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Abstract

Consider a strictly hyperbolic n x n system of conservation laws, where each characteristic field is either
genuinely nonlinear or linearly degenerate. In this standard setting, it is well known that there exists a
Lipschitz semigroup of weak solutions, defined on a domain of functions with small total variation. If the
system admits a strictly convex entropy, we give a short proof that every entropy weak solution taking
values within the domain of the semigroup coincides with a semigroup trajectory. The result shows that
the assumptions of “Tame Variation” or “Tame Oscillation”, previously used to achieve uniqueness, can be
removed in the presence of a strictly convex entropy.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Systems of conservation laws; Uniqueness of entropy solutions

1. Introduction

We consider the Cauchy problem for a strictly hyperbolic n x n system of conservation laws
in one space dimension:

ur+ fw)y =0, (L.1)
u,x) = u(x). (1.2)
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As usual, f:Q — R” is the flux, defined on some open set 2 C R”. We assume that each
characteristic family is either genuinely nonlinear or linearly degenerate. In this setting, it is well
known [8,10,11,16,20,23] that there exists a Lipschitz continuous semigroup S : D x [0, +-o0o[
D of entropy weak solutions [8, Section 7.7], defined on a domain

D=cl {u eL'®R; RM):uis piecewise constant and V(u) + CoQ(u) < 80} (1.3)

containing all functions with sufficiently small total variation. Here V(«) and Q(u) are respec-
tively the toral strength of waves and the interaction potential of u defined in [8, (7.99)] and
Co, o are two suitable positive constants. The trajectories of this semigroup are the unique limits
of front tracking approximations, and also of Glimm approximations [7] and of vanishing viscos-
ity approximations [6]. We recall that the semigroup is globally Lipschitz continuous w.r.t. the
L! distance. Namely, there exists a constant L such that

| St — Ssv |y < L(|t—s|+||12—f)||L1) foralls,t >0, i,veD. (1.4)

Given any weak solution u = u(t, x) of (1.1)-(1.2), various conditions have been derived in
[12,14,15] which guarantee the identity

u(t) = Siu for all t > 0. (1.5)

Since the semigroup S is unique, the identity (1.5) yields the uniqueness of solutions to the
Cauchy problem (1.1)-(1.2). In addition to the standard assumptions, earlier results required some
additional regularity conditions, such as “Tame Variation” or “Tame Oscillation”, controlling the
behavior of the solution near a point where the variation is locally small.

Aim of the present note is to show that, if the n x n system (1.1) is endowed with a strictly
convex entropy 7(-), then every entropy-weak solution ¢ — u(¢) taking values within the domain
D of the semigroup satisfies (1.5). In other words, uniqueness is guaranteed without any further
regularity assumption.

As in [12,14,15], the proof relies on the elementary error estimate

t
h _S1 1
Ju) = Syt , < L-/liminf e+ 1) — Sy dr. (1.6)

h—0+ h
0

Assuming that the system is endowed with a strictly convex entropy, we will prove that the
integrand is zero for a.e. time 7 > 0. Following an argument introduced in [7], this is achieved
by two estimates:

(1) In a neighborhood of a point (7, y) where u(z, -) has a large jump, the weak solution u is
compared with the solution to a Riemann problem.

(i) In a region where the total variation is small, the weak solution u is compared with the
solution to a linear system with constant coefficients.

The main difference is that here we estimate the lim-inf in (1.6) only at times t which are
Lebesgue points for a countable family of total variation functions W&-¢(.), defined at (3.5).

To precisely state the result, we begin by collecting the main assumptions.
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(A1) (Conservation equations) The function u = u(t, x) is a weak solution of the Cauchy prob-
lem (1.1)-(1.2) taking values within the domain of the semigroup.
More precisely, u : [0, T]+— D is continuous w.r.t. the L! distance. The identity u(0,-) =u
holds in L', and moreover

// (uer + fw)ey) dxdt =0 (1.7)

for every C! function ¢ with compact support contained inside the open strip 10, T[ xR.

