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Abstract 47 

 Non-pharmacological behavioral addictions, such as pathological gambling, videogaming, 48 

social networking, or internet use, are becoming major public health concerns. It is not yet clear 49 

how behavioral addictions could share many major neurobiological and behavioral characteristics 50 

with substance use disorders, despite the absence of direct pharmacological influences. A deeper 51 

understanding of the neurocognitive mechanisms of addictive behavior is needed, and 52 

computational modeling could be one promising approach to explain intricately entwined 53 

cognitive and neural dynamics. This review describes computational models of addiction based on 54 

reinforcement learning algorithms, Bayesian inference, and biophysical neural simulations. We 55 

discuss whether computational frameworks originally conceived to explain maladaptive behavior 56 

in substance use disorders can be effectively extended to non-substance-related behavioral 57 

addictions. Moreover, we introduce recent studies on behavioral addictions that exemplify the 58 

possibility of such extension and propose future directions. 59 

Keywords 60 
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Introduction 63 

 Psychobiological and neurocomputational investigations in addictive disorders have 64 

largely focused on the effects of substances of abuse on neural dynamics, cognitive processes and 65 

behavior (cf. reviews: Everitt & Robbins, 2016; Koob & Volkow, 2016; Mollick & Kober, 2020; 66 

Redish, Jensen, & Johnson, 2008; Smith, Taylor, & Bilek, 2021). However, recent studies strongly 67 

suggest that non-pharmacological behavioral addictions share with substance use disorders key 68 

neurobiological (Antons, Brand, & Potenza, 2020; Potenza, 2013), computational (Lindstrom et 69 

al., 2021; Ognibene, Fiore, & Gu, 2019; Redish, Jensen, Johnson, & Kurth-Nelson, 2007; 70 

Shimomura, Kato, & Morita, 2021), and behavioral features (Grant & Chamberlain, 2014; Grant, 71 

Potenza, Weinstein, & Gorelick, 2010). These include widely accepted behavioral addictions such 72 

as pathological gambling (el-Guebaly, Mudry, Zohar, Tavares, & Potenza, 2012), as well as others 73 

on which the consensus is still forming, such as videogaming (Petry & O'Brien, 2013; Yao, 74 

Potenza, & Zhang, 2017), social network or internet addiction (Jorgenson, Hsiao, & Yen, 2016; 75 

Veisani, Jalilian, & Mohamadian, 2020), compulsive buying (Granero et al., 2016; Grant et al., 76 

2010), compulsive sexual behavior or pornography addiction (Griffiths, 2016; Love, Laier, Brand, 77 

Hatch, & Hajela, 2015) and finally, more controversial, disordered eating behaviors such as binge 78 

eating (Wiss, Avena, & Gold, 2020; Wiss, Avena, & Rada, 2018; Wiss, Criscitelli, Gold, & Avena, 79 

2017).  80 

 In this review, we cast a wide net relying on an inclusive definition of addictions: a 81 

relapsing, chronic disorder characterized by an initial pursuit of a desired outcome that leads to the 82 

inflexible repetition of maladaptive behaviors, despite the harmful consequences (Everitt & 83 

Robbins, 2016; Koob & Volkow, 2016). This definition highlights two complementary elements 84 

of behavioral and cognitive control in addictions. First, it emphasizes a transition from reinforcing 85 

action-outcome associations to compulsive stimulus-responses, i.e., from goal-oriented to habitual 86 

behavior (Ersche et al., 2016; Everitt & Robbins, 2013; Volkow & Morales, 2015). In other words, 87 

an ‘urge’ to respond to a reinforced cue is triggered irrespective of an actual desire for the outcome 88 

(cf. 'need' vs 'want', Berridge & Robinson, 2016) or any assessment about desired future 89 

environment or body states (cf. 'model-free control', Dolan & Dayan, 2013). Second, the chronic 90 

and relapsing elements of the definition assign an important role to an underperforming goal-91 

oriented behavior and forward planning (or 'model-based control', cf. Dolan & Dayan, 2013), 92 
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possibly due to an incomplete, incorrect, or otherwise impaired belief structure or internal model 93 

of both environment and body states. For instance, incorrect representations of future positive and 94 

negative interoceptive outcomes can lead to craving (Grimm, Hope, Wise, & Shaham, 2001; Gu 95 

