
applied  
sciences

Article

A Simple Contrast Matching Rule for OSEM Reconstructed PET
Images with Different Time of Flight Resolution

Luca Presotto 1 , Valentino Bettinardi 1 and Elisabetta De Bernardi 2,3,*

����������
�������

Citation: Presotto, L.; Bettinardi, V.;

De Bernardi, E. A Simple Contrast

Matching Rule for OSEM

Reconstructed PET Images with

Different Time of Flight

Resolution Appl. Sci. 2021, 11, 7548.

https://doi.org/10.3390/app11167548

Academic Editor: Qi-Huang Zheng

Received: 13 July 2021

Accepted: 13 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Nuclear Medicine Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; presotto.luca@hsr.it (L.P.);
bettinardi.valentino@hsr.it (V.B.)

2 Medicine and Surgery Department, University of Milano-Bicocca, 20900 Monza, Italy
3 Centro di Ricerca Interdipartimentale Bicocca Bioinformatics Biostatistics and Bioimaging Centre—B4,

University of Milano-Bicocca, 20900 Monza, Italy
* Correspondence: elisabetta.debernardi@unimib.it

Abstract: Background: Time-of-Flight (TOF) is a leading technological development of Positron Emis-
sion Tomography (PET) scanners. It reduces noise at the Maximum-Likelihood solution, depending
on the coincidence–timing–resolution (CTR). However, in clinical applications, it is still not clear
how to best exploit TOF information, as early stopped reconstructions are generally used. Methods:
A contrast-recovery (CR) matching rule for systems with different CTRs and non-TOF systems is
theoretically derived and validated using (1) digital simulations of objects with different contrasts
and background diameters, (2) realistic phantoms of different sizes acquired on two scanners with
different CTRs. Results: With TOF, the CR matching rule prescribes modifying the iterations number
by the CTRs ratio. Without TOF, the number of iterations depends on the background dimension. CR
matching was confirmed by simulated and experimental data. With TOF, image noise followed the
square root of the CTR when the rule was applied on simulated data, while a significant reduction
was obtained on phantom data. Without TOF, preserving the CR on larger objects significantly
increased the noise. Conclusions: TOF makes PET reconstructions less dependent on background
dimensions, thus, improving the quantification robustness. Better CTRs allows performing fewer
updates, thus, maintaining accuracy while minimizing noise.

Keywords: tomographic reconstruction; time of flight; positron emission tomography

1. Introduction

Time of flight (TOF) positron emission tomography (PET) provides additional infor-
mation in the acquired data respect to conventional non-TOF PET. On top of the non-TOF
information, which is sufficient for image reconstruction, TOF provides a range for the
probable position of the annihilation event. This makes the tomographic problem better
conditioned resulting in reconstructed images with a higher signal-to-noise ratio (SNR).

This makes the tomographic problem better conditioned and the signal-to-noise ratio
(SNR) higher on reconstructed images. In a TOF system characterized by a coincidence
timing resolution (CTR) ∆t, expressed in full width half maximum (FWHM), the TOF
“effective diameter” is De f f ≡

√
2π ∆t√

8 ln 2
c/2. In the central pixel of a uniform circular object

of diameter D, at the maximum likelihood solution, TOF is expected to provide a noise
reduction of a factor

√
D/De f f with respect to non-TOF [1].

In clinical setups, PET images are conventionally reconstructed with Maximum Likeli-
hood Expectation Maximization (MLEM) [2], often used in combination with the ordered
subset acceleration, in the so-called OSEM algorithm [3]. In MLEM and OSEM, the sig-
nal converges with iterations, which are, however, also characterized by a noise augment.
Good SNR images are, therefore, obtained by stopping MLEM and OSEM at early iterations
(early stopping rules).
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It has already been observed that TOF increases the MLEM convergence speed; there-
fore, at matched numbers of iterations, both the signal and noise are higher with TOF than
without [4,5]. To improve the SNR respect to non-TOF, a lower number of iterations is,
therefore, generally recommended with TOF [6]. Empirical stopping rules were derived on
patient and phantom data by matching non-TOF noise, thus, obtaining a better contrast
or by matching the non-TOF contrast and, thus, maintaining a lower noise.

In [7], as an example, the standard deviation between neighbouring voxels in a liver re-
gion of interest (ROI) was considered as a noise measure for noise matching. In other works,
the contrast recovery on phantom data was used for contrast matching. These empirical
rules depend on the patient/phantom characteristics and on the ROI positioning. Contrast
recovery is known to depend on many factors, including the background composition.

The aim of this study is to theoretically derive and experimentally validate a contrast
matching stopping rule for TOF data with different CTRs that is able to guarantee contrast
matching for the most critical signals and noise reduction. A theoretical rule of this kind is
especially important in the context of the release of new TOF-PET systems, with a CTR as
low as 210 ps [8].

