginary summand $i \mathbb{R}^r$. For $\mathbf{x} = (x_1 \cdots x_r) \in \mathbb{R}^r$, we have $e^{\mathbf{x}} := (e^{x_1} \cdots e^{x_r}) \in \mathbb{R}^r_+ \leqslant \tilde{T}^r$, while $e^{i\mathbf{x}} := (e^{ix_1} \cdots e^{ix_r}) \in T^r$.

- 4. We shall equivariantly identify $\mathfrak{t} \cong \mathfrak{t}^{\vee}$, and view Φ as \mathfrak{t} -valued.
- 5. If V is any Euclidean vector space and $\epsilon > 0$, $V(\epsilon) \subset V$ will denote the open ball in V centered at the origin and of radius ϵ .
- 6. $g(\cdot, \cdot) := \omega(\cdot, J(\cdot))$ is the Riemannian metric associated to ω .
- 7. J' is the complex structure of A^{\vee} .
- 8. The superscript \sharp will denote horizontal lifts from M to either X or A^{\vee} , according to the context, and will be applied to both tangent vectors and vector subspaces of tangent spaces.
- 9. $\pi: X \to M$ and $\pi': A_0^{\vee} \to M$ are the projections.
- 10. If $\beta^Z : G \times Z \to Z$ is an action of the group G on the set Z, and if $S \subseteq Z$ is G-invariant, we shall often denote by $\beta^S : G \times S \to S$ the restricted action. Thus, for example, \tilde{T} acts on A^{\vee} by $\tilde{\mu}^{A^{\vee}}$, on $A_0^{\vee} \subset A^{\vee}$ by $\tilde{\mu}^{A_0^{\vee}}$, on $\tilde{A}_{\nu}^{\vee} \subseteq A_0^{\vee}$ by $\tilde{\mu}^{\tilde{A}_{\nu}^{\vee}}$.

2.1 The locus $M_{\nu} \subseteq M$

Let $\gamma^M : T^{r-1}_{\boldsymbol{\nu}^{\perp}} \times M \to M$ be the action induced by restriction of μ^M . Then γ^M is Hamiltonian with respect to 2ω , and its moment map $\Phi_{\boldsymbol{\nu}^{\perp}} : M \to i \boldsymbol{\nu}^{\perp}$ is the composition of Φ with the orthogonal projection $\mathfrak{t} \to i \boldsymbol{\nu}^{\perp}$. Assuming BA, we can draw the following conclusions:

- 1. $\mathbf{0} \in \imath \boldsymbol{\nu}^{\perp}$ is a regular value of $\Phi_{\boldsymbol{\nu}^{\perp}}$;
- 2. $M_{\nu} = \Phi_{\nu^{\perp}}^{-1}(\mathbf{0})$ is a compact and connected coisotropic submanifold of M, of (real) codimension r 1;
- 3. γ^M is locally free along $M_{\mu^{\perp}}$, that is,

$$\dim \left(\imath \, \boldsymbol{\nu}^{\perp} \right)_{M}(m) = r - 1 \quad \forall \, m \in M_{\boldsymbol{\nu}^{\perp}};$$

4. for every $m \in M_{\nu}$, we have

$$T_m M_{\boldsymbol{\nu}} = \left(\imath \, \boldsymbol{\nu}^\perp \right)_M (m)^{\perp_{\omega_m}} = J_m \left((\imath \, \boldsymbol{\nu}^\perp)_M (m) \right)^{\perp_{g_m}}$$

This implies the following statement. Let us define

$$\Psi: (\mathbf{x}, m) \in (\imath \, \boldsymbol{\nu}^{\perp}) \times M_{\boldsymbol{\nu}} \mapsto \tilde{\mu}_{e^{\mathbf{x}}}(m) \in M.$$
(7)

Lemma 2.1. Given Basic Assumption 1.1, the following holds:

- 1. $\tilde{\gamma}^M$ is locally free along M_{ν} ;
- 2. for any sufficiently small $\epsilon > 0$, Ψ in (7) restricts to a diffeomorphism between $(\imath \nu^{\perp})(\epsilon) \times M_{\nu}$ and an open tubular neighborhood U_{ϵ} of M_{ν} in M.

2.2 The locus $X_{\nu} \subseteq X$ and its saturation \tilde{X}_{ν} in A^{\vee}

Let us set:

$$X_{\boldsymbol{\nu}} := \pi^{-1}(M_{\boldsymbol{\nu}}) \subseteq X. \tag{8}$$

If $x \in X_{\nu}$, then in view of (4)

$$\left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{X}(x) = \left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{M}(m)^{\sharp}.\tag{9}$$

We have the following analogue of Lemma 2.1.

Lemma 2.2. Given BA 1.1, the following holds:

- 1. μ^X is locally free along X_{ν} ;
- 2. for any $x \in X_{\nu}$,

$$T_x X_{\boldsymbol{\nu}} \cap J'_x \big(\mathfrak{t}_{A^{\vee}}(x) \big) = (0);$$

3. for all suitably small $\epsilon > 0$, the map

$$\Psi': (\mathbf{x}, x) \in (i \mathfrak{t}) \times X_{\boldsymbol{\nu}} \mapsto \tilde{\mu}_{e^{\mathbf{x}}}^{A_0^{\vee}}(x) \in A_0^{\vee}$$

determines a diffemorphism from $(i \mathfrak{t})(\epsilon) \times X_{\nu}$ to a tubular neighborhood of X_{ν} in A^{\vee} ;

4. $\tilde{\mu}^{A^{\vee}}$ is locally free along X_{ν} .

Proof of Lemma 2.2. That μ^X is locally free on X_{ν} under the transversality assumption in BA is proved in §2 of [P1].

By the discussion in §2.1, if $x \in X_{\nu}$ and $m = \pi(x)$ then

$$J_m\big(\imath\,\boldsymbol{\nu}^{\perp}\big)_M(m)^{\sharp} \subseteq T_x X$$

is the normal space of X_{ν} in X at x; hence given (9) we have

$$T_x X_{\boldsymbol{\nu}} \cap J'_x \left(\imath \, \boldsymbol{\nu}^\perp \right)_X (x) = T_x X_{\boldsymbol{\nu}} \cap J_m \left(\imath \, \boldsymbol{\nu}^\perp \right)_M (m)^\sharp = (0).$$
(10)

Furthermore, by definition of X_{ν} there exists a smooth function $\lambda_{\nu} : M_{\nu} \to \mathbb{R}_+$ such that

$$(\imath \boldsymbol{\nu})_X(x) = (\imath \boldsymbol{\nu})_M(m)^{\sharp} - \lambda_{\boldsymbol{\nu}}(m) \|\boldsymbol{\nu}\|^2 \ \partial_{\theta}|_x \notin Hor(X)_x, \quad \forall x \in X_{\boldsymbol{\nu}}.$$
(11)

If r denotes the radial coordinate along the fibers of A^{\vee} , this implies

$$J'_{x}((\imath \boldsymbol{\nu})_{X}(x)) = J_{m}((\imath \boldsymbol{\nu})_{M}(m))^{\sharp} + \lambda_{\boldsymbol{\nu}}(m) \|\boldsymbol{\nu}\|^{2} \ \partial_{r}|_{x} \in T_{x}A^{\vee} \setminus T_{x}X.$$
(12)

The second statement follows from (10), (11) and (12).

The third statement is an immediate consequence of the second.

Since X_{ν} is a *T*-invariant submanifold of A^{\vee} , $(i \nu^{\perp})_X(x) \subseteq T_x X_{\nu}$ for any $x \in X_{\nu}$. Hence if $x \in X_{\nu}$ and $m = \pi(x)$ then by (10)

$$\left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{X}(x) \cap J_{x}'\left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{X}(x) = \left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{M}(m)^{\sharp} \cap J_{m}\left(\imath \,\boldsymbol{\nu}^{\perp}\right)_{M}(m)^{\sharp} = (0).$$
(13)

Together with the first statement, this implies $\dim_{\mathbb{C}} (\tilde{\mathfrak{t}}_{A^{\vee}}(x)) = r$ for any $x \in X_{\nu}$.

Let us consider the saturation

$$\tilde{X}_{\boldsymbol{\nu}} := \tilde{T} \cdot X_{\boldsymbol{\nu}} \subseteq A^{\vee}.$$
(14)

Corollary 2.1. \tilde{X}_{ν} is open in A^{\vee} .

Corollary 2.2. If Basic Assumption 1.1 holds, then μ^X is generically free on X_{ν} .

Proof of Corollary 2.2. If the general $x \in X_{\nu}$ had non-trivial stabilizer in T, the same would hold of the general $\ell \in \tilde{X}_{\nu}$; since the latter is open in A_0^{\vee} , this contradicts the assumption that $\mu^{A^{\vee}}$ is generically free.

Corollary 2.3. If BA 1.1 holds, then $N'_{\nu} := X_{\nu}/T$ is a compact orbifold of real dimension 2(d+1-r), and the projection

$$p'_{\boldsymbol{\nu}}: X_{\boldsymbol{\nu}} \to N'_{\boldsymbol{\nu}} \tag{15}$$

is a principal V-bundle with structure group T.

Remark 2.1. Associated to p'_{ν} and the character χ_{ν} there is a orbifold complex line bundle B'_{ν} on N'_{ν} .

2.3 The Kähler structure of A_0^{\vee}

Let $\rho: A_0^{\vee} \to \mathbb{R}$ denote the square norm function in the Hermitian metric h, and set

$$\tilde{\omega} := 2 \operatorname{d} \left(\Im \left(\partial \varrho^{1/2} \right) \right) = 2 \imath \partial \overline{\partial} \left(\varrho^{1/2} \right).$$
(16)

If $\pi': A_0^{\vee} \to M$ is the projection, then

$$\tilde{\omega} = 2 \, \varrho^{1/2} \, \pi'^*(\omega) + \frac{i}{2 \, \varrho^{3/2}} \, \partial \varrho \wedge \overline{\partial} \varrho. \tag{17}$$

The contact action $\mu^X : T \times X \to X$ extends to an holomorphic unitary action $\mu^{A^{\vee}} : T \times A_0^{\vee} \to A_0^{\vee}$.

Proposition 2.1. $\tilde{\omega}$ is a $\mu^{A^{\vee}}$ -invariant exact Kähler form on A_0^{\vee} .

Proof. Since $\mu^{A^{\vee}}$ preserves both ϱ and the complex structure, by its definition $\tilde{\omega}$ is a $\mu^{A^{\vee}}$ -invariant closed (1, 1)-form. Thus we need only prove that $\tilde{\omega}$ is non-degenerate.

The unique connection compatible with both h and the holomorphic structure determines an invariant decomposition

$$TA_0^{\vee} = Hor(A_0^{\vee}) \oplus Ver(A_0^{\vee}), \tag{18}$$

where

$$Hor(A_0^{\vee}) := \ker(\partial \varrho), \quad Ver(A_0^{\vee}) := \ker(\mathrm{d}\pi') \subset TA^{\vee}$$
(19)

denote the horizontal and vertical tangent bundles. Then $Hor(A_0^{\vee})$ and $Ver(A_0^{\vee})$ are complex vector subbundles of TA_0^{\vee} , and by (17) they are orthogonal for $\tilde{\omega}$. Furthermore, the first summand on the right hand side of (17) is symplectic on $Hor(A_0^{\vee})$ and vanishes on $Ver(A_0^{\vee})$, and conversely for the second summand. Hence $\tilde{\omega}$ is non-degenerate.

Corollary 2.4. $\mu^{A^{\vee}}$ is Hamiltonian on $(A_0^{\vee}, \tilde{\omega})$, with moment map

$$\tilde{\Phi} := \varrho^{1/2} \cdot \Phi \circ \pi' : A_0^{\vee} \to \mathfrak{t}, \tag{20}$$

where $\pi': A_0^{\vee} \to M$ is the projection.

Proof of Corollary 2.4. Given an exact symplectic manifold (R, η) with $\eta = -d\lambda$, and a smooth Lie group action $\varsigma : G \times N \to N$ preserving λ , it is well-known that ς is Hamiltonian, with moment map $\Upsilon : R \to \mathfrak{g}^{\vee}$ determined by the relation

$$v^{\xi} := \langle \Upsilon, \xi \rangle = \iota(\xi_R) \, \lambda \in \mathcal{C}^{\infty}(M).$$

In our setting, $R = A_0^{\vee}$, $\varsigma = \mu^{A^{\vee}}$, $\eta = \tilde{\omega}$ and, in view of (16),

$$\lambda = -2 \left(\Im \left(\partial \varrho^{1/2} \right) \right) = \imath \left(\partial \varrho^{1/2} - \overline{\partial} \varrho^{1/2} \right);$$

furthermore, for any $\xi \in \mathfrak{t}$ we have

$$\xi_{A^{\vee}} = \xi_M^{\sharp} - \langle \Phi \circ \pi', \xi \rangle \, \partial_{\vartheta}.$$

Since ξ_M^{\sharp} is a section of $Hor(A_0^{\vee})$, it follows from (19) that $\iota(\xi_M^{\sharp}) \partial \varrho = 0$. Furthermore, one can verify that $\iota(\partial_{\theta}) \partial \rho = \iota \rho$. Putting this together, we conclude that $\mu^{A^{\vee}}$ is Hamiltonian, and furthermore the component $\tilde{\phi}^{\xi} = \langle \tilde{\Phi}, \xi \rangle$ of the moment map is

$$\begin{split} \tilde{\phi}^{\xi} &= \imath \cdot \varrho^{-1/2} \iota \left(\xi^{\sharp}_{M} - (\varphi^{\xi} \circ \pi') \partial_{\theta} \right) \left(\partial \varrho - \overline{\partial} \varrho \right) \\ &= (\varphi^{\xi} \circ \pi') \, \varrho^{1/2}. \end{split}$$

Let $\{\cdot, \cdot\}_{A_0^{\vee}}$ denote by Poisson brackets on $(A_0^{\vee}, \tilde{\omega})$. Since $\mu^{A^{\vee}}$ is unitary, in view of (20) we conclude the following.