& Filbey, 2017), often followed by the reinstatement of the addictive behavior (relapse), even after 96 

prolonged periods of abstinence. 97 

 Here we consider computational models of addiction based on reinforcement learning 98 

algorithms, Bayesian inference and biophysical neural simulations, with a focus on ‘model-free’ 99 

and ‘model-based’ aberrant control. We discuss whether computational models originally 100 

conceived to describe substance use disorders could be validly extended to behavioral addictions 101 

and we present computational models that have been specifically developed to describe 102 

maladaptive behaviors in behavioral addictions.  103 

 104 

Reinforcement learning models 105 

 Reinforcement learning (RL, Sutton & Barto, 1998) is the dominant approach for modeling 106 

addictive behaviors (CPSYMAP, Kato, Kunisato, Katahira, Okimura, & Yamashita, 2020). In RL, 107 

a behavioral policy determines one’s actions at each state, resulting in state transitions that can 108 

yield positive or negative outcomes, so allowing an agent (e.g., a person or an animal) to pursue 109 

total reward maximization with temporal discounting. In model-based RL, agents use an internal 110 

model of the environment (i.e., representations of transitions and rewards) to estimate the values 111 

of behavioral policies and plan a course of action-state transitions. By contrast, in model-free RL, 112 

agents estimate immediately available state/action values, typically through updating them by 113 

using reward prediction errors (RPEs, Watkins & Dayan, 1992). As a result, model-based RL is 114 

computationally costly yet flexible to changes in the environment, once these are represented in 115 

the internal model, whereas model-free RL is computationally parsimonious yet characterized by 116 

low flexibility (Strehl, Li, & Littman, 2009). Within this perspective, addictions are described as 117 

a dysfunction of value-based behavior that affects both model-free and model-based control 118 

modalities (Redish et al., 2008).  119 

 Based on the understanding that substances of abuse interfere with dopamine signals, 120 

which have been suggested to encode RPEs in biological agents (Schultz, Dayan, & Montague, 121 

1997; see section: Neural models), a seminal model (Redish, 2004) proposed that drugs of abuse 122 
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could act as fictitious RPEs. Due to their exogenous cause, these RPEs cannot be canceled out by 123 

reward predictions, so that the estimated value of drug indefinitely increases. Other models have 124 

proposed that enhanced RPEs may cause a decrement in the reward system sensitivity (Dezfouli 125 

et al., 2009), resistance to habituation (Di Chiara, 1999), or sensitization to reinforced cues 126 

(Bernheim & Rangel, 2004), and might accumulate through hierarchical decision-making 127 

processes (Keramati & Gutkin, 2013). Any of these dysfunctions would promote overwhelming 128 

biases towards the model-free control, driving the compulsive and inflexible selection of addictive 129 

behaviors, irrespective of the negative outcomes (e.g., detrimental effects for one’s health or social 130 

relations). These models assume that over-reliance on model-free control is caused by dopamine-131 

related, drug-induced, alterations in healthy neural circuit dynamics (Koob & Volkow, 2016; Korpi 132 

et al., 2015; Luscher & Malenka, 2011). However, aberrant functioning in the neural regions 133 

involved in reward processing have been also described in association with compulsive use of 134 

pornography (Hilton, 2013), compulsive sexual behavior (Gola et al., 2017; Golec, Draps, Stark, 135 

Pluta, & Gola, 2021), compulsive buying behavior (Granero et al., 2016), eating disorders (Baik, 136 

2013; G. K. W. Frank, Shott, Stoddard, Swindle, & Pryor, 2021; Wiss et al., 2018), problematic 137 

videogaming (Palaus, Marron, Viejo-Sobera, & Redolar-Ripoll, 2017), and internet addiction 138 

(Love et al., 2015). These findings indicate that aberrant RPE signals putatively responsible for 139 

the over-reliance on model-free, at the expenses of model-based, control can be elicited in the 140 

absence of pharmacological manipulation, e.g., due to predisposing factors (Antons et al., 2020), 141 

suggesting the computational models based on these mechanisms can be used to describe 142 

behavioral addictions, as well. For instance, a bias towards model-free control has been reported 143 

in binge eating disorder using a task designed to highlight model-free vs model-based arbitration 144 

(Voon et al., 2015). In another RL model tackling social network use, participants showed high 145 

sensitivity to social rewards and reliance on RPE updates to determine their post sharing policies 146 

(Lindstrom et al., 2021). However, formal testing with computational modeling is still very sparce 147 

across behavioral addictions. 148 

Interestingly, RL models focusing only on aberrant model-free control underperform when 149 

trying to account for those behaviors in addiction that are not cue-induced, e.g., because they are 150 

novel, complex, or context-dependent. To fill this gap, several models have proposed to include 151 

addiction-related dysfunctions in the model-based control component, so focusing on the 152 

generation, update, and recall of state-action-state transitions. Crucially, although dopamine is 153 
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suggested to be also involved in model-based control (Deserno et al., 2015; Wunderlich, 154 