This paper is structured as follows. After notations and conventions, in Section 2
we analyze the convergence speed of the signal and noise in TOF and non-TOF MLEM
and propose an optimal contrast matching stopping rule for scanners with different CTRs.
In Sections 3 and 4 computer simulations and phantom measurements for theory validation
are presented.

Notations and Conventions

We indicate with λ image voxel activity values, with y sinogram counts, and with ci,j
the probability that a photon pair emitted from pixel j is recorded in the sinogram bin i.
We use k to indicate the iteration number, using it as a superscript when referring to the
estimate of a parameter at the k-th iteration. To avoid confusion with exponentiation, we
indicate the latter with parenthesis; e.g., λk is the estimate of λ at the k-th iteration, while
(α)k is the k-th power of α. The forward projection operator is indicated in component
notation as yi = ∑j ci,jλj, and in matrix notation as y = H[λ], while the backprojector is
indicated with HT .

We define the normalization factor ηj = ∑i ci,j. Matrix multiplications will be high-
lighted by the use of square brackets (e.g., y = H[λ]), while element-wise multiplications
will be identified by the Hadamard product “◦” . Therefore, the forward projection of
the element-wise multiplication between λ and a matrix δ will be written as H[λ ◦ δ].
Element-wise divisions are written as standard fractions. Throughout the paper, we will
not use resolution modelling within the H operators. Point spread function modelling
makes unconstrained MLEM reconstruction undetermined at high frequencies [9]; there-
fore, studying the convergence of both signal and noise at those frequencies is not possible,
as it is dependent on the specific implementation.

2. Theory
2.1. Objects Convergence

We start by analysing the MLEM convergence proprieties. In PET reconstruction, the
tomographic problem is the minimization of the negative likelihood

λ∗ = arg min
λ

∑
i

ȳi − yi ln ȳi (1)

with ȳi = ∑j ci,jλj as the expected number of counts in each sinogram bin, given the current
image estimate λ. The update equation is

λk+1
j =

λk
j

ηj
∑

i
ci,j

yi
ȳi

(2)
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It has been shown that MLEM can be also written as a gradient descent algorithm,
which is expected to converge linearly with a unitary step size and a diagonal precondi-
tioner equal to the current image estimate divided by the normalization matrix [10].

If we look at Equation (2) as λk+1
j = f j

(
λk
)

, we can compute the Taylor expansion

around the solution λ∗, λk+1
j ≈ λ∗j + ∑ξ

∂λk+1
j

∂λξ

(
λk

ξ − λ∗ξ

)
The derivative of λk+1

j against λk
ξ ,

considering that ∂ȳi
∂λξ

= ci,ξ , is

∂λk+1
j

∂λk
ξ

=
δj,ξ

ηj
∑

i
ci,j

yi

ȳi
k −

λk
j

ηj
∑

i
ci,j

yi(
ȳk

i
)2 ci,ξ (3)

By substituting in the Taylor expansion around the solution λ∗, we obtain

λk+1
j − λ∗j ≈∑

ξ

[
δj,ξ

1
ηj

∑
i

ci,j
yi
ȳi
∗ −

λ∗j
ηj

∑
i

ci,j yi(
ȳ∗i
)2 ci,ξ

](
λk

ξ − λ∗ξ

)
(4)

This equation closely mimics that of an algorithm linearly converging. We will

prove that we are able to estimate a linear convergence rate αj =

∥∥∥λk+1
j −λ∗j

∥∥∥∥∥∥λk
j−λ∗j

∥∥∥ for each

pixel for different kinds of signals.
A propriety of MLEM is that, after the first iteration [2],

∑
i

yi = ∑
i

ȳi
k (5)

We therefore approximate ∑i ci,jyi/ȳ∗i ≈ ηj and ∑i ci,j
yi

(ȳ∗i )
2 ci,ξ ≈ ∑i

ci,j
ȳ∗i

ci,ξ . These two

approximations modify Equation (4) to

λk+1
j − λ∗j ≈∑

ξ

[
δj,ξ −

λ∗j
ηj

∑
i

ci,j

ȳ∗i
ci,ξ

](
λk

ξ − λ∗ξ

)
= (6)

=
(

λk
j − λ∗j

)
−

λ∗j
ηj

∑
i

ci,j

ȳ∗i
∑
ξ

ci,ξ

(
λk

ξ − λ∗ξ

)
where λk is the free parameter of the Taylor expansion.

