
ar
X

iv
:2

10
3.

16
15

2v
1 

 [
m

at
h.

O
C

] 
 3

0 
M

ar
 2

02
1

Singular Limit of Two Scale Stochastic Optimal Control Problems in

Infinite Dimensions by Vanishing Noise Regularization

Giuseppina Guatteri,

Dipartimento di Matematica,

Politecnico di Milano,

Piazza Leonardo da Vinci 32,

20133 Milano, Italia.

e-mail: giuseppina.guatteri@polimi.it

Gianmario Tessitore,

Dipartimento di Matematica e Applicazioni
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Abstract

In this paper we study the limit of the value function for a two-scale, infinite-dimensional, stochastic

controlled system with cylindrical noise and possibly degenerate diffusion. The limit is represented as

the value function of a new reduced control problem (on a reduced state space). The presence of a

cylindrical noise prevents representation of the limit by viscosity solutions of HJB equations as in [16]

while degeneracy of diffusion coefficients prevents representation as a classical BSDE as in [10]. We use a

˝vanishing noise” regularization technique.

Keywords: Stochastic equations in infinite dimensions, optimal control, two scale systems, vanishing noise.

1 Introduction

This paper studies the limit of the value functions for a sequence of optimal control problems with state

equation represented by the following system of stochastic differential equations

{
dXt = AXt dt+ b(Xt, Qt, ut)dt +R(Xt)dW

1
t , X0 = x0,

εdQt = (BQt + F (Xt, Qt) +Gρ(ut)) dt+ ε1/2GdW 2
t , Q0 = q0.

(1.1)

and cost represented by the following functional:

J ǫ(x0, q0, u) = E

[∫ 1

0
l(Xt, Qt, ut)dt+ h(X1)

]
.

We notice that the small constant ε in the second equation modelizes the fact that Q evolves quicker than

X, with a ratio 1
ε between the two velocities. Our goal is to represent the limit of the value functions of

these problems as the speed factor diverges.
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In (1.1) both X and Q take values in an Hilbert space. Moreover A and B are unbounded linear operators, u

represents the control, (W 1
t )t≥0, (W

2
t )t≥0 are infinite dimensional independent cylindrical Wiener processes,

b, F , ρ are R are functions and G is a bounded linear operator satisfying suitable assumptions including

dissipativity of B+F (x, ·). The main feature of this paper is that we allow bothW 1 andW 2 to be cylindrical

while we do not require any regularizing or nondegeneracy assumptions to hold on G or R(·). We mention

here that throughout the paper the control problems are formulated in a weak form particularly suitable to

be studied by Backward Stochastic Differential Equations (BSDEs for short).

Several papers have been devoted to the characterization of limits of singular stochastic control problems in

finite dimensional spaces. Beside the pioneering results based on direct computations in specific situations

(see, for instance, [11] and [12]) the general approach in finite dimensional cases (see [1], [2], [3], [4], [5])

relies on the representation of the value function as viscosity solution of a suitable HJB equation and on

a convergence result, as ǫ → 0, for the solution of such HJB equations to a reduced nonlinear parabolic

equation. The value of the (viscosity) solution of the limit PDE is then the desired limit. The well known

technical difficulties nested in the proof of comparison principle for solution of infinite dimensional HJB

equations prevents a direct extension of the previous results to the case of Hilbert-valued, two scale, controlled

stochastic systems.

At our best knowledge the first paper to address the problem in an infinite dimensional framework is [10]

where the value function is represented through a BSDE and the result is obtained by convergence of a class

of singularly perturbed BSDEs. The main limitation of the results in [10] is that we need to assume non

degeneracy of the noise in the slowly evolving equation (in [10] R is indeed independent of x and, more

important, is invertible). Then in [16] the viscosity solution approach is adapted to the Hilbert space case

by a deep analysis of the necessary technical assumptions. A rather general class of two scales systems can

be considered in this last paper with the only remaining obstruction on the covariance of the noises that

must be of finite trace.

As we have already mentioned here both (W 1) and (W 2) are cilindrical and we do not assume non degeneracy

nor on R nor on G (nevertheless in the equation for Q the structure condition, allowing to apply Girsanov

transform, has to hold). Since the two previously mentioned possible representations of our singular limit

(the one through a BSDE and the one through a viscosity solution of a HJB equation) seem not to be

available in the present case we try to represent it as the value function of a reduced control problem. By the

way we notice that such a representation somehow lies underneath both the above mentioned ones. It is also

worth mentioning that any notion of solution of HJB equation stronger than viscosity, and consequently any

direct representation of the limit value function by a standard BSDE, appears here to be excluded by the

lack of regularity that one has to expect for the value functions of degenerate stochastic control problem.

To compare the class of state equations that fall into the framework of this paper with the ones treatable

in [10] and [16] let us consider the following two scale system of controlled reaction diffusion SPDEs in one

space dimension driven by space time noises. We refer, for instance to [14] Section 11.2 for the abstract

formulation and precise assumptions on the coefficients. We just have to mention that m is a positive

constant and the Lipschitz constant of f with respect to Q is smaller then m.
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



∂

∂t
X ε(t, x) =

∂2

∂x2
X ε(t, x) + b(X ε(t, x),Qε(t, x), u(t, x)) + σ(x,X ε(t, x))

∂

∂t
W1(t, x),

ε
∂

∂t
Qε(t, x)=(

∂2

∂x2
−m)Qε(t, x)+f(X ε(t, x),Qε(t, x)) + ρ(x)r(u(t, x)) + ε1/2ρ(x)

∂

∂t
W2(t, x),

X ε(t, 0) = X ε(t, 1) = Qε(t, 0) = Qε(t, 1) = 0,

X ε(0, x) = X 0(x), Qε(0, x) = Q0(x), t ∈ [0, 1], x ∈ [0, 1],

(1.2)

To fit the assumptions in [10] one should assume σ to be independent of X and bounded away from 0 while

to fit the assumptions in [16] one should assume (W i), i = 1, 2 to be colored in space. Here we can take a

general σ (possibly vanishing ) and space-time white noises (W1), i = 1, 2.

The approach we present here is to regularize equation (1.1) adding an extra noise with small parameter

in the equation for X. We obtain a non degenerate singular control problem (see equation (4.1)) that can

be treated using the results in [10]. The point is that, in this way, we have two handle a system depending

on two parameters (the original speed ratio ε and the new small noise parameter). We show that we can

interchange the limits and let first ε → 0 for a fixed small noise parameter. Proceeding like that (adapting

the arguments in [10]) we end up with a forward backward system depending on the small parameter η.





dXt = AXt dt+R(Xt) dW
1
t + η dBt, t ∈ [s, 1],

−dYt = λ(Xt, η
−1Zt) dt− Zt dW

1
t + Zt dB

1
t ,

Xs = x, Y1 = h(X1).

(1.3)

We notice that in the above equation the nonlinearity λ is itself the value function of a suitable ergodic

optimal control problem, roughly speaking, for the second equation in (1.1) with frozen X.

The idea is then to see, by Fenchel duality, the Y in equation (1.3) as the value function of an auxiliary

control problem. The key issue, at this level, is to construct this new control problem in such a way that its

running cost has enough regularity to allow the final passage to the limit as the small noise regularization

vanishes and, eventually, to get the main result of this paper (see Theorem 6.3). In addition the value

function of our reduced control problem can be shown to coincide with the minimal solution of a Backward

Stochastic Differential Equation with constraints on the martingale term (see Remark 6.5 here and [13], [6]).

The paper is organized as follows: in Section 2 we introduce general notation, in Section 3 we formulate

the control problems introducing the weak formulation that will be used throughout the paper, in Section

4 we introduce the small noise regularization of the system, in Section 5 we prove that we can change order

between the limit with respect to the speed ratio parameter ε and the small noise parameter η, finally in

Section 6 we prove our mail result.