Corollary 2.5. $\{\tilde{\phi}^{\xi}, \tilde{\phi}^{\eta}\}$ vanishes, $\forall \xi, \eta \in \mathfrak{t}$. In particular, the orbits of $\mu^{A^{\vee}}$ in A_0^{\vee} are isotropic for $\tilde{\omega}$.

Therefore:

Corollary 2.6. For every $\ell \in A_0^{\vee}$, $\mathfrak{t}_{A^{\vee}}(\ell) \subseteq T_{\ell}A^{\vee}$ is totally real, that is,

$$\mathfrak{t}_{A^{\vee}}(\ell) \cap J_{\ell}'(\mathfrak{t}_{A^{\vee}}(\ell)) = (0)$$

By Proposition 1.6 and Theorem 1.12 in [Sj], Corollary 2.4 has the following consequences.

Corollary 2.7. For every $\ell \in A_0^{\vee}$, the following holds:

- 1. the stabilizer $\tilde{T}_{\ell} \leq \tilde{T}$ of ℓ for $\tilde{\mu}^{A^{\vee}}$ is the complexification of the stabilizer $T_{\ell} \leq T$ of ℓ for $\mu^{A^{\vee}}$;
- 2. there exists an holomorphic slice for $\tilde{\mu}^{A_0^{\vee}}$ at ℓ .

Let $A_{lf}^{\vee} \subseteq A_0^{\vee}$ be the open subset where $\tilde{\mu}^{A_0^{\vee}}$ is locally free. It follows from Proposition 1.6 of [Sj] and Corollary 2.5 above that the stabilizer in \tilde{T} of any $\ell \in A_{lf}^{\vee}$ is finite and contained in T. **Definition 2.1.** Following [Sj], we shall call $\tilde{\mu}^{A_0^{\vee}}$ proper at $\ell \in A_0^{\vee}$ if for all sequences $(\ell_j) \subset A_0^{\vee}$ and $(\tilde{t}_j) \subset \tilde{T}$ such that $\ell_j \to \ell$ and $\tilde{\mu}_{\tilde{t}_j}^{A_0^{\vee}}(\ell_j)$ converges to some point in A_0^{\vee} , (\tilde{t}_j) is convergent in \tilde{T} .

Remark 2.2. Let $U \subseteq A_0^{\vee}$ be a \tilde{T} -invariant open set. Then:

- 1. if $\tilde{\mu}^{A_0^{\vee}}$ is proper at every $\ell \in U$, then so is a fortiori $\tilde{\mu}^U$;
- 2. if $\tilde{\mu}^U$ is proper at every $\ell \in U$, $\tilde{\mu}^U$ is (globally) proper.

Corollary 2.8. Given BA, the following holds:

- 1. $\tilde{\mu}^{A_0^{\vee}}$ is proper on A_{lf}^{\vee} (that is, $\tilde{\mu}^{A_{lf}^{\vee}}$ is proper);
- 2. $\tilde{X}_{\boldsymbol{\nu}} \subseteq A_{lf}^{\vee};$
- 3. $\tilde{\mu}^{A_0^{\vee}}$ is proper on \tilde{X}_{ν} (that is, $\tilde{\mu}^{\tilde{X}_{\nu}}$ is proper).

Proof of Corollary 2.8. We have remarked that the stabilizer in \tilde{T} of any $\ell \in A_{lf}^{\vee}$ coincides with the stabilizer of ℓ in T, and therefore it is finite. In view of Theorem 1.22 of [Sj], $\tilde{\mu}^{A_0^{\vee}}$ is proper at any $\ell \in A_{lf}^{\vee}$, and therefore it is proper on A_{lf}^{\vee} . This proves the first statement.

We know that $\mu^{X_{\boldsymbol{\nu}}}$ is locally free; in other words, $\mu^{A_0^{\vee}}$ is locally free along $X_{\boldsymbol{\nu}}$. Therefore, $\mu^{A_0^{\vee}}$ is locally free on $\tilde{X}_{\boldsymbol{\nu}} = \tilde{T} \cdot X_{\boldsymbol{\nu}}$, because \tilde{T} is Abelian. Therefore, by Corollary 2.7, the stabilizer of any $\ell \in \tilde{X}_{\boldsymbol{\nu}}$ in \tilde{T} for $\tilde{\mu}^{A_0^{\vee}}$ is finite, since it coincides with the stabilizermof ℓ in T for $\mu^{A_0^{\vee}}$. This proves the second statement.

The third statement is a straighforward consequence of the first two. \Box

The structure S^1 -action ρ^X extends to the holomorphic action

$$\tilde{\rho}^{A^{\vee}}: (z,\,\ell) \in \mathbb{C}^* \times A_0^{\vee} \mapsto z^{-1}\,\ell \in A_0^{\vee},$$

whose orbits are the fibers of A_0^{\vee} over M.

Lemma 2.3. \tilde{X}_{ν} is $\tilde{\rho}^{A^{\vee}}$ -invariant.

Proof of Lemma 2.3. Since $\tilde{\mu}^{A^{\vee}}$ and $\tilde{\rho}^{A^{\vee}}$ commute, it suffices to show that for any $x \in X_{\nu}$ and $z \in \mathbb{C}^*$ we have $z \, x \in \tilde{X}_{\nu}$.

Let us set

$$C_x := \left\{ z \in \mathbb{C}^* : z \, x \in \tilde{X}_{\nu} \right\}.$$

Then $1 \in C_x$ and C_x is open in \mathbb{C}^* because scalar multiplication is continuous and \tilde{X}_{ν} is open in A^{\vee} (Corollary 2.1).

Suppose $z_{\infty} \in \mathbb{C}^*$ is a limit point of C_x . Then there exist $z_1, z_2, \ldots \in C_x$ such that $z_i \to z_{\infty}$. By definition of C_x , for any $i = 1, 2, \ldots$ we have $z_i x \in \tilde{X}_{\nu}$ for any $i = 1, 2, \ldots$. By definition of \tilde{X}_{ν} , therefore, there exist $\tilde{t}_i \in \tilde{T}$ and $x_i \in X_{\nu}$ such that $z_i x = \tilde{\mu}_{\tilde{t}_i}^{A^{\vee}}(x_i)$. Since A_{lf}^{\vee} in Corollary 2.8 is clearly \mathbb{C}^* -invariant, we have $z_{\infty} x \in A_{lf}^{\vee}$. Thus

$$\tilde{\mu}_{\tilde{t}_i}^{A^{\vee}}(x_i) = z_i \, x \to z_{\infty} \, x \in A_{lf}^{\vee}$$

By Corollary 2.8 and the compactness of X_{ν} , perhaps replacing (\tilde{t}_i) and (x_i) by subsequences, we may assume that $\tilde{t}_i \to \tilde{t}_\infty \in \tilde{T}$ and $x_i \to x_\infty \in X_{\nu}$. Hence

$$z_{\infty} x = \tilde{\mu}_{\tilde{t}_{\infty}}^{A^{\vee}}(x_{\infty}) \in \tilde{X}_{\nu} \Rightarrow z_{\infty} \in C_{x}$$

We conclude that $C_x = \mathbb{C}^*$ for any $x \in X_{\nu}$.

Let us set, as in the Introduction,

$$A^{\vee}_{\boldsymbol{\nu}} := (\pi')^{-1}(M_{\boldsymbol{\nu}}), \quad \tilde{A}^{\vee}_{\boldsymbol{\nu}} := \tilde{T} \cdot A^{\vee}_{\boldsymbol{\nu}}.$$

Corollary 2.9. $\tilde{X}_{\nu} = \tilde{A}_{\nu}^{\vee}$.

Proof of Corollary 2.9. Since $X_{\nu} \subset A_{\nu}^{\vee}$, clearly $\tilde{X}_{\nu} \subseteq \tilde{A}_{\nu}^{\vee}$. On the other hand, \tilde{X}_{ν} is \mathbb{C}^* -invariant by Lemma 2.3 and contains X_{ν} , hence $\tilde{X}_{\nu} \supseteq A_{\nu}$. Since \tilde{X}_{ν} is \tilde{T} -invariant, we also have $\tilde{X}_{\nu} \supseteq \tilde{A}_{\nu}^{\vee}$.

It follows from Lemma 2.3 that X_{ν} is the inverse image of a *T*-invariant open set of *M*. More precisely, let

$$M'_{\boldsymbol{\nu}} := \tilde{T} \cdot M_{\boldsymbol{\nu}} \subseteq M.$$

Since π' is a submersion and intertwines $\tilde{\mu}^M$ and $\tilde{\mu}^{A^{\vee}}$, we conclude the following:

Corollary 2.10. M'_{ν} is open in M and $\tilde{X}_{\nu} = (\pi')^{-1}(M'_{\nu})$.

As in the Introduction, let $\tilde{M}_{\nu} \subseteq M$ be the dense open subset of stable points for γ^{M} . Obviously \tilde{M}_{ν} is $\tilde{\gamma}^{M}$ -invariant (notation is as in the Introduction and §2.1).

Lemma 2.4. $M_{\nu} = M'_{\nu}$.

Proof of Lemma 2.4. Since $\mathbf{0} \in \imath \boldsymbol{\nu}^{\perp}$ is a regular value of $\Phi_{\boldsymbol{\nu}^{\perp}}, \ \tilde{M}_{\boldsymbol{\nu}} = \tilde{T}_{\boldsymbol{\nu}^{\perp}}^{r-1} \cdot M_{\boldsymbol{\nu}}$. Hence trivially $\tilde{M}_{\boldsymbol{\nu}} = \tilde{T}_{\boldsymbol{\nu}^{\perp}}^{r-1} \cdot M_{\boldsymbol{\nu}} \subseteq \tilde{T} \cdot M_{\boldsymbol{\nu}} = M_{\boldsymbol{\nu}}'$.

To prove the converse inclusion it suffices to check that \tilde{M}_{ν} is \tilde{T} -invariant. For $k = 1, 2, ..., \text{ let } \tilde{\mu}^{(k)}$ be the representation of \tilde{T} on $H^0(M, A^{\otimes k})$ induced

by $\tilde{\mu}^{A^{\vee}}$, and let $H^0(M, A^{\otimes k})^{T_{\boldsymbol{\nu}^{\perp}}^{r-1}} \subseteq H^0(M, A^{\otimes k})$ be the subspace of those sections that are invariant under $T_{\boldsymbol{\nu}^{\perp}}^{r-1}$ (equivalently, $\tilde{T}_{\boldsymbol{\nu}^{\perp}}^{r-1}$). Then $m \in \tilde{M}_{\boldsymbol{\nu}}$ if and only if for some $k = 1, 2, \ldots$ there exists $\sigma \in H^0(M, A^{\otimes k})^{T_{\boldsymbol{\nu}^{\perp}}^{r-1}}$ such that $\sigma(m) \neq 0$. Since \tilde{T} is Abelian, $\tilde{\mu}_{\tilde{t}}^{(k)}(\sigma) \in H^0(M, A^{\otimes k})^{T_{\boldsymbol{\nu}^{\perp}}^{r-1}}$ for any $\tilde{t} \in \tilde{T}$; therefore, if $m \in M$ is stable for γ^M , then so is $\tilde{\mu}_{\tilde{t}}^M(m)$, for any $\tilde{t} \in \tilde{T}$.

In the following, we shall write \tilde{A}^{\vee}_{ν} for \tilde{X}_{ν} . Since $\tilde{\mu}^{A^{\vee}}$ is holomorphic, proper, effective and locally free on \tilde{A}^{\vee}_{ν} , we reach the following conclusion.

Corollary 2.11. If BA 1.1 holds, then $N_{\nu} := \tilde{A}_{\nu}^{\vee}/\tilde{T}$ is a compact and connected orbifold of complex dimension d + 1 - r, and the projection

$$p_{\boldsymbol{\nu}}: \tilde{A}_{\boldsymbol{\nu}}^{\vee} \to N_{\boldsymbol{\nu}} \tag{21}$$

is a principal V-bundle with structure group T.

Proof. Since \tilde{T} acts properly, holomorphically and locally freely on \tilde{X}_{ν} , N_{ν} is a connected complex orbifold of dimension d + 1 - r. Furthermore, by definition of \tilde{X}_{ν} , $p_{\nu}(X_{\nu}) = N_{\nu}$. Hence N_{ν} is compact.