To simplify this expression, we need to compute ∑ξ ci,ξ

(
λk

ξ − λ∗ξ

)
. Exploiting again

the propriety mentioned in Equation (5), we can state that, in uniform large regions, which
generally make up the biological background, ∑ξ ci,ξ

(
λk

ξ − λ∗ξ

)
≈ 0. If, instead, centered

around a pixel j there is a signal characterized by a “dimension” d to be recovered, we
can model:

λk
ξ − λ∗ξ =

(
λk

j − λ∗j

)
g
( x

d

)
; (7)

where g is a function of the distance x from pixel j to pixel ξ, to which it is only required to
have a finite integral

∫ +r
−r g(x/d)dx = γd, with γ as the scale-independent integral value.

In general γ < 1 (e.g., only for a step function γ = 1. A smooth function like half a
cosine period has γ = 2//π). In this model, by approximating a finite forward projection
along an LOR with the integral, we have ∑ξ ci,ξ

(
λk

ξ − λ∗ξ

)
≈ γd

(
λk

j − λ∗j

)
. Therefore,

Equation (6) becomes

λk+1
j − λ∗j ≈

(
λk

j − λ∗j

)
×
[

1− γ

ηj
∑

i

ci,jλ
∗
j d

ȳi
∗

]
(8)
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where all terms are now independently computed for each pixel. We can estimate a
convergence rate αj by dividing both side of the equation by λk

j − λ∗j and obtaining

αj ≈ 1− γ

ηj
∑

i
ci,j

ci,jλ
∗
j d

∑ζ ciζ λ∗ζ
(9)

In this equation, it can be seen that the signal convergence depends on its spatial
extension and on the fraction of counts due to the signal over all the LORs.

This equation holds for a generic signal in a generic background. For an exemplary
setup, the forward projections can be analytically computed further simplifying this ex-
pression.

Let us assume an image composed of a background circle of diameter D with a smaller
concentric circle of diameter d and activity ratio β, as shown in Figure 1. In the central pixel
j, ci,jλ

∗
j = φβ for every LOR i crossing pixel j, with φ a constant accounting for the direct

relation between a pixel activity and the expected counts. Since ∑ζ ciζ λ∗ζ = φ[D + (β− 1)]d,
we can further simplify Equation (9) as

αj = 1− γ
dβ

D + (β− 1)d
(10)

With TOF, the same equation holds with De f f in place of D, if De f f < D. A few things
can be noticed:

1. With increasing the signal to background contrast β, the convergence is faster.
2. With increasing object size d, the convergence speed also increases.
3. If an object is totally cold, i.e., β = 0, the convergence rate approaches 1. This makes

cold object convergence extremely slow.
4. Without TOF, the convergence speed decreases with background diameter D. With TOF,

instead, convergence does not depend on D (for D > De f f ).
5. With TOF, convergence depends on De f f ; if d ≈ De f f convergence is almost instantaneous.
6. For the full reconstruction of a circle, not only low frequency components need to

converge but also high frequency components. Each frequency converges according
to the same equation by replacing d with 1

f .

d

D

(a)

d

D

1

(b)

Figure 1. The exemplar object for which we will perform the calculation. (a) 2D view of the object.
Dotted blue line represent a projection direction, passing by the central pixel. (b) Profile of the
projection line represented in blue in the left panel.

Equation (10) with β = 1 and d = 1
f can also describe the convergence of background

noise frequencies f . Without TOF, the larger the background diameter D, the slower
the noise converges. This implies that, without TOF, a fixed stopping rule produces
comparable noise levels on reconstructed images, even if the noise at convergence is higher
for larger objects. For higher noise frequencies, α → 1. Since for a number ε close to 1
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(1 + ε)k ≈ 1 + k× ε, it can be said that high frequency noise increases almost linearly with
iterations in early stopped reconstructions.

2.2. Contribution of Attenuation, Random and Scattered Coincidences
2.2.1. Attenuation

Using a notation where ci,j represents the total probability of a photon emitted from
the pixel j to be detected in detector i, the attenuation is naturally accounted for in all the
previous equations, without any modification.

2.2.2. Random and Scattered Coincidences

In presence of an expected rate of random coincidences r and of scattered coincidences
s, Equation (2) becomes

λk+1
j = λk

j/ηj ∑
i

ci,j
yi

∑ξ ci,ξ λk
ξ + ri + si

(11)

Therefore, Equation (9) still holds by considering the contribution of scatter and
random coincidences to yi.

It can be seen that, the higher is the fraction of random and scattered coincidences,
the slower is the convergence rate. In TOF, random coincidences are uniformly distributed
over time bins. Pixel convergence is, therefore, influenced not by the whole random
amount, but only by the fraction De f f/FOV happening within De f f .

TOF greatly reduces the randoms impact on MLEM convergence. On the other side,
since the scatter coincidence profile over time bins follows that of emission coincidences [11],
the scatter impact on convergence is not reduced with TOF. Furthermore, as the scatter
fraction greatly increases with object dimension, the previously observed TOF convergence
rate independence from background dimension D is no longer accurate.

