
Nature Cancer

nature cancer

https://doi.org/10.1038/s43018-024-00787-0Article

Tumor evolution metrics predict recurrence 
beyond 10 years in locally advanced  
prostate cancer
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Daniele Ramazzotti    11, Annie Gao12, Zsofia Kote-Jarai    4, Ahmet Acar    1,13, 
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Cancer evolution lays the groundwork for predictive oncology. Testing 
evolutionary metrics requires quantitative measurements in controlled 
clinical trials. We mapped genomic intratumor heterogeneity in locally 
advanced prostate cancer using 642 samples from 114 individuals enrolled 
in clinical trials with a 12-year median follow-up. We concomitantly assessed 
morphological heterogeneity using deep learning in 1,923 histological 
sections from 250 individuals. Genetic and morphological (Gleason) 
diversity were independent predictors of recurrence (hazard ratio 
(HR) = 3.12 and 95% confidence interval (95% CI) = 1.34–7.3; HR = 2.24 and  
95% CI = 1.28–3.92). Combined, they identified a group with half the median 
time to recurrence. Spatial segregation of clones was also an independent 
marker of recurrence (HR = 2.3 and 95% CI = 1.11–4.8). We identified 
copy number changes associated with Gleason grade and found that 
chromosome 6p loss correlated with reduced immune infiltration. Matched 
profiling of relapse, decades after diagnosis, confirmed that genomic 
instability is a driving force in prostate cancer progression. This study shows 
that combining genomics with artificial intelligence-aided histopathology 
leads to the identification of clinical biomarkers of evolution.

A substantial proportion of localized and locally advanced prostate 
cancers can be cured with radiotherapy, usually in combination with 
androgen deprivation therapy (ADT) or radical prostatectomy. Never-
theless, a substantial group of individuals will experience recurrence. 
Distinguishing potentially lethal cancers that need additional treatment 
from those that only need localized treatment is currently a clinical 
challenge. Risk stratification is an important unmet clinical need in 
prostate cancer, and novel predictive and prognostic biomarkers are 

needed. Predicting relapse is difficult, and current clinical standards for 
risk stratification, such as Gleason score, International Society of Uro-
logical Pathology (ISUP) risk group classification1,2, prostate-specific 
antigen (PSA) levels, clinical risk classifier algorithms3,4 or even genomic 
signatures5,6, are inadequate to determine the preferred treatment 
for individuals. Moreover, the extensive heterogeneity of prostate 
cancer, both between7 and within individuals8–10, makes genomic data 
hard to interpret in a clinically meaningful way. Clonal evolution is the 
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next-generation sequencing, with morphological variation, measured 
with artificial intelligence (AI)-aided computational histopathology, 
to assess the power of applying evolutionary measures to predict 
long-term recurrence in high-risk and locally advanced prostate cancer.

Results
Study design
The IMRT clinical trial (NCT00946543) recruited 471 individuals 
who received neoadjuvant/adjuvant ADT and intensity-modulated 
radiotherapy to the prostate and pelvic lymph nodes, as per the trial 
guidelines19, which represents the current standard of care for radia-
tion treatment of prostate cancer20–22. Enrolled individuals were con-
sidered high or very high risk according to National Comprehensive 
Cancer Network guidelines, with a previously reported recurrence 
rate of 40%. Six to 12 multiregion, spatially separated formalin-fixed 
paraffin-embedded (FFPE) needle biopsies were available per partici-
pant (Fig. 1a). Independent of the original clinical assessment, pathol-
ogy was also reviewed on a core-by-core basis by a single specialist 
uropathologist (C.M.C.).

From the IMRT clinical cohort, we selected individuals with 
available tissue blocks and an associated hematoxylin and eosin 

fundamental paradigm used to make sense of tumor biology11, and, 
therefore, evolutionary metrics are hypothesized to be powerful pre-
dictors of future tumor progression, as demonstrated in the progres-
sion of Barrett’s esophagus to esophageal cancer12,13. However, there 
is a general lack of studies measuring spatial intratumor genetic and 
phenotypic heterogeneity in clinically annotated cohorts of individuals 
with long-term follow-up information that would enable the predictive 
power of new evolutionary biomarkers to be tested.

In prostate cancer, seminal studies have evaluated genomic meas-
urements14–16, sometimes in combination with microenvironmental17 
and proteomic measurements10, as prognostic biomarkers. However, 
those studies were limited to single samples per individual and focused 
on early disease, and most were not performed within a clinical trial 
setting. Although many biomarkers work reasonably well for very early 
disease, for locally advanced cancers, prognostication is particularly 
challenging. Moreover, previous investigations mostly considered 
individuals that underwent radical prostatectomy14,18, representing 
only one clinical subgroup of individuals with low-to-intermediate 
risk. Importantly, treatment decisions need to be made using diag-
nostic biopsies rather than postoperative tissue, as was the case in 
previous studies. Here, we link spatial genetic variation, measured by 
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Fig. 1 | Study design. a, Within the IMRT clinical trial (NCT00946543), 6–12 
ultrasound-guided diagnostic needle biopsies were taken per individual for 
routine diagnosis and were embedded in paraffin. b, Decision tree for the 
imaging cohort (n = 250 individuals, n = 1,923 biopsies) and sequencing cohort 
(n = 111 individuals, n = 578 biopsies). The DELINEATE trial cohort was not 
included. c, Kaplan–Meier curve for time to recurrence in the imaging cohort 
(n = 250 individuals). d, Experimental workflow for FFPE biopsies and matched 

germline (buffy coat/normal FFPE tissue). Figure created with BioRender.com. 
e, Computational histopathology analysis with deep learning both for Gleason 
segmentation and single-cell classification on H&E sections. Sample input 
and output is shown for FI-115-S8; SCCNN, spatially constrained convolutional 
neural network. f, Example of individual FI-132, where computational Gleason 
segmentation and CNA genomic data were compared.
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(H&E)-stained section (n = 250). From this set, we selected individuals 
with at least three biopsies containing cancer tissue at sufficient purity 
(70% cancer) for sequencing (n = 114). Genomic library preparation 
failed in 3 individuals, yielding a final set of 111 individuals with available 
sequencing data (Fig. 1b). To assess the extent of spatial tumor varia-
tion, we also selected three individuals from a subgroup of the DELIN-
EATE clinical trial (ISRCTN04483921), where 48 needle biopsies were 

available per case23,24. All biopsies had been prospectively collected 
and reviewed by a specialist uropathologist (C.M.C.), and informed 
written consent was given by all participants. Full clinical data are avail-
able for this cohort, including participant and tumor characteristics, 
treatments received and prostate cancer outcomes and survival, with 
a median of 12.5 years of follow-up following radiotherapy (Fig. 1c). 
Recurrence included biochemical-only recurrence, local recurrence 
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Fig. 2 | Genetic intratumor heterogeneity landscape of locally advanced 
prostate cancer. a, Heat map representing the mutational landscape of the 
cohort (n = 114 participants), including number of low-pass WGS samples with 
detected CNAs, ISUP grade group (reviewing pathologist for IMRT participants, 
original specialist uropathologist S. Hazell (Royal Marsden NHS Foundation 
Trust) for DELINEATE, where participants were not reviewed), T-stage and 
recurrence/death status. Mutations are colored and shaded by their type  
(SNV and insertion/deletion (InDel)) and clonality status (clonal/subclonal). 
b, dN/dS analysis of all mutations using dNdScv for missense and truncating 
mutations shows subclonal truncating mutations to be under positive selection. 
Clonal and subclonal mutations were taken only from participants with three or 
more targeted sequencing samples (all n = 107 participants, clonal/subclonal 
n = 98 participants). Intervals represent 95% CI, and the centers represent the 

maximum likelihood estimate. c–e, CNA landscape of prostate cancer defined 
by phylogenetic status per case. Gains (red) and losses (blue) are represented 
relative to ploidy of the samples (n = 111 participants). f, An example of 
MEDICC2-inferred CNA phylogeny in FI-132 with manually annotated driver 
SNVs. g–l, Genomic metrics of genomic instability and heterogeneity were 
calculated before outcome unblinding (n = 109 participants, sequencing cohort 
participants with three or more samples with a PGA of ≥0.01). m, TP53-mutant 
samples presented with significantly higher PGA (linear mixed effects model, 
two-sided t-test on gradient, s.e. = 0.02, d.f. = 552, t = 3.4, samples with a PGA of 
≥0.01, n = 554 samples). Box plots show the center line as the median and box 
limits as upper and lower quartiles. Whiskers extend no further than 1.5× the 
interquartile range past the box limits, and points represent outliers.
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or metastatic recurrence of prostate cancer. A biochemical-only recur-
rence was defined as a PSA level of >2 ng ml–1 above the nadir PSA after 
radiotherapy in the absence of disease seen on imaging. Time to recur-
rence was defined as the time from the completion date of radiotherapy 
to first recurrence. A summary of the clinical characteristics of the IMRT 
trial cohorts is reported in Supplementary Table 1.

We performed low-pass whole-genome sequencing (WGS) in 642 
tumor samples (median per participant = 5) from the 114 participants 
(111 IMRT and 3 DELINEATE), henceforth referred to as the sequenc-
ing cohort. The whole set of somatic copy number calls is available in 
Supplementary Table 2. We also performed deep targeted sequencing 
of a prostate cancer gene panel (Supplementary Table 3) with unique 
molecular identifiers (UMIs) in 588 tumor samples (median per par-
ticipant = 5, median coverage after UMI compression: 141×). The whole 
set of somatic calls for single-nucleotide variants (SNVs) and small 
deletions and insertions is available in Supplementary Table 4. For 100 
participants, we had available fresh-frozen buffy coat samples from the 
UK Genetic Prostate Cancer Study (UKGPCS; NCT01737242) trial and 
performed WGS with a median coverage of 36× (Fig. 1d). We also per-
formed computational histopathology analysis with deep learning on 
1,923 H&E sections from all 250 participants with available tissue blocks 
(Fig. 1e). All IMRT participants and samples included in the sequencing 
cohort were also a part of this imaging cohort. The resulting dataset 
provided matched intratumor genetic and morphological heterogene-
ity, both in terms of Gleason grade and cellular composition, for a large 
set of participants in the IMRT trial (Fig. 1f and Supplementary Table 1).

As part of the study, those involved in sample preparation and data 
analysis were blinded until completion of the primary phase of data 
analysis. As a result, the selection of samples for sequencing and imag-
ing and the selection and computation of genomic and histological 
metrics were finalized before unblinding. Review pathology, including 
Gleason grade, was also undertaken blinded to the original pathology 
and clinical data. To further explore associations that were identified in 
the primary phase, a secondary phase of data analysis was conducted 
after unblinding, which was focused on newly generated cell-free DNA 
(cfDNA) and multiplex immunohistochemistry data.