Remark 2.3. The holomorphic slices in Corollary 2.7 provide local uniformizing charts for N_{ν} . Associated to p_{ν} and the character $\tilde{\chi}_{\nu}$ there is an holomorphic orbifold line bundle B_{ν} on N_{ν} .

2.4 The isomorphism between N'_{ν} and N_{ν}

We shall see that N'_{ν} has a natural complex structure, and that the pairs (N'_{ν}, B'_{ν}) and (N_{ν}, B_{ν}) in Corollaries 2.3 and 2.11 are naturally isomorphic as complex orbifolds and orbifold line bundles.

If $F \subseteq A_0^{\vee}$ is an holomorphic slice for $\tilde{\mu}^{A^{\vee}}$ as in Corollary 2.7, let J^F be its complex structure. Then (F, J^F) is a complex submanifold of (A_0^{\vee}, J') , and provides a local uniformizing chart for the complex orbifold N_{ν} .

On the other hand, given $x \in X_{\nu}$ let $F \subseteq X_{\nu}$ be a slice at x for the action $\mu^{X_{\nu}} : T \times X_{\nu} \to X_{\nu}$ induced by μ^{X} . The stabilizer $T_{x} \leq T$ of x in T is a finite subgroup of T, and by Corollary 2.7 $T_{x} = \tilde{T}_{x}$ (the stabilizer in \tilde{T}).

If $\epsilon > 0$, let $F_{\epsilon} \subseteq F$ be the intersection of F with an open ball centered at x and radius ϵ , in the Kähler metric on A_0^{\vee} associated to $\tilde{\omega}$ in (17).

The proof of the following will be omitted.

Proposition 2.2. If $\epsilon > 0$ is suitably small, F_{ϵ} is a slice for of $\tilde{\mu}^{A_0^{\vee}}$.

Certainly F is not a complex submanifold of A_0^{\vee} , and in fact it does not contain any complex submanifold of positive dimension. Nonetheless, there is a natural complex structure J^F on it, that may be described as follows.

If $\ell \in \tilde{A}_{\nu}^{\vee}$, the tangent space to the \tilde{T} -orbit of ℓ , $\tilde{\mathfrak{t}}_{A_0^{\vee}}(\ell) \subseteq T_{\ell}A_0^{\vee}$, is an r-dimensional complex subspace; let $S_{\ell} \subset T_{\ell}A_0^{\vee}$ be the orthocomplement of $\tilde{\mathfrak{t}}_{A_0^{\vee}}(\ell)$ for the Riemannian metric associated to (17). Thus S_{ℓ} is a complex subspace of $T_{\ell}A_0^{\vee}$, of dimension d + 1 - r, and we have a smoothly varying direct sum decomposition $T_{\ell}A^{\vee} = \tilde{\mathfrak{t}}_{A^{\vee}}(\ell) \oplus S_{\ell}$. Globally on \tilde{A}_{ν}^{\vee} , this yields a vector bundle decomposition $TA^{\vee} = \tilde{\mathfrak{t}}_{A^{\vee}} \oplus S$. Projecting along $\tilde{\mathfrak{t}}_{A^{\vee}}$, we obtain a morphism of vector bundles $\Pi : TA^{\vee} \to S$ (on A_{ν}^{\vee}).

Let F by any slice for $\tilde{\mu}^{A_0^{\vee}}$ in \tilde{A}_{ν}^{\vee} ; in particular, by Proposition 2.2, F might be a slice for $\mu^{X_{\nu}}$. At any $\ell \in F$, the restriction of Π_{ℓ} is an isomorphism of real vector spaces $\Pi_{\ell}^F : T_{\ell}F \to S_{\ell}$. We may define an almost complex structure J^F on F by declaring Π_{ℓ}^F to be an isomorphism of complex vector spaces for each $\ell \in F$. If F is an holomorphic slice, J^F clearly coincides with the complex structure of F as a submaifold of A_0^{\vee} .

It is clear that the same J^F would be defined, if instead of S one had chosen another complementary complex subundle S' to $\tilde{\mathfrak{t}}_{A_0^{\vee}}$. The following characterization does not involve the choice of a specific sub-bundle.

Lemma 2.5. If $\ell \in F$ and $v \in T_{\ell}F$, then $J_{\ell}^{F}(v)$ is uniquely determined by the conditions:

- $J_{\ell}^F(v) \in T_{\ell}L;$
- $J_{\ell}^F(v) J_{\ell}'(v) \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell).$

Proof of Lemma 2.5. For $v \in T_{\ell}A^{\vee}$, let $v_t \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell)$ and $v_s \in S_{\ell}$ be its components. As both $\tilde{\mathfrak{t}}_{A^{\vee}}(\ell)$ and S_{ℓ} are complex subspaces for J'_{ℓ} ,

$$J'_{\ell}(v_s) = J'_{\ell}(v)_s, \quad J'_{\ell}(v_t) = J'_{\ell}(v)_t.$$

By definition of J^F if $v \in T_{\ell}A^{\vee}$ then

$$J_{\ell}^{F}(v)_{s} = J_{\ell}'(v_{s}) = J_{\ell}'(v)_{s}.$$

Hence,

$$\left(J_{\ell}^{F}(v) - J_{\ell}'(v)\right)_{s} = J_{\ell}'(v)_{s} - J_{\ell}'(v)_{s} = 0 \quad \Rightarrow \quad J_{\ell}^{F}(v) - J_{\ell}'(v) \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell).$$

Suppose that $I_{\ell}^F : T_{\ell}F \to T_{\ell}F$ is another operator such that $I_{\ell}^F(v) - J'_{\ell}(v) \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell)$ for every $v \in T_{\ell}F$. Then (by definition of slice) $\forall v \in T_{\ell}F$ we have

$$I_{\ell}^{F}(v) - J_{\ell}^{F}(v) = \left(I_{\ell}^{F}(v) - J_{\ell}'(v)\right) - \left(J_{\ell}^{F}(v) - J_{\ell}'(v)\right) \in T_{\ell}F \cap \tilde{\mathfrak{t}}_{A^{\vee}}(\ell) = (0).$$

Consider two slices $F_1, F_2 \subset \tilde{A}_{\boldsymbol{\nu}}^{\vee}$ for $\tilde{\mu}^{A_0^{\vee}}$ such that $p_{\boldsymbol{\nu}}(F_1) \subseteq p_{\boldsymbol{\nu}}(F_2)$. Let $\ell_j \in F_j$ be such that $p_{\boldsymbol{\nu}}(\ell_1) = p_{\boldsymbol{\nu}}(\ell_2)$. Hence there exists $\tilde{t} \in \tilde{T}$ such that $\ell_2 = \tilde{\mu}_{\tilde{t}}^{A_0^{\vee}}(\ell_1)$. Perhaps after restricting F_1 , we may find a unique \mathcal{C}^{∞} function $f: F_1 \to \tilde{\mathfrak{t}}$, such that $f(\ell_1) = \mathbf{0}$ and $j(\ell) := \tilde{\mu}_{\tilde{t}e^{f(\ell)}}^{A_0^{\vee}}(\ell) \in F_2$, for all $\ell \in F_1$. Thus $j: F_1 \to F_2$ is an injection in the sense of Satake ([S1], [S2]).

Lemma 2.6. $j: F_1 \to F_2$ is (J^{F_1}, J^{F_2}) -holomorphic.

Proof of Lemma 2.6. By local uniqueness, it suffices to prove that

$$\mathbf{d}_{\ell_1} \mathfrak{j} : (T_{\ell_1} F_1, J_{\ell_1}^{F_1}) \to (T_{\ell_2} F_2, J_{\ell_2}^{F_2})$$

is \mathbb{C} -linear. If $v \in T_{\ell_1}F$, we have

$$\mathbf{d}_{\ell_1} f(v) \in \mathfrak{t}, \quad \mathbf{d}_{\ell_1} f(v)_{A^{\vee}} \in \mathfrak{X}(A^{\vee}), \quad \mathbf{d}_{\ell_1} f(v)_{A^{\vee}}(\ell_2) \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell_2) \subseteq T_{\ell_2} A^{\vee},$$

and

$$d_{\ell_1} j(v) = d_{\ell_1} f(v)_{A^{\vee}}(\ell_2) + d_{\ell_1} \tilde{\mu}_{\tilde{t}}^{A^{\vee}}(v).$$
(22)

If $w, w' \in T_{\ell_2} A^{\vee}$, we shall write $w \equiv w'$ to mean that $w - w' \in \tilde{\mathfrak{t}}_{A^{\vee}}(\ell_2)$. By (22), we have $d_{\ell_1} \mathfrak{I}(v) \equiv d_{\ell_1} \tilde{\mu}_{\tilde{t}}^{A^{\vee}_0}(v)$ for every $v \in T_{\ell_1} F_1$. Replacing v with $J_{\ell_1}^{F_1}(v)$, in view of Lemma 2.5 we obtain

$$d_{\ell_{1}} \mathcal{J} \left(J_{\ell_{1}}^{F_{1}}(v) \right) \equiv d_{\ell_{1}} \tilde{\mu}_{\tilde{t}}^{A_{0}^{\vee}} \left(J_{\ell_{1}}^{F_{1}}(v) \right) \equiv d_{\ell_{1}} \tilde{\mu}_{\tilde{t}}^{A_{0}^{\vee}} \left(J_{\ell_{1}}'(v) \right) = J_{\ell_{2}}' \left(d_{\ell_{1}} \tilde{\mu}_{\tilde{t}}^{A_{0}^{\vee}}(v) \right) \equiv J_{\ell_{2}}' \left(d_{\ell_{1}} \mathcal{J}(v) \right) \equiv J_{\ell_{2}}^{F_{2}} \left(d_{\ell_{1}} \mathcal{J}(v) \right).$$
(23)

The first and the last vector in (23) belong to $T_{\ell_2}F_2$; hence by Lemma 2.5 $d_{\ell_1} \mathcal{J} \left(J_{\ell_1}^{F_1}(v) \right) = J_{\ell_2}^{F_2} \left(d_{\ell_1} \mathcal{J}(v) \right)$, for all $v \in T_{\ell_1}F_1$.

In Lemma 2.6, we may assume by Corollary 2.7 that F_2 , say, is holomorphic; hence Lemma 2.6 implies the following.

Corollary 2.12. For any slice $F \subset \tilde{A}^{\vee}_{\nu}$ for $\tilde{\mu}^{A^{\vee}_0}$, J^F is integrable.

We may also take $F = F_1 = F_2$ be a slice at $\ell \in A_0^{\vee}$, and consider the self-injections of F induced by the stabilizer $T_{\ell} \leq T$ of ℓ .

Corollary 2.13. If $\ell \in A_{\nu}^{\vee}$ and $F \subset A_{\nu}^{\vee}$ is a slice for $\tilde{\mu}^{A_0^{\vee}}$ at ℓ , then \tilde{T}_{ℓ} acts holomorphically on (F, J^F) .

If we apply these considerations to the slices $F \subseteq X_{\nu}$ for $\mu^{X_{\nu}}$, we conclude the following.

Corollary 2.14. The V-manifold N'_{ν} in Corollary 2.3 is complex.

Since every *T*-orbit in X_{ν} is obviously contained in a unique *T*-orbit in \tilde{A}_{ν} , there is a well-defined map

$$\psi: T \cdot x \in N'_{\nu} \mapsto \tilde{T} \cdot x \in N_{\nu}$$

Let $J^{N'_{\nu}}$ and $J^{N_{\nu}}$ be the orbifold complex structures of N'_{ν} and N_{ν} , respectively.

Proposition 2.3. ψ is an isomorphism of complex orbifolds $(N'_{\nu}, J^{N'_{\nu}}) \rightarrow (N_{\nu}, J^{N_{\nu}})$.

Proof of Proposition 2.3. By Corollary 2.9, any \tilde{T} -orbit in \tilde{A}_{ν}^{\vee} intersects X_{ν} ; thus ψ is surjective.

To prove that ψ is injective, suppose by contradiction that there exist $x_1, x_2 \in X_{\boldsymbol{\nu}}$ such that $x_2 \in \tilde{T} \cdot x_1$ (i.e., $\psi(T \cdot x_1) = \psi(T \cdot x_2)$), but $x_2 \notin T \cdot x_1$ (i.e., $T \cdot x_1 \neq T \cdot x_2$). Perhaps after replacing x_2 with another point in $T \cdot x_2$, we may assume that $x_2 = \tilde{\mu}_{e^-\boldsymbol{\xi}}^{A_0^{\vee}}(x_1)$ for some $\boldsymbol{\xi} \in \mathbb{R}^r \setminus \{\mathbf{0}\}$. We may write uniquely $\boldsymbol{\xi} = \boldsymbol{\xi}' + a \boldsymbol{\nu}$, where $\boldsymbol{\xi}' \in \boldsymbol{\nu}^{\perp}$ and $a \in \mathbb{R}$. Perhaps interchanging x_1 and x_2 , we may assume without loss that $a \geq 0$.