2.3. An Optimal Stopping Rule

In this section, we propose a rule to guarantee matched contrast recovery for the
exemplary object used to derive Equation (9), which can approximate an oncological lesion
in an at least locally uniform background. It is also the same kind of object for which the
noise reduction law was derived for PET systems (i.e., the center of a uniform phantom).

In non-TOF PET, two objects with equal contrast β and dimension d, positioned in two
different backgrounds of dimensions D and D′, achieve the same convergence level (i.e.,

the same contrast recovery) when
(

α′j

)k′
=
(
αj
)k; therefore, the MLEM iteration numbers

k and k′ are related by

k′ = k
log αj

log α′j
(12)

Particular attention must be paid to small objects with low contrast where, as previously
shown, convergence is the slowest, therefore α→ 1. In these conditions log (α) ≈ α− 1, so

k′ = k
−dβ

D+(β−1)d
−dβ

D′+(β−1)d

≈ k
D′

D
(13)

where the last step assumes that D � (β− 1)d, which is always the case when α→ 1. This
equation shows that contrast recovery for small and low contrasted objects depends very
strongly on the background, i.e., a fixed number of iterations cannot provide consistent
contrasts for these targets, if positioned in different patients/body districts/phantoms. For
larger and more contrasted objects Equation (12) still holds, but the two approximations
are no longer valid and the convergence speed is faster. Therefore, the rule proposed in
Equation (13) provides higher contrast recovery than desired.
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Rule (13) is easily extendable to TOF-PET. Given two TOF-PET scanners with effective
diameters De f f and D′e f f , similar contrast recoveries for similar small and low contrast
objects are achieved when

k′ = k
D′e f f

De f f
(14)

or, in terms of CTR, when

k′ = k
∆t′

∆t
(15)

This simple stopping rule in TOF no longer depends on background characteristics.
Therefore, it can be used to obtain similar contrast recovery levels for similar objects on
TOF scanners with different CTRs. It is also possible to apply this rule to the non-TOF case,
using Equation (13), but this would imply a different number of iterations for each patient
and bed position, according to the “diameter” of that body region.

Due to considerations in Section 2.2, rule (14) completely removes the dependence
on object background only when the fraction of scatter and random counts is constant.
With good CTR, the impact of randoms is expected to be negligible. The scatter fraction
might instead partially change between different subjects/objects. Therefore, we expect
that when the rule is applied on real data, an approximate matching is observed.

3. Simulations
3.1. Methods
3.1.1. Simulation and Reconstruction Programs Description

Simulations to validate the proposed stopping rules were performed in an idealized
setting to minimize computation time. Matched distance-driven projectors and backpro-
jectors were used [12], simulating a single slice of a scanner with a 829 mm ring diameter,
and 4.3 mm crystals. The same projectors were used for image reconstruction. Images
were generated at high resolution (1.36 mm pixel size), smoothed with a 4.5 mm FWHM
Gaussian kernel, then forward projected.

Two additive corrections were simulated: a uniform background in sinogram space
(representing random coincidences) and a multi-kernel convolution of the true sinogram
(to represent scatter coincidences). For every true coincidences 0.9 random and 0.5 scat-
tered coincidences were added. After forward projection, Poisson noise was simulated.
Sinograms were then reconstructed in a 512 mm FOV, using 2 mm pixels and 200 MLEM
iterations, without OS acceleration. Reconstructions were initialized with a unitary circle
as large as the FOV.

3.1.2. Phantom

Circular backgrounds with the diameters 275, 320, and 440 mm, each containing
16 circular targets of interest, were simulated. Targets had 10, 12, 16, and 22 mm diameters
and β = 2.0, 2.4 , and 3.3 contrasts relative to the background. Uniform water attenuation
was simulated in all the phantom area. CTRs of 250, 400, 550, and 750 ps were used.
For each combination of background diameter and CTR, 12 independent noise realizations
were simulated. The phantom is shown in Figure 2.
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0

1

2

2.4

3.3

Figure 2. True image of the simulated phantom for background diameter D = 275 mm.

3.1.3. Image Analysis

The reconstructed images were analyzed using contrast recovery and background
variability, similarly to what is done in NEMA image quality analysis. Target contrast
recovery was computed as

CR =
Cmeas − 1
Ctrue − 1

(16)

where Ctrue is the simulated contrast and Cmeas is the measured contrast, obtained as the
ratio between the activity measured in a circular ROI of the known true diameter positioned
on the target and the average activity measured in multiple background ROIs. Contrast
convergence with iterations was measured in all the explored β and D conditions for
non-TOF PET and in all the β, D and CTR conditions for TOF PET.