Smittenaar, & Dolan, 2012), aberrant RPEs are not directly considered in the computational 155 

models focusing on the dysfunctions of model-based control, rendering irrelevant the issue of 156 

whether behavioral addictions can develop in the absence of the drug-based manipulation of the 157 

brain reward system. Model-based control dysfunctions fall into a few categories: forward 158 

planning malfunctions (Redish & Johnson, 2007), incomplete representations in the internal model 159 

(Redish et al., 2007), or incomplete access to the internal model during recall (Simon & Daw, 160 

2012). In other words, this new class of RL models focuses on one’s internal representation of the 161 

environment, showing that incomplete or incorrect representations of state transitions (or mental 162 

forward explorations of these transitions) can drive addiction-like suboptimal goal selections, 163 

planning and ultimately behaviors. This approach, which changes the focus of investigation from 164 

the generation of a habitual response to an impaired ability to plan and select goals, was used in 165 

several models to account for behavioral addictions. 166 

 One study (Redish et al., 2007) simulated state misrepresentation in pathological gambling. 167 

While gambling, one can experience big wins and subsequent losses, developing a 168 

(mis)recognition that there is a state associated with wins and a different state associated with 169 

losses, thus misrepresenting the same state as two different states. Then, negative RPEs caused by 170 

losses would not attenuate a large positive value of the state associated with wins, and this 171 

misassignment of credit due to the discrepancy between the actual environment and its internal 172 

representation could lead to pathological gambling and relapse. Another proposal addresses the 173 

issue of forward planning malfunctions by focusing on the relation between environment 174 

complexity and cognitive resources available to the agent (Fiore, Ognibene, Adinoff, & Gu, 2018; 175 

Ognibene et al., 2019). In this case, a mismatch between resources available and those required 176 

results in repetitive suboptimal behavioral policies, reducing the sampling of contingencies in the 177 

environment and escalating the exploration cost across phenotypes characterized by different 178 

model-based and model-free control balance. Thus, addiction-like behaviors can emerge in agents 179 

with bounded model-based resources, also inducing an inadequate representation of the 180 

environment and irrespective of RPE malfunctions. Another study (Shimomura et al., 2021) 181 

developed a model that relied on the "successor representation" (SR) of states (Dayan, 1993), a 182 

process suggested to be used by humans (Momennejad et al., 2017; Russek, Momennejad, 183 

Botvinick, Gershman, & Daw, 2017). In SR encoding for a given policy, states are similar if they 184 
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give access to similar sets of states, e.g., two doors leading to the same reward room would have 185 

similar SR representations. Formally, a state is represented by a matrix of expected cumulative 186 

discounted future state occupancies under a certain policy. The matrix that describes the 187 

relationship among states enables partially model-based behavior through model-free RL-like 188 

RPE-based value update. Shimomura et al. (2021) proposed that: 1) through a long-standing 189 

reward-obtaining behavior, one potentially establishes “dimension-reduced SR”, and (2) the 190 

reduced SR can become rigid. Under such a rigid and dimension-reduced SR, a sustained large 191 

positive RPE is generated at the state with reward due to the inaccurate value approximations 192 

caused by inadequate state representations, irrespective of any pharmacological manipulation, 193 

potentially enhancing reward-obtaining behavior. Moreover, negative outcomes occurring after 194 

the addictive positive reward cannot induce changes in behaviors, under the rigid reduced SR. 195 

All these models (Ognibene et al., 2019; Redish et al., 2007; Shimomura et al., 2021) are 196 

theoretically applicable across behavioral addictions, irrespective of the type of reward. Potentially 197 

related to the environment exploration and representation dysfunctions, studies have indicated that 198 

a key factor in the development of behavioral addictions such as problematic gambling, 199 

videogaming, shopping, or social network use can be found in the complex (i.e., difficult to 200 

compute and predict) organization of rewards experienced on a variable ratio reinforcement 201 

schedule (Cash, Rae, Steel, & Winkler, 2012; Greenberg, Zhai, Hoff, Krishnan-Sarin, & Potenza, 202 