Let us set $\boldsymbol{\eta} := \imath \boldsymbol{\xi} \in \mathfrak{t}$. Considering the associated vector fields $\boldsymbol{\xi}_{A^{\vee}}, \boldsymbol{\eta}_{A^{\vee}} \in \mathfrak{X}(A^{\vee})$ we have $-\boldsymbol{\xi}_{A^{\vee}} = J'(\boldsymbol{\eta}_{A^{\vee}})$; hence $-\boldsymbol{\xi}_{A^{\vee}}$ is the gradient vector field of the Hamiltonian function $\tilde{\Phi}^{\boldsymbol{\eta}} = \langle \tilde{\Phi}, \boldsymbol{\eta} \rangle$, where $\tilde{\Phi}$ is as in (20).

Since $x_1 \in X_{\nu}$, we have $\Phi(x_1) = i \lambda \nu$ for some $\lambda > 0$, hence $\Phi^{\eta}(x_1) = \lambda a \|\nu\|^2 \ge 0$. Since $\tilde{\Phi}^{\eta}$ is strictly increasing along its gradient flow where the gradient is non-vanishing,

$$\tilde{\Phi}^{\boldsymbol{\eta}}\left(\tilde{\mu}_{e^{-t}\boldsymbol{\xi}}^{A_0^{\vee}}(x_1)\right) > \tilde{\Phi}^{\boldsymbol{\eta}}(x_1) \ge 0 \quad \forall t > 0.$$
(24)

On the other hand, we have

$$\boldsymbol{\eta}_{A_0^{\vee}} = \boldsymbol{\eta}_M^{\sharp} - \tilde{\Phi}^{\boldsymbol{\eta}} \, \partial_{\theta} \quad \Rightarrow \quad -\boldsymbol{\xi}_{A^{\vee}} = \left(J \boldsymbol{\eta}_M \right)^{\sharp} + \tilde{\Phi}^{\boldsymbol{\eta}} \, r \, \partial_r.$$

Here $r \partial_r$ is the generator of the 1-parameter group of diffeomorphisms $\ell \mapsto e^t \ell$. With ρ as in (16), for every t > 0 we have

$$-\boldsymbol{\xi}_{A^{\vee}}(\varrho)\left(\tilde{\mu}_{e^{-t}\boldsymbol{\xi}}^{A^{\vee}}(x_1)\right) = \tilde{\Phi}^{\boldsymbol{\eta}}\left(\tilde{\mu}_{e^{-t}\boldsymbol{\xi}}^{A^{\vee}}(x_1)\right) \ r \ \partial_r \varrho\left(\tilde{\mu}_{e^{-t}\boldsymbol{\xi}}^{A^{\vee}}(x_1)\right) > 0.$$

It follows that $\rho\left(\tilde{\mu}_{e^{-t}\boldsymbol{\varepsilon}}^{A_0^{\vee}}(x_1)\right) > \rho(x_1) = 1$ for t > 0; taking t = 1, we conclude that $x_2 \notin X$, a contradiction. Hence ψ is a bijection.

Let us verify that ψ is a homeomorphism. The open sets of N'_{ν} have the form U/T, where $U \subseteq X_{\nu}$ is open and T-invariant, and the open sets of N_{ν} have the form \tilde{U}/\tilde{T} , where $\tilde{U} \subseteq A^{\vee}_{\nu}$ is open and \tilde{T} -invariant. The previous argument shows that each \tilde{T} -orbit in \tilde{A}^{\vee}_{ν} intersects X_{ν} in a single T-orbit. One can see from this (and the definition of \tilde{A}^{\vee}_{ν}) that there is a bijection between the family of \tilde{T} -invariant open sets \tilde{U} in \tilde{A}^{\vee}_{ν} and the family of T-invariant open sets U in X_{ν} given by $\tilde{U} \mapsto U := \tilde{U} \cap X_{\nu}$, with inverse $U \mapsto \tilde{U} := \tilde{T} \cdot U$.

Given any such \tilde{U} , we have $\psi^{-1}(\tilde{U}/\tilde{T}) = U/T \subseteq N'_{\nu}$, implying that ψ is continuous. Similarly, given any such U we have $\psi(U/T) = \tilde{U}/\tilde{T}$, implying that ψ is open. Hence ψ is a homeomorphism.

To conclude that ψ is an isomorphism of complex orbifolds, it suffices to verify that its local expressions in uniformizing charts are biholomorphisms; actually, it suffices to do so for corresponding defining families in the sense of [S1] and [S2] that cover N'_{ν} and N_{ν} . Let F be a slice at x for $\mu^{X_{\nu}}$ at some $x \in X_{\nu}$; by Proposition 2.2, perhaps after shrinking F if necessary, we may assume that F is also a slice at x for $\tilde{\mu}^{\tilde{A}_{\nu}^{\vee}}$. Hence (F, J^F) is a uniformizing chart of both N'_{ν} and N_{ν} . By definition of ψ and the previous considerations, the identity $\mathrm{id}_F : F \to F$ is a local representative map of ψ , and it is obviously biholomorphic $(F, J^F) \to (F, J^F)$.

The sheaf of holomorphic functions on N_{ν} is defined equivalently by the \tilde{T} -invariant holomorphic functions on \tilde{A}_{ν}^{\vee} or the T_{ℓ} -invariant holomorphic functions on the slices (F, J^F) . Let us briefly clarify this point.

Since (F, J^F) is generally not a complex submanifold of (A^{\vee}, J') , arbitrary holomorphic functions on the saturation $\tilde{T} \cdot F$ needn't restrict to holomorphic functions on (F, J^F) . However, this does happens if we restrict to invariant holomorphic functions.

Definition 2.2. Suppose that $\ell \in A_{\nu}^{\vee}$ and that $F \subseteq A_{\nu}^{\vee}$ is a slice at ℓ for $\tilde{\mu}^{\tilde{A}_{\nu}^{\vee}}$. Let us adopt the following notation.

- 1. $\mathcal{O}(F)$ is the ring of J^F -holomorphic functions on F;
- 2. $\mathcal{O}(F)^{T_{\ell}} \subseteq \mathcal{O}(F)$ is the subring of T_{ℓ} -invariant functions in $\mathcal{O}(F)$;
- 3. $\mathcal{O}(\tilde{T} \cdot F)$ is the ring of *J'*-holomorphic functions on the saturation of *F* under $\tilde{\mu}^{A^{\vee}}$;
- 4. $\mathcal{O}(\tilde{T} \cdot F)^{\tilde{T}} \subseteq \mathcal{O}(\tilde{T} \cdot F)$ is the subring of $\tilde{\mu}^{\tilde{A}_{\nu}^{\vee}}$ -invariant functions.

Then we have the following, whose prooof will be omitted (see the argument for Proposition 2.4).

Lemma 2.7. In the situation of Definition 2.2, restriction yields an isomorphism $\mathcal{O}(\tilde{T} \cdot F)^{\tilde{T}} \to \mathcal{O}(F)^{T_{\ell}}$.

2.5 Holomorphic and CR functions on \tilde{A}_{ν}^{\vee} and X_{ν}

 $M_{\boldsymbol{\nu}}$ is a CR submanifold of M, and the maximal complex sub-bundle $\mathcal{H}(M_{\boldsymbol{\nu}}) \subseteq TM_{\boldsymbol{\nu}}$ has complex dimension d + 1 - r, and is as follows. If $m \in M_{\boldsymbol{\nu}}$, $(\tilde{t}_{\boldsymbol{\nu}^{\perp}}^{r-1})_M(m) \subseteq T_m M_{\boldsymbol{\nu}}$ is a complex subspace of dimension r-1, since $\tilde{\gamma}^M$ is locally free at m. Then

$$\mathcal{H}(M_{\boldsymbol{\nu}})_m = (\tilde{t}_{\boldsymbol{\nu}^{\perp}}^{r-1})_M(m)^{\perp_{h_m}},$$

where $h_m = g_m - i \omega_m$ is the Hermitian product on $T_m M$ associated to the Kähler metric.

Similarly, X_{ν} is a CR submanifold of A^{\vee} . The maximal complex subbundle $\mathcal{H}(X_{\nu}) \subset TX_{\nu}$ is as follows. If $x \in X_{\nu}$ and $m = \pi(x)$, then

$$\mathcal{H}(X_{\nu})_{x} = \mathcal{H}(M_{\nu})_{m}^{\sharp}.$$
(25)

Definition 2.3. Let be given $\lambda \in \mathbb{Z}^r$.

For any \tilde{T} -invariant open subset $\tilde{U} \subseteq \tilde{A}^{\vee}_{\nu}$, let $\mathcal{O}(\tilde{U})_{\lambda}$ be the ring of holomorphic functions $\tilde{S}: \tilde{U} \to \mathbb{C}$ such that

$$\tilde{S}\left(\tilde{\mu}_{\tilde{\mathbf{t}}^{-1}}^{A^{\vee}}(\ell)\right) = \tilde{\chi}_{\lambda}(\tilde{\mathbf{t}}) \,\tilde{S}(\ell) \qquad (\tilde{\mathbf{t}} \in \tilde{T}, \, \ell \in \tilde{U}).$$
(26)

For any *T*-invariant open subset $U \subseteq X_{\nu}$, let let $\mathcal{CR}(U)_{\lambda}$ be the ring of CR functions on U satisfying

$$S(\mu_{\mathbf{t}^{-1}}^{c}(x)) = \chi_{\boldsymbol{\lambda}}(\mathbf{t}) S(x) \qquad (\mathbf{t} \in T, x \in X_{\boldsymbol{\nu}}).$$
(27)

Proposition 2.4. With notation in Definition 2.3, suppose that $U = \tilde{U} \cap X_{\nu}$. Then restriction yields a ring isomorphism $\mathcal{O}(\tilde{U})_{\lambda} \to \mathcal{CR}(U)_{\lambda}$.

Corollary 2.15. Restriction yields an isomorphism $\mathcal{O}(\tilde{A}_{\nu}^{\vee})_{\lambda} \to \mathcal{CR}(X_{\nu})_{\lambda}$.

Proof of Proposition 2.4. Clearly if $\tilde{S} \in \mathcal{O}(\tilde{U})_{\lambda}$ then $S := \tilde{S}\Big|_{U} \in \mathcal{CR}(U)_{\lambda}$. Thus the ring homomorphim in the statement is well-defined and obviously injective.

To prove surjectivity, suppose conversely that $S \in \mathcal{CR}(U)_{\lambda}$. Let us define $\tilde{S} : \tilde{U} = \tilde{T} \cdot U \to \mathbb{C}$ by setting

$$\tilde{S}\left(\tilde{\mu}_{\tilde{\mathbf{t}}}^{A_{0}^{\vee}}(x)\right) = \tilde{\chi}_{-\boldsymbol{\lambda}}(\tilde{\mathbf{t}}) S(x) = \tilde{\chi}_{\boldsymbol{\lambda}}(\tilde{\mathbf{t}})^{-1} S(x) \qquad (\tilde{\mathbf{t}} \in \tilde{T}, \quad x \in X_{\boldsymbol{\nu}}).$$
(28)

To verify that (28) is well-defined, suppose that $\tilde{\mu}_{\tilde{\mathbf{t}}_1}^{A_0^{\vee}}(x_1) = \tilde{\mu}_{\tilde{\mathbf{t}}_2}^{A_0^{\vee}}(x_2)$ with $\tilde{\mathbf{t}}_j \in \tilde{T}$ and $x_j \in U$. By the argument in the proof of Proposition 2.3, $\tilde{\mathbf{t}}_2^{-1}\tilde{\mathbf{t}}_1 \in T$. Therefore

$$S(x_2) = \chi_{-\lambda} \left(\tilde{\mathbf{t}}_2^{-1} \tilde{\mathbf{t}}_1 \right) S(x_1) = \tilde{\chi}_{-\lambda} \left(\tilde{\mathbf{t}}_2 \right)^{-1} \tilde{\chi}_{-\lambda} \left(\tilde{\mathbf{t}}_1 \right) S(x_1).$$

By construction, \tilde{S} satisfies (26) and restricts to S on U. To prove that $S \mapsto \tilde{S}$ inverts restriction it remains to verify that \tilde{S} is holomorphic, i.e. that $d_{\ell}\tilde{S}$ is \mathbb{C} -linear for any $\ell \in \tilde{U}$.

By Corollary 2.9, the map

$$\mathcal{F}: (\tilde{\mathbf{t}}, x) \in \tilde{T} \times X_{\boldsymbol{\nu}} \mapsto \tilde{\mu}_{\tilde{\mathbf{t}}}^{A_0^{\vee}}(x) \in \tilde{A}_{\boldsymbol{\nu}}^{\vee}$$

is surjective. In fact, \mathcal{F} exhibits \tilde{A}_{ν}^{\vee} as the quotient of $\tilde{T} \times X_{\nu}$ by the free action of T given by

$$\mathbf{t} \cdot \left(\tilde{\mathbf{t}}, \, x \right) := \left(\tilde{\mathbf{t}} \, \mathbf{t}^{-1}, \, \mu_{\mathbf{t}}^X(x) \right). \tag{29}$$

Furthermore, $\mathcal{F}(\tilde{T} \times U) = \tilde{U}$.