We then concentrated on the contrast β = 2.0, characterized by the slowest conver-
gence rate. We initially assessed contrast recovery at 50 MLEM updates both in non-TOF
and in TOF simulations. Then, to validate the proposed rule, we took, as reference, 50
MLEM updates of the highest CTR TOF simulation and measured, in both non-TOF and
TOF data in all the D and CTR conditions, the contrast recovery at the update number
provided by the rule.

Noise was quantified as background variability by defining 21 positions in the back-
ground and computing the activity a in ROIs with 1 pixel (2 mm), and 3, 5, and 7 mm
diameters. Background variability was then defined as

BVROI =
std(a)

mean(a)
. (17)

3.2. Results
3.2.1. Contrast Recovery

In Figure 3, the contrast recovery convergence with MLEM updates is shown for TOF
data with CTR = 750 ps and background diameter D = 275 mm. It can be appreciate how,
with TOF, convergence speed does not depend on the object position within the background
and how higher β values result in faster convergence, as predicted by Equation (10).

Contrast recovery values at 50 updates for contrast activity β = 2.0 are shown in
Table 1 for non-TOF and TOF conditions corresponding to different D and CTR values. As
expected, in non-TOF, the CR strongly depends on the background dimension. With TOF
this dependence disappears, while slower convergence with worse CTRs can be observed.

In Table 2, CR values at MLEM update numbers provided by rule (14) are shown. On
TOF data, almost identical CR values are found in all the conditions. The update number
reduces by a factor 3 passing from 750 ps to 250 ps. The rules appears working properly
also on non-TOF data, where matched C.R values are achieved, at the expense however of
a larger number of iterations (up to 185 for the largest background).
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(a)
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C=2.4
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(b)

Figure 3. CTR = 750 ps and background diameter 275 mm. Shaded patches represent ±1 standard
error on the mean value. (a) Convergence of circles with contrast β = 2.0, at different distances from
the center. (b) Convergence of circles with different activity contrasts.

Table 1. Contrast recovery at 50 updates for the 10 mm sphere with β = 2.0 contrast, as a function of
CTR and background diameter. Values reported as mean ± one standard error.

Background: 275 mm 320 mm 440 mm
CTR [ps] CR [%] CR [%] CR [%]

Non-TOF 37.0± 1.5 33.5± 1.8 20.3± 2.7
750 59.1± 1.8 62.9± 2.8 56.4± 3.5
550 67.1± 2.4 65.5± 1.9 67.2± 4.9
400 71.3± 1.6 70.6± 1.8 72.1± 3.9
250 73.8± 1.4 76.5± 2.2 75.5± 3.9

Table 2. Contrast recovery using the proposed rule for the 10 mm sphere with β = 2.0 contrast,
as a function of CTR and background diameter, aiming at matching to 50 updates at 750 ps. Values
reported as mean ± one standard error.

Background: 275 mm 320 mm 440 mm Updates
CTR [ps] CR [%] CR [%] CR [%] N

Non-TOF 58.3± 2.7 60.7± 3.7 49.8± 8.0 115\134\185
750 59.1± 2.4 62.9± 1.9 56.4± 4.9 50
550 60.8± 2.1 58.7± 1.6 51.2± 4.2 37
400 60.6± 1.3 58.8± 1.4 56.3± 3.2 27
250 61.5± 1.1 61.7± 1.7 55.9± 2.3 17

3.2.2. Background Variability

In Table 3, the BV for 2 mm ROIs is shown in all the explored non-TOF and TOF
conditions at 50 MLEM updates. As expected, non-TOF reconstructions (which at 50 up-
dates were characterized by the lowest contrast recovery) are characterized by the lowest
background variability. In TOF data, BV increases when reducing the CTR: moving from
750 ps to 250 ps increased the BV by ≈+40%.

In Table 4, the BV at the MLEM update numbers provided by the proposed rule are
shown. In non-TOF data, matching CR markedly increases noise. In TOF, at the best CTR,
the proposed rule decreased BV by ≈40%. When applying the rule, the noise for a given
phantom decreases with the CTR square root, replicating what is expected at the maximum
likelihood solution.
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Table 3. Background variability (2 mm) at 50 updates, as a function of CTR and background diameter.
Values reported as mean ± one standard error.

Background: 275 mm 320 mm 440 mm
CTR [ps] BV [%] BV [%] BV [%]

Non-TOF 7.7± 0.3 10.2± 0.4 14.8± 0.7
750 11.2± 0.6 13.0± 0.6 21.9± 1.4
550 13.1± 0.5 15.5± 0.5 24.6± 1.5
400 12.9± 0.6 19.0± 1.0 29.5± 1.6
250 15.2± 0.7 17.8± 0.8 31.4± 1.8

Table 4. Background variability (2 mm) with the proposed contrast recovery matching rule, matching
to 50 updates at 750 ps CTR, as a function of CTR and background diameter. Values reported as
mean ± one standard error.

