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Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-
assembly processes, with more than 50 associated diseases that are mostly uncurable.
Understanding aggregation mechanisms is thus of fundamental importance and goes in
parallel with the structural characterization of the transient oligomers formed during
the process. Oligomers have been proven elusive to high-resolution structural techni-
ques, while the large sizes and long time scales, typical of aggregation processes, have
limited the use of computational methods to date. To surmount these limitations, we
here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging
the knowledge of monomers conformational dynamics and of fibril structures, effi-
ciently captures the essential structural and kinetics aspects of protein aggregation.
Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of
thousands of monomers. The concentration dependence of the simulated kinetics, as
well as the structural features of the resulting fibrils, are in qualitative agreement with
in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a
protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simu-
lations allow the formation of primary nuclei in a sea of transient lower-order oligomers
to be observed over time and at atomic resolution, following their growth and the sub-
sequent secondary nucleation events, until the maturation of multiple fibrils is achieved.
Multi-eGO, combined with the many experimental techniques deployed to study pro-
tein aggregation, can provide the structural basis needed to advance the design of mole-
cules targeting amyloidogenic diseases.

protein aggregation j molecular dynamics j aggregation kinetics j structure-based models j amyloids

Amyloid fibril formation is a highly specific self-assembly process, requiring a large degree
of similarity between the interacting amino acid sequences (1). Amyloids, resulting from
the uncontrolled transition of normally soluble proteins, were originally found to be associ-
ated with neurodegenerative diseases (2, 3). More recently, they have also been associated
with several physiologic functions (4, 5). Amyloid fibrils share a cross-β architecture in
which β-strands are oriented perpendicularly to the fibril axis, allowing the formation of a
dense intermolecular hydrogen bond network with sidechains contributing to both intra-
molecular and intermolecular interactions (6, 7). In vitro, the amyloid fold seems to be
accessible to a large number of, if not all, proteins (ordered or disordered) or even short
sequences of amino acids (8, 9). Thermodynamic considerations, indeed, suggest that
native proteins are metastable species under physiological conditions, with the global free-
energy minimum corresponding to their amyloidogenic state (10).
Protein aggregation into amyloid fibrils is an inherently dynamic process. Many

interconverting species of differing sizes and structures can be populated over multiple
time scales (11). The description of amyloid fibril formation thus requires an under-
standing of the properties of the end states, that is, monomers and fibrils, and of the
different oligomeric species that are transiently populated in between. Remarkably, in
diseases like Parkinson’s, Alzheimer’s, type 2 diabetes mellitus, and cardiac amyloidosis,
some oligomeric species may be the primary pathogenic agents (12–16). Furthermore,
toxic oligomers have been found in model proteins and associated to specific physico-
chemical properties like size and hydrophobicity, although it is not yet clear whether
these are relevant for all amyloidogenic diseases (17–19). Structural approaches based
on solid-state NMR (ssNMR) and cryogenic electron microscopy (cryo-EM) have
revealed the atomic structures of amyloid fibrils formed by different proteins in diverse
conditions (6, 7, 20–22). The aggregation process itself can only be studied at very low
resolution, by aggregation kinetics assays, where experimental conditions are tuned to
induce the in-solution interconversion of protein monomers into amyloid fibrils. Seeds
obtained by previously formed fibrils can also be employed to catalyze the interconver-
sion (23).
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Chemical kinetics analyses provide a framework to dissect the
microscopic mechanisms at play in fibril formation (24). Aggrega-
tion is described by a network of microscopic processes including
primary nucleation and elongation, as well as secondary nucle-
ation processes, such as fragmentation and surface-induced nucle-
ation. By globally fitting multiple, accurate, aggregation kinetic
traces obtained for multiple initial monomer concentrations, it is
possible to estimate the rates for the different microscopic pro-
cesses and use these to interpret the macroscopic observations.
Such analyses have highlighted the preference of proteins associ-
ated with amyloidogenic diseases to aggregate through secondary
nucleation mechanisms, whereas physiological amyloids are pro-
posed to be mainly controlled by primary nucleation (25, 26).
Drug design strategies have been implemented, based on the
kinetic modulation of such mechanisms (27). Nonetheless, despite
its power, chemical kinetics fails to provide detailed structural
information on the species at play during the process.
Given the inherently transient and dynamic nature of the

species populated in an assembly process, molecular dynamics
(MD) simulations naturally complement current experimental
approaches (27, 28). Aggregation kinetics simulations have
mainly been employed to characterize the early events in the
oligomerization of a few peptides at high concentrations,
because of the combination of challenges resulting from system
sizes and relevant time scales. Implicit solvent models have
been employed to mitigate these problems and have allowed
the oligomerization of 20 monomers of Aβ40 and Aβ42 over
hundreds of nanoseconds to be studied (29). Simulating larger
systems over longer time scales requires coarse-grain (CG) mod-
els. Notably, fibrils may, in fact, be formed by tens of thou-
sands of monomers.
CG simulations, with simplified interactions and geometries,