The landscape of spatial genetic variation
In our analysis of the sequencing cohort samples with successful 
targeted sequencing, we found mutations in a putative prostate 
cancer driver gene in at least one sample in 61/107 participants, with 
many mutations detected being subclonal (79.4% of mutations in 
participants with three or more biopsies; Fig. 2a). Indeed, the ratio 
of non-synonymous to synonymous substitutions (dN/dS) analy-
sis indicated that subclonal truncating mutations were under sig-
nificant positive selection (dN/dS = 2.06, 95% confidence interval  
(95% CI) = 1.01–4.19; Fig. 2b). Given the extensive multifocality and 

polyclonal origin of prostate cancer previously reported25, many of 
these subclonal mutations may represent different independent 
tumors rather than subclonal expansions within an established single 
malignancy. The most common clonal mutations were found in TP53 
(n = 6) and SPOP (n = 5), and these genes were also the only genes found 
to be under significant positive selection across all substitution types 
(TP53: q = 2.42 × 10−5; SPOP: q = 7.46 × 10−4; Extended Data Fig. 1a,b). 
CDKN1B and TP53 were under positive selection when considering 
only truncating mutations (CDKN1B: dN/dS = 35.4, 95% CI = 1.8–266; 
TP53: dN/dS = 33.3, 95% CI = 8.3–123; Extended Data Fig. 1b). When 
analyzed together with copy number profiles, split between clonal, 
shared (intermediate phylogenetic tree branches) and unique (tip 
branches) copy number alterations (CNAs; Fig. 2c–e and Extended 
Data Fig. 1c), the genomic patterns confirm the likely multifocality 
of the disease. Recurrent focal amplifications were found in MDM2 
(n = 4), MYCN (n = 4), FGFR1 (n = 3) and MYC (n = 3). Of note, MDM2 
and MYCN were amplified together in three individuals. We could 
reconstruct the phylogenetic tree based on CNAs in 111 individuals, 
including the 3 DELINEATE participants (Fig. 2f and Supplementary 
Note Fig. 1; see Methods). We then calculated multiple heterogeneity 
and genomic instability metrics, including mean proportion genome 
altered (mPGA; Fig. 2g), patterns of lossness of small copy number 
fragments (Fig. 2h), heterogeneity measurement of mean Spearman 
correlation (1 – Spearman’s ρ, referred to as ‘Spearman’ for the rest of 
the manuscript) between the log2 ratios (raw copy number signal) of 
all pairwise comparisons of samples within a participant (Fig. 2i and 
Methods) and the total number of phylogenetic CNA events (Fig. 2j), 
subclonal events (Fig. 2k) and their proportions (Fig. 2l). These met-
rics were computed before unblinding of outcome data. TP53 muta-
tions were associated with higher burden of chromosomal alterations  
(0.069 greater PGA in TP53-mutant samples, P = 0.0007 linear mixed 
effects model; Fig. 2m). Furthermore, clonal DNA damage gene muta-
tions were also associated with higher mPGA (Extended Data Fig. 1d).

Spatial genetic divergence predicts time to recurrence
At the onset of this study, we hypothesized that evolutionary patterns 
measurable only through multiregion sequencing, such as intratumor 
heterogeneity, would predict clinical outcome. Within the sequencing 
cohort, we found that the number of CNA events in the phylogenetic 
tree predicted shorter time to recurrence in the univariate analysis 
when split using the median value (P = 0.027 log-rank test, median time 
to recurrence 7.2 and 11.5 years; Fig. 3a). Additionally, the upper tertile 
of the Spearman heterogeneity index also predicted a shorter time to 
recurrence (P = 0.017 log-rank test, median time to recurrence 7.1 and 
11.5 years; Fig. 3b and Methods). The upper tertile threshold captured 
the long tail of high Spearman values in the cohort (Extended Data 
Fig. 1e). We also found a small subgroup of participants (n = 5) with 

Fig. 3 | Spatial genetic diversity and phylogenetic events predict recurrence. 
a,b, Total phylogenetic tree events (two-sided log-rank test, χ2 = 4.9, d.f. = 1; a) and 
the Spearman metric (two-sided log-rank test, χ2 = 5.7, d.f. = 1; b) predict earlier 
time to recurrence (n = 106 participants, sequencing cohort IMRT participants 
with three or more samples with a PGA of ≥0.01). c, Amplification in MYC and/
or FGFR1 (coamplified in one participant) predicts earlier time to metastasis 
(two-sided log-rank test, χ2 = 7.5, d.f. = 1, n = 106 participants). d, Cox proportional 
hazards (CPH) model of time to recurrence using clinical covariates and number 
of low-pass WGS samples with CNAs. Three metrics significant in a univariate 
CPH model (P < 0.1) are also included in the model (natural log of lossness,  
total phylogenetic events split by median value and Spearman). The forest  
plot shows 95% CI of HRs and the covariate P values, derived from a Wald 
test (n = 106 participants, *P < 0.05, **P < 0.01, ***P < 0.001). HRs for lossness 
and Spearman represent the increase in hazard between their 5th and 95th 
percentile values (within the sequencing cohort). e, mPGA per participant in 
primary samples (n = 109 participants) compared to the mPGA of individual 
relapse samples (n = 9 samples, two-sided Mann–Whitney U-test, W = 962). 

f–i, Phylogenetic analysis of primary and relapse samples (cfDNA) taken at 
recurrence. Tips of tumor nodes represent either the automated classifier 
ISUP grade group (primary diagnostic biopsies) or a cfDNA sample (red). Time 
since the diagnostic biopsy is labeled next to the cfDNA nodes in years (yrs). 
Representative copy number profiles are shown for a single cfDNA sample and 
the primary diagnostic biopsy that is most related to the cfDNA. Edges are labeled 
with phylogenetic events plus specific CNA events (for example, whole-genome 
duplication (WGD) or gene amplification (amp)) or detected point mutations. 
Genes present in the diagnostic biopsy panel are highlighted in bold and may 
be detected in both the primary and relapse samples. Genes not in bold are only 
detectable in the relapse samples and may also be present in the diagnostic 
biopsies. Below each tree, the timeline shows treatment history. Each event 
is rounded to the nearest 6 months. Each square represents a year. Treatment 
descriptions are written in shorthand; Abi, abiraterone acetate; Cab, cabazitaxel; 
CN, copy number; Dex, dexamethasone; Doce, docetaxel; Enza, enzalutamide; 
Ra-223, radium-223; RT, radiotherapy; Salv. HiFU, salvage high-intensity focused 
ultrasound; VAF, variant allele frequency.
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focal amplifications in either MYC or FGFR1 that showed particularly 
poor prognosis for time to metastasis specifically (P = 0.006 log-rank 
test, median time to metastasis 6.7 for MYC or FGFR1 amplified versus 
16.8 years for no amplification; Fig. 3c).

Most importantly, multivariate analysis for time to recurrence 
confirmed that the Spearman heterogeneity measure was a power-
ful independent prognostic factor, with a hazard ratio (HR) of 3.12  
(95% CI = 1.34–7.3, P = 0.009), providing additional prognostic power 
to N(nodal)-stage greater than N0 at diagnosis, which showed an HR 
of 3.58 (95% CI = 1.85–6.9, P < 0.001) and PSA of >20 ng ml–1, with an 
HR of 2.19 (95% CI = 1.23–3.9, P = 0.008; Fig. 3d and Supplementary 
Table 5). Genomic burden, either expressed by number of mutations 
in driver genes (Extended Data Fig. 2a) or PGA (mean or maximum), 
which has been previously reported as associated with survival17, was 
not prognostic in our cohort (Extended Data Fig. 2b,c). Participants 
with subclonal driver mutations did not have significantly worse time 
to recurrence (Extended Data Fig. 2d). We report the univariate KM 
curves for time to metastasis in Extended Data Fig. 3.

We next sought to investigate the relationship between phyloge-
netic history and location within the prostate. For 108 participants in 
the IMRT cohort for which phylogenetic trees were available, there were 
68 participants with sufficient data to assess the clustering of left and 
right regions (see Methods). Thirty-seven participants (54.4%) showed 
strong clustering of the left and right regions (λ > 0.8), and this was 
significant for 14 participants (P < 0.05). Alternatively, 26 participants 
(38.2%) showed mixing of left and right sides (λ < 0.2). Participants 
showing a strong phylogenetic clustering of the right and left sides had 
shorter time to recurrence (Extended Data Fig. 2f; P = 0.039 log-rank 
test, n = 36 versus 31, median 7.2 versus 11.6 years until recurrence;  
1 participant did not overlap with the 106 participants used for outcome 
analysis). Phylogenetic signal sidedness was also robust to multivariate 
analysis (Extended Data Fig. 2g).

Genomic instability is enhanced at relapse
We tracked participants in the IMRT trial who returned to the clinic 
with progressive disease many years later. Due to feasibility and risks 
involved in tissue biopsies for metastatic disease, we focused on collect-
ing plasma for circulating tumor DNA (ctDNA) analysis. We collected 
ten plasma samples at relapse from five participants taken, on aver-
age, 12.9 years (8.1–21.7 range) after the diagnostic biopsies. We used 
low-pass WGS and whole-exome sequencing combined with UMIs to 
achieve high sensitivity for low-frequency mutations, with a median 
coverage of 645× after UMI collapse and a base error rate as low as 0.01%. 
One sample was excluded from the analysis due to a lack of detectable 
ctDNA. We inferred the copy number profile of the samples, enhancing 
the tumor purity with in silico fragment size selection and achieving a 
reasonable set of tumor purities (Extended Data Fig. 4a). We detected 
a large number of mutations at relapse (Extended Data Fig. 4b), includ-
ing one found in the primary tumor with panel sequencing. We found 
a significantly increased burden of CNAs at relapse, with high PGA 
levels (Fig. 3e), supporting the finding that chromosomal instability 

is a driving force of tumor progression in prostate cancer. All four of 
five participants who had diagnostic biopsies with ploidy of approxi-
mately two presented at relapse with whole-genome duplication. We 
then used the copy number profiles to add the recurrent sample to the 
phylogenetic trees calculated from the primary multiregion biopsies 
(Fig. 3f–i and Extended Data Fig. 4c). The recurrent sample originated 
from distinct locations in the tree in different participants, corrobo-
rating the predictive value and biological importance of divergence 
as a rate of chromosomal instability (that is, a dynamic measure of an 
evolutionary mutation rate) compared to a static measurement of the 
most altered clones (for example, mean or maximum PGA at diagnosis), 
which were not prognostic in this study.

Spatial morphological heterogeneity predicts recurrence
Using our automated Gleason classifier (Methods and Extended Data 
Fig. 5b,c,e), we called gland-level Gleason grade in 1,923 sections from 
the 250 IMRT trial participants in the imaging cohort. Heterogeneous 
Gleason grade was widespread, with regions dominated by Gleason 
patterns 3, 4 and 5 all being observed within the cohort (Fig. 4a). Con-
comitantly, we used our cell classifier (Methods and Extended Data 
Fig. 5a,d) to determine if each cell in each biopsy was an epithelial, 
stromal or immune cell. Leveraging on our ability to automatically 
assign Gleason grade to all regions of each biopsy, a task that would 
be extremely difficult to do manually in such a large cohort, we also 
assessed heterogeneity of tissue morphology in terms of variation in 
Gleason pattern within a biopsy. We measured spatial heterogeneity of 
Gleason pattern with the Morisita index26 (see Extended Data Fig. 5f,g 
for details). Low ‘Gleason Morisita’ (defined as <0.30, the median value 
in the imaging cohort; n = 250), identified biopsies with segregated 
Gleason patterns (Fig. 4b), whereas high scores highlighted biopsies 
with high intermixing of different Gleason grades in the same patch 
(Fig. 4c). We found that Gleason Morisita was indeed significantly 
prognostic (Fig. 4d; P = 0.0039) and robust to multivariate analysis 
with Cox regression (Fig. 4e and Supplementary Table 6; P = 0.0046). 
Gleason Morisita had an HR of 2.45 (95% CI = 1.32–4.56) versus an 
HR of 2.04 (95% CI = 1.38–3.03) for the best conventional marker for 
this cohort, which is a PSA of >20 at diagnosis. Gleason Morisita was 
also significant in the multivariate analysis when considering time 
to metastasis as an endpoint (Extended Data Fig. 6a; HR = 2.21, 95% 
CI = 1.03–4.76, P = 0.042). We next wanted to investigate whether the 
Gleason Morisita was just a surrogate of some aggressive subpathol-
ogy in prostate cancer. We found no significant association between 
the prevalence of Gleason pattern 5 and Gleason Morisita (P = 0.83; 
data were analyzed by one-way analysis of variance). Interestingly, 
we found that the invasive ductal pattern was significantly prognostic 
(HR = 1.8, 95% CI = 1.22–2.66, P = 0.003) but was independent of the 
Gleason Morisita, which remained significant (Extended Data Fig. 6b).