Background: 275 mm 320 mm 440 mm Updates
CTR [ps] BV [%] BV [%] BV [%] N

Non-TOF 15.2± 2.2 23.5± 4.1 48± 12 115\134\185
750 11.2± 0.6 13.0± 0.6 21.9± 1.4 50
550 10.3± 0.4 12.2± 0.4 19.4± 1.1 37
400 8.1± 0.3 11.8± 0.6 17.9± 0.9 27
250 6.7± 0.3 8.1± 0.3 14.2± 0.7 17

4. Phantom Measurements
4.1. Methods
4.1.1. Phantom Preparation and Acquisition

Two 22 cm diameter Derenzo phantoms were filled with 18F-FDG. The cold insert
phantom was filled with 15.5 kBq/cc of activity, calibrated at the time of the first scan. In the
uniform region, six cold spheres of 8, 11, 14, 17, 24 ,and 30 mm diameters were positioned.
The hot insert phantom was filled with 15.4 kBq/cc of activity in the background region,
calibrated at the time of the first scan.

It also featured six hot spheres of 7, 12, 15, 16, 19, and 24 mm diameter, filled with a
4.48:1 activity ratio vs the background. Phantoms were acquired both individually (“Single”
configuration) and side by side (“Double” configuration), to simulate different object
dimensions. In the double configuration, the active area has a major axis of about 44 cm
and a minor axis of 22 cm, which is close to a standard patient torso dimension.

To investigate the validity of the proposed CR matching rule at different CTRs,
the phantoms were scanned in two different PET tomographs: a GE Healthcare SIGNA
PET/MR, with 400 ps CTR and a GE Healthcare Discovery D690 with 650 ps CTR. To
investigate the rule robustness vs. experimental conditions, the double configuration was
scanned twice in the SIGNA: immediately after preparation, with a true to random coinci-
dences ratio≈ 1 (“HCR”, high count rate configuration), and 2 h 21 min later, with a true to
random coincidences ratio ≈ 5:1 (“LCR” low count rate configuration). Each configuration
was acquired for 10 min in list mode. Data were then unlisted into 5× 2 minutes frames,
to simulate multiple noise realizations.

4.1.2. Image Reconstruction

Due to the high computational requirements of fully 3D TOF reconstruction, MLEM
was used in the accelerated OSEM version. 100 OSEM iterations were performed, each
composed of four updates, resulting in a total of 400 MLEM-equivalent updates, both with
and without TOF. Images were reconstructed on the maximum scanner FOV (D690: 70 cm;
SIGNA: 60 cm), on a 256× 256 image matrix.
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4.1.3. Image Analysis

CR and BV were computed using Formulas (16) and (17). The activity in spheres was
computed using 3D VOIs defined by the exact inner diameter of each sphere. Background
activity was estimated in 2D ROIs. Thirty-six centers were defined in three planes, and for
each center four circles of different diameters were defined (1, 2, 3, 5 pixels). BV was
computed as the standard deviation between all the ROIs with the same diameter, and it
was averaged between the five acquisitions.

CR and BV were first evaluated at 48 MLEM-equivalent updates, representative
of a standard clinical stopping rule. They were then evaluated at the update number
provided by the CR matching rule, assuming the D690 TOF reconstruction as the reference
to be matched. For non-TOF double configurations, the rule was applied considering an
equivalent diameter of ≈30 cm.

4.2. Results

In Table 5, the CR achieved by the smallest (7 mm) sphere at 48 MLEM-equivalent
updates in all the considered TOF and non-TOF configurations is shown. The highest CR
is obtained on the TOF system with the lowest CTR (SIGNA scanner), the lowest one is
found in non-TOF, in the HCR configuration, due to the high random fraction.

Table 5. Contrast recovery at 48 updates for the 7 mm sphere for the different acquisitions. Data
reported as mean ± one standard error.

Reconstruction: TOF Non-TOF
Acquisition: CR [%] CR [%]

D690 Single 36± 3 21± 1
D690 Double 30± 3 22± 2
SIGNA Single 42± 2 29± 1

SIGNA Double HCR 34± 1 17± 2
SIGNA Double LCR 33± 2 21± 1

As to BV, due to the difficulty in comparing noise levels among scanners with different
sensitivities, only SIGNA results are reported. The BV at 48 updates is reported in Table 6.
As predicted by theory, at a fixed update number, noise is higher in TOF than in non-TOF
reconstructions, due to the faster high frequencies convergence.

Table 6. Background variability [%] at 48 updates for the 1 pixel scale for the different SIGNA acquisitions.