including HP models (30), tube models (31), and lattice mod-
els (32, 33), as well as other minimalistic approaches (34, 35),
have been used to make hypotheses on the general principles of
protein aggregation, also informing chemical kinetics models
(36). A recent overview can be found in ref. 28. In the field of
protein folding simulations, the most adopted CG models
are structure based (SB), also known as G�o models (37–41),
recently reviewed in ref. 38. SB models are an implementation
of the principle of minimal frustration [or the folding funnel
(42)]: Attractive interactions are defined only between amino
acids or atoms that are close in space in the native crystal state;
consequently, the minimum energy configuration is the native
crystal configuration. This allows folding and unfolding transi-
tions to be efficiently studied, by dramatically decreasing the
cost of evaluating interactions and accelerating the overall diffu-
sion in conformational space; for example, the folding time of a pro-
tein can be rescaled from milliseconds to hundreds of nanoseconds.
In keeping with the observation that the amyloid structure is

the global free-energy minimum of a protein at high concentra-
tion (10), we here describe multi-eGO, a hybrid SB model that
includes nonbonded interactions derived from both the dynam-
ics of the soluble protein and the structure of the amyloid fibril,
and transferable bonded interactions that are optimized to
reproduce the results of state-of-the-art explicit solvent molecu-
lar force fields. While SB models, including more than one ref-
erence structure and/or hybrid terms, have been employed to
study differences in protein folding pathways of homolog
proteins (37–41), large conformational changes (43–45), meta-
morphic proteins (46, 47), and the folding upon binding of
disordered proteins with different partners (48, 49), here we
show that multi-eGO can be used to follow the aggregation
of thousands of monomers, as a function of their initial

concentration, at high resolution. Our results are qualitatively
in agreement with experiments and enable the structural inves-
tigation of the aggregation of proteins into amyloid fibrils.

Results

To develop multi-eGO, we used the Transthyretin 105–115
amyloidogenic peptide (TTR105–115) (50, 51). Transthyretin
is a well-studied amyloidogenic protein responsible for both
sporadic and genetic cardiac and systemic amyloidosis (52).
TTR105–115 has often been used as a model system to study
aggregation, and three amyloid polymorphisms have been
determined at atomic resolution by a combination of multiple
techniques including ssNMR and cryo-EM (20). NMR analysis
of monomeric TTR105–115 in solution indicates that it primar-
ily populates a random-coil structure with a low percentage of
turns or helical elements (53). Multi-eGO was built to include
information from the structure or the dynamics of the end
states and uses them to infer the properties of the intermediate
oligomeric states (SI Appendix, Fig. S1). To have a realistic con-
formational ensemble reference of monomeric TTR105–115, we
performed an explicit solvent MD simulation using the a99SB-
disp force field (54). This simulation well represented the
behavior of TTR105–115 in solution, showing a broad flexibility
and sporadic turns, as reported by the radius of gyration distri-
bution and the per-residue contact probability map in Fig. 1,
as well as by a secondary structures populations analysis (SI
Appendix, Fig. S2A), in agreement with previous NMR chemi-
cal shifts measurements (53).

Multi-eGO Reproduces the Conformational Dynamics of TTR105–115

in Solution. Following previous studies on metamorphic pro-
teins (46, 47), we initially defined the multi-GO SB force field,
at all heavy atom (nonhydrogens) resolution, as a combination
of terms obtained from two reference structures (Materials and
Methods), namely, the protein in its native monomeric state
(extracting TTR105–115 coordinates from Protein Data Bank
[PDB] 4TLT, corresponding to the crystal structure of TTR)
and the amyloid fibril (PDB 2M5K) (SI Appendix, Fig. S1). A
multi-GO simulation of a TTR105–115 monomer explored only
extended configurations with an average radius of gyration of 1.
05 nm, in comparison with 0.83 nm of the a99SB-disp one
(Fig. 1A) and the conformational ensemble did not show long
range contacts (SI Appendix, Fig. S3A). The multi-GO ensem-
ble described above did not capture the conformational free-
dom of the monomeric state, and consequently may not
capture that of early intermediate oligomeric states.

To increase the descriptive power of the model, we intro-
duced multi-eGO as a hybrid transferable/SB model (Materials
and Methods). The most relevant differences are that all bonded
interactions, and, in particular, proper dihedral angles, are trans-
ferable, while nonbonded interactions are learned from a refer-
ence simulation for the monomeric state, that is, the a99SB-disp
force field simulation introduced above, and a reference amyloid
fibril structure (PDB 2M5K). Remarkably, while the multi-GO
simulation explored only extended configurations, the multi-
eGO model could better recapitulate TTR105–115 dynamics in
solution, with an average radius of gyration of 0.90 nm. The
contact probability map for a99SB-disp and multi-eGO, shown
in Fig. 1B, as well as the secondary structures populations analy-
sis in SI Appendix, Fig. S2A, indicate that multi-eGO can also
qualitatively describe the intramolecular transient interactions of
the peptide.
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A qualitative comparison between the interaction energies
of the multi-GO and multi-eGO TTR105–115 models was
obtained, summing all the native pairs strengths for all pairs of
amino acids (SI Appendix, Fig. S3B). This showed limited dif-
ferences in the interaction among residues between the two
models. This is expected, as they are both trained on the same
fibril structure. This analysis suggests that the transferable
bonded interactions of multi-eGO are key to improve the
agreement of the model with the a99SB-disp simulation.