For every $\tilde{\mathbf{t}} \in \tilde{T}$ let us set

$$X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}} := \mathcal{F}\left(\left\{\tilde{\mathbf{t}}\right\} \times X_{\boldsymbol{\nu}}\right) = \tilde{\mu}_{\tilde{\mathbf{t}}}^{A^{\vee}}\left(X_{\boldsymbol{\nu}}\right).$$

Again by the proof of Proposition 2.3 we have $X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}_1} = X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}_2}$ if $\tilde{\mathbf{t}}_1^{-1} \tilde{\mathbf{t}}_2 \in T$, and $X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}_1} \cap X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}_2} = \emptyset$ otherwise. Clearly $X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}}$ is a CR submanifold of A^{\vee} , and its CR bundle $\mathcal{H}(X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}})$ is as follows. If $\ell = \mathcal{F}(\tilde{\mathbf{t}}, x) \in X_{\boldsymbol{\nu}}^{\tilde{\mathbf{t}}}$, then

$$\mathcal{H}(X_{\boldsymbol{\nu}}^{\mathbf{t}})_{\ell} = \mathrm{d}_{x} \tilde{\mu}_{\tilde{\mathbf{t}}}^{A^{\vee}} \big(\mathcal{H}(X_{\boldsymbol{\nu}})_{x} \big).$$

If $\tilde{\mathbf{t}} \in \tilde{T}$, let us identify $T_{\tilde{\mathbf{t}}}\tilde{T} \cong \tilde{\mathbf{t}}$ in the standard manner. For $(\tilde{\mathbf{t}}, x) \in \tilde{T} \times X_{\boldsymbol{\nu}}$, let us consider the vector subspace

$$\mathcal{K}(\tilde{\mathbf{t}},x) := \tilde{\mathbf{t}} \times \mathcal{H}(X_{\boldsymbol{\nu}})_x \subseteq T_{\tilde{\mathbf{t}}}\tilde{T} \times T_x X_{\boldsymbol{\nu}} \cong T_{(\tilde{\mathbf{t}},x)}(\tilde{T} \times X_{\boldsymbol{\nu}}).$$

The distribution $\mathcal{K} \subseteq T(\tilde{T} \times X_{\nu})$ is invariant under (29) and is naturally a complex vector bundle; furthermore, $d\mathcal{F}$ yields an isomorphism of complex vector bundles $\mathcal{K} \to \mathcal{F}^*(T\tilde{A}_{\nu}^{\vee})$. More explicitly, if $\ell = \mathcal{F}(\tilde{\mathbf{t}}, x)$ then

$$d_{(\tilde{\mathbf{t}},x)}\mathcal{F}\big|_{\mathcal{K}(\tilde{t},x)}: \tilde{\mathbf{t}} \times \mathcal{H}(X_{\boldsymbol{\nu}})_x \to \tilde{\mathbf{t}}_{A^{\vee}}(\ell) \oplus \mathcal{H}(X_{\boldsymbol{\nu}}^{\mathbf{t}})_{\ell} = T_{\ell}A^{\vee}$$
(30)

is an isomorphism of complex vector spaces, respecting the direct sum decompositions on both sides. Given $S \in \mathcal{CR}(U)_{\lambda}$, let us consider the complex function \hat{S} on $\tilde{T} \times X_{\nu}$ given by

$$\hat{S}\left(\tilde{\mathbf{t}},\,x\right) := \tilde{\chi}_{\boldsymbol{\nu}}(\tilde{\mathbf{t}})^{-1}\,S(x). \tag{31}$$

Then $\hat{S} = \tilde{S} \circ \mathcal{F}$.

Let us assume that $\ell = \mathcal{F}(\tilde{\mathbf{t}}, x)$. We have

$$\mathrm{d}_{(\tilde{\mathbf{t}},x)}\hat{S}\Big|_{\mathcal{H}(\tilde{\mathbf{t}},x)} = \mathrm{d}_{\ell}\tilde{S} \circ \mathrm{d}_{(\tilde{\mathbf{t}},x)}\mathcal{F}\Big|_{\mathcal{K}(\tilde{\mathbf{t}},x)} : \mathcal{K}(\tilde{\mathbf{t}},x) \to \mathbb{C}.$$

Hence to prove that $d_{\ell}\tilde{S}: T_{\ell}A_{\nu}^{\vee} \to \mathbb{C}$ is \mathbb{C} -linear it suffices to show that $d_{(\tilde{\mathfrak{t}},x)}\hat{S}$ is \mathbb{C} -linear on $\mathcal{K}_{(\tilde{\mathfrak{t}},x)} = \tilde{\mathfrak{t}} \times \mathcal{H}(X_{\nu})_x$; to do so, in turn it is sufficient to verify \mathbb{C} -linearity on each summand $\tilde{\mathfrak{t}}$ and $\mathcal{H}(X_{\nu})_x$ separately. This follows from (31), since $\tilde{\chi}_{\nu}$ is holomorphic (implying \mathbb{C} -linearity on the first summand) and S is CR (implying \mathbb{C} -linearity on the second summand).

2.6 The orbifold line bundles B_{ν} and B'_{ν}

We have seen that the restrictions of μ^X to X_{ν} and of $\tilde{\mu}^{A^{\vee}}$ to \tilde{A}_{ν}^{\vee} are locally free, effective and proper actions of T and \tilde{T} , respectively, and that the corresponding quotients $N'_{\nu} := X_{\nu}/T$ and $N_{\nu} := \tilde{A}_{\nu}^{\vee}/\tilde{T}$ are naturally isomorphic complex orbifolds. Furthermore, the projections $p'_{\nu} : X_{\nu} \to N'_{\nu}$ and $p_{\nu} : \tilde{A}_{\nu}^{\nu} \to N_{\nu}$ are principal V-bundles with structure group T and \tilde{T} , respectively.

Associated to the characters $\chi_{\boldsymbol{\nu}}: T \to S^1$ and $\tilde{\chi}_{\boldsymbol{\nu}}: \tilde{T} \to \mathbb{C}^*$, we have 1dimensional representations of T and \tilde{T} , respectively; we shall denote either one by $\mathbb{C}_{\boldsymbol{\nu}}$. The product actions $\mu^{X \times \mathbb{C}_{\boldsymbol{\nu}}}$ and $\tilde{\mu}^{A^{\vee} \times \mathbb{C}_{\boldsymbol{\nu}}}$ are therefore also locally free, effective and proper on $X_{\boldsymbol{\nu}} \times \mathbb{C}_{\boldsymbol{\nu}}$ and $\tilde{A}_{\boldsymbol{\nu}}^{\vee} \times \mathbb{C}_{\boldsymbol{\nu}}$ respectively. Hence the quotients $B'_{\boldsymbol{\nu}} := X_{\boldsymbol{\nu}} \times_T \mathbb{C}_{\boldsymbol{\nu}}$ and $B_{\boldsymbol{\nu}} := \tilde{A}_{\boldsymbol{\nu}}^{\vee} \times_{\tilde{T}} \mathbb{C}_{\boldsymbol{\nu}}$ are orbifold line bundles on $N'_{\boldsymbol{\nu}}$ and $N_{\boldsymbol{\nu}}$. Let us denote by

$$P'_{\boldsymbol{\nu}}: B'_{\boldsymbol{\nu}} \to N'_{\boldsymbol{\nu}} \quad \text{and} \quad P_{\boldsymbol{\nu}}: B_{\boldsymbol{\nu}} \to N_{\boldsymbol{\nu}}$$
(32)

the respective projections.

Lemma 2.8. Suppose $x \in X_{\nu}$ and let $F \subseteq X_{\nu}$ be a slice for the restriction of μ^X to X_{ν} . Then $F \times \mathbb{C}_{\nu}$ is a slice at (x, 0) for the restriction of $\mu^{X \times \mathbb{C}_{\nu}}$ to $X_{\nu} \times \mathbb{C}_{\nu}$. The collection of all these slices yields a defining family for B'_{ν} .

Similarly, suppose $\ell \in \tilde{A}_{\nu}^{\vee}$ and let $F \subseteq \tilde{A}_{\nu}^{\vee}$ be a slice at ℓ for the restriction of $\tilde{\mu}^{A^{\vee}}$ to \tilde{A}_{ν}^{\vee} . Then $F \times \mathbb{C}_{\nu}$ is a slice at $(\ell, 0)$ for the restriction of $\tilde{\mu}^{A^{\vee} \times \mathbb{C}_{\nu}}$ to $\tilde{A}_{\nu}^{\vee} \times \mathbb{C}_{\nu}$. The collection of all these slices yields a defining family for B_{ν} . *Proof of Lemma 2.8.* Let us consider the former statement, the proof of the latter being similar.

Since $F \times \mathbb{C}_{\nu}$ is transverse to the *T*-orbits in $X_{\nu} \times \mathbb{C}_{\nu}$, the map $h: T \times (F \times \mathbb{C}_{\nu}) \to X_{\nu} \times \mathbb{C}_{\nu}$ induced by the diagonal action is a local diffeomorphism onto the open saturation $T \cdot (F \times \mathbb{C}_{\nu}) \subseteq X_{\nu} \times \mathbb{C}$.

Clearly we have the equality of stabilizers $T_{(x,0)} = T_x$. Furthermore, suppose $(y, w) \in F \times \mathbb{C}_{\nu}$, $\mathbf{t} \in T$. Then

$$\mu_{\mathbf{t}}^{X \times \mathbb{C}_{\boldsymbol{\nu}}}(y, w) = \left(\mu_{\mathbf{t}}^{X}(y), \chi_{\boldsymbol{\nu}}(\mathbf{t}) w\right) \in F \times \mathbb{C}_{\boldsymbol{\nu}}$$

if and only if $\mu_{\mathbf{t}}^{X}(y) \in F$, that is, if and only if $\mathbf{t} \in T_{x}$. Hence h descends to a diffeomorphism

$$\overline{h}: (T \times (F \times \mathbb{C}_{\nu}))/T_x \to T \cdot (F \times \mathbb{C}_{\nu}),$$

where T_x acts antidiagonally on $T \times (F \times \mathbb{C}_{\nu})$.

Corollary 2.16. $F \times \mathbb{C}_{\nu}$ with the diagonal action of T_x uniformizes the open set $(F \times \mathbb{C}_{\nu})/T_x \subseteq B_{\nu'}$. The collection of all these uniformizing charts is a defining family for the orbifold line bundle B'_{ν} . A similar statement holds fo B_{ν} .

Given the complex structure J^F on each F (Lemma 2.5), we obtain a product complex structure on $F \times \mathbb{C}_{\nu}$. Hence both B'_{ν} and B_{ν} are complex orbifolds of complex dimension d + 2 - r.

Since any *T*-orbit in $X_{\nu} \times \mathbb{C}$ is contained in a unique \tilde{T} -orbit in $\tilde{A}_{\nu}^{\vee} \times \mathbb{C}$, there is a natural continuous map $\tilde{\psi} : B'_{\nu} \to B_{\nu}$. The proof of Proposition 2.3 can be adapted to yield the following:

Proposition 2.5. $\tilde{\psi}$ is an isomorphism of complex orbifolds, and $\psi \circ P'_{\nu} = P_{\nu} \circ \tilde{\psi}$.

2.7 The orbifold circle bundle Y_{ν}

We need an alternative description of B'_{ν} . Consider the intermediate quotient

$$Y_{\boldsymbol{\nu}} := X_{\boldsymbol{\nu}} / T_{\boldsymbol{\nu}^{\perp}}^{r-1};$$

then Y_{ν} is compact orbifold, of (real) dimension 2(d+1-r)+1, and the integrable and invariant CR structure on X_{ν} descends to an integrable CR structure on Y_{ν} . We shall denote by $\mathcal{H}(Y_{\nu})$ the CR bundle of Y_{ν} .

Let $T^1_{\boldsymbol{\nu}} \leq T$ be the connected compact subgroup of T associated to the Lie subalgebra span $(\boldsymbol{\nu}) \subseteq \mathfrak{t}$. Given that $\boldsymbol{\nu}$ is coprime, we have a Lie group isomorphism

$$\kappa_{\boldsymbol{\nu}}: e^{i\vartheta} \in S^1 \mapsto e^{i\vartheta \boldsymbol{\nu}} := \left(e^{i\vartheta \nu_1}, \dots, e^{i\vartheta \nu_r}\right) \in T^1_{\boldsymbol{\nu}}.$$
(33)

Let us set $\overline{T}^1_{\boldsymbol{\nu}} := T/T^{r-1}_{\boldsymbol{\nu}^\perp} \cong T^1_{\boldsymbol{\nu}}/(T^1_{\boldsymbol{\nu}} \cap T^{r-1}_{\boldsymbol{\nu}^\perp}).$

Suppose $x \in X_{\nu}$, and let $F \subseteq X_{\nu}$ be a slice at x for the restriction of γ^{X} to X_{ν} . We can view $T \times F$ as a uniformizing chart for the smooth orbifold X_{ν} , with uniformized open set $T \cdot F = (T \times F)/T_{x}$. Then $\overline{T}_{\nu}^{1} \times F$ is a uniformizing chart for Y_{ν} , covering the open set $(T \cdot F)/T_{\nu^{\perp}}^{r-1}$.