Regarding the entropy conditions, we assume that the system (1.1) admits a C> entropy function
n : 2+ R with entropy flux ¢, so that the equality Vg (w) = Vn(w)Df (®) holds for all w € Q.
We also assume that the entropy 7 satisfies the strict convexity condition

nw) > @)+ V@) - (0 — @) + colw — @, (1.8)

for some cp > 0 and every couple of states @, @ € 2. As usual, we say that a weak solution u is
entropy-admissible if it satisfies:

(A2) (Entropy admissibility condition) For every C! function ¢ > 0 with compact support
contained inside the open strip 10, T[ xR, one has

//(n(u)¢z+q(u)<px) dxdt > 0. (1.9)

Our result can be simply stated as:

Theorem 1.1. Let (1.1) be a strictly hyperbolic n x n system, where each characteristic field is
either genuinely nonlinear or linearly degenerate, and which admits a strictly convex entropy n(-)
as in (1.8). Then every entropy-weak solution u : [0, T|+— D, taking values within the domain of
the semigroup, coincides with a semigroup trajectory.

The theorem will be proved in Section 3. We remark that, restricted to a class of 2 x 2 systems,
a more elaborate proof of this result was recently given in [19].

In our view, the main interest in the above uniqueness theorem is that, combined with a com-
pactness argument, it yields a uniform convergence rate for a very wide class of approximation
algorithms. This will be better explained in the concluding remarks contained in Section 4.

2. Preliminary lemmas

Let M be an upper bound on the total variation of all functions in the domain D of the semi-
group:

Tot.Var. {u; R} <M, forallueD. 2.1
Since by assumption our solution u(z, -) € D, for sake of definiteness we shall assume that it
is right continuous, namely u(t, x) = limy_. . u(¢, y). By [20, Theorem 4.3.1], we have the

Lipschitz bound
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|utr2, ) —u(t, -)||L1(R) < Cy(a—1t) forall0 <t <n, (2.2)

for some constant Cy; > 0 depending only on M and on the flux f.
We begin by reviewing the well known fact that the entropy has finite propagation speed. The
proof relies on the notion of relative entropy, see [24] for an overview of the subject.

Lemma 2. 1 Let u = u(t, x) be a function satisfying (A1) and (A2). Then there exists two con-
stants C, A > 0 such that the following holds. For any constant state u* € Q, any a < b, and any
0<t<t wzchA(t — 1) <b—a, one has

b—i (') b
/ |u(7:’,x) — u*‘z dx < 6/ |u(r,x) — u*|2 dx. 2.3)
a+a(t’'—7) a

Proof. Given the constant state u* € Q, for all w € Q define the relative entropy 1 (w | u*) and
the corresponding entropy flux g (w | u™) as

n(wlu*) = n(w) —nw*)— V) (w—u*),

g (@|u*) = q (@) —q @)=V (f (@) - f@)). .
The equations (1.7) and (1.9) yield
n(ulu®), +qlu*), <0, (2.5)
while (1.8) implies
r)(a)|u*) > Co|a)—u* 2, for all w,u* € Q. (2.6)
By the C? regularity of the functions 1, ¢, there exists a constant C’ such that
n(wlu*) < C’|a)—u*2, ’q(a)|u*)’ < C”w—u*’z, forall w,u*e Q. (2.7)
In view of (2.6), there exists a sufficiently large constant A > 0 such that
—in (a) | u*) +gq (a) | u*) <0, for all w,u* € Q. (2.8)

Using (2.5), in connection with test functions that approximate the characteristic function of the
trapezoid

= {(tx);t<t<t, a+it—1)<x<b—i(t—1)},
and recalling (2.8), we obtain
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b—i(t'—1) b
n(ulu®)(r,x) dx < /n(u | u*) (7, x) dx

a+i(r’'—1) a

!