To evaluate the robustness of the Gleason Morisita to differ-
ences in computational methodology, we compared the proposed 
version of the metric to two alternatives (see Methods for details). 
Both alternative metrics were well correlated with our chosen metric  

Fig. 4 | Morphological spatial heterogeneity with deep learning-based 
Gleason grading. a, Example output from the automated Gleason classifier, 
with primary and secondary pattern assessment. b,c, Examples of the Gleason 
Morisita assessment. Cells identified as epithelial cells by the cell classifier 
are subdivided into Gleason grades using the region’s automated Gleason 
segmentation. Regions with high segregation of patterns (b) will be assigned a 
low Gleason Morisita index, whereas regions with high mixing between Gleason 
grades (c) will be assigned a high Gleason Morisita index. d, Participants with 
greater within-section heterogeneity of Gleason pattern, as assessed by Gleason 
Morisita index, are associated with a shorter time to recurrence (two-sided 
log-rank test, χ2 = 8.33, d.f. = 1, P = 0.0039; imaging cohort, n = 250 participants). 
e, CPH model of time to recurrence using clinical covariates and the Gleason 
Morisita index (imaging cohort, n = 250 participants, *P < 0.05, **P < 0.01, 

***P < 0.001). The forest plot shows 95% CI of HRs and the covariate P values, 
derived from a Wald test. HR for the Gleason Morisita index represents the 
increase in hazard between the 5th and 95th percentile values (within the imaging 
cohort). f, ISUP grade group as a predictor of time to recurrence. A comparison 
is shown for the grade groups assessed by the original reporting pathologist, 
the reviewing pathologist for the trial and the automated classifier (imaging 
cohort, n = 250 participants). Grade groups are calculated from the assessed 
primary and secondary patterns, according to the 2014 ISUP criteria. Only the 
automated Gleason assessment was able to stratify the participants by time to 
recurrence (two-sided log-rank test, χ2 = 9.52, d.f. = 3, P = 0.023). g, Confusion 
matrices showing the pairwise agreement of the ISUP grade groups reported by 
the original reporting pathologist, the reviewing pathologist for the trial and the 
automated classifier (imaging cohort, n = 250 participants).
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(Extended Data Fig. 7a,c) and demonstrated the same significant pre-
diction of shorter time to recurrence for greater heterogeneity in 
Gleason pattern (Extended Data Fig. 7b,d), suggesting that the metric 
is not especially sensitive to the specific methodology.

We then compared our Gleason classifier to two sets of pathologist 
Gleason scores that were available for the IMRT trial: a per-participant 
Gleason score performed by the original pathologists, undertaken at 
the various referring centers between 1997 and 2012 when the par-
ticipant was first diagnosed, and a core-by-core rescoring by a single 
specialist uropathologist (C.M.C.), undertaken between 2017 and 2018 
using the updated 2014 ISUP criteria27,28. This was an opportunity to 
analyze the degree of interobserver variability of human assessment 
and change in diagnostic practice over time. To compare pathologists 
and our deep learning classifier, all assessments were first converted 
to a grade group (1–5) using the 2014 ISUP criteria28. The IMRT trial 
focuses on high-risk and locally advanced prostate cancers with gen-
erally high Gleason score. These may not be adequately stratified by 
Gleason grade or ISUP grade grouping29, which in general have been 
derived from surgically treated cohorts with less advanced cancers1. 
We confirmed that neither the original scoring of the pathologist nor 
rescoring by a single expert demonstrated a statistically significant 
trend in ISUP grade groups. However, automatic Gleason scoring with 
deep learning showed significant differences in time to recurrence 
between the different ISUP grade groups (Fig. 4f). In multivariate 
analysis, although all scorings indicated a pattern of increasing risk 
for higher grade groups, the reviewing pathologist’s grades did not 
stratify significantly for recurrence (Extended Data Fig. 6c), whereas 
the deep learning classifier did (Extended Data Fig. 6d). No scoring 
remained significant considering time to metastasis as an endpoint 
(Extended Data Fig. 6e,f). We observed that the degree of disagreement 
between the reporting and reviewing pathologists was comparable to 
the deep learning classifier’s disagreement with both the reporting and 
reviewing pathologists (Fig. 4g). The mean difference in grade groups 
between the reporting and reviewing pathologists was 0.84, compared 
to 1.1 between the reporting pathologists and the classifier or 0.92 
between the reviewing pathologist and the classifier. Disagreement 
between original and review pathologists may, in part, be influenced 
by changes in grading protocol. Although the reviewing pathologist’s 
assessments were made using the 2014 ISUP criteria28, the original 
pathologist’s assessments all occurred before the 2014 revision, with 
a subset also predating the 2005 revision30. The most common source 
of disagreement between human and computational assessment was 
from participants assessed as grade group 5 by the pathologist and 
group 4 by the classifier. Comparing the review pathologist with the 
deep learning classifier, it was apparent that results were concordant 
in 75 cases, upgraded in deep learning in 62 cases but downgraded in 

113 cases. This means that many of the highest-grade cancers were 
subdivided into lower- or higher-risk strata.

Impact of genomic alterations on cellular morphology
In cancer, the genotype–phenotype map that connects DNA informa-
tion inside the cell with its behavior and morphology is largely missing. 
Using our sequencing cohort, which contains matched histology and 
sequencing data for all 111 IMRT participants, we aimed at exploiting this 
multimodal data to identify associations between variation of genomic 
features and diversity of phenotypic (morphological) Gleason patterns. 
We were able to measure Gleason scores by mean grade as a function 
of area that we term ‘continuous Gleason’ (see Methods), which would 
be very difficult to achieve at this scale without deep learning image 
analysis. We found that continuous Gleason significantly correlates 
with mPGA (Fig. 5a; P = 0.000024, linear model) and total phylogenetic 
events (P = 0.0004; Extended Data Fig. 9a). We found 24 chromosome 
arm-level CNAs to be associated with a change in continuous Gleason 
(Fig. 5b), of which 22 changes correlated with an increase in Gleason, 
indicating a set of specific CNAs associated with tumor dedifferen-
tiation. In the subset of chromosome arms displaying a significant 
association with increased Gleason, gains and losses showed an over-
representation of oncogenes and tumor suppressors31, respectively 
(Extended Data Fig. 9b). Higher continuous Gleason was also associated 
with TP53 mutations (Fig. 5c; P = 5 × 10−7, linear mixed effects model), 
further supporting the link of this gene with advanced disease. One 
chromosome arm alteration associated with increased Gleason was 
5p gain, an event that is enriched in metastatic prostate cancers versus 
primary prostate cancers32. A significant correlation was also found 
between mPGA and mean Gleason Morisita (Fig. 5d; P = 0.029, linear 
model; Methods), indicating that increased copy number burden is 
also associated with increased Gleason mixing and dedifferentiation. 
The Spearman metric of genetic heterogeneity did not correlate with 
Gleason Morisita, suggesting that genetic and morphological diversity 
capture distinct biology (Fig. 5e; P = 0.75, linear model).

Using our deep learning cell-type classifier trained on epithe-
lial, stromal and immune cells, we found high levels of infiltration of 
inflammatory cells (which can include lymphocytes, macrophages, 
neutrophils and plasma cells) in a proportion of IMRT cases (Sup-
plementary Table 7), suggesting that at least a subgroup of locally 
advanced prostate cancer is not completely immune cold, as reported 
for early prostate cancer33. Indeed, we found an association between 
higher PGA and reduced immune infiltration, as measured by the 
Tumor-Immune cell Morisita index (Extended Data Fig. 9c). Notably, 
the only chromosomal arm that was associated with reduced immune 
infiltration was chromosome 6p, containing the HLA locus (Fig. 5f 
and Extended Data Fig. 9d; P = 0.00017, linear mixed effects model, 

Fig. 5 | Combining genetic and morphological measurements. a, mPGA 
is associated with higher continuous Gleason (n = 106 participants, IMRT 
participants with three or more samples with a PGA of ≥0.01, linear model, two-
sided t-test on gradient, estimate = 0.19, s.e. = 0.04, t = 4.4, d.f. = 104). Shaded 
area represents 95% CI in all scatter plots. b, Twenty-four chromosome arm 
changes are associated with a change in continuous Gleason (gains are displayed 
in red, and losses are displayed in blue; n = 62 chromosome arm changes, P values 
were adjusted using the Benjamini–Hochberg method and are derived from two-
sided t-tests on gradient per arm linear mixed effects model; continuous Gleason 
change derived from gradient estimate). c, The TP53 mutation is associated 
with higher continuous Gleason (linear mixed effects model, two-sided t-test 
on gradient, s.e. = 0.06, d.f. = 371, t = 5.1, n = 503 samples). Box plots show center 
lines as the median and box limits as upper and lower quartiles. Whiskers extend 
no further than 1.5× interquartile range past the box limits, and points represent 
outliers. d,e, mPGA (linear model, two-sided t-test on gradient, estimate = 0.23, 
s.e. = 0.103, t = 2.2, d.f. = 85; d), but not Spearman (estimate = −0.05, s.e. = 0.15, 
t = −0.3, d.f. = 85; e), is associated with increased mixing of Gleason grades 
(n = 87 participants, sequencing cohort omitting participants with a Gleason 

Morisita equal to 0, that is, a homogenous Gleason grade). f, Chromosome 6p 
loss is uniquely associated with a reduction in Tumor-Immune Morisita (changes 
are colored and P values were adjusted and derived as in b; n = 62 chromosome 
arm changes). Samples in b, c and f have a PGA of ≥0.01. g, The most genetically 
and morphologically heterogeneous tumors are associated with shorter time 
to recurrence (two-sided log-rank test, χ2 = 13.7, d.f. = 1, n = 106 participants). 
h, The Joint Diversity metric shows significant association with greater risk of 
recurrence in a CPH model with clinical covariates. The forest plot shows 95% CI 
of HRs, and the covariate P values are derived from a Wald test. The HR for Joint 
Diversity represents the increase in hazard between the 5th and 95th percentile 
values (within the sequencing cohort, n = 106 participants, *P < 0.05, **P < 0.01, 
***P < 0.001). i, Multiplex immunohistochemistry and H&E staining was 
performed on the same section. Immunohistochemistry experiments were run 
once following optimization and validation. j, Example of an immune-hot region 
on matched H&E (left) and multiplex immunohistochemistry (right) images. 
k, Example of an immune-cold region on matched H&E (left) and multiplex 
immunohistochemistry (right) images.
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adjusted P = 0.011, Benjamini–Hochberg method). Also, when using the 
percentage of immune cells identified by the cell classifier, we found 
that 6p loss significantly reduced the number of immune cells in the 
sample (Extended Data Fig. 9e). These results suggest that chromo-
somal instability and HLA loss of heterozygosity are associated with 
immune evasion in prostate cancer, as previously reported in lung 
cancer34, ovarian cancer35 and melanoma36, among others37.