Explicitly, T_x act effectively on $\overline{T}^1_{\nu} \times F$ by

$$t_0 \cdot (\overline{t}, f) := \left(\overline{t} \, \overline{t}_0^{-1}, \mu_{t_0}^X(f)\right),$$

where for any $t \in T$ we have set $\overline{t} = t T_{\nu^{\perp}}^{r-1} \in \overline{T}_{\nu}^{1}$. Then the map

$$\gamma: (\overline{t}, f) \in \overline{T}^1_{\boldsymbol{\nu}} \times F \mapsto T^{r-1}_{\boldsymbol{\nu}^\perp} \cdot \mu^X_t(f) \in (T \cdot F) / T^{r-1}_{\boldsymbol{\nu}^\perp} \subseteq Y_{\boldsymbol{\nu}}$$

induces a homeomorphism $(T \cdot F)/T_{\nu^{\perp}}^{r-1} = (\overline{T}^1 \times F)/T_{\ell}$. Letting F vary, we obtain a defining family for Y_{ν} .

Furthermore, \overline{T}^{1}_{ν} acts effectively on Y_{ν} , and $N'_{\nu} = Y_{\nu}/\overline{T}^{1}_{\nu}$; let $\sigma_{\nu} : Y_{\nu} \to N'_{\nu}$ be the projection. For each slice $F \subseteq X_{\nu}$, as above, the local representation of σ_{ν} is the projection $\overline{T}^{1}_{\nu} \times F \to F$. Thus Y_{ν} is a principal V-bundle over N'_{ν} , with structure group \overline{T}^{1}_{ν} .

Being trivial on $T_{\boldsymbol{\nu}^{\perp}}^{r-1}$, $\chi_{\boldsymbol{\nu}}$ descends to a character $\chi'_{\boldsymbol{\nu}}: \overline{T}_{\boldsymbol{\nu}}^1 \to S^1$.

Lemma 2.9. Given that $\boldsymbol{\nu}$ is coprime, $\chi'_{\boldsymbol{\nu}}$ is a Lie group isomorphism.

Proof of Lemma 2.9. Since $\overline{T}^{1}_{\nu} \cong T^{1}_{\nu}/(T^{1}_{\nu} \cap T^{r-1}_{\nu^{\perp}})$, the statement is equivalent to the equality

$$\ker(\chi_{\nu}|_{T^{1}_{\nu}}) = T^{1}_{\nu} \cap T^{r-1}_{\nu^{\perp}};$$
(34)

since clearly $T_{\boldsymbol{\nu}^{\perp}}^{r-1} \subseteq \ker(\chi_{\boldsymbol{\nu}})$, we need only prove that $\ker(\chi_{\boldsymbol{\nu}}|_{T_{\boldsymbol{\nu}}^{1}}) \subseteq T_{\boldsymbol{\nu}}^{1} \cap T_{\boldsymbol{\nu}^{\perp}}^{r-1}$. Since $\boldsymbol{\nu}$ is coprime, there exists $\mathbf{k} = \begin{pmatrix} k_{1} & \cdots & k_{r} \end{pmatrix} \in \mathbb{Z}^{r}$ such that $\langle \boldsymbol{\nu}, \mathbf{k} \rangle = \sum_{j=1}^{r} k_{j} \nu_{j} = 1$.

Let κ_{ν} be as in (33). Then

$$\chi_{\boldsymbol{\nu}} \circ \kappa_{\boldsymbol{\nu}} \left(e^{i\vartheta} \right) = \chi_{\boldsymbol{\nu}} \left(e^{i\vartheta \boldsymbol{\nu}} \right) = e^{i\vartheta \|\boldsymbol{\nu}\|^2} \quad \left(e^{i\vartheta} \in S^1 \right).$$
(35)

Hence if $e^{i\vartheta\nu} \in \ker(\chi_{\nu})$, then we may assume $\vartheta = \vartheta_j := 2\pi j/\|\boldsymbol{\nu}\|^2$ for some $j = 0, \ldots, \|\boldsymbol{\nu}\|^2 - 1$. We have

$$\langle \vartheta_j \boldsymbol{\nu}, \boldsymbol{\nu} \rangle = \frac{2 \pi j}{\|\boldsymbol{\nu}\|^2} \langle \boldsymbol{\nu}, \boldsymbol{\nu} \rangle = 2 \pi j = 2 \pi j \langle \mathbf{k}, \boldsymbol{\nu} \rangle,$$

so that $\vartheta_j \boldsymbol{\nu} - 2 \pi j \mathbf{k} \in \boldsymbol{\nu}^{\perp}$. Thus

$$e^{i\vartheta_j\boldsymbol{\nu}} = e^{i\left[\vartheta_j\boldsymbol{\nu} - 2\pi j\,\mathbf{k}\right]} \in T^1_{\boldsymbol{\nu}} \cap T^{r-1}_{\boldsymbol{\nu}^\perp}.$$

Since k_{ν} is an isomorphism, (35) implies the following.

Corollary 2.17. Assuming that ν is coprime,

$$\left|T_{\boldsymbol{\nu}^{\perp}}^{r-1} \cap T_{\boldsymbol{\nu}}^{1}\right| = \|\boldsymbol{\nu}\|^{2}$$

Given the isomorphism $\chi'_{\nu} : \overline{T}^1_{\nu} \cong S^1$, we shall view Y_{ν} as a principal *V*-bundle over N'_{ν} with structure group S^1 . Let us denote by

$$\sigma^{Y_{\boldsymbol{\nu}}}: S^1 \times Y_{\boldsymbol{\nu}} \to Y_{\boldsymbol{\nu}} \tag{36}$$

the corresponding action.

Let

$$Q_{\boldsymbol{\nu}}: X_{\boldsymbol{\nu}} \to Y_{\boldsymbol{\nu}} \tag{37}$$

be the projection. Then U is a T-invariant open subset of X_{ν} if and only if its image $Q_{\nu}(U)$ is a $\overline{T}_{\nu}^{1} \cong S^{1}$ -invariant open subset of Y_{ν} . It follows (recall the proof of Proposition 2.3) that there is a bijective correspondence between \tilde{T} -invariant open subsets $\tilde{U} \subseteq \tilde{A}_{\nu}^{\vee}$, T-invariant open subsets $U \subseteq X_{\nu}$, S^{1} -invariant open subsets $\overline{U} \subseteq Y_{\nu}$, given by $U; = \tilde{U} \cap X_{\nu}, \overline{U} := Q_{\nu}(U)$. The character $\chi'_{k\nu} = (\chi'_{\nu})^{k} : \overline{T}_{\nu}^{1} \to S^{1}$ corresponds to the endomorphism

The character $\chi'_{k\nu} = (\chi'_{\nu})^k : \overline{T}^1_{\nu} \to S^1$ corresponds to the endomorphism $\chi_k : g \in S^1 \mapsto g^k \in S^1$. Let us denote by $\mathcal{CR}(Y_{\nu})$ the collection of all CR functions on Y_{ν} , and for any $k \in \mathbb{Z}$ let us set

$$\mathcal{CR}(Y_{\boldsymbol{\nu}})_{k} = \left\{ f \in \mathcal{CR}(Y_{\boldsymbol{\nu}}) : f \circ \sigma_{e^{-i\theta}}^{Y_{\boldsymbol{\nu}}} = e^{ik\theta} f, \quad \forall e^{i\theta} \in S^{1} \right\}.$$
(38)

Using that the CR structure of Y_{ν} is obtained by descending the invariant CR structure of X_{ν} , we can complement Proposition 2.4 and Corollary 2.15 by the following isomorphisms induced by pull-back:

$$\mathcal{O}(\tilde{U})_{k\nu} \cong \mathcal{CR}(U)_{k\nu} \cong \mathcal{CR}(\overline{U})_k.$$
(39)

Letting $H^0(N_{\nu}, B_{k\nu})$ denote the space of holomorphic sections of the orbifold line bundle $B_{k\nu}$, we conclude that

$$H^{0}(N_{\boldsymbol{\nu}}, B_{k\boldsymbol{\nu}}) \cong \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\boldsymbol{\nu}} \cong \mathcal{CR}(X_{\boldsymbol{\nu}})_{k\boldsymbol{\nu}} \cong \mathcal{CR}(Y_{\boldsymbol{\nu}})_{k}.$$
(40)

2.8 The induced Kähler structure of N_{ν}

We shall see that $P_{\boldsymbol{\nu}}: B_{\boldsymbol{\nu}} \to N_{\boldsymbol{\nu}}$ is a positive holomorphic V-line bundle. In view of Propositions 2.3 and 2.5 we may equivalently consider $P'_{\boldsymbol{\nu}}: B'_{\boldsymbol{\nu}} \to N'_{\boldsymbol{\nu}}$. With α as in (1), let $\alpha^{X_{\boldsymbol{\nu}}} := j^*_{\boldsymbol{\nu}}(\alpha)$, where

$$j_{\boldsymbol{\nu}}: X_{\boldsymbol{\nu}} \hookrightarrow X \tag{41}$$

is the inclusion. Then $\alpha^{X_{\nu}}$ is *T*-invariant, and by definition of X_{ν} for any $\boldsymbol{\xi} \in \boldsymbol{\nu}^{\perp}$ we have

$$\iota((\imath \boldsymbol{\xi})_{X_{\boldsymbol{\nu}}}) \alpha^{X_{\boldsymbol{\nu}}} = j_{\boldsymbol{\nu}}^* (\iota((\imath \boldsymbol{\xi})_X) \alpha) = -\langle \Phi, \imath \boldsymbol{\xi} \rangle \circ j_{\boldsymbol{\nu}} = 0.$$

Hence $\alpha^{X_{\boldsymbol{\nu}}}$ is the pull-back of an orbifold 1-form $\alpha^{Y_{\boldsymbol{\nu}}}$ on $Y_{\boldsymbol{\nu}}$. Similarly, being *T*-invariant, Φ descends to a smooth function $\overline{\Phi} : Y_{\boldsymbol{\nu}} \to \mathfrak{t}^{\vee}$; hence $\Phi^{\boldsymbol{\nu}} = \langle \Phi, \imath \boldsymbol{\nu} \rangle$ descends to a smooth function $\overline{\Phi}^{\boldsymbol{\nu}} : Y_{\boldsymbol{\nu}} \to \mathbb{R}$.

Clearly,

$$u((\imath \,\boldsymbol{\nu})_{Y_{\boldsymbol{\nu}}})\,\alpha^{Y_{\boldsymbol{\nu}}} = -\overline{\Phi}^{\boldsymbol{\nu}}.\tag{42}$$

Let us define

$$\beta_{\boldsymbol{\nu}} := \frac{\|\boldsymbol{\nu}\|^2}{\overline{\Phi}^{\boldsymbol{\nu}}} \alpha^{Y_{\boldsymbol{\nu}}},$$

and let $-\delta^{Y_{\nu}} \in \mathfrak{X}(Y_{\nu})$ be the infinitesimal generator of $\sigma^{Y_{\nu}}$ in (36). Thus by Corollary 2.17

$$-\delta^{Y_{\nu}} = \frac{1}{\|\boldsymbol{\nu}\|^2} (\imath \, \boldsymbol{\nu})_{Y_{\nu}}.$$
(43)

Given (43) and (42), we conclude the following.

Corollary 2.18. β_{ν} is $\sigma^{Y_{\nu}}$ -invariant, and $\beta_{\nu}(\delta^{Y_{\nu}}) = 1$.

Hence β_{ν} is a connection 1-form for the principal V-bundle $P'_{\nu} : B'_{\nu} \to N'_{\nu}$. Explicitly,

$$d\beta_{\boldsymbol{\nu}} = \|\boldsymbol{\nu}\|^2 \left[\frac{1}{\overline{\Phi}^{\boldsymbol{\nu}}} d\alpha^{Y_{\boldsymbol{\nu}}} - \frac{1}{(\overline{\Phi}^{\boldsymbol{\nu}})^2} d\overline{\Phi}^{\boldsymbol{\nu}} \wedge \alpha^{Y_{\boldsymbol{\nu}}} \right], \tag{44}$$

and one can also verify that $\iota(\delta^{Y_{\nu}}) d\beta_{\nu} = 0$ by direct inspection using (43) and (44). Furthermore, the kernel of β_{ν} is the CR bundle of Y_{ν} :

$$\ker(\beta_{\boldsymbol{\nu}}) = \ker(\alpha^{Y_{\boldsymbol{\nu}}}) = \mathcal{H}(Y_{\boldsymbol{\nu}}).$$

Hence we reach the following conclusion. Let $\pi_{\nu}: Y_{\nu} \to N'_{\nu}$ be the projection.

Lemma 2.10. There exists a (1,1)-form η'_{ν} on N'_{ν} such that $d(\beta_{\nu}) = 2 \pi^*_{\nu}(\eta'_{\nu})$.

We shall denote by η_{ν} the corresponding form on N_{ν} . With the notation of Proposition 2.3, we have the following.

Proposition 2.6. $(N'_{\nu}, J^{N'_{\nu}}, \eta'_{\nu})$ and $(N_{\nu}, J^{N_{\nu}}, \eta_{\nu})$ are isomorphic Kähler orbifolds. In particular, (Y_{ν}, β_{ν}) is a contact orbifold.

Proof of Proposition 2.6. It suffices to prove that $(N'_{\nu}, J^{N'_{\nu}}, \eta'_{\nu})$ is a Kähler orbifold, since the other statements follow directly.