+/(—in(u|u*)+q(u|u*)) (t,a+5»(f—f)> dt

7/

+/(—):n(u|u*)—q(u|u*))<t,b—):(t—r)> dt

T

b

< /n(u | u*) (7, x) dx.

a

Together with (2.6)-(2.7), this proves the lemma. O

Throughout the following, without loss of generality we shall always assume A =1. We ob-
serve that this can always be achieved by a suitable rescaling of the time variable:

t = «kt.
Similarly, to simplify notation, we also assume that all wave speeds lie in the interval [—1, 1].
Given any t > 0 and any bounded interval ]a, b[ with —oo < a < b < 400, we consider the

open intervals

J(t) = Ja+@—1), b—(t -1, r<ter @

(2.9)

Toward the proof of Theorem 1.1, in order to replace the “Tame Variation” condition, the main
tool is provided by the following elementary lemma.

Lemma 2.2. In the setting of Theorem 1.1, for some constant C > 0 the following holds. Let
u =u(t, x) be any entropy weak solution to (1.1). Then

/|u(t,x)—u(r,x)|dx < C(t—1)-Tot.Var.{u(z,"); la,b[}. (2.10)
J(0)
Proof. 1. We first consider the case where —0o < a < b < +o00. For notational simplicity,

w.l.0.g. we assume that t = 0. Given a time 0 < ¢ < }% as shown in Fig. 1 we define the
points xi, the values uy and the integer N > 1 such that

Xy = a—+kt, ur = u(0, xg), XN <b<xnN41- 2.11)
Fork=1,2,..., N — 2, we apply Lemma 2.1 with u™ = u; on the trapezoids
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Fig. 1. The covering of the interval [a, b] used in the proof of Lemma 2.2.

'y = {(s,x); sel0,t], xp_1+s<x <xk+2—s}.

Then we apply the same lemma with u* = u_; on the domain

Ty = {(s.x); s€l0,1], xyo2+t<x<b—t}.
This yields the estimates

Xk+1

Xk+2

lut, x) —ux[*dx < C /|u(0,x)—uk|2dx
Xk

Xk—1

IA

2.12)
o~ 2
C.3t (Tot.Var.{u(O, ) ]xk_l,xk+2[}> ,
b—t
/|u(t,x)—uN_1|2dx
N-—1

X

~ 2
< C-3t- (Tot.Var.{u(O, 3 ]xN_g,b[}> . 2.13)
2. Define the piecewise constant approximation u : [a + ¢, b — t[ > Q by setting

i(x) = ug if x € [xe, Xet1[s

e . (2.14)
Using Cauchy’s inequality and the bounds (2.12)-(2.13), we obtain

b—t N—2 Fk+1 b—t
/|u(t,x)—12(x)|dx = > /|u(t,x)—uk|dx+ / |u(t, x) —un_1|dx
a+t k=1 Xk

2 Xk+1

XN—-1
1/2 b—t
N/ /}u(t,x)—uk|2dx
1

12
+ 1 /!u(t,X)—uN_1|2dx

Xk N—1
N-2

«/?~VC~3t~(

Z Tot.Var.{u (0, -); lxx—1, xk+2[} + Tot. Var.{u(0, -); Jxny—2, b[}
k=1

IA
=

=~

IA

(2.15)
Observing that every point x € [a, b] is contained in at most three open intervals [xx_1, Xg+2[,
from (2.15) we conclude
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b—t
/\u(t,x)—a(x)wx < V3C -3t Tot.Var.{u(0,); 1a, b}. (2.16)
a+t

3. Next, we compute

b—t N2 Xk+1 b—t
/|u(0,x)—ﬁ(x)|dx =Y /}u(o,x)—uk|dx+ /|u(0,x)—uN,1\dx
a+t k=13 XN-1
N2 (2.17)
< Zt~Tot.Var.{u(0, s Tk, Xt [} 41 Tot.Var.fu(0, ) ; Jxy—1.b—1[}
k=1
< t-Tot.Var.{u(0,); la, b[}.

Combining (2.16) with (2.17) we obtain a proof of the lemma for finite a and b.
Letting a — —o0 or b — 400 we see that the same conclusion remains valid also for un-
bounded intervals, such as | — oo, b[ or Ja, +oo[. O

3. Proof of the theorem

We are now ready to give a proof of Theorem 1.1, in several steps.