Multi-eGO Can Simulate TTR105–115 Aggregation. Using multi-eGO,
a total of 15 simulations (each involving 4,000 TTR105–115 mono-
mers) as a triplicate of five different concentrations, between 7
and 13 mM, were produced (SI Appendix, legends for Datasets S1

and S2). The resulting aggregation kinetics are shown in Fig. 2A
as the number of monomers forming assemblies, from decamers
to larger ones, at a given time. It should be noted that the time
scale of the simulations is only nominal, and comparisons with
experimental data should consider a scaling factor. Simulations
displayed sigmoidal concentration-dependent kinetics, where an
increase in monomer concentration resulted in a reduction of the
lag phase. We also observed that the variability of the curves
increased inversely with the initial monomer concentration (55).
From the resulting curves, we obtained the half-time, τ1/2, shown
in Fig. 2B, and the growth rate, r, as the slope of the straight line
fitting the region of the curve around τ1/2 (SI Appendix, Fig. S4).
The double log plot of τ1/2 as a function of concentration (Fig.
2B) showed a bilinear trend with a change of slope, the scaling
exponent γ, at concentrations lower than 8.5 mM, suggesting
that, at high monomer concentration, a dominant aggregation
mechanism becomes saturated (56).

To test the ability of multi-eGO to capture differences between
seeded and unseeded aggregation kinetics, we also performed three
seeded simulations at 7 mM by adding a 10-monomer oligomer
seed, obtained from previous 13-mM simulations (compare Multi-
eGO Can Provide Structural Details for TTR105–115 Aggregation
Kinetics, in the following). As shown in Fig. 2C, the addition of
the seed led to a marked decrease of τ1/2 and a reduction of its var-
iability. The observed growth rate r, instead, remained the same as
for the unseeded simulations performed at the same concentration
(i.e., 7 mM).

Multi-eGO TTR105–115 Simulations Can Form Polymorphic Fibrils.
The 18 simulations performed at five different concentrations
yielded a total of 41 distinct fibrils. These fibrils grew in length

Fig. 1. TTR105–115 peptide monomer dynamics. (A) Gyration radius distribu-
tion of TTR105–115 peptide conformational ensemble according to multi-GO
(green), multi-eGO (orange), and a99SB-disp (blue) simulations. The multi-GO
distribution describes an open conformation with a single peak at 1.07 nm.
The a99SB-disp simulation shows multiple peaks over a broad range of
values. The multi-eGO distribution is shifted toward more extended confor-
mations than a99SB-disp but still shows a broad range of values in qualitative
agreement with the former. (B) Per-residue probability contact map for the
a99SB-disp (Lower Left) and multi-eGO (Upper Right) simulations.

Fig. 2. (A) Simulated aggregation kinetics. Curves represent the number of
monomers involved in an aggregate of at least 10 monomers as a function of
nominal simulation time. See also SI Appendix, legends for Movies S1 and S2.
(B) Log–log plot of the half-times, τ1/2, as a function of the initial monomer
concentration. The points are fitted with two straight lines in the range 7 mM
to 8.5 mM and 8.5 mM to 13 mM. (C) Aggregation kinetics of seeded and
unseeded 7-mM simulations. Curves represent the number of monomers
involved in an aggregate of at least 10 monomers as a function of nominal
simulation time. The addition of the seeds reduces τ1/2 and makes it less vari-
able compared to the unseeded simulations, leaving the slope of the growth
is unaffected. See also SI Appendix, legend for Movie S3.
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from 163 Å to 515 Å, with an average length of 360 Å (Table 1
and SI Appendix, Table S1). All fibrils displayed the expected
cross-β topology with a parallel and in-register stacking of
chains in the same β-sheet as shown in Fig. 3. The average dis-
tance between β-strands in the cross β-sheet was 4.7 Å. Facing
β-sheets were antiparallel and shifted by 2.5 Å, resulting in the
even-numbered sidechains of one peptide interacting with the
odd-numbered sidechains of the two opposite peptides. Accord-
ing to previous nomenclature (20), we define a protofilament as
a structure made up of two antiparallel β-sheets; the further
addition of two β-sheets in a protofilament determines a fila-
ment (Fig. 3A). The β-sheet content in a filament was shown
to vary from 4 to 17, with an average of 10. Furthermore, fila-
ments that grew in the peptide chain direction through interac-
tions between the N- and C-terminal residues (Fig. 3B), could
form a fibril. This head-to-tail interaction resulted from the
Y105 sidechain interacting with both the S115 carboxyl group
and the Y105 sidechain of the facing β-sheet. The number of
filaments in a fibril varied from two to six, with an average of
four. Mature fibrils displayed a twist per monomer between
�0.1° and �0.85°, measured as the torsion angle between two
vectors obtained from Y105-Cα and S115-Cα carbons of sub-
sequent molecules in the same β-sheet. Single filaments dis-
played a more pronounced twist of �5° compared to mature
fibrils (Fig. 3). At higher concentration, we saw the formation
of more fibrils, indicating that more nuclei are produced than
at lower concentration (SI Appendix, Fig. S5). Since the mono-
mer number was fixed at 4,000, the fibrils grown at higher con-
centration were shorter in length than the ones obtained at
lower concentration (Table 1 and SI Appendix, Table S1). At
higher concentration, we also observed fibrils adhering together
(Fig. 3C). Again, given the fixed and relatively small number of
monomers, some protofilaments were not able to become
fibrils, due to monomer depletion. We did not observe any spe-
cific differences in the fibrils formed at 7 mM in seeded and
unseeded simulations.
Compared to the reference model determined by ssNMR

and cryo-EM (20), the only remarkable difference is that our
fibrils do not display any wet cavity within filaments. The cav-
ity in the reference model accommodates structured water mole-
cules that interact with exposed sidechains. In our model, all
sidechains in a filament are tightly packed; therefore, we also
observed a variable number of β-sheets in a filament, whereas the
reference model always contained four. Indeed, there is evidence of
such variations (57, 58). The reference model illustrates a structural
polymorphism, based on the number of filaments, from doublet to
quadruplet. In our simulations, we saw the same polymorphism
but extended to six filaments in a single fibril.