The uniformized tangent space of Y_{ν} splits as the direct sum $V(Y_{\nu}) \oplus H(Y_{\nu})$, where $V(Y_{\nu})$ is the tangent space to the orbits of $\sigma^{Y_{\nu}}$. To check that η_{ν} is Kähler, it suffices therefore to verify that the restriction of $d\beta_{\nu}$ to $H(Y_{\nu})$ is compatible with the complex structure. In view of (44) and *T*-invariance, we need only check that the form

$$Q_{\boldsymbol{\nu}}^*(\mathrm{d}\beta_{\boldsymbol{\nu}}) = \|\boldsymbol{\nu}\|^2 \, j_{\boldsymbol{\nu}}^*\left(\frac{1}{\Phi^{\boldsymbol{\nu}}}\,\mathrm{d}\alpha - \frac{1}{(\Phi^{\boldsymbol{\nu}})^2}\,\mathrm{d}\Phi^{\boldsymbol{\nu}}\wedge\alpha\right),\tag{45}$$

where Q_{ν} is as in (37) and j_{ν} as in (41), is compatible with the complex structure of the CR bundle $\mathcal{H}(X_{\nu})$.

Suppose $x \in X_{\nu}$ and let $m := \pi(x) \in M_{\nu}$. The general vector in $\mathcal{H}(X_{\nu})_x$ has the form v^{\sharp} for some $v \in \mathcal{H}(M_{\nu})_m$ (see (25)), and then $J'_x(v^{\sharp}) = J_m(v)^{\sharp}$. By (45), for any $v, w \in \mathcal{H}(M_{\nu})_m$

$$Q_{\boldsymbol{\nu}}^*(\mathrm{d}\beta_{\boldsymbol{\nu}})_x(v^{\sharp},w^{\sharp}) = \frac{\|\boldsymbol{\nu}\|^2}{\Phi^{\boldsymbol{\nu}}(m)} \mathrm{d}_x \alpha(v^{\sharp},w^{\sharp}) = \frac{\|\boldsymbol{\nu}\|^2}{\Phi^{\boldsymbol{\nu}}(m)} 2\,\omega_m(v,w).$$
(46)

The statement follows, since $\Phi^{\nu}(m) > 0$ by definition of M_{ν} , $\mathcal{H}_m(M_{\nu}) \subseteq T_m M$ is a complex subspace, and ω is Kähler.

Corollary 2.19. (N_{ν}, B_{ν}) is polarized Kähler orbifold.

Here notation is as in Chaper 4 of [BG]. By the Kodaira-Baily Vanishing Theorem ([B], [BG]), we obtain the following conclusion.

Corollary 2.20. $H^{i}(N_{\nu}, B_{k\nu}) = 0, \forall i > 0, k \gg 0.$

2.9 An Hamiltonian circle action on N_{ν}

The action $\rho^X : S^1 \times X \to X$ with infinitesimal generator $-\partial_{\theta}$ in (1) is the contact lift of the trivial circle action on M corresponding to the moment map $\Phi = 1$ (recall (4)). We shall see that ρ^X determines a contact action on (Y_{ν}, β_{ν}) and an holomorphic Hamiltonian action on $(N'_{\nu}, J^{N'_{\nu}}, 2\eta'_{\nu})$, such

that the former is the contact lift of the latter by (the orbifold version of) the procedure in (4), when we regard Y_{ν} as an orbifold circle bundle on X_{ν} .

Clearly, ρ^X commutes with μ^X . Hence ρ^X leaves X_{ν} invariant and determines a restricted action $\rho^{X_{\nu}} : S^1 \times X_{\nu} \to X_{\nu}$. For the same reason $\rho^{X_{\nu}}$ passes to the quotients Y_{ν} and N_{ν} . In other words, $\rho^{X_{\nu}}$ descends to actions $\rho^{Y_{\nu}} : S^1 \times Y_{\nu} \to Y_{\nu}$ and $\rho^{N'_{\nu}} : S^1 \times N'_{\nu} \to N'_{\nu}$, so that the projections $Q_{\nu} : X_{\nu} \to Y_{\nu}$ and $\pi_{\nu} : Y_{\nu} \to N'_{\nu}$ are equivariant.

In particular, if $-\partial_{\theta}^{X_{\nu}}$ is the restriction of $-\partial_{\theta}$ to X_{ν} , $-\partial_{\theta}^{Y_{\nu}}$ is the infinitesimal generator of $\rho^{Y_{\nu}}$, and $-\partial_{\theta}^{N_{\nu}}$ is the infinitesimal generator of $\rho^{N_{\nu}}$, then $\partial_{\theta}^{X_{\nu}}$ and $\partial_{\theta}^{Y_{\nu}}$ are Q_{ν} -related, and similarly $\partial_{\theta}^{Y_{\nu}}$ and $\partial_{\theta}^{N_{\nu}}$ are π_{ν} -related.

Lemma 2.11. $\rho^{N'_{\boldsymbol{\nu}}}$ is Hamiltonian on $(N'_{\boldsymbol{\nu}}, 2\eta'_{\boldsymbol{\nu}})$, with moment map $\|\boldsymbol{\nu}\|^2/\overline{\Phi}^{\boldsymbol{\nu}} + c$, for any $c \in \mathbb{R}$.

Proof of Lemma 2.11. By T-invariance of all terms involved, and the previous remark about the correlations of the generating vector fields, we need only prove that

$$-\iota\left(\partial_{\theta}^{X_{\boldsymbol{\nu}}}\right) \, Q_{\boldsymbol{\nu}}^*(\mathrm{d}\beta_{\boldsymbol{\nu}}) = \mathrm{d}\left(\|\boldsymbol{\nu}\|^2/\Phi^{\boldsymbol{\nu}} \circ \jmath_{\boldsymbol{\nu}}\right),$$

where j_{ν} is as in (41) and $Q^*_{\nu}(d\beta_{\nu})$ as in (45). We have on a neighborhood of X_{ν} :

$$-\iota\left(\partial_{\theta}\right) \|\boldsymbol{\nu}\|^{2} \left(\frac{1}{\Phi^{\boldsymbol{\nu}}} d\alpha - \frac{1}{(\Phi^{\boldsymbol{\nu}})^{2}} d\Phi^{\boldsymbol{\nu}} \wedge \alpha\right) = -\frac{\|\boldsymbol{\nu}\|^{2}}{(\Phi^{\boldsymbol{\nu}})^{2}} d\Phi^{\boldsymbol{\nu}} = d\left(\frac{\|\boldsymbol{\nu}\|^{2}}{\Phi^{\boldsymbol{\nu}}}\right),$$

establishing the claim.

Thus $-\partial_{\theta}^{N'_{\nu}}$ is a Hamiltonian vector field on $(N'_{\nu}, 2\eta'_{\nu})$, and every choice of $c \in \mathbb{R}$ in Lemma 2.11 determines a contact lift $-\overline{\partial_{\theta}^{N'_{\nu}}}$ (implicitly depending on c) to (Y_{ν}, β_{ν}) of $-\partial_{\theta}^{N'_{\nu}}$, as in (4).

Here Y_{ν} plays the role of X, β_{ν} the role of α , and $-\partial_{\theta}^{N'_{\nu}}$ the one of ξ_M . The role of $-\partial_{\theta}$ (the infinitesimal generator of ρ^X) is played by $-\delta^{Y_{\nu}}$ (the infinitesimal generator of $\sigma^{Y_{\nu}}$).

We need to determine the 'correct choice' of c that determines $\rho^{Y_{\nu}}$ as the contact lift of $\rho^{N'_{\nu}}$.

Lemma 2.12. We have $\widetilde{\partial_{\theta}^{N_{\nu}'}} = \partial_{\theta}^{Y_{\nu}}$ if and only if c = 0.

Given an (orbifold) vector field V on N_{ν} , we shall denote by $V^{\natural} \in \mathfrak{X}(Y_{\nu})$ its horizontal lift to Y_{ν} with respect to β_{ν} . Proof of Lemma 2.12. On X_{ν} we have by (4)

$$\frac{1}{\|\boldsymbol{\nu}\|^2}\boldsymbol{\nu}_{X_{\boldsymbol{\nu}}} = \frac{1}{\|\boldsymbol{\nu}\|^2}\boldsymbol{\nu}_{M_{\boldsymbol{\nu}}}^{\sharp} - \frac{\Phi^{\boldsymbol{\nu}}}{\|\boldsymbol{\nu}\|^2}\partial_{\theta}^{X_{\boldsymbol{\nu}}}.$$
(47)

Here $\boldsymbol{\nu}_{M_{\boldsymbol{\nu}}}$ is the restriction of $\boldsymbol{\nu}_{M}$ to $M_{\boldsymbol{\nu}}$ (a vector field on $M_{\boldsymbol{\nu}}$), and $\boldsymbol{\nu}_{M_{\boldsymbol{\nu}}}^{\sharp}$ is its horizontal lift to $X_{\boldsymbol{\nu}}$.

Given that ρ^X and μ^X commute, $[\boldsymbol{\nu}_X, \partial_{\theta}] = 0$ on X; this implies $[\boldsymbol{\nu}_M^{\sharp}, \boldsymbol{\nu}_X] = [\boldsymbol{\nu}_M^{\sharp}, \partial_{\theta}] = 0$. Furthermore, one has $[\boldsymbol{\nu}_X, \boldsymbol{\gamma}_X] = 0$ for every $\boldsymbol{\gamma} \in \mathfrak{t}$, and this implies also $[\boldsymbol{\nu}_M^{\sharp}, \boldsymbol{\gamma}_X] = 0$.

Being horizontal and $T_{\nu^{\perp}}^{r-1}$ -invariant, $\nu_{M_{\nu}}^{\sharp}/\Phi^{\nu}$ is π_{ν} -related to a horizontal vector field on Y_{ν} ; the latter is $\sigma^{Y^{\nu}}$ -invariant by the above, and therefore it is the horizontal lift $-v^{\natural}$ to Y_{ν} of a vector field -v on N_{ν} .

Multiplying both sides of (47) by $\|\boldsymbol{\nu}\|^2/\Phi^{\boldsymbol{\nu}}$ and then pushing down to $Y_{\boldsymbol{\nu}}$ we obtain

$$\upsilon^{\natural} - \frac{\|\boldsymbol{\nu}\|^2}{\overline{\Phi^{\boldsymbol{\nu}}}} \,\delta^{Y_{\boldsymbol{\nu}}} = -\frac{1}{\overline{\Phi^{\boldsymbol{\nu}}}} \,\boldsymbol{\nu}^{\sharp}_{M_{\boldsymbol{\nu}}} - \frac{\|\boldsymbol{\nu}\|^2}{\overline{\Phi^{\boldsymbol{\nu}}}} \,\delta^{Y_{\boldsymbol{\nu}}} = -\partial^{Y_{\boldsymbol{\nu}}}_{\theta}, \tag{48}$$

and pushing down to N_{ν} this yields

$$\upsilon = -\partial_{\theta}^{N_{\nu}}.\tag{49}$$

In view of Lemma 2.11, (49) implies that v is the Hamiltonian vector field on $(N'_{\nu}, 2\eta'_{\nu})$ of $\|\nu\|^2/\overline{\Phi^{\nu}} + c$; then (48) implies that $-\partial_{\theta}^{Y_{\nu}}$ is its contact lift corresponding to c = 0. It is clear that any other choice of c yields a different lift.

In the following, we shall identify the pairs $(N'_{\nu}, B'_{k\nu}) \cong (N_{\nu}, B_{k\nu})$.

2.10 The Fourier decomposition of $\mathcal{O}(\tilde{A}_{\nu}^{\vee})_{k\nu}$

Consider the holomorphic action

$$\rho^{A_0^{\vee}}: (e^{\imath\,\theta},\,\ell) \in S^1 \times A_0^{\vee} \to e^{-\imath\,\theta}\,\ell \in A_0^{\vee}.$$

Thus $\rho^{A_0^{\vee}}$ extends ρ^X . Similarly, let $\mu^{A_0^{\vee}}: T \times A_0^{\vee} \to A_0^{\vee}$ be the holomorphic action extending μ^X . Clearly, $\rho^{A_0^{\vee}}$ and $\mu^{A_0^{\vee}}$ commute.