Reconstruction: TOF Non-TOF

SIGNA Single 26.2 20.6
SIGNA Double HCR 23.5 18.6
SIGNA Double LCR 39.5 29.6

Table 7 shows the update numbers provided by the rule to match the D690 scanner
TOF contrast at 48 updates, together with the corresponding CR. If only 32 updates are
needed in the low CTR TOF condition, 128 updates are required in non-TOF for large
objects (Double Configuration). Although the two scanners have different scatter fractions,
spatial resolutions, and sensitivities, the rule appears able to provide comparable CR This
confirms the independence of the rule from the acquisition statistics.
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Table 7. Contrast recovery for the 7 mm sphere using the proposed CR matching rule.

Reconstruction: TOF Updates Non-TOF Updates
Acquisition: CR [%] N CR [%] N

D690 Single 36± 3 48 40± 4 96
D690 Double 30± 3 48 35± 3 128
SIGNA Single 36± 2 32 37± 2 96

SIGNA Double HCR 29± 1 32 28± 3 128
SIGNA Double LCR 30± 2 32 29± 2 128

In Table 8, SIGNA BV values at matching contrast update numbers are shown. In the
Double configuration, TOF with 400 ps CTR allows achieving the same CR of non-TOF
with a ≈53% noise reduction.

Table 8. 1 pixel scale Background Variability [%] at the CR matching update numbers for the
different acquisitions.

Reconstruction: TOF Non-TOF

SIGNA Single 18.6 37.5
SIGNA Double HCR 17.4 36.5
SIGNA Double LCR 28.5 64.5

In Figure 4, reconstructions obtained with TOF are shown. The first column contains
D690 images at 48 updates, the second SIGNA images at 48 updates, the third SIGNA
images at the 32 updates given by the rule to match the D690 48 updates contrast. We can
visually appreciate how, at 32 updates, contrast is maintained while noise is reduced.

D690 TOF 48 up. Signa TOF 48 up. Signa TOF Match

(a) (b) (c)

D690 TOF 48 up. Signa TOF 48 up. Signa TOF Match

(d) (e) (f)

Figure 4. TOF Reconstructions of the phantoms in different conditions. Upper: Single acquisitions. Lower: Double
acquisition, HCR only for SIGNA shown for clarity. Left (a,d): D690 acquisitions, 48 updates. Center (b,e): SIGNA
acquisitions, 48 updates. Right (c,f): SIGNA acquisitions, 32 updates according to the proposed rule.

In Figure 5 results for non-TOF reconstructions are shown. Again, in the third column,
images at the update number provided by the rule to match the D690 48 update contrast are
shown (96 update for the Single configuration, 128 updates for the Double configuration).
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It is evident, in this case, how the increase in the update number necessary to reach the
TOF contrast inevitably leads to a noise augment, particularly in the Double configuration.
In this configuration, the smallest sphere is barely visible at 48 updates (Figure 5e); a full
recover is associated with a marked noise augment (Figure 5f).

D690 - Non-TOF - Match Signa Non-TOF 48 up. Signa Non-TOF Match

(a) (b) (c)

D690 - Non-TOF - Match Signa Non-TOF 48 up. Signa Non-TOF Match

(d) (e) (f)

Figure 5. Non-TOF Reconstructions of the phantoms in different conditions. Upper: Single acquisi-
tions. Matched non-TOF reconstructions for D690 not shown for clarity Lower: Double acquisition,
HCR only for SIGNA shown for clarity. Left (a,d): D690 acquisitions, 48 updates. Center (b,e):
SIGNA acquisitions, 48 updates. Right (c,f): SIGNA acquisitions, 32 updates according to the
proposed rule.

In Figure 6 reconstructions of the hot rods section are shown. The first column
contains D690 TOF and non-TOF images at 48 updates, the second SIGNA TOF and non-
TOF images at 48 updates, the third Signa TOF and non-TOF images at update numbers
given by the rule to match the D690 48 update contrast (32 for TOF, 96 for non-TOF in
Single configuration, 128 for non-TOF in Double configuration). We can visually appreciate
how, if in the Single configuration hot rods are visible both with TOF and without it, in the
Double configuration hot rods visibility strongly depend on their position within the FOV.
With TOF, the rule maintains hot rod visibility while reducing noise; in non-TOF it helps
recovering hot rods, even if it at increased noise levels.

The results obtained on experimental phantoms are in good agreement with the
theoretical predictions. There are only two apparent discrepancies between the theory and
experimental data, which can, however, be explained. First, in the non-TOF D690 data at
48 updates, the smallest sphere CR in the Double configuration is comparable instead to
lower than the CR in the Single one. This may be due to the sphere position at the border of
the phantom and not in the center. The rule derivation shows indeed that the dependence
on the background diameter decreases the closer a pixel is to the hot area border.