2 Notation

Given a Banach space E, the norm of its elements x will be denoted by |x|E , or even by |x| when no confusion

is possible. If F is another Banach space, L(E,F ) denotes the space of bounded linear operators from E to

F , endowed with the usual operator norm. When F = R the dual space L(E,R) will be denoted by E∗. The

letters Ξ, H andK will always be used to denote Hilbert spaces. The scalar product is denoted 〈·, ·〉, equipped
with a subscript to specify the space, if necessary. All Hilbert spaces are assumed to be real and separable

and the dual of a Hilbert space will never be identified with the space itself. By L2(Ξ,H) and L2(Ξ,K)
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we denote the spaces of Hilbert-Schmidt operators from Ξ to H and to K, respectively. Finally G(K,H)

is the space of all Gateaux differentiable mappings φ from K to H such that the map (k, v) → ∇φ(k)v is

continuous from K ×K to H; see [8] for details.

Next we define the following classes of stochastic processes with values in a Hilbert space V . Given an

arbitrary time horizon T , constant p ≥ 1 and a generic filtered space (Ω0, E0, (F0
t )t∈[0,T ],P

0):

• Lp
F0(Ω

0×[0, T ];V ) denotes the space of equivalence classes of processes Y ∈ Lp(Ω×[0, T ];V ) admitting

a predictable version. It is endowed with the norm

|Y |p =
(
E
0

∫ T

0
|Ys|p ds

)1/p
.

• Lp
F0(Ω

0;C([0, T ];V )) denotes the space of adapted processes Y with continuous paths in V , such that

the norm

‖Y ‖p = (E0 sup
s∈[0,T ]

|Ys|p)1/p

is finite. The elements of Lp
F0(Ω

0;C([0, T ];V )) are identified up to indistinguishability.

3 Setting of the problem and statement of the main result

Let H, K and Ξ separable Hilbert spaces and U a separable metric space. We denote by S
1,2 (S stands for

Setting) the class of all 6-uples U = (Ω, (Ft),P, (W
1
t ), (W

2
t ), (ut)), where (Ω,F , (Ft)) is a filtered complete

probability space, (W 1
t ), (W

2
t ) are two independent, Ξ-valued, (Ft)-Wiener processes and u is an (Ft) pre-

dictable process taking values in U . When needed, we will add the mark U to each term to avoid confusion.

Given x0 ∈ H, q0 ∈ K, ε > 0, and U ∈ S
1,2, we consider the following two scale state equation in H ×K:





dXt = AXt dt+ b(Xt, Qt, ut)dt +R(Xt)dW
1
t , X0 = x0,

εdQt = (BQt + F (Xt, Qt) +Gρ(ut)) dt+ ε1/2GdW 2
t , Q0 = q0.

(3.1)

that has, under Hypothesis 3.1-3.6 listed below, a unique mild solution belonging to Lp
FU

(ΩU;C([0, T ];H)),

p ≥ 1 that we denote by Xε,U, see [10, Lemma 3.9 and Lemma 3.10]. We omit reference to initial state

(x0, q0) trying to ease the notation (when we will need to show such dependence we will explicitly mention

it). We introduce the following cost functional to minimize

Jε(x0, q0,U) = E
U

[∫ 1

0
l(Xε,U

t , Qε,U
t , uUt )dt+ h(Xε,U

1 )

]
, (3.2)

where E
U denotes the expectation with respect to the probability P in U.

We make the following general assumptions fixing, in the mean time, three constants M > 0, L > 0 and

γ ∈ [0, 1/2) that will not be changed throughout the paper.

Hypothesis 3.1 A : D(A) ⊂ H → H is a linear, unbounded operator that generates a C0- semigroup

{etA}t≥0, such that |etA|L(H,H) ≤ MAe
ωAt, t ≥ 0 for some positive constants MA and ωA. B : D(B) ⊂

K → K is a linear, unbounded operator that generates a C0- semigroup {etB}t≥0 such that |etB |L(K,K) ≤
MBe

ωBt, t ≥ 0 for some MB , ωB > 0.

Moreover there exist C > 0 s.t.:

|esA|L2(H,H) + |esB |L2(K,K) ≤ Cs−γ, ∀s ∈ [0, 1].
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Hypothesis 3.2 The functions b : H ×K × U → H and F : H ×K → K are measurable and:

|b(x, q, u)| ≤M, |b(x, q, u) − b(x′, q′, u)| ≤ L(|x− x′|+ |q − q′|), ∀ q, q′ ∈ K,x, x′ ∈ H, u ∈ U,

|F (x, q) − F (x′, q′)|K ≤ L(|x− x′|H + |q − q′|K) ∀ q, q′ ∈ K,x, x′ ∈ H.

Moreover we assume that, F (x, ·) is Gateaux differentiable, more precisely, F (x, ·) ∈ G1(K,K), ∀x ∈ H.

Hypothesis 3.3 B + F is dissipative i.e. there exists some µ > 0 such that:

〈Bq + F (x, q)− (Bq′ + F (x, q′)), q − q′〉 ≤ −µ|q − q′|2,

for all x ∈ H, q, q′ ∈ D(B).

Hypothesis 3.4 R : H → L(Ξ,H) is a bounded Lipschitz map. Moreover for all x, x′ ∈ H:

∣∣esAR(x)− esAR(x′)
∣∣
L2(Ξ,H)

≤ L

sγ
|x− x′|H , for all s ∈ (0, 1).

Hypothesis 3.5 G ∈ L(Ξ;K).

Hypothesis 3.6 The functions l : H × K × U → R and h : H → R are measurable and satisfy the

assumptions below, moreover

|l(x, q, u)− l(x′, q′, u)| ≤ L(|x− x′|+ |q − q′|), ∀ q, q′ ∈ K,x, x′ ∈ H, u ∈ U,

|h(x) − h(x′)| ≤ L|x− x′|, ∀x, x′ ∈ H,

|l(x, q, u)|, |ρ(u)|, |h(x)| ≤M, ∀q ∈ K,x ∈ H, u ∈ U.

We are interested in studying the limit of the value function V ε(x0, q0),

V ε(x0, q0) =: inf
U∈S1,2

Jε(x0, q0,U) (3.3)

as the ratio ε between the speed of the slow component and the speed of the fast one tends to 0. Namely

we shall provide a representation of this limit by a reduced stochastic control problem.

4 Small noise approximations of the two scale problem

In order to regularize our initial problem we introduce a vanishing noisy term in (3.1). To do that we have

to modify our class of settings.

Namely we denote by S
1,2,B the class of 7-uples UB = (Ω, (Ft),P, (W

1
t ), (W

2
t ), (Bt), (ut)), where, beside the

forementioned elements, there is a third (Ft)-Wiener process (Bt), independent of (W
1
t ,W

2
t ).

Then given x0, q0 and a setting U
B ∈ S

1,2,B, for every η ≥ 0, let us consider the following regularized two

scale state equation:




dXt = AXt dt+ b(Xt, Qt, ut)dt +R(Xt)dW
1
t + η dBt, X0 = x0,

εdQt = (BQt + F (Xt, Qt) +Gρ(ut)) dt+ ε1/2GdW 2
t , Q0 = q0.

(4.1)

Such system has a unique mild solution, indeed following [10, Lemma 3.9 and Lemma 3.10] we have that

for every ε > 0, η > 0 there exists a unique couple of processes (Xε,η,UB
, Qε,η,UB

), with Xε,η,UB
belonging to

Lp

FUB
(ΩUB

;C([0, 1];H)) and Qε,η,UB
in Lp

FUB
(ΩUB

;C([0, 1];K)) .