Finally, we compared the multi-eGO and multi-GO aggrega-
tion kinetics by performing four multi-GO simulations of
TTR105–115 aggregation as function of the concentration (SI
Appendix, Fig. S2B). Multi-GO quickly formed aggregates at
concentrations, between 2 and 0.5 mM, that are lower than
those used in multi-eGO simulations and experiments, that is,
10 mM to 20 mM (53). Furthermore, the multi-GO amyloid
fibrils grew laterally instead of elongating (SI Appendix, Fig.
S2C), indicating that multi-GO cannot correctly capture the
TTR105–115 aggregation process.

TTR105–115 In Vitro Aggregation Experiments Recapitulate
Multi-eGO Simulations. To validate the in silico aggregation
kinetics, we performed aggregation assays monitored by Thio-
flavin T (ThT) fluorescence (Fig. 4). The TTR105–115 peptide
was incubated at 37 °C at different concentrations (i.e., 13, 10,
and 7 mM), and ThT fluorescence was monitored over 150 h.
ThT fluorescence increased over time, indicating (Fig. 4A)
concentration-dependent aggregation kinetics. The lag phase at
13 mM was considerably shorter compared to at 10 mM or
7 mM. The fluorescence plateau was reached faster in the most
concentrated samples, whereas, at the lowest concentration
tested (i.e., 7mM), the plateau was not observed during the
overall incubation time. The mean values of three independent
experiments were subjected to nonlinear regression analysis,
using a Boltzmann sigmoidal equation. From the regression, we
derived the experimental τ1/2 of 33.7 ± 4.3 h, 62.0 ± 16.6 h,
and 125.7 ± 10.2 h for 13, 10, and 7 mM, respectively. Fig. 4B
shows a linear correlation between peptide concentrations and
half-times in a double log plot, with the slope γ comparable to
that obtained from simulations in the range 8.5 mM to 13 mM
(namely, �2.0 and �2.2 for the experiments and simulations,
respectively; compare Fig. 2B). This is of note given the relative
simplicity of our model and the fact that it does not include any
specific information about the kinetics of the process.

The aggregates of the TTR105–115 peptide obtained by the
aggregation kinetics experiments were negatively stained and ana-
lyzed by transmission electron microscopy (TEM). As reported in
Fig. 4, we observed remarkable polymorphism in all conditions
tested. Morphological analysis identified six main different types
of structures (Fig. 4 C–E and SI Appendix, Table S2). The mean
width at the cross-over is 37 ± 4 Å, as previously observed by
Fitzpatrick et al. (20). The fibrils cross-over in the six poly-
morphs ranges from 1,041 ± 24 Å to 1,185 ± 43 Å; the diame-
ter varies considerably, ranging from 115 ± 11 Å to 326 ± 21 Å.
Representative pictures of each identified morphology are
reported in Fig. 4F, and the main fibril parameters are summa-
rized in SI Appendix, Table S2. Notably, the observed widths

Table 1. Summary of the main structural features of the fibrils discussed in this work

Source Number of fibrils Length (Å)
Number of β-sheets

in filaments
Number of filaments

in fibril Twist (deg)

13 mM 16 163 to 368 4 to 10 2 to 5 �0.18 to �0.73
11.5 mM 9 210 to 390 5 to 13 2 to 6 �0.23 to �0.85
10 mM 6 170 to 415 4 to 9 2 to 6 �0.2 to �0.79
8.5 mM 4 260 to 515 6 to 14 2 to 4 �0.15 to �0.54
7 mM 3 435 to 480 7 to 17 4 to 6 �0.11 to �0.48
7 mM seeded 3 443 to 485 13 to 14 5 �0.10 to �0.80
ssNMR model 4 2 to 4 �0.85
TEM* 4 3 to 8 �0.71 to �0.81

The first six rows indicate fibrils formed in silico in our multi-eGO simulations; ssNMR is for the fibrils corresponding to PDB codes 2M5K, 2M5M, and 3ZPK; and TEM are those observed
in vitro in this work.
*Values for TEM are estimates; SI Appendix, Table S2.
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between cross-overs correspond to multiples of the peptide chain
length, suggesting the presence of up to eight aligned filaments (SI
Appendix, Table S2).