1. By the structure theorem for BV functions [1,22], [8, Theorem 2.6], there is a null set of times
N C [0, T] such that the following holds.

Every point (z,£) € [0, T] x R with T ¢ N has the following property: there exist states
u~,uT € R" and a speed A € R such that, calling

{u‘ if (x—&)<A(t—1),
U(t,x) = 3.D
ut if x—&>A—1),
there holds
lim iz//‘u(t—i—t, E+x)—U(r+t,&§+x)|dxdt = 0. 3.2)
r—0+ r

When (3.1), (3.2) hold with u~ # u™ we say that (t, ) is a point of approximate jump of the
function u. If instead u~ = u™ we say that u is approximately continuous at the point (, £) [8,
Definition 2.1]. The conservation equations (1.7) imply that the piecewise constant function U
must be a weak solution to the system of conservation laws (see [8, Theorem 4.1]), satisfying the
Rankine-Hugoniot equations:

f@h) = f@™) = 2™ —u”). (3.3)
Moreover, the entropy condition (1.9) implies
qu™)—q@™) < Anwh) —nw")). (34)
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Next, we observe that, for every couple of rational points &, ¢ € Q, the scalar function

Tot.Var. {u(r); 1§ +1, ¢ —1t[} it E4+t<¢—1t,
WES(r) = (3.5)
0 otherwise,

is bounded and measurable (indeed, it is lower semicontinuous). Therefore a.e. r € [0, T] is a
Lebesgue point. We denote by N’ C [0, T'] the set of all times ¢ which are NOT Lebesgue for at
least one of the countably many functions W&-¢. Of course, A has zero Lebesgue measure.

In view of (1.6), we will prove the theorem by establishing the following claim.

(C) Foreveryt €[0, T\ WUN") and € > 0, one has

timsup % Hu(r 1) — Spu(t) Hu < e (3.6)

2. Assume 7 ¢ N'UN". Since u(t, -) has bounded variation, we define points

—00=Yy-1<Yyo<)Yy1 <:"<YN <YNH1=+00,
Yk+1 = sup {x>yk; Tot.Var.{u(z,-); ly, x[} 53}.

Since u(t, -) is right continuous, we have

Tot.Var{u(r,"): Iyk—1. [} <&, fork=0,...,N+1,
Tot.Var.{u(r, R ]yk_l,yk]} >¢, fork=0,...,N, 3.7
N <X

P

where M is an upper bound for the total variation of all functions # € D, as in (2.1).
Then we choose points y;, y;’ such that

—00 <Y<Yy SV <V<Y S yy<y<y; < -+ < yy<ynN<+00
Tot.Var.{u(z,-); Iy, wl} < &* k=1,...N,
Tot.Var.{u(r,"); lye. y{[} < &%, k=0,...N—1, (3.8)
all values y; + 7, y;/ — 7 are rational.

g

3. For any given y € R, we denote by U =U (t, x) the solution, for ¢ > 7, to the Riemann

s (u,7,y)
problem for (1.1) with initial data at t = t:
- _ Juz,y-) if x <y,
) = { u(z, y+) if x> y. (3.9)

Moreover, for every given k = 1,..., N we denote by U b— U(bu k) (t, x) the solution to the
linear Cauchy problem with constant coefficients
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J(s)

Fig. 2. The points y]/( <y < y,’{’ constructed in the proof of the theorem. Typically, yi is the location of a shock. Since
Yk £ 7 need not be rational, the additional points y,/(, y]/(/ must be considered.

v+ Avy = 0, v(t, x) =u(r, x). (3.10)

Here the n x n matrix A is the Jacobian matrix of f computed at the midpoint of the interval
[¥{_y» y;]. Namely,

" /
~ ~ 1+
= Df (ux), uk=u<r,%), k=1,...,N.

With reference to Fig. 2, to estimate the lim-sup in (3.6), we need to estimate three types of
integrals.