Combining the previously used upper tertile of the highest 
genetic heterogeneity index (Spearman) and the upper half of the 

morphological heterogeneity (Gleason Morisita), we were able to 
identify a subgroup of 17/106 (16%) participants with much poorer 
prognosis (Fig. 5g; P = 0.00021, log-rank test). Next, we sought to 
combine these metrics into a single measurement that we termed 
‘Joint Diversity’, calculated as the geometric mean of the Spearman 
and Gleason Morisita measurements, allowing us to identify the most 
genetically and morphologically diverse individuals. Joint Diversity was 
robust to multivariate analysis (Fig. 5h and Supplementary Table 8), 
with an HR of 2.76 (95% CI = 1.095–7, P = 0.031).
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Immune hot spots are detectable by multiplexed 
immunohistochemistry
To further investigate the role of immune cells in our cohort, we used 
highly multiplexed immunohistochemistry (Fig. 5i) with 15 markers 
(Supplementary Table 9). We selected a subset of 20 samples from seven 
participants within the imaging cohort to include those with both high 
and low Tumor-Immune Morisita indexes. We found clear hot spots 
of immune infiltration in a substantial subset of sections (13 samples; 
Fig. 5j and Extended Data Fig. 10a,b). Other samples were almost devoid 
of any immune cells (Fig. 5k). Multiplex immunohistochemistry images 
were then visually inspected, and the abundance of each marker was 
scored on a scale from 0 to 5 (Supplementary Table 10). We found that 
the CD20 marker of B cells correlated significantly with the Immune 
Morisita index (P = 0.0065). This suggests that B lymphocytes may 
be playing a role in immune infiltration in prostate cancer (see other 
examples in Extended Data Fig. 10c,d). In addition, CD68+ cells were 
abundant in most of our samples; however, CD163+ cells were almost 
completely absent (Extended Data Fig. 10e,f), indicating the presence 
of M1, but not M2, macrophages. Together, these data suggest that 
even when tumor-immune infiltration is present, immune cells remain 
inactive or potentially repressed by tumor cells. Further functional 
investigation will be needed to unveil the cross-talk between cancer 
and immune cells in locally advanced prostate cancer.

Discussion
The lack of powerful prognostic markers in prostate cancer leads to 
suboptimal treatment stratification. There is a need to identify high-risk 
nonmetastatic individuals that will benefit from early adjuvant use of 
new life-prolonging treatments, such as abiraterone acetate38. Con-
versely, although chemotherapy with adjuvant docetaxel used with 
ADT may not improve overall survival for individuals with localized 
high-risk prostate cancer39, it is possible that biomarkers might identify 
high-risk subgroups for whom this treatment does produce improved 
outcomes. It would also be of value to define subpopulations of individ-
uals who could avoid the detriments of long-term systemic treatments 
but maintain good outcomes. Cancer is a complex disease governed by 
evolutionary rules11,40. Evolution is about ‘change over time’, emphasiz-
ing the need to understand the dynamic behavior of tumors41 to make 
future clinical predictions. Although following tumors longitudinally 
in humans remains difficult, intratumor heterogeneity can be seen as a 
looking glass into cancer evolution42 as it encodes the tumor’s history 
and can help predict its future. Evolvability is a central feature of cancer 
and contains information on its future adaptation, for example, in 
the form of mutation rate. Seminal multiregion studies have radically 
changed the way we understand human cancers from an evolution-
ary perspective43,44, but multisampling remains laborious, expensive 
and difficult to apply within a clinical trial. Moreover, most of these 
studies are still small, involve a few samples per individual and, with 
the exception of the TRACERx trials in lung45 and renal cancer46, have 
not yet been linked to clinical trial information, especially in prostate 
cancer. Here, we leveraged the ultrasound-guided multiregion biopsy 
strategy that is standard of care for the diagnosis of prostate cancer to 
collect data that are amenable to evolutionary studies.

We report that spatial genomic and morphological divergence 
were significantly associated with recurrence. Thanks to the clinical 
trial design, we could ensure that these metrics were robust to mul-
tivariate analysis. Different from previous investigations, which used 
single samples per individual and focused on early-stage prostate 
cancer, we did not find PGA to be prognostic, even when using the same 
thresholds (from ref. 17, threshold = 7.49% and P = 0.26; from ref. 47,  
threshold = 5.4% and P = 0.057). As a continuous metric, mPGA was also 
not prognostic in a multivariate analysis (P = 0.235). This suggests that 
measures of heterogeneity and evolvability may be more effective in 
predicting recurrence than static measurements of burden of altera-
tions in the cancer cell genome. One may note that the Spearman metric 

measures heterogeneity between samples, whereas Gleason Morisita 
measures morphological heterogeneity within samples. Given that we 
observed that it was specifically individuals with both high genetic and 
high morphological heterogeneity that had significantly worse time to 
recurrence, it may indicate that diversity must be present both locally 
and globally across the tumor for risk of recurrence to increase.

Moreover, AI-driven Gleason scoring allowed unprecedented 
associations between genomic alterations and aberrant cell morphol-
ogy. We found that increased aneuploidy was linked to both higher 
Gleason grades and greater local heterogeneity of Gleason pattern. 
This suggests that progressive alterations of chromosomes may drive 
dedifferentiation. The association of a plethora of chromosome arm 
changes with increased Gleason grade suggests a set of chromosomal 
alterations that are primarily associated with progression and may 
be positively selected. Interestingly, two chromosome arm losses  
(−19q and −20q) were associated with reduced Gleason grade, suggest-
ing that there may be chromosomal alterations that block dedifferen-
tiation. Furthermore, copy number burden was also associated with 
reduced Tumor-Immune Morisita, suggesting a role for genome-wide 
aneuploidy in immune evasion. However, chromosome arm analy-
sis suggests that only chromosome 6p loss is specifically related to 
immune evasion in prostate cancer. This correlation between loss of 
chromosome 6p and directly observed immune evasion in prostate 
cancer builds on similar findings in other cancer types34–36,48,49. Prostate 
cancer has recently been shown to be one of the few cancer types with 
an increased frequency of immune evasion alterations in metastatic 
tumors50, indicating that immune evasion may be a key feature of 
tumor aggressiveness.

It should be highlighted that we used only widely available 
FFPE diagnostic biopsies and applied low-coverage WGS, which is 
relatively inexpensive and hence potentially applicable to routine 
clinical practice. Furthermore, our deep learning classifiers oper-
ate on H&E-stained sections, which are standard in routine clinical 
practice. Thus, our classifiers could be extended to other prostate 
cancer cohorts once the sections have been scanned and digitized. 
In this work, we directly compared machine assessment of Gleason 
grading to multiple assessments from expert pathologists. On cen-
tral review, ISUP grade groups 2 and 3 had more favorable outcomes 
than ISUP grade groups 4 and 5, but groups 4 and 5 were not clearly 
distinguished. There appeared to be little relationship with outcome 
for the initial local pathological assessment. This may, in part, reflect 
a change in pathological assessment over time1 as well as potential 
benefit from specialist uropathology review. One notable area of disa-
greement between the machine classification and human assessment 
is in the assignment of grade group 5. For both sets of human assess-
ments, group 5 was the most common grade. By contrast, group 4  
was the most common in the machine assessment, with most of these 
individuals being assessed as group 5 by both pathologists. This is, in 
part, a consequence of the method by which the automated classifier 
computes a patient-level ISUP grade group from the participant’s indi-
vidual slide grade groups (see Supplementary Note). For an individual 
to be classified as group 5 by the automated classifier, all individual 
sample grade groups must also be group 5, which is likely to differ 
from the determination made by pathologists. Given that the machine 
grade grouping produced a better stratification of recurrence, it 
could be inferred that, although the pathologist’s grading of these 
participants as group 5 may well have been correct according to cur-
rent ISUP criteria, the grade group criteria itself may be insufficient to 
fully determine the risk of recurrence for patients in high-risk groups. 
Group 5 may benefit from being divided into two categories, allowing 
the very highest risk individuals to be more clearly identified. We also 
introduce a measure of the heterogeneity of Gleason patterns within 
a section, Gleason Morisita. From a biological perspective, frequent 
intermixing of Gleason patterns may indicate that the tumor is in a 
transitionary state between the lower and higher grade. What is seen 
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in the biopsy is the state of the tumor at a single time point in the 
tumor’s evolutionary trajectory. Thus, although standard assessment 
of Gleason pattern is accurately describing the state of the tumor at 
this time point, Gleason Morisita may be capturing additional signal 
of the tumor’s evolutionary trajectory.

In the future, these ‘evolvability’ metrics could be used in conjunc-
tion with established clinical variables as well as commercially available 
transcriptomic tests51 to optimally predict recurrence in prostate 
cancer, particularly for individuals with high-risk or locally advanced 
disease. However, our findings will first need to be validated in larger 
cohorts and tested within cohorts with different risk profiles to fully 
understand how these predictors apply more generally. Regardless, 
our approach of combined genomic and histological analysis within 
trial datasets demonstrates an effective strategy for studying tumor 
evolution within routinely collected clinical samples.

Methods
Ethical approval
All research was performed in accordance with local and national ethi-
cal standards, and the study protocol was approved by the West of Scot-
land Research Ethics Service in December 2017 (HRA ID 230542). The 
research was performed at the Institute of Cancer Research, London.

Clinical cohort
The IMRT trial (NCT00946543) recruited 471 participants with high- 
risk or locally advanced prostate cancer between 2000 and 2013. All 
participants received hormone deprivation and radiotherapy to the 
prostate and lymph nodes. The median age was 65. The sex of all par-
ticipants was male (gender information was not collected at the time 
of study recruitment). Informed consent was obtained for all par-
ticipants, and no participants were compensated for participation in 
the study. Further clinical characteristics of these participants were 
previously described19. For each participant, 6–12 18-mm, multiregion 
ultrasound-guided needle biopsies were taken from the primary site, 
which were then formalin fixed and paraffin embedded for histopatho-
logical analysis.

After a median follow-up of 12.5 years, the recurrence rate was 
40%. Clinical data were compiled for each participant, which included 
TNM staging, Gleason grading, PSA levels, number and location of the 
core biopsies, age, treatment received and prostate cancer outcome 
and survival data. All individuals involved in sample preparation and 
data analysis were blinded to clinical data until the completion of the 
primary phase of data analysis.

Two hundred and fifty participants had accessible FFPE blocks, 
for a total of 1,923 biopsies, from which H&E sections were taken and 
used for image analysis. Eligibility criteria for the sequencing cohort 
included participants with greater than or equal to three tumor biop-
sies and at least 70% cancer purity, as assessed by the original patholo-
gist. In total, 111 participants fulfilled those features, adding up to 578 
biopsies.

As a comparable cohort, we included three participants from 
DELINEATE (ISRCTN04483921), an ongoing single prospective phase 
2 trial of intermediate- or high-risk prostate adenocarcinoma opened 
in 2011 (ref. 23). This trial is assessing toxicity and feasibility of a radio-
therapy boost to tumor nodules within the prostate at the time of 
primary radiotherapy. Like the IMRT trial, image-guided biopsies were 
also taken; however, up to 48 mapping template needle biopsies were 
obtained in a subset of this cohort, collecting a total of 65 tumor biop-
sies from the three selected participants for this study.