Multi-eGO Can Provide Structural Details for TTR105–115 Aggregation
Kinetics. Having shown that multi-eGO could simulate the aggre-
gation of TTR105–115 from monomers to fibrils, with structural
and kinetic features compatible with experimental data, it was pos-
sible to observe the structures populated along the self-assembly
process in detail. In Fig. 5A and SI Appendix, Fig. S6, the number
of monomers, dimers, and trimers in our aggregation kinetics are
shown as a function of time. We observed that the number of free
monomers displayed a sigmoidal behavior, symmetric with respect
to that of the fibril size. The number of dimers and trimers
showed, instead, a noisy but relatively constant trend until the end
of the lag phase (tlag), defined as the intersection between a straight
line, tangent to the aggregation kinetic curve at τ1/2 with slope r,
and the time axis, and quickly dropped after this time. This sug-
gests that, once fibrils start to grow, most monomers contributed
to the fibril growth instead of forming new oligomers, and oligom-
ers formed before tlag dissolve over time.
The time-resolved distribution of oligomer sizes of the first

13-mM simulation before tlag (SI Appendix, Fig. S7 for all
simulations) is shown in Fig. 5B. This analysis allows the emer-
gence and growth of primary nuclei to be followed and suggests
that fibrils stem from primary nuclei composed of around

10 monomers. Assuming the simulations prior to tlag at equilib-
rium, and thus averaging over this time window, we observed
how, at all concentrations, dimers and trimers were the most
represented oligomeric species, with populations in the 5 to 10%
and 0.5 to 2% range, respectively. Higher-order oligomers
were scarcely populated, stressing the need to simulate large
numbers of monomers to study aggregation (compare Fig. 5C).
Interestingly, apart from their populations, oligomers do not
show other concentration-dependent properties (SI Appendix,
legend for Dataset S3). In SI Appendix, Fig. S8 are shown the
distributions of the radius of gyration, and the average
β-populations per residue, of oligomers, ranging from dimers to
decamers, populated in multi-eGO aggregation kinetics before
tlag. The analyses indicate that dimers, trimers, and tetramers are
extended and disordered; around 20% of pentamers can form
intermolecular β-sheets, and this fraction increases with higher
oligomer orders. The increase in β-structure is also reflected by the
distributions of the radius of gyrations that become less and less
broadly distributed (SI Appendix, Fig. S8).

The structures of oligomers involved in primary nucleation
are shown in Fig. 5D. All primary nuclei displayed two antipar-
allel β-sheets. Observing the trajectory, we were able to describe
their formation. Free monomers spontaneously assemble into
small oligomers, forming the first β-sheet. Once the β-sheet
reaches a size of five to six monomers, other monomers interact
with the β-sheet surface, triggering the formation of a second

# Filaments

# Filaments

Le
ng

th
# 

-s
he

et
β

A

C

B

Fig. 3. (A) A filament model observed at the end of a simulation. Colors indicate the five different β-sheets composing the filament. (B) Top and side view of
a mature fibril with colors indicating the different filaments. From the top view, it is possible to see a peptide which is about to attach to the fibril and a pro-
tofilament which is perpendicular to the main fibril. (C) Multiple mature fibrils (each represented with a different color) interacting with each other from one
of the 13-mM simulations.
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β-sheet docked by sidechain/sidechain interactions. Once a
primary nucleus is formed, its growth can be followed. Each
β-sheet provides two ends for elongation, so primary nuclei
have four ends. With regards to elongation, peptides generally
dock at the N terminus toward the C terminus as shown in
Fig. 6A. A generally highly twisted, cross-β protofilament
exposes sidechains and termini for secondary nucleation, but
we observed that only the sidechain faces could trigger the for-
mation of further β-sheets, thus forming a filament (Fig. 6B).
The addition of each β-sheet decreased the twist. Filaments,
made up of at least four β-sheets, can further growth, both
through their sidechains faces (Fig. 6B) and through their ter-
mini, as exemplified in Fig. 6C. Growth can occur by N to N
terminus (head-to-head) as well as N to C terminus (head-to-
tail) interactions. Importantly, a newly N to C β-sheet can
grow into a new protofilament, while a newly formed N to N
β-sheet must firstly convert into an N to C sheet before further
growth can occur. A fibril is thus formed when two filaments
are linked head to tail. Remarkably, the formation of new
β-sheets always occurs with monomers sliding on the surface
before eventually docking. At high monomer concentration, we
subsequently observed interactions between fibrils. Fragmentation
events were not observed in any simulations.
To test whether the described mechanism is consistent with the

macroscopic kinetics shown in Fig. 2, we performed a chemical

kinetics analysis of our simulated data using Amylofit (59–61).
Simulations could only be globally fitted using a “multistep sec-
ondary nucleation, unseeded model” as shown in SI Appendix, Fig.
S9. This is compatible with the positive curvature with an
increased slope at lower concentration displayed by τ1/2 in a double
log plot (compare Fig. 2B) that can be interpreted as the saturation
of secondary nucleation (56) at high monomer concentration (e.g.,
all the catalytic fibril surface is occupied by monomers). Further-
more, our seeded simulations did not show variations in the rate
constant r (compare Fig. 2C), supporting the hypothesis that sec-
ondary nucleation is a multistep process with a first step (monomer
attachment on the surface) that is concentration dependent and a
second step (monomers rearrangement on the surface) that is con-
centration independent (56). Amylofit analysis correlates with our
observations where the addition of molecules on the cross-β surface
implies the exploration of different conformations prior to latching
on to and starting to form a new oligomer. Globally, the
TTR105–115 aggregation process described by our simulations is
consistent with the hierarchy proposed by Fitzpatrick et al. (20).