(I The integral of |u(t, x) — (u . V)(t x)| over the interval

y—G-0, y+@-1]

for all points y € {yo, y§. ¥}, y1. ¥+ -, Y- yn }-
(I) The integral of |u(t, x) — U(bu,r k)(t, x)| over the interval

J(t) = ]y,’(’_1+(t—r), y,’(—(t—r)[, k=1,...,N. (3.11)
(III) The integral of |u(t, x) — u(r, x)| over the intervals

JW) = ly+@—1), w—@—1)[, k=1,...,N,

J]g/(t)z]yk_i_(t_z')! y],{/_(t_‘[)[s k=07"'7N_1’

Jo(®) = ]—-00,y0 — (t — T)[,
Ing1 = lyn + (t — 1), +00[.

4. To estimate integrals of type (I), assuming that (z, y) is either a point of approximate continuity
or approximate jump of the function u, we obtain

y+h
h—>0 n / ‘u(‘l.’-l-h x)— (u t’y)(‘L'—l—h,)c) dx = 0. (3.12)

440



A. Bressan and G. Guerra Journal of Differential Equations 387 (2024) 432—447

D.
Ji(s) !

Fig. 3. The domain D; considered at (3.15).

Indeed, by [8, Theorem 2.6], setting ut =u(r, y=+), the function U defined in (3.1) satisfies (3.2)
and consequently u™ satisfy (3.3) and (3.4). It implies that u (z, y%), when different, are con-

nected by a single entropic shock whose speed is A. Consequently U (ﬁum ) coincides with the

piecewise constant function U defined in (3.1) so that (3.12) follows from [8, Theorem 2.6].

5. We now estimate the integrals of type (II). By construction, both values y; | — 7 and y; +7
are rational. Hence

Yiei =&+, Ve=¢-1,
for some &, ¢ € Q. This implies that t is a Lebesgue point of the map
> V(@) = WE@). (3.13)

Let 5»,' = A; (ig), l~, =1 (ug), r; =ri (ug), i =1, ..., n, be respectively the i-th eigenvalues
and left and right eigenvectors of the matrix A = Df (it ). We thus have

L U(t,x) =1;-U(t,x — (t —OA) = b -u(t,x =t — )i).

Following the proof of [8, Theorem 9.4], fix any two points ¢’, ¢” € Ji(¢), ¢’ < ¢” and consider
the quantity

;-//
Ei (") =1 -/(u(t,x) — Ub(t,x)) dx
;/
o (3.14)
= -/(u(t,x) — u(r, x—(t— 1:)5»5)) dx.
é-/

We apply the divergence theorem to the vector (u, f (u)) on the domain

D; = {(s,x); selt, t], ¢ —@—)hi<x=<{" =@ -9k, (3.15)
shown in Fig. 3. Since u satisfies the conservation equation (1.1), the difference between the
integral of u at the top and at the bottom of the domain D; is thus measured by the inflow from

the left side minus the outflow from the right side of D;. From (3.14) it thus follows
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t

Ei(¢',¢") = /l : ((f(u) — hiu)(s, ¢ —(t —s)Xi)) ds

T
t

~ [ (w0 =R ¢ = = 917 ) ds
. (3.16)
= [ ((F6'©) =T @' ©) - (£66) - 11" 0))) ds

i
= /H(ﬁk,u’(s),u”(s)) ds,

where we set
W(s)=u(s, ¢ —@—9)k),  u'(s)=uls, " — @ —sh),
H (@ ru2) = 1) - (£ 00 = ) = (@) = & Guz) ).
Observing that

o H(u,uz,up)=0,

o Dy H(u,ui,uz)=1iw) - (Df () —r;iw)1),

o Dy H (u,u,uz)=1;u) - (Df () — 1)) =0,
we estimate

H@,ui,up) = H@,ui,u2) — H (u,uz, u3)

1

= /Du.H(u,uz+0(u1 —uz),uz) do - (u; —uz)

0
1

= /[DulH(u,uz+U(u1—uz),uz)—DulH(u,u,uz)] do - (uy — u)
0
= O) - (luy —ul + luz — ul) - lus — uaz|.