Secondly, with TOF, on both scanners, CR in the Single configuration is slightly higher
than in the Double one. Equation (14) was derived assuming no scatter. In Section 2.2 we
found that scatter slows convergence, in a way that it is proportional to its fraction over
the total true counts amount. It can be therefore expected that, when increasing object
size, the scatter fraction slightly increases, explaining this effect. This was not seen in
simulations, where the scatter fraction is held constant.
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D690 - 48 updates

TOF

Non-TOF

SIGNA - 48 updates

TOF

Non-TOF

SIGNA - Matched

TOF

Non-TOF

(a) (b) (c)
D690 - 48 updates

TOF

Non-TOF

SIGNA - 48 updates

TOF

Non-TOF

SIGNA - Matched

TOF

Non-TOF

(d) (e) (f)

Figure 6. Reconstructions of the hot rods section of the phantom in different configurations. Upper
rows: Single acquisitions (a–c). Lower rows: double acquisitions (d–f), only HCR shown on Signa for
clarity. In each panel the upper row is TOF reconstruction, lower row is non-TOF. Left (a,d): D690,
48 updates. Center (b,e): Signa, 48 Updates. Right (c,f): Proposed stopping rule.

5. Discussion

It is widely known that TOF accelerates contrast recovery and that the acceleration in-
creases as CTR decreases. However, acceleration concerns also noise; therefore, at the same
number of iterations, images reconstructed with TOF are noisier than those reconstructed
without TOF [4,13]. For this reason, for a center that installs a new scanner, it might be
difficult to set up the OSEM reconstruction protocol that best exploits an improved CTR.
Generally, experimental stopping rules are derived on phantoms.

As we showed, however, these are not necessarily applicable to patients, due to the
convergence speed dependence on background characteristics. The biggest risk is generally
that the high levels of CR measured on phantoms like the NEMA-IQ (which is small)
with high contrast ratios (e.g., contrasts as high as 10:1 have been recommended in some
guidelines [14]) cannot be replicated in patient studies, especially in large districts with
multiple high-activity background structures, like the pelvis or the abdomen.

To find the way to best exploit early stopped OSEM in TOF scanners, we theoreti-
cally revised MLEM convergence properties. We found that signal convergence speed
increases with signal contrast and dimension. Without TOF, signal convergence decreases
with increasing background diameter, i.e., patient dimension. TOF instead, in an ideal
setting without random and scatter coincidences, is able to fully eliminate this depen-
dence, thus making early stopped reconstructions robust to variations in patient size and
background composition.

An increased fraction of random and scatter coincidences generally decrease the
convergence speed. Importantly, TOF significantly reduces random coincidences impact
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on convergence; the scatter coincidences impact is instead not modified by TOF. As to
noise behaviour with iterations, higher frequencies converge more slowly than the lower
ones and TOF makes noise convergence faster. At convergence, TOF reduces noise with
respect to non-TOF by a factor

√
De f f/D [1]; however, if a fixed stopping criteria is used, TOF

actually increases noise by the inverse of this factor. For this reason, until regularization
algorithms become routine in clinical applications, criteria to properly reduce the iteration
number while maintaining quantitative accuracy are needed to fully exploit TOF benefits.

In this paper, it was theoretically found that modifying the iteration number by a
factor ∆t′/∆t matches contrast recovery between two scanners with different CTR. As high
frequency noise increases approximately linearly with iterations, this rule achieves, in early
stopped reconstructions, the same noise reduction expected at convergence (factor

√
De f f/D).

It is widely known from the literature [3,15] that OSEM and MLEM behaviour are slightly
different at convergence, since OSEM converges to a limit cycle rather than to a unique
solution. This however does not impact on the convergence trend at first iterations, which
are the ones concerned by the proposed rule.

The rule has been validated on digital simulations and on real phantoms acquired
on two TOF systems with different CTRs. Without TOF, contrast matching on larger
background requires to perform more iterations compared to smaller backgrounds and
this inevitably inceases noise. With TOF, better CTRs allow reducing the update number,
thus maintaining accuracy while minimizing noise.

When deriving the theoretical expression few approximations were required. Most
of them require very little assumptions (e.g., yi ≈ ȳ∗i , or a finite integral for a signal to be
recovered). However, to derive an analytical expression we needed to apply the theory to
an exemplary simple object, i.e., a large uniform background with a circular signal in its
centre, which, at least locally, well represents a typical oncology study. In real conditions of
non uniform background convergence will be even faster.

6. Conclusions

A simple early stopping rule for PET TOF systems with different CTRs is able to
guarantee contrast matching for the most critical signals while reducing noise. The rule
was theoretically derived and successfully validated on digital phantoms and experimen-
tal data.
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