Discussion

Amyloidogenesis is the result of an out-of-equilibrium, concentration-
dependent process; thus, it cannot be easily followed by high-
resolution structural biology techniques (6). Indeed, while NMR,

A B

F I II III IV V VI

C D E

Fig. 4. TTR peptide aggregation kinetics in vitro. (A) Aggregation kinetics of the TTR105–115 peptide at 13, 10, and 7 mM are shown in magenta, orange, and
green, respectively. TTR peptide at 37 °C were obtained by monitoring ThT fluorescence. The mean value of three independent experiments analyzed by
linear regression using Boltzmann sigmoidal equation is reported. (B) Log–log plot of the in vitro half-times, τ1/2, as a function of the initial monomer concen-
tration. (C–E) Electron micrographs of fibrils formed by TTR105–115 peptide incubated at 13 mM (C), 10 mM (D), or 7 mM (E) at 37 °C for 150 h. (Scale bars,
100 nm, C; 200 nm, D and E.) (F) Representative TEM images of the six main fibrillar morphologies. The detailed structural parameters of each morphology
are reported in SI Appendix, Table S2. (Scale bars: 10 nm.)
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X-ray crystallography, and cryo-EM have been instrumental to
investigating, at high resolution, the early steps associated with
protein misfolding, and the structures of resulting amyloid fibrils,
they have only provided low-resolution information about the
transient oligomers populated along the process (62, 63). In this
respect, most of the fundamental mechanical understanding of
protein aggregation is based on the combination of multiple low-
resolution techniques, in particular, aggregation kinetics studied
by ThT fluorescence, and chemical kinetics analysis (24).

MD simulations could provide the resolution, in time and
space, to observe the emergence of oligomers, nuclei, and fibrils
from a solution of monomeric proteins (64). This would
greatly assist the understanding of the determinants of the dif-
ferent aggregation mechanisms at play, the observation of the
effect of mutations, and, subsequently, the SB design of drugs
targeting specific oligomeric species. Unfortunately, computer
power is far from being able to enable such simulations, using
conventional classical mechanics transferable force fields (64).

Time (ns)

Dimers
# 

M
ol

ec
ul

es

A B

O
lig

om
er

 s
iz

e
(#

 m
on

om
er

s)

Time (ns)

P
op

ul
at

io
n

Monomers

# 
M

ol
ec

ul
es

Trimers

# 
M

ol
ec

ul
es

D

C

Fig. 5. (A) Number of monomers, dimers, and trimers over time of the first 13-mM simulation. The tlag (solid thick line) and τ1/2 (dashed thin line) are
reported in each plot. The monomer decrease is symmetrical compared to fibril growth (compare Fig. 2A). The number of dimers and trimers is relatively
constant until tlag and quickly drops after this time. (B) Time-resolved evolution of oligomer order of the first 13-mM simulation before tlag. (C) Oligomer
order populations in the time window from zero to tlag and averaged over the three replicates. The different colors represent the different concentrations,
while the error bars represent the SD over the three simulations. In this time window, only monomers and dimers are significantly populated (C); nonethe-
less, one can observe the emergence of two fibrils (B). (D) Five representative structures of primary nuclei extracted from five different simulations. The
β-sheets colored in blue, representing the initial oligomer, are stabilized as primary nuclei by interacting with the second β-sheet, colored in red.

Secondary
Nucleation

Secondary

Nucleation

Elongation Secondary

Nucleation

A B

C

Fig. 6. Fibril growth secondary processes. (A) Elongation: the docking of a single monomer in red at one end of a β-sheet in blue. (B and C) Surface-induced
secondary nucleation can occur both on the front surface of a β-sheet (B) and on the side surface (C). Peptides can slide on the surface before locking. At
least three peptides are required to form a secondary nucleus.
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Simulations have thus been employed to study the oligomeriza-
tion of a few peptides (29, 65) and the interactions of peptides
with preformed fibrils (66), and, in most cases, to understand
the determinants of protein aggregation by only studying pro-
tein monomers (67–72). These studies, while valuable, fall
short in providing indications about oligomers that are, by their
nature, extremely unlikely and short lived. Alternatively, CG
simulations have been used to investigate the general principles
of protein aggregation, but without providing system specific
information (28, 30–36).
In this study, we set out to develop a simplified force field

that can allow protein aggregation, comprising thousands of
monomers, to be studied with current state-of-the-art comput-
ing resources. Our force field builds on the success of SB (G�o)
models to study protein folding and binding (38, 41, 48, 73,
74). The multi-eGO force field introduced here is 1) at atomic
resolution (excluding hydrogens); 2) locally transferable, with
bonded and excluded volume interactions derived from a trans-
ferable force field or optimized consequently; and 3) structure
(or ensemble) based using multiple references and symmetrized
so that, once an interacting pair is defined, this can be formed
both intramolecularly as well as intermolecularly. We have
shown, in Fig. 1, that this combination can describe the confor-
mational ensemble of a disordered peptide, in qualitative agree-
ment with more-accurate conventional explicit solvent MD
simulations. Most importantly, multi-eGO can describe the
aggregation kinetics of thousands of monomers, showing
concentration-dependent features that are compatible with
experimental data (Figs. 2–4). Indeed, the comparison of the
scaling exponents γ derived from experimental and simulated
τ1/2 data (Fig. 2B and Fig. 4B) showed comparable values, con-
firming the robustness of the model, with a difference observed
only at the lowest concentration. TEM morphological analysis
of the fibrils highlighted a remarkable degree of polymorphism.
Specifically, we classified six main fibril morphologies with
highly variable cross-over and width (Fig. 4F and SI Appendix,
Table S2). These data indicate that each fibril is formed by
three to eight filaments, in agreement with in silico observed
fibrils (Fig. 3, Table 1, and SI Appendix, Tables S1 and S2).
On the contrary, all morphologies share a mean width at the
cross-over compatible with previous measurements and associ-
ated with a hydrated cavity (20) that is not observed in silico,
indicating that future improvements should try to better account
for solvation effects that may only be indirectly captured by our
native pair interactions (41).
Simulations can be subsequently used to formulate hypothe-