Here O(1) is any function bounded by a constant that depends only on the system, i.e. on the
flux f. Therefore,

t
Ei(¢'.¢") = O(l)'/|u’<s>—u”(s>| (o) = | o) = ] ) s

Recalling (3.11) and (3.13), for any x € Ji(s) we now compute
|u/(s) — k| < V() + |u(s,x) —u(r,0)| 4+ lu (v, x) — k] < V() + [u(s, x) —u(r,x)| + V().
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Integrating w.r.t. x over the interval Ji(s), dividing by its length and using (2.2) we obtain

1
W =il = Ve + v+ [t —u o] ds
meas(Jk(s))
Ji (s) (3.17)
— V(S)+8+M£g(s)
meas(Ji(s)) '

An entirely similar estimate clearly holds for |u” (s) — ﬁk|. Hence

t
Ei(¢'¢") = (’)(1)'/|“’(S) —u"(5)] - g(s)ds

t
O(l)»/Tot.Var.[u(s); ¢/ = -9k, g”—(z—s)ii]] . g(s)ds

oM - wi(1¢',¢").

Here p; is the Borel measure defined by

t

Wi (]a, b[) = /Tot.Var. {u(s); ]a —(t—$)hi, b—(t — s)ii[} -g(s)ds,

T

for any open interval Ja, b[ C Ji(¢).
According to [8, Lemma 9.3], we now have

/ u(t,x) = U" (t,x)] dx = (9(1).2/

T =l

fi . (u(t,x) -u° (t,x))‘ dx

i=1

n t
=0y i (k) = 0(1)-/V(S)-g(S) ds.

We now observe that, forall t <s <t <t + % (y,’{ -y ), the function g introduced at (3.17)
satisfies

Cu
g(s) < V(s)+e+
Ve =Y —2(—1)

(t—1). (3.18)

This implies

t
i / |u(t,x)—Ub(t,x)| dx = ?_L?‘/V(S)'(V(S)—i—g) ds

Ji (1)
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o) -Cy
Ve — Vi —2(—

t
-/V(s) ds. (3.19)
7)

Since t = 7 is a Lebesgue point for V, taking the limit of (3.19) as t — 7+ we thus obtain

lim sup
t—1+ [ —T

/ u(t,x) = U (t,x)| dx = O(1)- V(D) (V(x) +&) = O(1)-&>. (3.20)
Ji (1)

6. Finally, regarding integrals of type (III), using Lemma 2.2 we obtain the bounds

yk—h
1
limsup — / ‘u(r—i—h, x)—u(t,x)‘dx — 0()- &2, (3.21)
0 h
Vi +h
L %
limsup — / ‘u(z+h, x)—u(r,x)‘ dx = O(1)- &2, (3.22)
0 N
Vk+h
1 yo—h
limsup - / ‘u(t—}—h, x)—u(r,x)‘ dx = O(1) - ¢, (3.23)
h—0 e
v
limsup — / ‘u(r—i—h, x)—u(r,x)(dx — 0()-e. (3.24)
h—0 I

7. On the other hand, it is well known [7,8] that semigroup trajectories satisfy entirely similar

estimates. Indeed, at every point y the difference between the semigroup solution and the solution
to a Riemann problem satisfies

y+h

1 s
Jim / ‘(Shu(r))(x)—U(uw)(nuh,x) dx = 0. (3.25)
y—h

Since the total variation of u(t, -) on the open interval ]y;_,, y;[ is < &, we have

yp—h
1
lim sup 7 / ‘(Shu(t))(x) — U(bu Tk)(r +h,x)dx = OQ1) &% (3.26)
h—0 o
Yi_1th

Moreover, since the total variation of u(t, -) on the open intervals ] y,’(, il and ]y, y,’(’ [is < g2
we have

b}
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Yk—h
lim sup % / ‘(Shu(t))(x) —u(r,x)‘ dx = O(1) - &%, (3.27)
h—0 yl’(+h
yi—h
lim sup % / ‘(Shu(r))(x)—u(r,x)‘ dx = O(1)- &2, (3.28)
h—0 A
and similarly
yo—h
lim sup % / ’(Shu(r))(x)—u(r,x))dx — O() -, (3.29)
h—0
lim sup % / ‘(Shu(t))(x)—u(t,x)‘ dx = O1)-¢. (3.30)
h—0 o

8. Combining all the previous estimates, and recalling that the total number of intervals is
N < Me~!, we establish the limit (3.6), proving the theorem. O

4. Concluding remarks

The present analysis opens the door to the study of convergence and a posteriori error esti-
mates for a wide variety of approximation schemes.