5



Moreover, see again [10, Lemma 3.9 and Lemma 3.10], also see the proof of Theorem 4.13 below, the following

estimates hold:

E
UB

( sup
t∈[0,1]

|Xε,η,UB

t |p) ≤ cp(1 + |x0|p), x0 ∈ H, ∀p ≥ 1 (4.2)

sup
t∈[0,1]

E
UB |Qε,η,UB

s |p ≤ kp(1 + |q0|p), q0 ∈ K, ∀p ≥ 1. (4.3)

with constant cp and kp independent from ε and η.

We also consider the analogue of our control problem in this enriched and regularized situation and the

corresponding value function V ε,η. Namely:

Jε,η(x0, q0,U
B) = E

UB

[∫ 1

0
l(Xε,η,UB

t , Qε,η,UB

t , uU
B

t )dt+ h(Xε,η,UB

1 )

]
.

V ε,η(x0, q0) = inf
UB∈S1,2,B

Jε,η(x0, q0,U
B)

(4.4)

It is straightforward to verify that, fixed (x0, p0), the set {V ε,η(x0, q0) : ε > 0, η > 0} is bounded.

Remark 4.1 Given a setting U
B in S

1,2,B we define the setting PUB in S
1,2 as the setting obtained by

omitting the process B. Namely

P (Ω, (Ft),P, (W
1
t ), (W

2
t ), (Bt), (ut)) = (Ω, (Ft),P, (W

1
t ), (W

2
t ), (ut))

In particular the control u is the same in U
B and PUB, moreover (Xε,0,UB

, Qε,0,UB

) ≡ (Xε,PUB

, Qε,PUB

).

On the other hand given U ∈ S
1,2 we define by RU ⊂ S

1,2,B the set, always non empty, of all settings

U
B obtained from U, by choosing any (Ω0,F0,P0, (F0

t ), B), where (Ω0,F0,P0, (F0
t )), is a filtered complete

probability space and (B) is an (F0
t )-Wiener process, and setting

UB = (Ω× Ω0, (F ⊗ F0), (Ft ⊗F0
t ),P ⊗ P

0, (W ′1
t ), (W ′2

t ), (B′
t), (u

′
t)).

In the above formula W ′i(ω, ω0) := W i(ω), i = 1, 2; u′(ω, ω0) = u(ω), B′(ω, ω0) := B(ω0), for every

(ω, ω0) ∈ Ω × Ω0. We notice that if UB ∈ RU then the law of (Xε,U, Qε,U, uU) under PU coincides with the

law of (Xε,0,UB

, Qε,0,UB

, uU
B

) under P
UB

.

Thus Jε,0(x0, q0,U
B) = Jε(x0, q0,U), for every U ∈ S

1,2 and U
B ∈ RU ⊂ S

1,2,B.

The above remark entitles us to replace our original control problem with the enriched one in the trivial

case η = 0. Namely we have the not very surprising equality:

Lemma 4.2

V ε,0(x0, q0) = V ε(x0, q0), ∀x0 ∈ H, q0 ∈ K.

Proof. Thanks to the previous remark, for every U
B ∈ S

1,2,B we have that Jε(x0, q0, PU
B) = Jε,0(x0, q0,U

B).

Conversely if U ∈ S
1,2 and U

B ∈ RU we again have that Jε(x0, q0,U) = Jε(x0, q0, PU
B) = Jε,0(x0, q0,U

B).

Thus the sets {Jε(x0, q0,U) : U ∈ S
1,2} and {Jε,0(x0, q0,U

B) : UB ∈ S
1,2,B} coincide and obviously the same

is true for their infimum.

Now we fix a reference setting (Ω̄, F̄ , P̄, (F̄t), W̄
1, W̄ 2, B̄), we denote with F̄1,2,B

t , F̄1,B
t , F̄2

t the natural filtra-

tion generated, respectively, by the processes (W̄ 1, W̄ 2, B̄), (W̄ 1, B̄), and W̄ 2 (always completed with the P̄

-negligible sets in F̄), eventually by Ē we will denote the expectation with respect to P̄.
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We then consider the following system:





dXt = AXt dt+R(Xt) dW̄
1
t + η dB̄t, X0 = x0,

εdQt = (BQt + F (Xt, Qt)dt+ ε1/2GdW̄ 2
t , Qε

0 = q0.

(4.5)

That has a unique mild solution (Xη , Qε,η) with Xη∈ Lp
F̄1,B (Ω;C([0, 1];H)), Qε,η∈ Lp

F̄1,2,B (Ω;C([0, 1];K)),

p ≥ 1.

We introduce here the BSDE:

{
−dYt = ψǫ,η(Xη

t , Q
ε,η
t , Z1

t , Z
2
t ,Ξt)dt− Z1

t dW̄
1
t − Z2

t dB̄t − ΞtdW̄
2
t ,

Y1 = h(X1).
(4.6)

with

ψε,η(x, q, z2, v) := inf
{u∈U}

{l(x, q, u) + z2b(x, q, u)

η
+

v√
ε
ρ(u)} = ψ(x, q,

z2
η
,
v√
ε
),

where ψ(x, q, z2, v) = inf
u∈U

{l(x, q, u) + z2b(x, q, u) + vρ(u)} for every x, z2 ∈ H, q ∈ K, v ∈ Ξ.

We notice that ψ is Lipschitz in z2 and v uniformly with respect to x and q, moreover it is Lipschitz with

respect to x and q with Lipschitz constant linearly growing in |z2|.
By standard BSDE theory (see for instance [8]) equation (4.6) has a unique solution (Y ε,η, Z1,ε,η, Z2,ε,η,Ξε,η)

with Y ε,η ∈ L2
F̄1,2,B (Ω;C([0, 1];R)), Z1,ε,η∈ L2

F̄1,2,B (Ω × [0, 1]; Ξ∗), Z2,ε,η∈ L2
F̄1,2,B (Ω × [0, 1];H∗) and Ξε,η∈

L2
F̄1,2,B (Ω × [0, 1]; Ξ∗).

We introduce the space of U -valued processes U1,2,B being progressively measurable w.r.t. F̄1,2,B
t .

The following identification is a standard result in BSDE theory we report the proof in order to take into

account the two different (weak) formulations of the control problem that will be needed below.

Lemma 4.3 It holds that:

V ε,η(x0, q0) = inf
u∈U1,2,B

E
u
(∫ 1

0
l(Xη

t , Q
ε,η
t )) dt+ h(Xη

1 )
)
= Y ε,η

0 . (4.7)

where E
u denotes expectation with respect to the probability P

u on (Ω̄, F̄) under which

(W̄ 1
t ,−

∫ 1

0
ε−1/2ρ(Xη

t , Q
ε,η
t ) dt+ W̄ 2

t ,−
∫ 1

0
η−1b(Xη

t , Q
ε,η
t , ut) dt+ B̄t)

is a Wiener process on Ξ× Ξ×H.

Proof. We begin noticing that, given u ∈ U1,2,B, we can, starting from the reference setting, build the

following setting Ū
B ∈ S

1,2,B by:

Ū
B := (Ω̄, F̄ ,Pu, (F̄1,2,B

t ), W̄ 1
t ,−

∫ 1

0
ε−1/2ρ(ut) dt+ W̄ 2

t ,−
∫ 1

0
η−1b(Xη

t , Q
ε,η
t , ut) dt+ B̄t, ut).