For germline data, 100 buffy coat samples were collected from 
the UKGPCS trial (NCT01737242) for those individuals where they 
were available. For seven participants with unavailable buffy coats, 
normal FFPE needle biopsies were used as a substitute. However, for 
the remaining seven participants where neither buffy coats nor normal 
biopsies were available, no germline sample was collected.

For collection of cfDNA samples in participants with recurrent 
prostate cancer, the clinical study EXCERPT (NCT04686188) was ini-
tiated. Participants who experienced a recurrence of prostate cancer 
and had been treated within the IMRT trial were recruited to donate 
blood samples if they (1) had not yet commenced treatment for recur-
rence, (2) had progressive disease on treatment or (3) had a PSA level of 
>2 ng ml–1 on treatment. Up to three blood samples were collected for 
each participant at different time points. Clinical course information, 
including dates and types of recurrence and treatments received, was 
recorded for each participant.

Sample preparation
Original pathology reports containing Gleason score, biopsy location 
and tumor purity description were received together with the available 
blocks from 250 participants. To standardize the pathological assess-
ment, including Gleason grading, which was originally undertaken at 
a number of different hospitals over many years, a new H&E staining 
was performed on the first 4-μm section of each block, and all slides 
were re-evaluated by a central specialist uropathologist (C.M.C.) at The 
Institute of Cancer Research/Royal Marsden Hospital. A minimum of 
70% tumor purity, according to the pathological purity estimates, was 
used to select blocks that would be eligible for sequencing. To define 
biopsy location, samples were renamed accordingly by right, left, 
middle or apex, followed by the number of the biopsy on the original 
report. Between 15 and 20 10-μm sections were taken from the FFPE 
needle biopsies according to their width and were collected in a tube. 
For those with enough material, 2 × 5 μm sections were taken in the 
middle of the block and stored for future characterization.

Following Quick-DNA FFPE Miniprep (Zymo Research, D3067), 
DNA was extracted and quantified by Qubit 3.0 fluorometer (Invitro-
gen, Q33216). Extracted DNA was then incubated at 20 °C for 15 min 
with NEBNext FFPE DNA Repair Mix (New England Biolabs, M6630) 
to correct all possible changes due to the formalin fixation process. 
Subsequently, a clean-up was performed using 2.5× SPRI beads (Beck-
man Coulter, B23318), and, after two washes with 80% ethanol, repaired 
DNA was eluted and requantified.

Whole-genome libraries were generated from at least 30 ng of 
DNA using a low-input NEBNext Ultra II DNA library Prep kit for Illu-
mina (New England Biolabs, E7645) and NEBNext Multiplex Oligos for 
Illumina (Unique Dual Index UMI Adaptors DNA set 1, New England 
Biolabs, E7395L), which contains 96 unique dual index adaptors and a 
UMI sequence to enable the identification and removal of PCR errors or 
duplicates from amplified libraries. A brief enzymatic fragmentation 
step of 3 min was performed and, based on the initial yield, between 
six and nine PCR cycles were used for library enrichment. Elution was 
done in 38 μl of TE buffer (Invitrogen, 12090015), and quality control 
was checked by High Sensitivity D1000 ScreenTape (Agilent, 5067-
5584) on a 4200 TapeStation System (Agilent, G2991BA) and Qubit 3.0 
fluorometer (Invitrogen, Q33216).

After whole-genome library preparation, around 190 ng was 
used for panel capture following the manufacturer’s instructions. 
The custom panel was designed to include the most mutated genes, 
specifically, those that were previously identified in >2% of primary 
prostate tumors. The panel included the coding regions of the 27 most 
commonly mutated genes and the promoter noncoding regions of 
FOXA1 and NEAT1, where mutations were also assessed (Supplemen-
tary Table 3). Panel development was done by Twist Bioscience for a 
final total target region of 375,569 base pairs (bp), which was directly 
covered by 3,396 probes. Eight indexed whole-genome libraries were 
pooled in a plex and dried out for hybridization capture for 16 h. Hybrid-
ized targets were then bound to streptavidin beads, and postcapture 
amplification was done for 15 cycles. As for whole-genome library 
preparation, enriched plexes were checked by High Sensitivity D1000 
ScreenTape (Agilent, 5067-5584) on a 4200 TapeStation System (Agi-
lent, G2991BA) and Qubit 3.0 fluorometer (Invitrogen, Q33216).
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To filter out germline variants, participant-matched buffy coat 
DNAs collected from the UKGPCS trial were used. Buffy coat DNA 
(100 ng) was directly used for whole-genome library preparation using 
an NEBNext Ultra II FS DNA Library Prep kit for Illumina (New England 
Biolabs, E6177). Initially, enzymatic digestion was incubated for 20 min, 
and, after adaptor ligation, samples were identified using NEBNext 
Multiplex Oligos for Illumina (96 Unique Dual Index Primer Pairs Set 1, 
New England Biolabs, E6440L). Four PCR cycles were used for library 
enrichment.

For collection of cfDNA samples, 20 ml of whole peripheral blood 
was collected from each participant at each time point and stored in 
Cell-Free DNA Blood Collection Tubes (Streck, 218997). Plasma was 
separated from cells by centrifugation (1,600g for 10 min at room 
temperature), followed by a second centrifugation of the supernatant 
to remove all cell debris. Plasma was stored at −80 °C pending DNA 
extraction. cfDNA was extracted from plasma using a QIAamp circu-
lating nucleic acid kit (Qiagen, 55114) according to the manufacturer’s 
protocol.

Whole-genome libraries were generated from 35 ng of cfDNA using 
a low-input NEBNext Ultra II DNA Library Prep kit for Illumina (New Eng-
land Biolabs, E7645) and NEBNext Multiplex Oligos for Illumina (Unique 
Dual Index UMI Adaptors DNA set 1, New England Biolabs, E7395L), as 
for the FFPE samples described above. No fragmentation step was per-
formed, and eight cycles of PCR were used for library enrichment. Elu-
tion was done in 38 μl of TE buffer (Invitrogen, 12090015), and quality 
control was checked, as described for the FFPE samples. Whole-genome 
libraries (190 ng) were used for whole-exome capture following Twist 
Exome 2.0 human panel’s protocol (Twist Biosciences).

Sequencing
Sequencing was performed at three different levels: low-pass WGS, tar-
get sequencing or WGS according to the samples. Independent of the 
purpose, after pool quantification by Qubit and correct fragment size 
distribution by TapeStation, 2.5 nM product was sent for sequencing to 
the NovaSeq 6000 System (Illumina). Read length and depth was vari-
able, as required by library composition. Sequencing was performed 
by the Institute of Cancer Research Tumor Profiling Unit.

First, 1 ng of up to 96 indexed whole-genome libraries was pooled 
for low-pass WGS. To reach the estimated coverage of at least 0.1× for 
copy number profiling, 50 paired-end reads were performed in an S2 
flow cell.

Second, 12 enriched plexes (96 postcapture enriched libraries) 
were pooled together in equimolar amounts and sequenced at a 
median coverage after UMI compression of at least 100×, following 
100 paired-end reads in an S2 flow cell.

With respect to the buffy coat libraries, WGS was performed for 150 
paired-end reads in an S2 flow cell in pools of ten samples, for a mini-
mum coverage of 30×. For those participants where buffy coats could 
not be taken, normal prostate tissue FFPE needle biopsy enriched librar-
ies were sequenced following the same protocol as described above.

For the cfDNA samples, low-pass WGS and deep whole-exome 
sequencing were performed. For whole-exome sequencing, 100 
paired-end reads were performed in an S4 flow cell in pools of a maxi-
mum of eight samples with a target coverage of a minimum of 200×.

Multiplex immunohistochemistry
Multiplexed immunofluorescence images were acquired using an 
AKOYA Phenocycler-Fusion scanner (formerly known as CODEX) at a 
resolution of 0.5 μm per pixel. The multiplexed immunofluorescence 
panel consisted of 15 antibodies (Supplementary Table 9). Of those, 
CD4, CD8, CD20, CD3e, CD68, CD31, Ki67, PCK and TP63 were validated 
antibodies purchased directly from AKOYA. The remaining antibodies 
(FSP1, αSMA, vimentin, CD163, CK18 and PSA) were purified commer-
cial antibodies that were manually conjugated. Following acquisition 
of the multiplexed immunofluorescence image, the same section was 

subsequently stained with H&E to enable direct comparison between 
tissue morphology and immunofluorescence markers. Images of the 
H&E-stained slides were acquired with a Phenocycler-Fusion scanner 
at a resolution of 0.5 μm per pixel. Staining intensity, observed within 
positively stained cells, was variable across our panel of markers. To 
account for those differences, intensity ranges were manually selected 
for each marker during visualization within AKOYA PhenoChart. 
Instances of autofluorescence were identified by visual inspection of 
the signal pattern and were excluded from the quantification of the 
marker abundance.

Bioinformatics analysis
Buffy coat WGS analysis. FASTQ files were trimmed for adaptor con-
tent using Skewer52 with a minimum length allowed after trimming 
of 35 bp, keeping only reads with a minimum mean quality of 10 and 
removing highly degenerative reads (-l 35 -Q 10 -n). Trimmed reads 
were aligned to hg38 (GRCh38) using bwa mem53. SAM files were sorted 
and compressed to BAM files, and duplicates were marked using Picard 
tools (https://broadinstitute.github.io/picard/). When multiple FASTQ 
files were available for a sample, FASTQ files were initially processed 
separately but merged before marking duplicates using samtools 
(https://www.htslib.org/). BAM files were then indexed also using 
samtools.

Low-pass WGS analysis. FASTQ files were processed identically to 
the buffy coat WGS FASTQ files to the point of generating merged BAM 
files aligned to the human genome. BAM files were then processed 
using QDNAseq54 to convert read counts in 500-kilobase bins across 
the chromosomes of hg38 into log2 ratio data (log2 ratio of normalized 
coverage observed over expected, that is, raw copy number signal). The 
500-kb bins for hg38 were generated according to QDNAseq instruc-
tions and normal BAM files from the 1000 Genomes Project (https://
ftp.1000genomes.ebi.ac.uk; phase 3). Data normalization was per-
formed in accordance with the QDNAseq workflow, including sex chro-
mosomes. Bins were required to have a minimum mappability of 65 and 
95% non-N bases. The smoothOutlierBins function step was removed 
as it artificially depressed highly amplified bins. The sqrt option was 
used for the segmentBins function. Log2 ratios in bins and segments 
were normalized by subtracting the median log2 ratio value of all bins.

To call absolute copy number, we used an adapted version of the 
ASCAT55 approach that leveraged using multiple sampling to search 
for ploidy solutions. For details, see Computational Analysis Supple-
mentary Note. PGA was measured by calculating the fraction of bins 
not at the rounded baseline ploidy (this was expected to be half at sex 
chromosomes).

CNA phylogenetics. MEDICC2 (ref. 56) was used to generate phylo-
genetic trees based on CNA status. Bins were converted to genomic 
regions with equal copy number status across all samples using the 
run length encoder function in R (rle), and an artificial diploid root was 
generated. MEDICC2 was run using the –total-copy-numbers option to 
account for the lack of allele-specific copy number data. Only samples 
with a PGA of ≥0.01 were included in the trees. As MEDICC2 requires a 
minimum of two samples, trees were only created for 111/114 partici-
pants (both IMRT and DELINEATE).