ses on the oligomeric species populated along the process and
provide a structural model for the mechanisms of primary and
secondary nucleation. Interestingly, we can show how primary
nuclei are on the order of 10 monomers and organized into
two opposed β-sheets (Fig. 5D). These nuclei are populated for
less than 0.1% in the lag phase of the kinetics, in comparison to
dimers and trimers that are populated around 10 and 1%, respec-
tively (Figs. 5 A–C and SI Appendix, Figs. S6–S8). This indicates
how relevant it is to simulate aggregation using large monomer
numbers. Oligomer populations drop immediately after the for-
mation of the first nuclei. Following the growth of primary nuclei,
our model also shows that elongation occurs through
the preferential binding of the N-terminal region of the peptide
(Fig. 6). Once a protofilament is formed, secondary nucleation
can be observed. Secondary nucleation arises, initially, by the for-
mation of nuclei on the exposed sidechains of the filament sur-
face; then monomers can slide over the surface and eventually
dock into it, triggering the formation of an additional β-sheet

layer (Fig. 6). Once at least four β-sheet layers are formed, we
observe additional secondary nucleation events, catalyzed by inter-
actions with the N and C termini (Fig. 6). Secondary nucleation
contributes to overall fibril growth, but it does not lead to inde-
pendent oligomer formations that detach to form new protofi-
brils. We hypothesize that this is a size effect, resulting from the
relatively small number of monomers, that are shortly depleted by
fibril formation. Nonetheless, using 4,000 monomers allowed us
to observe multiple primary and secondary nucleation events,
with secondary nucleation remaining the main effect that contrib-
utes to the exponential growth of the fibril mass, suggesting that
this number may be large enough to recapitulate the key processes
occurring during the aggregation process. Notably, the mecha-
nisms inferred by applying a chemical kinetics analysis on the sim-
ulated aggregation kinetics agrees with what was observed in the
simulation (SI Appendix, Fig. S9), suggesting that multi-eGO may
complement and support experimental chemical kinetics models
to provide a high-resolution time-resolved description of the
microscopic processes at play during aggregation (24, 36).

In conclusion, we present the development of multi-eGO, an
SB model tailored to study amyloid-type protein aggregation.
The model is promising in describing, at least qualitatively, the
spontaneous aggregation of monomers into amyloid fibrils, as a
function of the initial monomer concentration, thus providing a
structural picture of the populated oligomeric species and of the
associated aggregation mechanisms. We anticipate that our
model can be combined with methodologies that allow the inte-
gration of simulations with the many complementary experimen-
tal techniques deployed to study protein aggregation (75–78).
Eventually, the computational efficiency of multi-eGO, com-
bined with the availability of amyloid fibrils structures (79, 80),
and of already run—and publicly available—long MD simula-
tions for disease relevant proteins (81, 82), will improve our
understanding of the mechanisms and the associated oligomeric
structures at play in different pathogenic and nonpathogenic
self-assembly processes.

Materials and Methods

MD simulations in this work were performed with GROMACS (83). Models’
parameterization and preparation was developed in python. All scripts, including
ad hoc analysis tools, are freely available on GitHub (https://github.com/
emalacs/multi-eGO/tree/TTR_paper). Simulations are available on Zenodo (SI
Appendix, legends for Datasets S1–S3).

Multi-GO: A Multireference G�o-Like Model for Protein Aggregation.

Multi-GO is a multireference SB force field, at all heavy atom (nonhydrogens)
resolution, defined as a combination of terms obtained from two reference struc-
tures, namely, the protein in its native monomeric state and the amyloid fibril.
This was originally developed to study metamorphic proteins (46, 47) using
SMOG software (84). In this model, distances between covalently bonded atoms,
as well as angles formed by three subsequent covalently bonded atoms, are
derived only from the monomeric structure, because they describe the local
geometry that is generally independent from the specific configuration. Dihedral
angles are defined as in SMOG but obtained from both structures and halving
the force constant to account for the double counting. Native pairs are obtained
from both reference structures following SMOG rules; if two atoms are in contact
in both structures, then the distance is defined as the minimum distance.
All native pairs are symmetrized so that, if atom i and atom j are in contact in
one reference structure, they can interact irrespectively of whether the two
atoms belong to the same monomer or to two different monomers; such an
approach has been successfully employed to describe domain swapped dimers
(85, 86), and is needed to make intramolecular and intermolecular interactions
indistinguishable.
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Multi-eGO: An Enhanced G�o-Like Model for Protein Aggregation. In con-
trast to multi-GO, the multi-eGO force field is partitioned so that, while non-
bonded interactions are SB, bonded interactions are, instead, transferable. The
multi-eGO Hamiltonian, given a reference monomer simulation Xm and a refer-
ence amyloid structure Xa, is defined as