The dense open subset $\tilde{A}^{\vee}_{\boldsymbol{\nu}} \subseteq A^{\vee}_0$ is invariant under both $\rho^{A^{\vee}_0}$ and $\mu^{A^{\vee}_0}$, which therefore restrict to commuting holomorphic actions $\rho^{\tilde{A}^{\vee}_{\boldsymbol{\nu}}}$ and $\mu^{\tilde{A}^{\vee}_{\boldsymbol{\nu}}}$ on $\tilde{A}^{\vee}_{\boldsymbol{\nu}}$. Therefore, $\rho^{\tilde{A}_{\nu}^{\vee}}$ and $\mu^{\tilde{A}_{\nu}^{\vee}}$ determine commuting representations $\hat{\rho}^{\tilde{A}_{\nu}^{\vee}}$ of S^1 and $\hat{\mu}^{\tilde{A}_{\nu}^{\vee}}$ of T on the space $\mathcal{O}(\tilde{A}_{\nu}^{\vee})$ of holomorphic functions on \tilde{A}_{ν}^{\vee} , given by

$$\hat{\rho}_{e^{\imath\theta}}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}(s) := s \circ \rho_{e^{-\imath\theta}}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}, \quad \hat{\mu}_{\mathbf{t}}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}(s) := s \circ \mu_{\mathbf{t}^{-1}}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}} \qquad \left(s \in \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee}), \, e^{\imath\theta} \in S^{1}, \, \mathbf{t} \in T.\right).$$

For every $l \in \mathbb{Z}$ and $\boldsymbol{\lambda} \in \mathbb{Z}^r$, let $\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_l$ and $\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{\boldsymbol{\lambda}}$ be the *l*-th and $\boldsymbol{\lambda}$ -th isotypical components of $\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})$, respectively, for $\hat{\rho}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}$ and $\hat{\mu}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}$, respectively. Hence $\hat{\rho}^{\tilde{A}_{\boldsymbol{\nu}}^{\vee}}$ restricts to a subrepresentation on $\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{\boldsymbol{\lambda}}$. In particular, for every $k = 1, 2, \ldots$ the vector space $\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\boldsymbol{\nu}}$ is finite dimensional by (40), and we have an $S^1 \times T$ -equivariant decomposition

$$\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu}} = \bigoplus_{l\in\mathbb{Z}} \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu},l},\tag{50}$$

where $\mathcal{O}(\tilde{A}_{\nu}^{\vee})_{k\nu,l} = \mathcal{O}(\tilde{A}_{\nu}^{\vee})_{k\nu} \cap \mathcal{O}(\tilde{A}_{\nu}^{\vee})_{l}$. Since the isomorphisms in (40) are by construction S^{1} -equivariant, (50) may be interpreted in terms of $H^{0}(N_{\nu}, B_{k\nu})$:

$$H^0(N_{\boldsymbol{\nu}}, B_{k\,\boldsymbol{\nu}}) = \bigoplus_{l \in \mathbb{Z}} H^0(N_{\boldsymbol{\nu}}, B_{k\,\boldsymbol{\nu}})_l.$$
(51)

Lemma 2.13. If $k \gg 0$, $H^0(N_{\nu}, B_{k\nu})_l = 0$ for all $l \leq 0$.

Proof of Lemma 2.13. In the terminology of [MS], the datum of the Hamiltonian action $\rho^{N_{\nu}}$, with moment map $\|\boldsymbol{\nu}\|^2/\overline{\Phi^{\nu}}$, makes $B_{k\nu}$ into a prequantum S^1 -equivariant orbibundle, hence into a moment line bundle. By Corollary 2.11 of [MS], and given that $\|\boldsymbol{\nu}\|^2/\overline{\Phi^{\nu}} > 0$, we conclude that the Fourier decomposition of $\operatorname{RR}(N_{\nu}, B_{k\nu})$ (viewed as a virtual character of S^1) has the form

$$\operatorname{RR}(N_{\boldsymbol{\nu}}, B_{k\,\boldsymbol{\nu}}) = \sum_{l>0} \operatorname{RR}(N_{\boldsymbol{\nu}}, B_{k\,\boldsymbol{\nu}})_l \cdot \chi_l,$$
(52)

where where $\chi_l(e^{i\theta}) = e^{il\theta}$. In view of Corollary 2.20 this means that, as a representation of S^1 ,

$$H^{0}(N_{\nu}, B_{k\nu}) = \bigoplus_{l>0} H^{0}(N_{\nu}, B_{k\nu})_{l} \qquad \forall k \gg 0.$$
 (53)

By the S^1 -equivariance in (40), we can now sharpen (50) as follows.

Corollary 2.21. If $k \gg 0$, then

$$\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu}} = \bigoplus_{l>0} \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu},\,l}.$$
(54)

3 Proof of Theorem 1.1

We can now give the proof of Theorem 1.1. First, however, let us consider the following statement.

Lemma 3.1. For every $\lambda \in \mathbb{Z}$, restriction yields an isomorphism $\mathcal{O}(A_0^{\vee})_{\lambda} \cong H(X)_{\lambda}^{\hat{\mu}}$.

Proof of Lemma 3.1. Clearly, restriction yields a morphism $\zeta_{\lambda} : \mathcal{O}(A_0^{\vee})_{\lambda} \to H(X)_{\lambda}^{\hat{\mu}}$. If $f \in \mathcal{O}(A_0^{\vee})$ is non-zero, then the locus where its differential vanishes has real codimension ≥ 2 ; if it vanishes on X, therefore, f = 0. Hence ζ_{λ} is injective.

Since by assumption $\mathbf{0} \notin \Phi(M)$, we have dim $H(X)^{\hat{\mu}}_{\lambda} < +\infty$ for every λ . Hence we have a finite direct sum

$$H(X)^{\hat{\mu}}_{\lambda} = \bigoplus_{l=a(\lambda)}^{b(\lambda)} H(X)^{\hat{\mu}}_{\lambda,l},$$

where

$$0 \le a(\boldsymbol{\lambda}) \le b(\boldsymbol{\lambda}) < +\infty, \qquad H(X)_{\boldsymbol{\lambda},l}^{\hat{\mu}} := H(X)_{\boldsymbol{\lambda}}^{\hat{\mu}} \cap H(X)_{l}.$$

Hence, to verify that ζ_{λ} is surjective, it suffices to show that any $s \in H(X)_{\lambda,l}^{\hat{\mu}}$ is the restriction of some $\tilde{s} \in \mathcal{O}(A_0^{\vee})_{\lambda}$. Any $s \in H(X)_l^{\hat{\mu}}$ is the restriction of an holomorphic homogeneous function of degree $l, \tilde{s} \in \mathcal{O}(A_0^{\vee})_l$. Since $\rho^{A_0^{\vee}}$ and $\gamma^{A_0^{\vee}}$ commute, one sees that \tilde{s} is in the λ -th isotype for T, and therefore for \tilde{T} as well. Hence ζ_{λ} is surjective.

Proof of Theorem 1.1. By Lemma 3.1, for every k = 1, 2, ... we have a natural equivariant injective linear map

$$F_{k\boldsymbol{\nu}} := res_{k\boldsymbol{\nu}} \circ \zeta_{k\boldsymbol{\nu}}^{-1} : H(X)_{k\boldsymbol{\nu}}^{\hat{\mu}} \to \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\boldsymbol{\nu}} \cong H^0(N_{\boldsymbol{\nu}}, B_{k\boldsymbol{\nu}}), \qquad (55)$$

where $res_{k\nu} : \mathcal{O}(A_0^{\vee})_{k\nu} \to \mathcal{O}(\tilde{A}_{\nu}^{\vee})_{k\nu}$ denotes restriction, and is obviously injective since \tilde{A}_{ν}^{\vee} is open and dense in A_0^{\vee} ; this proves the first statement of Theorem 1.1.

To prove the second statement, it suffices to verify that $res_{k\nu}$ is surjective for $k \gg 0$. We have for some $c(k, \nu)$, $d(k, \nu) \in \mathbb{Z}$ with $c(k, \nu) \leq d(k, \nu)$:

$$\mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu}} = \bigoplus_{l=c(k,\boldsymbol{\nu})}^{d(k,\boldsymbol{\nu})} \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu},l};$$

hence

$$res_{k\nu} = \bigoplus_{l=c(k,\nu)}^{d(k,\nu)} res_{k\nu,l},$$

where

$$res_{k\,\boldsymbol{\nu},l}: \mathcal{O}(A_0^{\vee})_{k\,\boldsymbol{\nu},l} \to \mathcal{O}(\tilde{A}_{\boldsymbol{\nu}}^{\vee})_{k\,\boldsymbol{\nu},l}$$

and we need to check that $res_{k\nu,l}$ is surjective for every $l = c(k, \nu), \ldots, d(k, \nu)$ and $k \gg 0$.

By Corollary 2.21, we may assume that $c(k, \boldsymbol{\nu}) > 0$. Furthermore, by Lemma 2.4 $\tilde{A}_{\boldsymbol{\nu}}^{\vee} = (\pi')^{-1}(\tilde{M}_{\boldsymbol{\nu}})$ and therefore $res_{k\boldsymbol{\nu},l}$ may canonically reinterpreted in terms of the restriction of holomorphic sections:

$$\widetilde{res}_{k\,\boldsymbol{\nu},l}: H^0\left(M, A^{\otimes l}\right)_{k\,\boldsymbol{\nu}} \to H^0\left(\tilde{M}_{\boldsymbol{\nu}}, A^{\otimes l}\right)_{k\,\boldsymbol{\nu}}.$$
(56)

Hence we are reduced to proving that $\widetilde{res}_{k\nu,l}$ in (56) is surjective for all l > 0.

Suppose $s \in H^0(M, A^{\otimes l})$. Then $s \in H^0(M, A^{\otimes l})_{k\nu}$ if and only if the following two conditions hold:

- 1. s is γ^X -invariant, i.e., $s \in H^0(M, A^{\otimes l})^{T_{\boldsymbol{\nu}^{\perp}}^{r-1}}$;
- 2. for any $e^{i\vartheta} \in S^1$,

$$\hat{\mu}_{e^{\imath\vartheta\nu}}(s) = e^{\imath k \, \|\boldsymbol{\nu}\|^2 \, \vartheta} \, s$$

In other words, we can identify $H^0(M, A^{\otimes l})_{k\nu}$ with the $k \|\boldsymbol{\nu}\|^2$ -isotypical component for the representation of $T^1_{\boldsymbol{\nu}} \cong S^1$ on $H^0(M, A^{\otimes l})^{T^{r-1}_{\boldsymbol{\nu}^\perp}}$. The same considerations apply to $H^0(\tilde{M}_{\boldsymbol{\nu}}, A^{\otimes l})_{k\nu}$. We shall express this by writing

$$H^{0}(M, A^{\otimes l})_{k\nu} = H^{0}(M, A^{\otimes l})_{k \parallel \nu \parallel^{2}}^{T_{\nu^{\perp}}^{r-1}}, \quad H^{0}(\tilde{M}_{\nu}, A^{\otimes l})_{k\nu} = H^{0}(\tilde{M}_{\nu}, A^{\otimes l})_{k \parallel \nu \parallel^{2}}^{T_{\nu^{\perp}}^{r-1}}.$$

It is well-known that the restriction map

$$f_{l,\boldsymbol{\nu}}: H^0\left(M, A^{\otimes l}\right)^{T^{r-1}_{\boldsymbol{\nu}^\perp}} \to H^0\left(\tilde{M}_{\boldsymbol{\nu}}, A^{\otimes l}\right)^{T^{r-1}_{\boldsymbol{\nu}^\perp}}$$
(57)

is an isomorphism (§5 of [GS], Theorem 2,18 of [Sj]), and it is clearly $T^{1}_{\boldsymbol{\nu}}$ equivariant. The claim follows, since $\widetilde{res}_{k\,\boldsymbol{\nu},l}$ is the restriction of $f_{l,\boldsymbol{\nu}}$ to the $k \|\boldsymbol{\nu}\|^{2}$ -isotypical component, hence by equivariance it induces an isomorphism $H^{0}(M, A^{\otimes l})^{T^{r-1}_{\boldsymbol{\nu}\perp}}_{k\,\|\boldsymbol{\nu}\|^{2}} \cong H^{0}(\tilde{M}_{\boldsymbol{\nu}}, A^{\otimes l})^{T^{r-1}_{\boldsymbol{\nu}\perp}}_{k\,\|\boldsymbol{\nu}\|^{2}}$.

References

- [ALR] A. Adem, J. Leida, Y. Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007
- [B] W. L. Baily, On the imbedding of V-manifolds in projective space, Amer. J. Math. 79 (1957), 403-430
- [BG] C. P. Boyer, K. Galicki, *Sasakian geometry*, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008
- [Ca] S. Camosso, Scaling asymptotics of Szegö kernels under commuting Hamiltonian actions, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 2027-2059
- [Gr] H. Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann. **146** (1962), 331-368
- [GS] V. Guillemin, S. Sternberg Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515538
- [Ka] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds, Osaka Math. J. 16 (1979), no. 1, 151-159
- [Ko] B. Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, pp. 87– 208. Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970
- [LT] E. Lerman, S. Tolman Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 42014230
- [MS] E. Meinrenken, R. Sjamaar, Singular reduction and quantization, Topology **38** (1999), no. 4, 699-762
- [P1] R. Paoletti, Asymptotics of Szegö kernels under Hamiltonian torus actions, Israel Journal of Mathematics 191 (2012), no. 1, 363–403 DOI: 10.1007/s11856-011-0212-4
- [P2] R. Paoletti, Lower-order asymptotics for Szegö and Toeplitz kernels under Hamiltonian circle actions, Recent advances in algebraic geometry, 321–369, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015

- [P3] R. Paoletti, Conic reductions for Hamitonian actions of U(2) and its maximal torus, arXiv:2002.08105
- [S1] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359363
- [S2] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464492
- [Sj] R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2) 141 (1995), no. 1, 87-129
- [St] S. Sternberg, *Group theory and physics*, Cambridge University Press, Cambridge, 1994