Phylogenetic signal sidedness analysis. To investigate the distribu-
tion of left and right samples across the phylogenetic trees produced 
by MEDICC2, we used the phylogenetic signal function phylosig in the 
phytools R package57. If a sample was derived from the right side, it was 
assigned a trait value of 1, and left samples were assigned a value of 0; 
remaining samples were assigned 0.5. The diploid root was dropped as 
a sample in the tree. Phylosig was then run with the lambda method and 
the option of performing a hypothesis test. The tool was considered 
successfully run if the hypothesis test produced a P value (68/111 trees).
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Focal amplification detection. We used multisample piecewise 
constant fitting segmentation to increase our sensitivity for detect-
ing focal events; this was performed using multipcf in the copynum-
ber package58. For individuals with a single sample, pcf was used. A 
penalty (gamma) of 15 was used for both functions. Segments with 
a z score greater than 3, occupying more than 3 but less than 20 bins 
(~10 Mb), were considered focally amplified. Genes present in the 
segments were calculated using bioMart (https://www.ensembl.org/) 
and cross-referenced with a set of prostate cancer-related oncogenes.

Genomic metric calculations from low-pass WGS. mPGA was calcu-
lated as the average PGA of all samples in a participant, not including 
samples with a PGA of <0.01. Maximum PGA was calculated as the 
maximum PGA observed in a participant. The Spearman metric was 
calculated as the mean pairwise Spearman’s ρ of the log2 ratio values 
(raw copy number signal) in the bins of all samples excluding those 
with a PGA of <0.01. The value was then subtracted from 1 to convert 
it from a measurement of homogeneity to heterogeneity to support 
interpretation. Lossness was calculated as the fraction of segments 
less than the rounded ploidy of the sample that did not overlap with the 
most distant telomeric or centromeric bin of each chromosome arm. 
Total events were calculated as the total number of CNA events present 
in the MEDICC2 phylogenetic tree produced for each participant. The 
number of subclonal events was the number of CNA events present in 
each tree after the most recent common ancestor (that is, excluding 
clonal events). Subclonality was calculated as the fraction of subclonal 
events as a proportion of total events.

UMI processing. FASTQ files from the same library were merged by 
concatenating the files. UMIs were processed using the fgbio pipeline 
(http://fulcrumgenomics.github.io/fgbio/). For details, see the Com-
putational Analysis Supplementary Note.

Strand-split artifact read (SSAR) filtering. FFPE samples are affected 
by SSARs caused by single-stranded overhangs in fragments59. We 
filtered BAM files for reads demonstrating these characteristics by 
realigning the UMI consensus reads using bwa mem with a minimum 
seed length of 10 (-k), not outputting alignments with a score lower 
than 10 (-T). Reads with secondary alignments on the complemen-
tary strands within a window of 500 bp were flagged as SSAR reads 
and removed from the consensus UMI BAM file using Picard tools. 
Duplicates were marked again with Picard tools, and the BAM file was 
indexed with samtools.

Quality control. Targeted panel sequencing samples with a mean 
target coverage of less than 10× as calculated by the CollectHsMetrics 
option in Picard tools were considered failed. The read error rate was 
assessed before and after compression using ErrorRateByReadPosition 
in the fgbio library. Failed low-pass WGS samples were determined by 
manual inspection of the log2 ratio profiles. For all data, mismatch-
ing samples were identified using the CheckFingerprint option in 
the Genome Analysis Toolkit (GATK)60 using references generated by 
HaplotypeCaller and dbSNP 146. FFPE damage was assessed using map-
Damage61, and FASTQ and BAM qualities were assessed using FASTQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and 
Qualimap2 (ref. 62).

Somatic mutation calling. We initially called somatic mutations per 
sample using mutect2 (ref. 63) in GATK with the matched buffy coat 
WGS from the participant or a normal tissue targeted panel sequenc-
ing sample as a normal reference. Mutation calling was limited to the 
coordinates of the genes on the panel. The output was filtered using 
FilterMutectCalls, and mutations were kept only if the coverage in both 
the tumor and normal tissue was greater than ten reads and the variant 
was present in three or more reads in the tumor. The variant must have 

the genotype ‘0/0’ in the normal tissue but must not in the tumor. Muta-
tions with the flag ‘artifact_in_normal’ were kept, but variants called in 
each tumor sample were removed if their VAF was less than ten times 
greater than in the normal sample.

Resulting VCF files were then merged using vcf-merge (https://
vcftools.github.io/) and used as input for platypus64 run in genotyping 
mode (–getVariantsFromBAMs = 0). The following criteria were used 
for an initial round of filtering for high-quality mutations: (1) mutations 
with the poor mapping quality (MQ) and strand bias (strandBias) flags 
were removed, (2) mutations were required to have a genotype quality 
of at least 60 in one sample, (3) a minimum of ten reads at the site was 
required in all samples, (4) the germline sample was required to have 
a genotype of ‘0/0’ and at least one tumor sample could not have a 
genotype of ‘0/0’, (5) a minimum of three reads covering the variant 
in at least one of the tumor samples per participant was required, and 
(6) the highest VAF in the tumor samples had to be ten times greater 
than the VAF in the normal tissue. Variants were annotated using VEP 
(https://www.ensembl.org/).

Additionally, to flag high-quality SNVs, we separately called muta-
tions using deepSNV65, as performed previously66. Details of implemen-
tation and further filtering are provided in the Computational Analysis 
Supplementary Note. Mutations were considered subclonal if the VAF 
was not greater than 0.05 in all samples. Subclonality assessment of 
mutations in participants with fewer than three tumor samples with 
targeted panel data was only presented in the heat map in Fig. 2a.

dN/dS analysis. dN/dS analysis was performed using dNdScv67. Sam-
ple B11 in FD-002 was excluded from the analysis as it contained an 
abundance of synonymous mutations. All participants with available 
data were included in the ‘All’ category, whereas only participants 
with a minimum of three tumor samples with targeted panel data were 
included when assessing ‘Clonal’ and ‘Subclonal’ mutations. dN/dS was 
considered significantly greater than 1 (neutral) when the lower bound 
of the 95% CI was greater than 1 and vice versa.

Calculating the number of mutated copies and loss of heterozy-
gosity. The number of mutated copies is estimated using a rearranged 
cancer cell fraction equation that considers sample purity, the total 
copy number of the mutation site and the VAF and assumes that the 
cancer cell fraction is equal to 1 (clonal). The mutation is homozygous 
if the estimated number of mutated copies is greater than the total 
copy number minus 0.5.

cfDNA low-pass analysis. Low-pass samples derived from cfDNA were 
processed from raw data to alignment as described previously for the 
primary tissue samples. However, before processing BAM files using 
QDNAseq, BAM files were filtered for reads for an insert size between 
90 and 150 bp to enrich for tumor fragments. Samples were segmented 
using multipcf from the package copynumber, if multiple time points 
were available (γ = 10), to enable more sensitive detection of CNAs in 
impure samples. If only a single time point was available, the pcf func-
tion was used (γ = 10).

Copy number fits were calculated using the ASCAT equation  
excluding B-allele frequency, as for the primary samples; however, the 
minimum purity was set to 0.01, and a ploidy range between 1.5 and 4.7 
was searched. This was narrowed between 4 and 4.7 for FI-072. The fit 
for FI-057 cfDNA TP1 was manually set (purity = 0.07, ploidy = 4.41). 
MEDICC2 was rerun for participants with cfDNA samples as previously 
described.

cfDNA whole-exome sequencing analysis. Whole-exome sequenc-
ing data from cfDNA were analyzed using the fgbio pipeline as for the 
primary tissue samples; however, we used a NextFlow implementation 
(https://github.com/chelauk/nf-core-umialign). For details, see the 
Computational Analysis Supplementary Note.

http://www.nature.com/natcancer
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Computational histopathology
Whole-slide image acquisition. Digital whole-slide images of diagnos-
tic H&E slides were acquired using a Zeiss AxioScan.Z1 slide scanner. 
Slides were scanned at a resolution of 0.11 μm per pixel. For compatibil-
ity with the deep learning models, images were subsequently rescaled 
to 0.22 μm per pixel or an equivalent of a 40× magnification.

Automated Gleason segmentation and grading. We trained a deep 
learning classifier to segment the glandular regions of a tissue sec-
tion according to their Gleason pattern. The U-Net style classifier68 
(Extended Data Fig. 5c) was trained on image patches generated from 
hand-drawn gland regions, each labeled as normal, PIN, Gleason 3, 
Gleason 4 or Gleason 5. From 42 whole-slide images within the IMRT 
trial cohort, a total of 3,168 gland regions were annotated, representing 
an equivalent of 65.47 mm2 of tissue. Thirty-four whole-slide images 
were used to train the model, and eight were withheld for validation. 
To generate suitable input for the classifier, annotated regions were 
converted into image patches with associated segmentation masks 
(Extended Data Fig. 5b).

The classifier uses a multiresolution representation of the tissue 
to segment the glands. As such, each input image patch was composed 
of a pair of 500 × 500 pixel images, representing a region of the tissue 
at a resolution of 0.44 μm per pixel and 0.88 μm per pixel or an equiva-
lent 20× and 10× magnification, respectively (Extended Data Fig. 5e). 
These images were subsequently resized to 224 × 224 pixels to match 
the desired input size of the model. The classifier’s output was a set of 
probability maps, representing the segmentation of the 0.44 μm per 
pixel image. There were six output maps in total, corresponding to 
the five gland types and a sixth for no gland detected (Extended Data 
Fig. 5e). Due to the softmax final layer, these maps sum to 1 for every 
pixel. The final segmentation is produced by assigning to each pixel the 
label with the largest probability. For the final analysis, the normal and 
PIN labels were merged under a single ‘benign’ label.

To aid comparison with pathologists’ assessments, we also devel-
oped an algorithm to convert the resultant Gleason segmentation 
map into a standard primary and secondary Gleason score (see the 
Supplementary Computational Histopathology Analysis Note). Each 
section’s Gleason score was subsequently converted into an ISUP grade 
group using the 2014 criteria. Patient-level grade group was computed 
for each participant by taking a weighted mean of their individual slide 
grade groups and rounding down. When computing the mean, each 
slide was weighted by the area that was segmented as tumor (Gleason 
pattern 3, 4 or 5).

Automated cell classification. We trained an SCCNN-style DenseNet 
classifier69,70 to detect all cell nuclei within the tissue section and 
label them with their associated type. In the classifier’s raw output, 
cells were partitioned into five categories: epithelial, stromal, acute 
immune, chronic immune and unknown. However, for the final analysis, 
chronic and acute immune cells were merged under a single ‘immune’ 
label. The classifier was trained on image patches generated from 
40,634 hand-annotated cells from 56 whole-slide images. Forty-nine 
whole-slide images were used directly for training, and seven were with-
held for validation. The majority of the training dataset was taken from 
PROMIS, an external cohort of prostate cancer specimens. However, 
an additional set of 9,682 annotations from the IMRT trial cohort were 
added to the dataset to improve classification accuracy. These were 
intended to address cohort-level visual differences due to differences 
in section preparation, tissue staining and model of slide scanner used 
to acquire the images.