Ū
B has been constucted in such a way that the corresponding solution to (4.1) Xε,η,UB

coincides with the

solution Xη of (4.5). We then have that

Jε,η(x0, q0, Ū
B) = E

u
( ∫ 1

0
l(Xη

s , Q
ε,η
s ) ds + h(Xη

1 )
)
.
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So, by definition, we have that:

V ε,η(x0, q0) ≤ inf
u∈U1,2,B

E
u
(∫ 1

0
l(Xη

t , Q
ε,η
t ) dt+ h(Xη

1 )
)
. (4.8)

To prove the converse we add and subtract the terms

∫ 1

0
l(Xη

t , Q
ε,η
t , ut) dt to system (4.5) and compute the

mean value with respect to P
u to get the usual fundamental relation:

Y ε,η
0 = E

u
[ ∫ 1

0
(ψε,η(Xη

t , Q
ε,η
s , Z1,ε,η

t , Z2,ε,η
t ,Ξε,η

t )− l(Xη
t , Q

ε,η
t , ut)−

1

η
Z2,ε,η
t b(Xη

t , Q
ε,η
t , ut)−

1√
ε
Ξε,η
t ρ(ut)) dt

]

+ E
u
[ ∫ 1

0
l(Xη

t , Q
ε,η
t , ut) dt+ h(Xη

1 )
]

Choosing, in a measurable way, a minimizing sequence un such that

|ψε,η(Xη
t , Q

ε,η
t , Z1,ε,η

t , Z2,ε,η
t ,Ξε,η

t )− l(Xη
t , Q

ε,η
t , unt )−

1

η
Z2,ε,η
t b(Xη

t , Q
ε,η
t , unt )−

1√
ε
Ξε,η
t ρ(unt ))| ≤

1

n

(notice that (Xη , Qε,η) do not depend on u) we end up, see for instance [8], with:

Y ε,η
0 = inf

u∈U1,2,B
E
u
( ∫ 1

0
l(Xη

t , Q
ε,η
t )) dt+ h(Xη

1 )
)

(4.9)

To complete the proof it is enough to show that:

Jε,η(x0, q0,U
B) ≥ Y ε,η

0 , for all UB ∈ S
1,2,B.

The key point is the well known observation that the law of the solution to the forward backward system

(4.5) does not depend on the specific setting (the solution is obtained by a Picard iteration argument that

conserves the law). Given U
B = (ΩUB

, (FUB

t ),PUB

, (W 1,UB

t ), (W 2,UB

t ), (BUB

t ), (uU
B

t )) ∈ S
1,2,B, we set

B̃t = η−1

∫ t

0
b(Xη

s , Q
ε,η
s , uU

B

s ) ds+BUB

t and W̃ 2 = ε−1/2

∫ t

0
ρ(uU

B

s ) ds +W 2,UB

t .

Hence (Xε,η,UB

, Qε,η,UB

) solves:




dXt = AXt dt+R(Xt)dW
1,UB

t + η dB̃t, X0 = x0,

εdQt = (BQt + F (Xt, Qt)dt+ ε1/2GdW̃ 2
t , Qε

0 = q0.

(4.10)

Now we associate to such forward system the backward equation

{
−dYt = ψǫ,η(Xε,η,UB

t , Qε,η,UB

t , Z1
t , Z

2
t ,Ξt)dt− Z1

t dW
1,UB

t − Z2
t dB̃t − ΞtdW̃

2
t ,

Y1 = h(X1).
(4.11)

Since the law of the solution does not depend on the particular setting, we get that Y0 = Y ε,η
0 , then rewriting

(4.11) with respect to BUB

and W 2,UB

, computing the expectation with respect to P
UB

and recalling the

definition of ψε,η, we get:

Y0 = Y ε,η
0 ≤ E

UB
[ ∫ 1

0
l(Xε,η,UB

t , Qε,η,UB

t , uU
B

t ) dt+ h(Xη,UB

1 )
]
= Jε,η(x0, q0,U

B). (4.12)

Thus the proof is completed.

By simple considerations on the control problems we can prove the following uniform convergence.
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Theorem 4.4 Under 3.1—3.6 we have that:

lim
η→0

sup
ε>0

|V ε,η(x0, q0)− V ε,η(x0, q0)| = 0 (4.13)

Proof. First of all we recall, see Lemma 4.2, that V ε(x0, q0) = V ε,0(x0, q0).

Moreover, by definition, V ε(x0, q0) = infUB∈S1,2,B J
ε,η(x0, q0,U

B), for every η ≥ 0. Therefore, our claim

follows if we prove that:

lim
η→0

sup
ε>0

sup
UB∈S1,2,B

|Jε,η(x0, q0,U
B)− Jε,0(x0, q0,U

B)| = 0. (4.14)

We fix then ε > 0 and U
B = (Ω, (Ft),P, (W

1
t ), (W

2
t ), (Bt), (ut)) ∈ S

1,2,B and consider:





d(Xε,η,UB

t −Xε,0,UB

t ) = A(Xε,η,UB

t −Xε,0,UB

t ) dt+ [b(Xε,η,UB

t , Qε,η,UB

t , ut)− b(Xε,0,UB

t , Qε,0,UB

t , ut)]dt

+[R(Xε,η,UB

t )−R(Xε,0,UB

t )]dW 1
t + η dBt,

Xε,η,UB

0 −Xε,0,UB

0 = 0,

d(Qε,η,UB

t −Qε,0,UB

t ) = ε−1B(Qε,η,UB

t −Qε,0,UB

t )dt+ ε−1[F (Xε,η,UB

t , Qε,η,UB

t , ut)− F (Xε,0,UB

t , Qε,0,UB

t , ut)]dt,

Qε,η,UB

0 −Qε,0,UB

0 = 0.

Taking into account the second equation we have by Hypothesis 3.3 and standard estimates (see for instance

[15])

|Qε,η,UB

t −Qε,0,UB

t | ≤ C

ε

∫ t

0
e
−
µ

ε
(t− s)

|Xε,η,UB

s −Xε,0,UB

s | ds, (4.15)

and consequently

sup
s≤t

|Qε,η,UB

s −Qε,0,UB

s | ≤ C

µ
sup
s≤t

|Xε,η,UB

s −Xε,0,UB

s | (4.16)

where C is a constant independent of ǫ and η with value that can change from line to line.

As far as the first equation is concerned we have:

Xε,η,UB

t −Xε,0,UB

t =

∫ t

0
e(t−s)A[b(Xε,η,UB

s , Qε,η,UB

s , us)− b(Xε,0,UB

s , Qε,0,UB

s , us)] ds +

∫ t

0
e(t−s)Aη dBs

+

∫ t

0
e(t−s)A[R(Xε,η,UB

s )−R(Xε,0,UB

s )] dW 1
s .

Thanks to standard estimates and the factorization method, see [9], we get for p > 2
1−2γ , α ∈ (1p ,

1
2 − γ),

(γ ∈ (0, 1/2) is the constant appearing in Assumption 3.1 and Assumption 3.4) and any ρ ∈ [0, 1]:

E
UB

sup
t∈[0,ρ]

|Xε,η,UB

t −Xε,0,UB

t |p ≤ C

∫ ρ

0
[EUB

sup
s∈[0,r]

|Xε,η,UB

s −Xε,0,UB

s |p + E
UB |Qε,η,UB

r −Qε,0,UB

r |p] dr

+

∫ ρ

0
E
UB
[ ∫ r

0
(r − l)−2(α+γ)|Xε,η,UB

l −Xε,0,UB

l |2 dl
]p/2

dr + |η|p

≤ C

(
1 +

(∫ 1

0
σ−2(α+γ) dσ

)p/2
)∫ ρ

0
E
UB

sup
s∈[0,r]

|Xε,η,UB

s −Xε,0,UB

s |p dr +
∫ ρ

0
E
UB |Qε,η,UB

r −Qε,0,UB

r |p dr + |η|p.