HðX;Xm,XaÞ¼ ∑
bonds

Krðr� r0Þ2þ ∑
angles

Kqðθ�θ0Þ2

þ ∑
improper

Kϕ½1þ cosðnϕ�ϕ0Þ�þ ∑
dihedrals

Kψ ½1þ cosðnψ�ψ0Þ�

þ ∑
native

εn
rij,m,a
rij

� �12

�2
rij,m,a
rij

� �6
" #

þ ∑
others

Cð12Þij

r12ij
,

where the parameters for bonds, angles, and improper and proper dihedrals are
obtained from a transferable force field, specifically, GROMOS54A7 (87), that is
a united atom force field already optimized without nonpolar hydrogens. Thus,
the local geometry no longer depends on the monomeric structure as in multi-
GO. Proper dihedrals terms describing the ϕ and ψ backbone angles were reop-
timized as describe in the next section. Interactions between native pairs are
defined for pairs of atoms farther than one residue along the sequence (if they
belong to the same molecule) and closer than 5.5 Å in either the native mono-
meric simulation or in the amyloid structure. The interactions strength for native
pairs is either εn = ε when a pair is derived from the amyloid structure or heu-
ristically scaled as

εn¼ ε 1� lnP
lnPthreshold

� �
[1]

when derived from a reference MD simulation. Here P is the fraction of frames
in the simulation where the pair of atoms is closer than 5.5 Å, and Pthreshold is a
minimum fraction that should be considered, set to 0.09 in this work. This
approach has the merit of giving an interaction strength equal to ε if the contact
population is one, as for a single structure, and to smoothly go to zero when
reaching the chosen threshold. The interaction length rij,m,a is defined as either
the average pair distance calculated over the P frames or the pair distance in the
amyloid structure. If a native pair is defined multiple times, then only the one
associated with the shorter rij,m,a distance is retained. Care must be taken so
that, if a native interaction is defined between two atoms belonging to the same
or the neighbor residue, this interaction applies only intermolecularly; otherwise,
once a pair interaction is defined in its length and strength, these parameters
are the same irrespective of whether the interaction is formed intermolecularly
or intramolecularly. Finally, excluded volume interactions for all other pairs, that
is, all pairs of atoms that are not native and that are separated by more than
three consecutive covalent bonds (i to i+4), are defined as in the GROMOS54A7
force field. Among the excluded volume interactions, we include all i to i+4
interactions involving a backbone nitrogen; in this case, the C(12) Lennard-Jones
parameter is scaled down by a factor of 0.15. This is needed to effectively
account for the missing amide hydrogen, and it is critical to avoid nonphysical
configurations. Of note is that, in multi-eGO, masses are correctly set to include
hydrogens; also, since force constants obtained from GROMOS54A7 are tuned
to work at room temperature, that is, ∼300 K, ε, the reference interaction
strength between all native pairs, is the only free parameter to be set in a
system-dependent manner.

Multi-eGO Backbone Dihedrals Optimization. In the multi-eGO Hamilto-
nian, the intramolecular interactions between atoms belonging to consecutive
amino acids are described only by transferable terms. Therefore, a dipeptide sim-
ulated with multi-eGO should closely mimic the conformational freedom of a
dipeptide simulated at room temperature using a transferable force field in
explicit solvent. Due to the SB nonbonded addition, parameters for the proper

dihedral angles have been optimized building on the former hypothesis. Ala-
nine, glycine, and proline dipeptides were simulated using CHARMM22* (88)
and TIP3P (89) at 300 K for 1 μs each, and the resulting Ramachandran distribu-
tion was set as our target.

The same dipeptides were simulated using multi-eGO, initially setting the
force constant K of the potential VD describing proper dihedrals for the backbone
ϕ and ψ angles to zero. VD is defined as VDðϑÞ ¼ Kð1þ cosðnϑ�ϕ0ÞÞ, with
force constant K, multiplicity n, and phase ϕ0.

Target and multi-eGO Ramachandran distributions are then compared calcu-
lating the following scoring function S (i.e., the cross-entropy):

S ¼ PðTÞlog PðTÞ
PðEÞ ,

where P(E) and P(T) are the multi-eGO and target Ramachandran distributions.
To optimize the parameters K, n, and ϕ0 for the proper dihedral angles, we then
followed an iterative procedure combining a Monte Carlo (MC) optimization fol-
lowed by MD (90, 91). In detail, the effect of a given choice of the parameters is
estimated by analytically reweighting the last multi-eGO MD simulations as

wðφ,ψÞ ¼ exp �ðViDðφÞ þ ViDðψÞÞ � ðVi�1
D ðφÞ þ Vi�1

D ðψÞÞ
kBT

� �
,

where ViD is the potential energy from the ith iteration written as the sum of
multiple proper dihedral terms, kB is the Boltzmann constant, and T is the tem-
perature of the MD simulation. Optimal parameters are searched by MC under
the constraint that the effective information Neff, calculated over the N configura-
tions generated by the last MD, as

Neff ¼
½∑N

i¼1wi�2
∑N

i¼1w
2
i

,

is greater than 0.6. This allows choosing parameters that do not dramatically
alter the starting distribution. A new MD simulation is then performed with the
chosen parameters, and the procedure is repeated until convergence of the scor-
ing function (90, 91).

Data Availability. MD simulation trajectories data have been deposited in
Zenodo [DOI: 10.5281/zenodo.6125995 (92), DOI: 10.5281/zenodo.6125424
(93), and DOI: 10.5281/zenodo.6414572 (94)].
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