Gleason Morisita index. In conjunction with the output of the Gleason 
classifier, epithelial cells were further classified into normal, PIN, Glea-
son 3, Gleason 4 and Gleason 5 epithelial cells (Extended Data Fig. 5g). 
From these reclassified cells, the Gleason Morisita index for a slide 

was computed. Specifically, the Gleason Morisita index is defined as 
the Morisita index26 between epithelial cells belonging to the primary 
and secondary Gleason patterns of the section, as assessed by the 
automated classifier. Polygons for the Morisita index were generated 
using Voronoi tessellation. Sections where the primary and second-
ary patterns were assessed to be the same (for instance, 4 + 4), the 
Gleason Morisita index was considered to be 0. At the patient level, 
the Gleason Morisita index was computed as the median value across 
all slides from the participant that were determined to be cancer by 
the automated classifier.

To evaluate the robustness of Gleason Morisita to different imple-
mentations of the method, we also propose two alternatives: (1) com-
pute the Morisita index directly on the Gleason segmentation maps 
rather than on the subclassified epithelial cells and (2) use a 50 × 50 
grid of rectangular regions rather than a set of Voronoi regions. Both 
alternative metrics are seen to be well correlated with the version of the 
metric proposed in this work and also produced similar predictions for 
time to recurrence (Extended Data Fig. 7). For more details, please refer 
to the Computational Analysis Supplementary Note.

Comparison of bioinformatics and computational 
histopathology
Continuous Gleason of a section was calculated as the mean of the 
automated Gleason segmentation weighted by the raw number of 
segmented pixels of each pattern (Gleason 3, 4 or 5). Chromosome 
arms were considered gained or lost if their median copy number 
was greater than or less than the baseline copy number, respectively. 
Mixed effects linear models were produced for each chromosome arm, 
for gains and losses separately, with neutral (baseline) copy number 
as the reference. This was performed using both continuous Glea-
son and Tumor-Immune Morisita as dependent variables in separate 
analyses with participants as a group effect term. Models were only 
produced if there were more than ten observations of the loss or gain. 
The P values were recorded for the gradient (m) and were adjusted 
using the Benjamini–Hochberg method for each dependent variable 
separately. The TSG-OG scores for each chromosome arm were derived 
from Davoli et al.31. The Joint Diversity metric was calculated as the 
square root of the Spearman metric multiplied by the patient-level  
Gleason Morisita.

Outcome analysis
Outcome analysis was only performed on participants from the IMRT 
trial to ensure clinical homogeneity. For genomic analysis, only par-
ticipants with three or more low-coverage WGS samples with a PGA of 
≥0.01 were used to ensure that all metrics would be available to test. 
When considering mutation data, participants with fewer than three 
tumor samples with targeted panel data were also excluded. For com-
putational pathology analysis, all samples assessed as benign by the 
automated classifier were excluded. The R package survival was used 
to perform the outcome analysis, and the package survminer was used 
to generate forest plots.

Univariate analysis
To determine the metrics to be used in the multivariate CPH model, 
candidate metrics were first tested in a univariate CPH model. DNA 
damage mutations were tested by their clonality status using wild type 
as a reference. For mPGA, maximum PGA, lossness, total events and 
number of subclonal events, the natural log of the metric was used. 
For subclonality, the exponent of the metric was used. For all other 
continuous metrics, the raw value of the metric was used. All continu-
ous metrics were also tested as binary variables in a univariate model 
by splitting the cohort at a chosen threshold value. Spearman was 
split at the upper tertile, and all other metrics were split at the median. 
Metrics with a P value of <0.1 were included in the multivariate analysis 
per outcome. In the event that both the continuous and binary version 
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of the metric qualified, only the continuous variable was included in 
the multivariate model.

Multivariate analysis
Qualifying metrics were then included in a multivariate Cox model 
alongside clinical covariates (PSA > 20 ng ml–1, ISUP grade group 
(reviewing pathologist), T3+ and N1+) and number of samples per 
participant. In the sequencing cohort, this was defined as the number 
of samples with a PGA of ≥0.01. In the imaging cohort, this was defined 
as the number of samples graded as cancer by the automated classifier. 
All continuous variables are linearly rescaled such that the 5th and 95th 
percentiles have values of 0 and 1, respectively. ISUP grade groups, both 
according to the reviewing pathologist and the automated classifier, 
used grade group 5 as the reference. To avoid potential issues relating 
to variable dependence, ISUP grade group (automated classifier) was 
tested in a separate multivariate model, with Gleason Morisita and ISUP 
grade group (reviewing pathologist) excluded.

Statistical analysis
All statistical analyses related to the genomics data were performed 
in R. The lmerTest package was used to perform mixed effects linear 
modeling. All box plots show the center line as the median and box 
limits as upper and lower quartiles. Whiskers extend no further than 
1.5× interquartile range past the box limits, and points represent 
outliers. Forest plots show 95% CI of HRs, and the covariate P values 
are derived from a Wald test. All statistical tests were two sided unless 
otherwise stated.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Additional analyzed data are available on Mendeley (https://data.men-
deley.com/datasets/cd9cf2fb76). Sequence data have been deposited 
at the European Genome–Phenome Archive (EGA), which is hosted by 
the EBI and the CRG, under accession numbers EGAS00001006096 
(tumor data) and EGAS00001006098 (normal data). Further infor-
mation about EGA can be found on https://ega-archive.org. Access to 
the anonymized clinical data and digitized H&E slide images from the 
study can be granted through a request to the corresponding author 
and completion of a Data Access Form. Proposals will be reviewed 
by the corresponding author and Trial Translational Group on the 
basis of scientific merit, ethical review, available resources and regu-
latory requirements. Once approved, requested data will be made 
available for the proposed work. A steering committee will have the 
right to review and comment on any draft papers based on the data 
before publication. Source data are provided with this paper. Source 
data for Supplementary Note Fig. 1 are available at the Mendeley  
link above.

Code availability
Code is available at GitHub at https://github.com/stars/ntrahearn/ 
lists/forecast.
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Extended Data Fig. 1 | Genomic analysis of locally-advanced prostate cancer. 
(A) Estimates of per-gene dN/dS for missense mutations only. dN/dS maximum 
likelihood estimates are calculated per gene by dNdScv. Intervals represent 
95% confidence level, the bars represent the maximum likelihood estimate and 
dotted line represents dNdS = 1 (neutral). Missense mutations are positively 
selected in SPOP, TP53 and FOXA1 as the lower bounds of the intervals are greater 
than 1. (B) Estimates of per-gene dN/dS for truncating mutations only. Intervals 
represent 95% confidence level, the bars represent the maximum likelihood 
estimate and dotted line represents dNdS = 1 (neutral). Truncating mutations 
are positively selected in CDKN1B and TP53. Number of mutation types per gene 
are provided in source material. (C) A heatmap of per sample absolute copy 
number calls. Chromosomes are represented on the x-axis and samples are 
grouped by participant on the y-axis, separated by lines (n = 609 samples, n = 114 
participants). Copy numbers are not normalised relative to baseline ploidy. 

(D) DNA damage mutations versus mean PGA. Boxplots represent mean PGA 
(mPGA) separated based on the clonality of mutations involved in DNA damage 
response (TP53, ATM, BRCA1/2, CDK12, PALB2). The status is considered clonal 
if any of the mutations are detected in all samples. mPGA is significantly higher 
in participants with a clonal DNA damage mutation compared to participants 
with no DNA damage mutations (2-sided t-test, standard error = 0.055, d.f. = 10.1, 
t = 2.94). Mutations are split into clonal (n = 10 participants), subclonal (n = 13 
participants) and wild-type (n = 75 participants). Boxplots show centre line as 
median, box limits as upper and lower quartiles, whiskers extend no further 
than 1.5x interquartile range past the box limits and points represent outliers. 
(E) Distribution of Spearman values for cohort (n = 106 participants) used for 
outcome analysis displays a long tail of high values that are discriminated by a 
threshold of the upper tertile (dotted line).
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Extended Data Fig. 2 | Time to recurrence analysis of genomic metrics. 
(A) Participants are split between those with >1 mutated gene on the panel 
(red, n = 29 participants) and those with 1 or 0 (grey, n = 66 participants). This 
threshold produced the best split of the data in time to recurrence analysis.  
(B) Participants are split by the median mPGA. Participants with high mPGA  
(red, n = 53 participants) do not have significantly shorter time to recurrence 
than those with low mPGA (grey, n = 53 participants). (C) Participants are split by 
the median max PGA. Participants with high max PGA (red, n = 53 participants)  
do not have significantly shorter time to recurrence than those with low max  
PGA (grey, n = 53 participants). (D) Participants are split between those that  
had a subclonal mutation on the driver gene panel (red, n = 38 participants)  
and those without (grey, n = 57 participants). KMT2C and KMT2D were excluded 
from this analysis. (E) Participant with an amplification in MYC and/or FGFR1  

(red, n = 5 participants) did not have significantly different time to recurrence 
than those with an absence of either amplification (grey, n = 101 participants). 
All p values are calculated using a log-rank test. (F) Participants with strong 
sidedness (greater clustering of right and left regions across the MEDICC2 
tree, lambda > 0.8, red, n = 36 participants) show a significantly shorter 
time to recurrence (log-rank test) than the remaining participants for which 
phylogenetic signal analysis was possible (grey, n = 31 participants). (G) Cox 
proportional hazards (CPH) model of time to recurrence using clinical co-
variates, phylosig sidedness classification and Spearman (n = 67 participants). 
Forest plot shows 95% confidence interval of hazard ratios, and the covariate 
P values, derived from a Wald test (*P < 0.05, ** P < 0.01, ***P < 0.001). Hazard 
ratio for Spearman represents the increase in hazard between the 5th and 95th 
percentile values (within the Sequencing Cohort).
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Extended Data Fig. 3 | Time to metastasis analysis of genomic metrics.  
(A) Participants with a high number of events (greater than median, red, n = 50 
participants) did not have a significantly shorter time to metastasis than those 
with fewer events (grey, n = 56 participants). (B) Participants split by the upper 
tertile of the Spearman metric (red, n = 35 participants) and the lower two 
tertiles (grey, n = 71 participants). (C) Participants are split by the median mPGA. 
Participants with high mPGA (red, n = 53 participants) do not have significantly 
shorter time to metastasis than those with low mPGA (grey, n = 53 participants). 
(D) Participants are split by the median max PGA. Participants with high max PGA 
(red, n = 53 participants) do not have significantly shorter time to metastasis 
than those with low max PGA (grey, n = 53 participants). (E) Participants are split 
between those that had a subclonal mutation on the driver gene panel  
(red, n = 38 participants) and those without (grey, n = 57 participants). KMT2C 