Recalling (4.16) we also get:

E
UB

sup
t∈[0,ρ]

|Xε,η,UB

t −Xε,0,UB

t |p ≤ C
[ ∫ ρ

0
E
UB

sup
s∈[0,r]

|Xε,η,UB

s −Xε,0,UB

s |p dr + |η|p
]
;

9



and applying the Gromwall Lemma to v(r) =: EUB

sups∈[0,r] |Xε,η,UB

s −Xε,0,UB

s |p, we conclude

E
UB

sup
t∈[0,ρ]

|Xε,η,UB

t −Xε,0,UB

t |p ≤ C|η|p, ∀ε > 0

and applying once again (4.16)

E
UB

sup
t∈[0,ρ]

|Qε,η,UB

t −Qε,0,UB

t |p ≤ C|η|p, ∀ε > 0

Finally if we consider the difference between the value functions:

|V ε,η(x0, q0)− V ε,0(x0, q0)| ≤ sup
UB∈S1,2,B

[
E
UB

∫ 1

0
|l(Xε,η,UB

t , Qε,η,UB

t , ut)− l(Xε,0,UB

t , Qε,0,UB

t , ut)| dt

+ E
UB |h(Xε,η,UB

1 )− h(Xε,0,UB

1 )|
]

(4.17)

≤ C sup
UB∈S1,2,B

E
UB
[

sup
t∈[0,1]

|Xε,η,UB

t −Xε,0,UB

t |+
∫ 1

0
|Qε,η,UB

t −Qε,0,UB

t | dt
]

≤ C|η|, ∀ε > 0.

Thus our claim holds.

Theorem 4.5 For every fixed x ∈ H and z ∈ H∗, let us consider the following ergodic control problem

with state equation in K, driven by an arbitrary Ξ-valued cylindrical Wiener process (Ŵ ), with control

β : [0,∞[×Ω → U varying in the set U∞ of progressively measurable U -valued processes with respect to the

natural filtration of (Ŵ ).

dQ̂β
s = BQ̂β

sds+ F (x, Q̂β
s ) ds +Gρ(βs)ds+GdŴ 2

s , Q̂β
0 = 0 (4.18)

and ergodic cost functional:

J̌(x, z, β) = lim inf
δ→0

Ê δ

∫ 1

δ

0
[z b(x, Q̂β

s , βs) + l(x, Q̂β
s , βs)]ds. (4.19)

Let λ(x, z) be is the value function of the above ergodic control problem, that is:

λ(x, z) = inf
β∈U2

J̌(x, z, β). (4.20)

Under 3.1—3.6 we have that λ(x, · ) is concave moreover:

|λ(x, z) − λ(x, z′)| ≤M |z − z′|
|λ(x, z) − λ(x′, z)| ≤ L(1 + |z|)|x− x′|
|λ(x, z)| ≤M(1 + |z|)

(4.21)

Moreover for every η > 0:

lim
ε→0

Y ε,η
0 = lim

ε→0
V ε,η(x0, q0) = Y η

0 (4.22)

where Y η
0 is defined as part of the solution to the reduced BSDE (for the definition of Xη see (4.5)).

{
−dYt = λ(Xη

t , η
−1Z2

t ) dt− Z1
t dW̄

1
t − Z2

t dB̄t,

Y1 = h(Xη
1 ).

(4.23)

where Y η ∈ L2
F̄1,B (Ω;C([0, 1];R)), Z1,η ∈ L2

F̄1,B (Ω× [0, 1]; Ξ∗) and Z2,η ∈ L2
F̄1,B (Ω× [0, 1];H∗).
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Proof: The proof follows the one in [10, Theorem 5.4]. The only point to check is the discretization procedure

of the forward component Xη since now in the limit equation (4.23) a multiplicative noise appears. As in

[10, Theorem 5.4] we introduce, for all N ∈ N a partition π of [0, 1], π = { k
2N

: k : 0, . . . , 2N − 1} and we

define a sequence Xη,N

Xη,N
t =

2N−1∑

k=0

Xη
k

2N

I[ k

2N
, k+1

2N
[(t) +Xη

1 δ1(t), t ∈ [0, 1] (4.24)

We need to arrive to the following

lim
N→∞

Ē sup
t∈[0,1]

|Xη,N
t −Xη

t |4 = 0, (4.25)

in order to exploit the procedure of [10, Theorem 5.4].

First of all, using the factorization method, see [8] and [9], we can find, for any p > 2
1−2γ (and consequently

for any p ≥ 1), a constant Cp independent of η such that:

Ē sup
t∈[0,1]

|Xη
t |p ≤ Cp(|x0|p + |η|p). (4.26)

For t ∈ [ k
2N
, k+1

2N
[ we evaluate the difference:

Xη,N
t −Xη

t =

∫ t

k

2N

e(t−s)AR(Xη
s ) dW̄

1
s +

∫ t

k

2N

e(t−s)Aη dB̄s. (4.27)

again using the factorization method [9] for any p > 2
1−2γ any α ∈ (1p ,

1
2 − γ) we can find a constant M , that

depends on α but not on N such that, for q = p
p−1 , we get:

Ē sup
t∈[ k

2N
, k+1

2N
]

|XN,η
t −Xη

t |p ≤

M
( ∫ 1

2N

0
sq(α−1) dr

)p/q(∫ 1

0
(s− r)−2(α+γ) dr

)p/2 ∫ 1

0
(1 + Ē sup

t∈[0,1]
|Xη

t |p + |η|p) dt, ∀k ∈ {0, · · · , 2N − 1}

(4.28)

For the reader convenience we write some details regarding the first term at the R.H.S. in (4.27).

∫ t

k

2N

e(t−s)AR(Xη
s ) dW̄

1
s =

1

B(α, 1− α)

∫ t

k

2N

e(t−r)A(t− r)1−α

∫ r

k

2N

e(r−s)A(r − s)−αR(Xη
s ) dW̄

1
s dr

=
1

B(α, 1− α)

∫ t

k

2N

e(t−r)A(t− r)1−αY (r) dr

where by B(α, 1−α) we denote the normalization constant of the beta distribution and by Y (r) the random

variable Y (r) :=
∫ r

k

2N
e(r−s)A(r − s)−αR(Xη

s ) dW 1
s .
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Thus for any p > 2
1−2γ and 1

2 − γ > α > 1
p

Ē sup
t∈[ k

2N
, k+1

2N
]

∣∣∣
∫ t

k

2N

e(t−s)AR(Xη
s ) dW

1
s

∣∣∣
p
≤
( MAe

ωA

B(α, 1 − α)

)p(∫ k+1

2N

k

2N

(t− r)(1−α)q dr
)p/q

Ē

∫ k+1

2N

k

2N

|Y (r)|p dr

≤ C
(∫ 1

2N

0
sq(α−1) dr

)p/q ∫ k+1

2N

k

2N

Ē

∣∣∣∣∣

∫ r

k

2N

e(r−s)A(r − s)−αR(Xη
s ) dW

1
s

∣∣∣∣∣

p

dr

≤ C
(∫ 1

2N

0
sq(α−1) dr

)p/q ∫ k+1

2N

k

2N

(∫ r

k

2N

(r − s)−2α−2γ
Ē|R(Xη

s )|2L(H) ds
)p/2

dr

≤ C
(∫ 1

2N

0
sq(α−1) dr

)p/q(∫ 1

0
σ−2α−2γ dσ

)p/2(∫ 1

0
Ē sup

r∈[0,1]
(1 + |Xη

r |p) dr
)

Where C may change from line to line but is always independent of N . Thus thanks to (4.26) and (4.28)

we get the thesis. .

5 Interchanging limits

We now prove general result allowing us to interchange the limit with respect to ε and the one with respect

to η as well.

Theorem 5.1 Let vη(x0) = Y η
0 (see (4.23) for the definition of Y η) then, for all x0 ∈ H and q0 ∈ K, it

holds:

lim
ε→0

V ε(x0, q0) = lim
η→0

vη(x0) := V (x0).