2022; Young & Abreu, 2011). Another study has shown that gamblers are characterized by 203 

reduction in directed (uncertainty-based) exploration and not in random exploration compared with 204 

healthy controls (Wiehler, Chakroun, & Peters, 2021). Finally, a deficit in the exploration-205 

exploitation balance has been also suggested for binge-eating disorder (Reiter, Heinze, 206 

Schlagenhauf, & Deserno, 2017). However, the mechanisms proposed in these models have not 207 

yet been directly tested in ad hoc experiments. 208 

 209 

Bayesian and active inference models 210 

 Computational models based on Bayesian inference suggest that the brain computes 211 

probability distributions associating states, actions and events or outcomes (whether value-based 212 

or not). These probability distributions, termed as prior beliefs or priors, are updated into posterior 213 

beliefs or posteriors, relying on a signal of precision in prediction error, i.e., the dopamine-encoded 214 
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discrepancy between one’s priors and actual state-action-outcome observations (Friston et al., 215 

2012). This is a relatively new approach in comparison with RL, with a comparably smaller 216 

literature in terms of models of addictive behaviors. Current analyses carried out in relation with 217 

substance use disorders have highlighted slower belief updating and related behavioral adaptation, 218 

as in perseverative habitual responses (Ide, Hu, Zhang, Yu, & Li, 2015) and reduced ability to use 219 

environment representations to guide choice selections, as in over-reliance on model-free control 220 

(Harle, Zhang, et al., 2015). Other studies have highlighted the relation between neural responses 221 

evoked by non-value based prediction errors and likelihood to relapse (Harle, Stewart, et al., 2015; 222 

Harle, Yu, & Paulus, 2019), suggesting that the aberrant RPEs described within the RL framework 223 

might be part of a more generalized dysfunction across all prediction errors. One further study 224 

(Schwöbel, Marković, Smolka, & Kiebel, 2021) has proposed that context inference may play a 225 

key role in substance use disoders, in a mechanism analogous to context-based RL (Redish et al., 226 

2007). An advantage that Bayesian inference models have on RL algorithms is that they estimate 227 

the computational processes underlying belief updates, irrespective of rewards, therefore allowing 228 

their seamless use across addictive behaviors. One example is provided by a recent investigation 229 

into instrumental learning in bulimia nervosa (Berner et al., in press), in which a Bayesian observer 230 

model highlighted slow belief updates and associated behavioral rigidity, consistent with similar 231 

investigations in substance use disorders (Ide et al., 2015). Further investigations using Bayesian 232 

inference models are required to reveal whether these mechanisms can be found across behavioral 233 

addictions and highlight shared computational mechanisms with substance use disorders. 234 

Among the theories based on Bayesian inference, active inference (Friston, 2013; Friston 235 

et al., 2015) has emerged to describe behaviors as the result of the minimization of dopamine-236 

encoded prediction error (Friston et al., 2012). This theory has been successful in accounting for a 237 

wide range of physiological and behavioral phenomena, including substance use disorders (Smith, 238 

Taylor, et al., 2021). Similar to the described effects of over-reinforcement of addiction-related 239 

cues, resulting in an over-reliance on model-free control, active inference explains compulsive 240 

behavior in addiction in terms of excessive prediction error signaling. This in turn, results in 241 

excessive belief confidence (precision), characterized as narrow distributions for the priors 242 

(Kinley, Amlung, & Becker, 2022). Such distributions make it more likely to repeat the choice 243 

associated with the addictive behaviors (Miller, Kiverstein, & Rietveld, 2020; Schwartenbeck et 244 

al., 2015) and at the same time prevent further updates, e.g., to include negative outcomes or 245 
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interoceptive signals, contributing to craving (Gu, 2018; Gu & Filbey, 2017). Consistent with this 246 

hypothesis, increased belief updating in association with drug related positive values, and a 247 

reduced sensitivity to negative outcomes has been described across substance use disorders (Smith, 248 

Kirlic, Stewart, Touthang, Kuplicki, Khalsa, et al., 2021; Smith et al., 2020). This hypothesis has 249 

not been formally tested in behavioral addictions, yet. However, the already discussed ubiquitous 250 

presence of both reward processing dysfunctions and aberrant rewards in association with 251 

behavioral addictions (Baik, 2013; G. K. W. Frank et al., 2021; Gola et al., 2017; Golec et al., 252 

2021; Granero et al., 2016; Hilton, 2013; Love et al., 2015; Palaus et al., 2017; Wiss et al., 2018) 253 

once again suggests that a process triggered by excessive prediction error signaling will be found 254 

also across compulsive behaviors associated with behavioral addictions. 255 

 Active inference also describes model-based dysfunctions as affecting the formation or 256 

recall of the structure of priors characterizing an internal model. Different models have 257 

investigated aberrant forward planning in terms of low confidence in future outcomes 258 