and KMT2D were excluded from this analysis. (F) Participants are split between 
those with >1 mutated gene on the panel (red, n = 29 participants) and those with 
1 or 0 (grey, n = 66 participants). (G) Participants split equally to Fig. 5G. Double 
heterogeneous participants (red, n = 17 participants) had a significantly shorter 
time to metastasis than the rest (grey, n = 89 participants, P = 0.0497). P values 
are calculated using a log-rank test. (H) CPH model, using clinical co-variates and 
genomic metrics with p < 0.1 in a univariate CPH model, for time to metastasis. 
(I) Cox proportional hazards (CPH) model, using clinical co-variates and Joint 
Diversity metric, for time to metastasis. Forest plots show 95% confidence 
interval of hazard ratios, and the covariate P values, derived from a Wald test 
(*P < 0.05, **P < 0.01, ***P < 0.001). Hazard ratios for Lossness and Joint Diversity 
represent the increase in hazard between their 5th and 95th percentile values 
(within the Sequencing Cohort).
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Extended Data Fig. 6 | Supplementary Cox proportional hazards (CPH) 
models from Digital Pathology analysis. (A) Time to metastasis using clinical 
co-variates and Gleason Morisita index (Imaging Cohort, n = 250 participants). 
Increased Gleason Morisita index is significant associated with shorter time 
to recurrence (p < 0.05), in line with what is seen in time to recurrence (Fig. 
4E). Hazard ratio for Gleason Morisita index represents the increase in hazard 
between the 5th and 95th percentile values (within the Imaging Cohort). (B) Time 
to recurrence using clinical co-variates, presence of Invasive Ductal Pattern, and 
Gleason Morisita index (Imaging Cohort, n = 250 participants). Both Gleason 
Morisita index and Invasive Ductal Pattern are independently significant 
predictors of risk of patient recurrence (p < 0.05). Presence of Invasive Ductal 
Pattern was identified at a per-patient level by Reviewing Pathologist. Hazard 
ratio for Gleason Morisita index represents the increase in hazard between 
the 5th and 95th percentile values (within the Imaging Cohort). (C) Time to 
recurrence, including clinical covariates and Reviewing Pathologist’s grade 

grouping (Imaging Cohort, n = 250 participants). Model hazard ratios suggest a 
decreasing risk of recurrence as grade group decreases, with respect to reference 
group 5, albeit without significance. (D) Time to recurrence, including clinical 
covariates and grade grouping from automated classifier (Imaging Cohort, 
n = 250 participants). Grade groups 3 and 4 show significantly lower risk of 
recurrence (P = 0.0164 and P = 0.0214, respectively) compared to reference 
group 5. (E) Time to metastasis, including clinical covariates and Reviewing 
Pathologist’s grade grouping (Imaging Cohort, n = 250 participants). There is 
no clear trend for grade group. (F) Cox model of time to metastasis, including 
clinical covariates and grade grouping from automated classifier (Imaging 
Cohort, n = 250 participants). Model hazard ratios suggest a decreasing risk of 
metastasis from groups 3–5, albeit without significance. All forest plots show 95% 
confidence interval of hazard ratios and the covariate P values, derived from a 
Wald test (*P < 0.05, **P < 0.01, ***P < 0.001).
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Extended Data Fig. 7 | Evaluation of the robustness of Gleason Morisita index. 
To evaluate the robustness of Gleason Morisita index, two comparisons are made: 
balance of epithelial cells vs. balance of segmented pixels (A, B), and Voronoi 
sub-regions vs. rectangular subregions (C, D). (A) Scatter plot comparing patient-
level Gleason Morisita indices from the cell and segmentation-based metrics. 
The two metrics are well correlated, with a Pearson correlation of 0.82 (Imaging 
Cohort, n = 250 participants, d.f. = 248, P = 5.17 × 10−62). (B) KM curve of time to 
recurrence for segmentation-based Gleason Morisita index, split by median. 
Segmentation-based metric is also a significant predictor of time to recurrence 
(Imaging Cohort, n = 250 participants, two-sided log-rank test, χ2 = 10.43, d.f. = 1,  

P = 0.00039), with the pattern of survival closely resembling that of the 
cell-based metric (Fig. 4D). (C) Scatter plot comparing patient-level Gleason 
Morisita indices from the Voronoi and rectangular regions. The two metrics 
are well correlated, with a Pearson correlation of 0.86 (Imaging Cohort, n = 250 
participants, d.f. = 248, P = 4.3 × 10−73). (D) KM curve of time to recurrence for 
Gleason Morisita index from rectangular regions, split by median. Rectangular 
region metric is also a significant predictor of time to recurrence (Imaging 
Cohort, n = 250 participants, two-sided log-rank test, χ2 = 5.94, d.f. = 1, 
P = 0.0035), with the pattern of survival closely resembling that of the Voronoi 
region metric (Fig. 4D).
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Extended Data Fig. 8 | Univariate KM curves of time to metastasis for Gleason 
grading and Gleason Morisita. (A) Gleason grading from original reporting 
pathologists (Imaging Cohort, n = 250 participants, two-sided log-rank test, 
χ2 = 7.05, d.f. = 3, P = 0.27). (B) Gleason grading from reviewing pathologist 
(Imaging Cohort, n = 250 participants, two-sided log-rank test, χ2 = 2.28, d.f. = 3, 

P = 0.59). (C) Gleason grading from automated classifier (Imaging Cohort, n = 250 
participants, two-sided log-rank test, χ2 = 5.83, d.f. = 3, P = 0.12). (D) Gleason 
Morisita index, split by median. Only Gleason Morisita index shows a significant 
difference in time to metastasis (Imaging Cohort, n = 250 participants, two-sided 
log-rank test, χ2 = 5.17, d.f. = 1, P = 0.023).
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Extended Data Fig. 9 | Associations of genomic markers with Digital 
Pathology analysis. (A) Comparison of continuous Gleason values (n = 106 
participants) and the total number of phylogenetic CNA events. Trees with more 
events had a greater continuous Gleason value (linear model, 2-sided t-test on 
gradient, estimate = 63.7, standard error = 17.36, t = 3.67, d.f. = 104). Shaded area 
represents 95% confidence interval. (B) Association of TSG-OG score and the 
correlation of chromosome arm changes with continuous Gleason. Each data 
point represents the TSG-OG score (higher indicates more oncogene rich, lower 
indicates more tumour suppressor rich, Davoli et al.31) for a chromosome arm. 
Arms are then categorised according to if the test compared a gain or loss of the 
arm to the baseline level. Values are further categorised by whether the arm gain 
or loss is associated with no change in continuous Gleason (None, gain n = 18 
arms, loss n = 20 arms), a reduction in continuous Gleason (Negative, loss n = 2 
arms) or an increase in continuous Gleason (Positive, gain n = 9 arms, loss n = 9 
arms). P-values are derived from one sided t-tests (gain, standard error = 0.71, 
d.f. = 18.6, t = −1.5; loss, standard error = 0.67, d.f. = 14, t = 1.1). Boxplots show 
centre line as median, box limits as upper and lower quartiles, whiskers extend 
no further than 1.5x interquartile range past the box limits and points represent 
outliers. (C) Samples present in the upper two quartiles (n = 138 samples for each 

quartile) of PGA values are associated with reduced Tumour-Immune Morisita 
when separately compared to the first two quartiles combined (2-sided Mann-
Whitney U tests, W = 15312, 3rd Quartile; W = 14728, 4th Quartile). Boxplots show 
centre line as median, box limits as upper and lower quartiles, whiskers extend 
no further than 1.5x interquartile range past the box limits and points represent 
outliers. (D) Chromosome 6p loss (n = 20 samples) is associated with a lower 
Tumour-Immune Morisita compared to those with baseline CN (n = 516 samples). 
Linear mixed effects model, 2-sided t-test on gradient, estimate = −0.16, standard 
error = 0.04, d.f. = 458, t = −3.8. P-value is not adjusted for multiple hypothesis 
testing. Boxplots show centre line as median, box limits as upper and lower 
quartiles, whiskers extend no further than 1.5x interquartile range past the box 
limits and points represent outliers. (E) Chromosome 6p loss samples (n = 20 
samples) have a significantly lower percentage of immune cells than those with 
a baseline chromosome 6p copy number (n = 516 samples, linear mixed effects 
model, 2-sided t-test on gradient, standard error = 2.01, d.f. = 525, t = −3.1).  
16 samples had a gain in chromosome 6p. Boxplots show centre line as median, 
box limits as upper and lower quartiles, whiskers extend no further than 1.5x 
interquartile range past the box limits and points represent outliers.
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Extended Data Fig. 10 | Supplementary examples of immune profiles in 
the multiplex immunohistochemistry cohort. Each image pair shows the 
expression of immunofluorescence markers (right), acquired by Phenocycler 
Fusion, with the matched region from H&E staining (left). (A, B) Examples of 
immune hot regions. (C, D) Examples of regions abundant for CD20 (cyan). 

(E, F) Examples of regions abundant for CD68 (green). CD163 (orange) is 
rarely seen, suggesting that these are likely to be solely M1 macrophages. 
Immunohistochemistry experiments were run once following optimisation  
and validation.
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Randomization IMRT: as per Ferreira et al. 2017; DELINEATE: as per Murray et al. 2020.
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data. To further explore associations that were identified in the primary phase, a secondary phase of data analysis was conducted after 
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Marker: CD4, Clone: EPR6855, Catalogue Number: 232170, Lot Number:B360688, Supplier: AKOYA Biosciences, Dilution: 2:200 

Marker: CD31, Clone: EP3095, Catalogue Number: 232172, Lot Number: B360631, Supplier: AKOYA Biosciences, Dilution: 1:200 

Marker: Ki67, Clone: B56, Catalogue Number: 232179, Lot Number:B350899, Supplier: AKOYA Biosciences, Dilution: 1:200 

Marker: PCK, Clone: AE-1/AE-3, Catalogue Number: 232180, Lot Number: B367234, Supplier: AKOYA Biosciences, Dilution: 2:200 

Marker: TP63, Clone: AKYP0111, Catalogue Number: 240179, Lot Number:B363038, Supplier: AKOYA Biosciences, Dilution: 1:200 

Marker: CK18, Clone: EPR1626, Catalogue Number: ab240054, Lot Number: GR3365669-2, Supplier: Abcam, Dilution: 1:200 

Marker: FSP1, Clone: EPR2761(2), Catalogue Number: ab216003, Lot Number: GR317174-7, Supplier: Abcam, Dilution: 1:200 

Marker: CD163, Clone: EDHu-1, Catalogue Number: NB110-40686, Lot Number: 149022B, Supplier: Novus Biologicals, Dilution: 1:200 

Marker: αSMA, Clone: Polyclonal, Catalogue Number: ab5694, Lot Number: GR3356867-4, Supplier: Abcam, Dilution: 1:200 

Marker: Vimentin, Clone: RV202, Catalogue Number: 550513, Lot Number: 6316850, Supplier: BDBiosciences, Dilution: 1:200

Validation CD3e, CD8, CD20, CD4, CD31, Ki-67, PCK and TP63 were purchased as ready to use, conjugated and validated antibodies from AKOYA 

(https://www.akoyabio.com/phenocycler/assays/). Details of AKOYA validation can be found at the following link: https://

www.akoyabio.com/wp-content/uploads/2022/01/Phenocycler_Technical-Note_Validation-of-Commercial_DN-00140.pdf 

 

CK18, FSP1, CD163,  αSMA and Vimentin were purchased as purified antibodies, which required conjugation for use in the 

PhenoCycler Fusion platform. 

 

For conjugated antibodies, validation process was as follows: 

- To ensure the antibody is working under the required conditions and to determine an ideal concentration for each antibody, a 

standard Immunohistochemistry (IHC) assay was run on marker specific positive and negative control tissues.  

- Following a successful IHC assay, the antibodies were conjugated to their assigned barcode. An electrophoresis gel was run to 

validate the conjugation.  

- To ensure that each of the conjugated antibodies could be imaged adequately by the PhenoCycler Fusion, test runs of the individual 

markers and the complete multiplex IHC panel were performed on positive control tissue sections. 
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