Moreover V ε is Lipschitz uniformly with respect to ε, vη is Lipschitz uniformly with respect to η and V is

Lipschitz.

Proof. Since, fixed x0 ∈ H the sequence vη(x0) is bounded (see (4.22) and (4.4)) then there exists a

sequence ηn ց 0 (depending on x0 but we omit this information in the notation since it is not relevant

here) such that the sequence vηn(x0) converges to a limit that we denote by V (x0). By standard adding and

subtracting

|V ε,0(x0, q0)− V (x0)| ≤ |V ε,0(x0, q0)− V ε,ηn(x0, q0)|+ |V ε,ηn(x0, q0)− vηn(x0)|+ |vηn(x0)− V (x0)| (5.1)

Fix δ > 0. By (4.13) there exists nδ such that

|V ε,ηn(x0, q0)− V ε,0(x0, q0)|+ |vηn(x0)− V (x0)| ≤ δ ∀ε > 0, ∀n ≥ nδ

We fix an arbitrary n̄ ≥ nδ and notice that by Theorem 4.5 there exists εδ > 0 such that

|V ε,ηn̄(x0.q0)− vηn̄(x0)| < δ, ∀ε ∈ (0, εδ).

It is then straightforward to conclude:

lim
ε→0

V ε(x0.q0) = V (x0)

Moreover, by the same argument, from any sequence η̂n ց 0 we can extract a subsequence η̂nk
ց 0 such

that

lim
k→∞

vη̂nk (x0) = lim
ε→0

V ε(x0, q0) = V (x0)
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and this implies that

lim
η→0

vη(x0) = lim
ε→0

V ε(x0, q0) = V (x0).

It lasts to show that V is Lipschitz continuous. Clearly it is enough to show that V ε,η is Lipschitz (with

respect to x0) uniformly in ε > 0 and η > 0.

First we notice that, by the definition of V ε,η(x, q) (we here indicate dependence of the solution of equation

3.1 on initial data (x, q) and (x′, q′)) and hypothesis (3.6) :

|V ε,η(x, q)− V ε,η(x′, q′)| ≤ sup
UB∈S1,2,B

∣∣∣EUB

∫ 1

0
l(Xε,η,UB ,x,q

s , Qε,η,UB ,x,q
s , us)− l(Xε,η,UB ,x′,q′

s , Qε,η,UB ,x′,q′
s , us) ds

∣∣∣

+ |EUB

[h(Xε,η,UB ,x,q
1 )− h(Xε,η,UB ,x′,q′

1 )]|,

≤ L[ sup
UB∈S1,2,B

E
UB

sup
s∈[0,1]

|Xε,η,UB ,x,q
s −Xε,η,UB ,x′,q′

s |+ E
UB

∫ 1

0
|Qε,η,UB,x,q

s −Qε,η,UB,x′,q′
s | ds].

Then, arguing as in Theorem 4.13, we can use the factorization method and the dissipativity condition to

get that ∀r ∈ [0, 1]

E
UB

sup
s∈[0,r]

|Qε,η,UB,x,q
s −Qε,η,UB,x′,q′

s | ≤ C(EUB

sup
s∈[0,r]

|Xε,η,UB ,x,q
s −Xε,η,UB,x′,q′

s |+ |q − q′|),

and consequently that

E
UB

sup
s∈[0,1]

|Xε,η,UB ,x,q
s −Xε,η,UB ,x′,q′

s | ≤ C(|x− x′|+ |q − q′|),

for some positive constants C independent from u ε and η.

6 Main characterizations

For η fixed we consider the limit system (starting now at an arbitrary time s ∈ [0, 1] from state x ∈ H and

written with respect to the reference setting).




dXt = AXt dt+R(Xt) dW̄
1
t + η dB̄t, t ∈ [s, 1],

−dYt = λ(Xt, η
−1Z2

t ) dt− Z1
t dW̄

1
t + Z2

t dB̄t,

Xs = x, Y1 = h(X1).

(6.1)

Again by standard BSDE theory equation (6.1) has a unique solution (Y η,s,x, Z1,η,s,x, Z2,η,s,x,Ξη,s,x) with

Y η,s,x ∈ L2
F̄1,B (Ω;C([s, 1];R)), Z1,η,s,x ∈ L2

F̄1,B (Ω × [s, 1]; Ξ∗), Z2,η,s,x ∈ L2
F̄1,B (Ω × [s, 1];H∗) and Ξη,s,x ∈

L2
F̄1,B (Ω × [s, 1]; Ξ∗), where λ(x, z) is defined in (4.20) (notice that in this section we need to indicate the

dependence on the initial time s and state x).

The above system follows within the framework of [7, Theorem 4.1] (indeed assumptions 2.1, 3.1-3.7 and

4.1 are verified and hypothesis 3.4 can be relaxed as pointed out in [7, pag. 443]). Thus if we denote with

vη(s, x) = Y η,s,x
s , we have that

(Z1,η,s,x
t , Z2,η,s,x

t ) = (∇xv
η(t,Xη,s,x

t )R(Xη,s,x
t ), η∇xv

η(t,Xη,s,x
t ))

In particular Z2,η,s,x
t = η∇xv

η(t,Xη,s,x
t ), P× ds -almost surely.

Taking into account the representation in Lemma 4.3 (with initial time s instead of 0) and proceeding as in

the proof of Theorem 5.1, we get that vη(s, ·) is Lipschitz uniformly with respect to s ∈ [0, 1] and η > 0.

Thus (see also [7, Theorem 4.1] ) we have that:
∣∣∣Z2,η,s,x

t

∣∣∣
H∗

≤ aη, dP× dt− a.e.. (6.2)
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where a ∈ R
+ is independent on η, s and x.

We now introduce the following function, λ̃ defined, for a constant k > M large enough, by:

λ̃(x, z) := λ(x, z) ∧ [−(M + 1)|z| + κ] (6.3)

By (4.21) we get

λ̃(x, z) :=




λ(x, z), if |z| ≤ κ−M

2M + 1
,

κ− (M + 1)|z|, if |z| ≥ k +M.

Choosing k large enough we can assume that (k −M)/(2M + 1) > a so that λ̃(x, z) = λ(x, z) when |z| ≤ a.

Moreover λ̃ remains concave being the minimum of concave functions and, by (4.21), is Lipschitz with respect

to z, uniformly with respect to x with Lipschitz constant M + 1.

Finally we have:

|λ̃(x, z)− λ̃(x′, z)|





= |λ(x, z) − λ(x′, z)|, |z| ≤ a,

≤ |λ(x, z) − λ(x′, z)|, a < |z| < κ+M

= 0, |z| ≥ κ+M.

therefore, thanks again to (4.21), λ̃ is Lipschitz continuous with respect to x, uniformly w.r.t. z, with

Lipschitz constant equal to L̃ = L(1 + κ+M).

Taking into account (6.2), system (6.1) can be written, replacing λ by λ̃ and choosing s = 0, as follows:





dXt = AXt dt+R(Xt) dW̄
1
t + η dB̄t, t ∈ [0, 1],

−dYt = λ̃(Xt, η
−1Z2

t ) dt− Z1
t dW̄

1
t − Z2

t dB̄t,

X0 = x, Y1 = h(X1).