Following [9], we say that u = u(¢, x) is an e-approximate solution to (1.1) if, given the time
step € = At, the following holds.

(AL) Approximate Lipschitz continuity. For every 7, t’ > 0 one has

lu(z,) —u(@’, )y < M (It —7'|+¢)- sup Tot.Var.{u(r,)}.

telr,t']

(P.) Approximate conservation law, and approximate entropy inequality.
For every strip [t,t'] x R with T, 1’ € ¢N, and every test function ¢ € CC1 (R?), there holds

/u(r,x)go(t,x)dx —/u(r/,x)go(t’,x)dx—i—//{ugo,—}—f(u)(px}dxdt
/ 4.1)

< Cellgllyio - (r'—1)- sup Tot.Var.{u(,)}.

telr, ']

Moreover, given a uniformly convex entropy n with flux q, assuming ¢ > 0 one has the
entropy inequality
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/n(u(r,x))ga(r,x)dx—/n(u(r/,x))go(r/,x)dx+//{n(u)<p,+q(u)<px}dxdt
> —Cellgllyreo - (r'—7) sup Tot.Var.{ru(t, )}
te[r, ]

“4.2)

In the above setting, the recent paper [9] has established a posteriori error estimates, assuming
that the total variation of u (¢, -) remains small, so that u(¢, -) remains inside the domain of the
semigroup. However, the estimates in [9] also required a “post processing algorithm”, tracing the
location of the large shocks in the approximate solution. We would like to achieve error estimates
based solely on an a posteriori bound of the total variation. The possibility of such estimates is
the content of the following corollary.

Corollary 4.1. Let (1.1) be an n x n strictly hyperbolic system where each characteristic field
is either genuinely nonlinear or linearly degenerate, and which admits a strictly convex entropy
n(-) asin(1.8). Let S be the unique Lipschitz semigroup defined on a domain D of functions with
small total variation. Then, given T, R > 0, there exists a function € — o(g) with the following
properties.

(i) o is continuous, nondecreasing, with o(0) = 0.
(i) Let t — u(t) € D be an e-approximate solution to (1.1), satisfying (AL)-(P.) and supported
inside the interval [—R, R]. Then, calling u = u(0), one has

Ju(e) = Siia]| 1 < o(e) forallt €[0,T]. (4.3)

Proof. If the conclusion fails, there exists a sequence of ¢,-approximate solutions (u,),>1, all
supported inside [—R, R], with ¢, — 0 but

sup  [un(t) = Sun(0) |1 = 80 > 0 foralln > 1. (4.4)
t€[0,T]

By compactness, taking a subsequence we achieve the L!-convergence u,, () — u(t), uniformly
for ¢ € [0, T]. Setting u(x) = u(0, x), the limit function u is thus an entropy weak solution of
(1.1)-(1.2), distinct from the semigroup trajectory S;u. This contradicts the uniqueness stated in
Theorem 1.1. 0O

We regard the function o(-) as a universal convergence rate for approximate BV solutions
to the hyperbolic system (1.1). Having proved the existence of such a function, the major open
problem is now to provide an asymptotic estimate on o(¢), as ¢ — 0. In some sense, starting from
a uniqueness theorem and deriving a uniform convergence rate is a task analogous to the deriva-
tion of quantitative compactness estimates [2—4,21]. Based on the convergence estimates already
available for the Glimm scheme [5,17] and for vanishing viscosity approximations [13,18], one
might guess that o(¢) ~ /¢|Ing|. We leave this as an open question for future investigation.

Data availability
No data was used for the research described in the article.
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