(6.4)

We denote by λ̃∗ the Legendre transform of λ̃, that is, for x and α in H (recall that λ̃ is concave, this justifies

the negative signs):

λ̃∗(x, α) := inf
z∈H∗

{−zα− λ̃(x, z)} (6.5)

It turns out that λ̃∗ is Lipschitz continuous with respect to x, uniformly w.r.t. α, as well. Indeed:

|λ̃∗(x, α) − λ̃∗(x
′, α)| ≤ sup

z∈H∗

|λ̃(x, z)− λ̃(x′, z)| ≤ L̃ |x− x′|, ∀x, x′, α ∈ H. (6.6)

Moreover taking into account Lipschitzianity with respect to z of λ̃ we get:

λ̃∗(x, α) = −∞ if |α| > M + 1

That yields the following simplification in the Fenchel duality:

λ̃(x, z) := inf
α∈H

{−zα− λ̃∗(x, α)} = inf
α∈H:|α|≤M+1

{−zα− λ̃∗(x, α)} (6.7)

The solution (Y η) can then be represented by a reduced control problem that has the needed regularity to

eventually allow the passage to the limit as η → 0 giving the final representation of limε→0 V
ε .

We denote by U1,B
H the set of all processes (αt)t∈[0,1] taking values in the ball {α ∈ H : |α| ≤ M + 1} and

being progressively measurable with respect to the filtration (F̄1,B).

14



Lemma 6.1 We have:

Y η
t = inf

α∈U1,B
H

E
α

(
h(Xη

1 )−
∫ 1

t
λ̃∗(X

η
ℓ , αℓ)dℓ

∣∣∣∣F
1,B
t

)
, (6.8)

where E
α denotes the mean value with respect the probability P

α under which

(
W̄ 1

t ,

∫ t

0

αℓ

η
dℓ+ B̄t

)
:= (W̄ 1

t , B̄
α
t )

is a Wiener process.

Notice that, with respect to (W̄ 1, B̄α) process (Xη) solves the controlled stochastic differential equation:

dXt = AXtdt− αtdt+R(Xt)dW̄
1
t + ηB̄α

t , X0 = x. (6.9)

Proof: To start with we point out that in the (6.7) the infimum can be restricted to a bounded subset of

H, as a consequence the choice of controls α in (6.9) can be restricted to bounded (by M + 1) controls and

we are allowed to apply Girsanov transform to see perturbation by α as a change of probability.

Taking into account (6.7), equation (6.4) evaluated at its solution (Xη , Y η, Z1,η, Z2,η) yields:

Y η
t = h(Xη

1 ) +

∫ 1

t
λ̃(Xη

ℓ , η
−1Z2,η

ℓ )ds −
∫ 1

t
Z1,η
ℓ dW̄ 1

ℓ −
∫ 1

t
Z2,η
ℓ dB̄ℓ

≤ h(Xη
1 )−

∫ 1

t

(
η−1Z2,η

ℓ αℓ + λ̃∗(X
η
ℓ , αℓ)

)
dℓ−

∫ 1

t
Z1,η
ℓ dW̄ 1

ℓ −
∫ 1

t
Z2,η
ℓ dB̄ℓ.

(6.10)

and by the definition of (B̄α):

Y η
t ≤ h(Xη

1 )−
∫ 1

t
λ̃∗(X

η
ℓ , αℓ)dℓ−

∫ 1

t
Z1,η
ℓ dW̄ 1

ℓ −
∫ 1

t
Z2,η
ℓ dB̄α

ℓ ,

which shows that for all α ∈ U1,B
H ,

Y η
t ≤ Ē

α

(
h(Xη

1 )−
∫ 1

t
λ̃∗(X

η
ℓ , αℓ)dℓ

∣∣∣∣F̄
1,B
t

)
.

Conversely, by measurable selection, we may choose a minimizing sequence of controls, (ᾱn)n∈N ⊂ U1,B ,

such that, for all ℓ ∈ [0, 1], P-a.s.:

− Z2,η
ℓ

η
ᾱn
ℓ − λ̃∗(X

η
ℓ , ᾱ

n
ℓ )− 1/n ≤ λ̃

(
Xη

ℓ ,
Z2,η
ℓ

η

)
. (6.11)

Proceeding as in (6.10) and taking into account (6.11) to obtain the reverse inequality we get:

Y η
t ≥ h(Xη

1 )−
∫ 1

t

(
Z2,η
ℓ

η
ᾱn
ℓ + λ̃∗(X

η
ℓ , ᾱ

n
ℓ ) +

1

n

)
dℓ−

∫ 1

t
Z1,η
ℓ dW̄ 1

s −
∫ 1

t
Z2,η
ℓ dB̄ℓ,

and rewriting the above in terms of B̄ᾱn
:

Y η
t +

1− t

n
≥ h(Xη

1 )−
∫ 1

t
λ̃∗(X

η
ℓ , ᾱ

n
ℓ )dℓ−

∫ 1

t
Z1,η
ℓ dW̄ 1

ℓ −
∫ 1

t
Z2,η
ℓ dB̄ᾱn

ℓ .

Therefore we can conclude that:

Y η
t + 1/n ≥ Ē

ᾱn

(
h(Xη

1 )−
∫ 1

t
λ̃∗(X

η
ℓ , ᾱ

n
ℓ )dℓ

∣∣∣∣F̄
1,B
t

)
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and the claim is proved.

To complete the circle and give sense to the limit as η → 0 we just have to come back to a control

representation of Y η
0 that does not relay on Girsanov transform (meaningless if η = 0). This was already

done for a different control problem but by general techniques in Lemma 4.3.

Namely if we denote by S
1,B
H the class of 7-uples UB

H = (Ω,F , (Ft),P, (W
1
t ), (Bt), (αt)), similar to the settings

S
1,2,B defined in Section 4 with the only differences are that here the noise (W 2) is omitted and (α) is now

any (Ft)-progressive process with values in the closed ball {x ∈ H : |x| ≤ M + 1} (the subscript H in the

notation SH indicates that we are now considering H-valued controls). It holds:

Lemma 6.2

Y η
0 = inf

UB
H
∈S1,B

H

Ē
UB
H

(
h(X

η,UB
H

1 )−
∫ 1

t
λ̃∗(X

η,UB
H

ℓ , αℓ)dℓ

)
(6.12)

where given U
B
H ∈ S

1,B
H as above Xη,UB

H solves:

dXs = AXsds− αsds+R(Xs)dW
1
s + η dBt, X0 = x0. (6.13)

Proof.

The proof follows exactly as in the cited Lemma 4.3.

We are now able to prove the main result of the paper namely the characterization of the limit, as ε→ 0, of

the value function V ε(x0, q0) of the original control problem in terms the value function of a reduced control

problem on a reduced state space.

Let S
1
H the class of 6-uples UH = (Ω,F , (Ft),P, (W

1
t ), (αt)) identical to the ones in S

1,B
H with the only

difference that (B) is not present.

Theorem 6.3 It holds:

lim
ε→0

V ε(x0, q0) = V (x0) = inf
UH∈S1

H

E
UH

(
h(XUH

1 )−
∫ 1

0
λ̃∗(X

UH
s , αUH

s )ds

)
.

where, given UH ∈ S
1
H as above, Xη,UH solves the state equation:

dXs = AXsds− αsds+R(Xs)dW
1
s , X0 = x0.

Proof: First we notice that as in Lemma 4.2 it holds:

inf
UH∈ S1

H

E
UH

(
h(XUH

1 )−
∫ 1

0
λ̃∗(X

UH
s , αUH

s )ds

)
= inf

UB
H
∈ S

1,B
H

E
UB
H

(
h(X

0,UB
H

1 )−
∫ 1

0
λ̃∗(X

0,UB
H

s , α
UB
H

s )ds

)
.

where, we recall X0,UB
H solves equation (6.13) with η = 0.

Thus, by (6.12) and Th. 5.1 it is enough to prove that, if η → 0:

inf
UB
H
∈S1,B

H

Ē
UB
H

(
h(X

η,UB
H

1 )−
∫ 1

t
λ̃∗(X

η,UB
H

ℓ , αℓ)dℓ

)
→ inf

UB
H
∈S1,B

H

Ē
UB
H

(
h(X

0,UB
H

1 )−
∫ 1

t
λ̃∗(X

0,UB
H

ℓ , αℓ)dℓ

)

Fix any U
B
H = (Ω, (Ft),P, (W

1
t ), (Bt), (αt)) ∈ S

1,B
H . Thanks to the Lipschitzianity of h (see hypotheses 3.6)

and of λ̃∗ we easily have that for a suitable constant C independent on η:

∣∣∣EUB
H

(
h(X

η,UB
H

1 )−
∫ 1

0
λ̃∗(X

η,UB
H

t , αt)dt

)
− E

UB
H

(
h(X

0,UB
H

1 )−
∫ 1

0
λ̃∗(X

0,UB
H

t , αt)dt

)∣∣∣

≤ C E
UB
H sup

t∈[0,1]
|Xη,UB

H
t −X

0,UB
H

t |.
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We have :



d(X

η,UB
H

t −X
0,UB

H
t ) = A(X

η,UB
H

t −X
0,UB

H
t )dt− [R(X

η,UB
H

t )−R(X0,UB

t )]dW 1
t + ηdBt, t ∈ [0, 1]

X
η,UB

H

0 −X
0,UB

H

0 = 0

By standard estimates based on the factorization method (see the proof of Theorem 4.13), we end up with:

E
UB
H sup

t∈[0,1]
|Xη,UB

H
t −X

0,UB
H

t |p ≤ Cpη
p.

for all p ≥ 1 and a suitable constant Cp independent of α. Thus we can conclude that:

∣∣∣ inf
UB
H
∈ S1,B

E
UB
H

(
h(X

η,UB
H

1 )−
∫ 1

0
λ̃∗(X

η,UB
H

t , αt)dt

)
− inf

UB
H
∈ S1,B

E
UB
H

(
h(X0,UB,m

1 −
∫ 1

0
λ̃∗(X

0,UB
H

t , αt)dt

)∣∣∣

≤ sup
UB
H
∈ S1,B

∣∣∣EUB
H

(
h(Xη,UB

H )−
∫ 1

0
λ̃∗(X

0,UB
H

t , αt)dt

)
− E

UB
H

(
h(X

0,UB
H

1 )−
∫ 1

0
λ̃∗(X

0,UB
H

t , αt)dt

)∣∣∣

≤ Cη,

and the claim follows.

Remark 6.4 In the special case in which the slow evolution is not perturbed by the noise (W 1) (equivalently

R ≡ 0 in (3.1)), in Theorem 6.3 the following characterization holds:

V (x0) = inf
UH∈ S0

H

E
U0
H

(
h(X

U0
H

1 )−
∫ 1

0
λ̃∗(X

U0
H

s , α
U0
H

s )ds

)

where SH is the set of all U0
H = (Ω,F , (Ft),P, (αt)) where α is any (Ft) progressively measurable process

with values into the ball B(0,M + 1) ⊂ H of center 0 and radius M + 1 and XU0
H solves:

dXs = AXsds+ αs ds, X0 = x0. (6.14)

It is natural to think that the stochastic framework is here pleonastic and that the infimum above can be

restricted to deterministic controls and trivial settings, namely:

V (x0) = inf
a

(
h(Xa

1 )−
∫ 1

0
λ̃∗(X

a
s , as)ds

)
(6.15)

where the above infimum is computed over all functions a : [0, 1] → B(0,M + 1) (B(0,M + 1) being the

ball of H centered in the origin of radius M + 1) and Xa is the mild solution of the deterministic evolution

equation:
d

dt
Xt = AXt + at, X0 = x0

It is straight forward to see that

inf
U0
H
∈ SH

E
UH

(
h(X

U0
H

1 )−
∫ 1

0
λ̃∗(X

U0
H

s , α
U0
H

s )ds

)
≤ inf

a

(
h(Xa

1 )−
∫ 1

0
λ̃∗(X

a
s , as)ds

)

To prove the converse let, for any ǫ > 0, UH ∈ S such that:

E
U0
H

(
h(X

U0
H

1 )−
∫ 1

0
λ̃∗(X

U0
H

s , α
U0
H

s )ds

)
≤ inf

U0
H
∈ SH

E
U0
H

(
h(X

U0
H

1 )−
∫ 1

0
λ̃∗(X

U0
H

s , α
U0
H

s )ds

)
+ ǫ. (6.16)
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Then we have, recalling that equation (6.14) can be solved pathwise:

P
U0
H

(
ω ∈ ΩU0

H : h(X
U0
H

1 (ω))−
∫ 1

0
λ̃∗(X

U0
H

s (ω), α
U0
H

s (ω))ds ≤ V (x0) + ǫ

)
> 0

To conclude is now enough to select ω̄ in the above set and choose ā = αU0
H (ω̄).

Remark 6.5 Taking advantage of our main result (see Theorem 6.3) we can further represent the singular

limit V (x0) as the value at time 0 of the minimal solution of a BSDE with constrints on the martingale term

(see [13] for the definition for and [6] for the infinite dimensional case). The bridge is given by the results in

[6] allowing to represent the value function of a control problem by such a constrained BSDE without using

viscosity solutions of the related HJB equation.

First of all, to fit the framework in [6] we notice that the control problem introduced in Theorem 6.3 can

be rewritten considering an unbounded set of controls. This is readily (and rather obviously) done by intro-

duciong the class Ŝ
1
H of 6-uples UH = (Ω,F , (Ft),P, (W

1
t ), (ut)) identical to the ones in S

1
H with the only

difference that here u are not required to be bounded by M + 1 and noticing that:

V (x0) = inf
UH∈S1

H

E
UH

(
h(XUH

1 )−
∫ 1

0
λ̃∗(X

UH
s , αs)ds

)
= inf

ÛH∈Ŝ1
H

E
UH

(
h(XÛH

1 )−
∫ 1

0
λ̃∗(X

ÛH
s ,Γ(us))ds

)

(6.17)

where Γ(h) := h
||h|| min(||h||,M + 1) for h ∈ H and XÛH solves:

dXs = AXsds− Γ(us)ds+R(Xs)dW
1
s , X0 = x0.

Then we just have to remind the construction and the results in [6].

Given x0 ∈ H we consider the following system of forward-backward stochastic differential equations:





X x0

t = etAx0 +

∫ t

0
e(t−s)AΓ(SŴs)ds +

∫ t

0
e(t−s)AR(X x0

s )dWs,

Yx0

t = h(X x0

1 )−
∫ 1

t
λ̃∗(X x0

s ,Γ(SŴs)) ds −Kx0

1 +Kx0

t −
∫ 1

t
Zx0

s dWs ,

(6.18)

where S : H → H is an arbitrary trace class and injective linear operator with dense image and W and Ŵ
are two independent cylindrical Wiener processes with values in H defined on a probability space satisfying

the usual conditions. We denote by (F0
t ) the natural filtration of (Wt, Ŵt) augmented. Notice that, besides

the two typical terms in the backward component, the unknown K appears. Such process belongs to the set

of real-valued (F0
t )- adapted nondecreasing continuous processes K on [0, T ] such that E|KT |2 < ∞ and

K0 = 0.

Then, see [6] §4.2 the following holds:

• the forward equation in (6.18) has a unique solution (X x0) in L2
F0(Ω;C([0, T ];H)).

• the backward equation in system (6.18) has a maximal solution (Yx0 ,Zx0 ,Kx0) belonging to the space

L2
F0(Ω;C([0, T ];R))×L2

F0(Ω× [0, T ]; Ξ∗)×K2(0, T ), maximal in the sense that if there exists another

solution (Y ′,Z ′,K ′) belonging to the same functional spaces then Yx0

t ≥ Y ′
t for all t ∈ [0, 1], P-a.s.

• the following characterization of the singular limit V (x0) holds

Yx
0 = V (x0). (6.19)
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