(Schwartenbeck et al., 2015), reduced precision in the state transition matrix (Fradkin, Adams, 259 

Parr, Roiser, & Huppert, 2020), reduced confidence in the generated internal model of the 260 

environment (Smith, Kirlic, Stewart, Touthang, Kuplicki, Khalsa, et al., 2021), or a reduced ability 261 

to generate deep policies (Mirza, Adams, Parr, & Friston, 2019). These deficits in turn generate 262 

the belief that events projected in the future, when computable, are characterized by uncertainty 263 

and unpredictability, and this bias seems to remain stable in the long term (Smith, Kirlic, Stewart, 264 

Touthang, Kuplicki, McDermott, et al., 2021). Therefore, immediate, precise, and easy to compute 265 

(and to predict) rewards are, once again, preferred, in a process analogous to the dysfunctions 266 

associated with model-based control for the RL framework. We previously discussed that a 267 

common feature across several behavioral addictions is the presence of environments characterized 268 

by complex reward schedules that are difficult to compute (Cash et al., 2012; Greenberg et al., 269 

2022; Young & Abreu, 2011). The active inference framework generalizes this principle beyond 270 

the need to focus on rewards, entailing that behavioral addictions can emerge in the intersection 271 

between model-based dysfunctions and any sufficiently complex environment (e.g., due to 272 

ramified or variable state-action-outcome contingencies). This would include behavioral 273 

addictions characterized by complex reward schedules (such as gambling or videogaming), as well 274 

as others characterized by difficult to compute and variable health related, economic, or social 275 
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outcomes (e.g., social network use, eating disorders, compulsive buying, compulsive sexual 276 

behavior, or pornography addiction). 277 

 278 

Neural models 279 

 Both RL and active inference perspectives rely on dopamine signals to trigger behavioral 280 

plasticity. The RL paradigm interprets dopamine burst firings as encoding RPEs, responsible for 281 

value-based updates (Montague, Dayan, & Sejnowski, 1996; Schultz et al., 1997; Watabe-Uchida, 282 

Eshel, & Uchida, 2017). Instead, the active inference approach postulates that dopamine signals 283 

represent precision in event distribution predictions and trigger the update of beliefs (Friston et al., 284 

2016; Friston et al., 2015). Whether in terms of rewards or precision, the ubiquity and robustness 285 

of the neurocomputational mechanisms underlying dopamine signals (Fiore, Dolan, Strausfeld, & 286 

Hirth, 2015) has led to the early belief that dopamine release would be significantly affected only 287 

by extreme events, such as pharmacological manipulations. Indeed, substances of abuse interfere 288 

with dopaminergic signals, albeit neither homogenously nor linearly (Nutt, Lingford-Hughes, 289 

Erritzoe, & Stokes, 2015), triggering significant and long-lasting synaptic alterations across 290 

several brain regions (Korpi et al., 2015; Luscher & Malenka, 2011). However, as mentioned 291 

above, several investigations have now revealed that a similar, prediction error-based (cf. 292 

Shimomura et al., 2021), multifaceted role is played by dopamine in behavioral addictions (Antons 293 

et al., 2020; Baik, 2013), including pathological gambling (Clark, Boileau, & Zack, 2019; Potenza, 294 

2013), videogaming (Liu et al., 2017; Palaus et al., 2017; Weinstein, 2010), compulsive sexual 295 

behavior (Kraus, Voon, & Potenza, 2016; Voon et al., 2014), compulsive use of pornography (Gola 296 

et al., 2017; Hilton, 2013), and binge eating (Bello & Hajnal, 2010; Volkow et al., 2002; Wang et 297 

al., 2011). These investigations further suggest that the neural plasticity triggered by drug-induced 298 

dopamine signals is comparable with the same dopamine-mediated process triggered by the 299 

consumption of palatable food, variable reward schedules characterizing gambling or 300 

videogaming, use of pornography and so forth.  301 

 A key target of dopamine-mediated neuroplasticity are the cortico-striatal synapses (Everitt 302 

& Robbins, 2016; Koob & Volkow, 2016; Luscher, Robbins, & Everitt, 2020). In biophysical 303 

neural models simulating cortico-striatal circuit dynamics, mesolimbic dopamine bursts trigger 304 

cortico-striatal long-term synaptic potentiation (Montague et al., 1996; Nelson & Kreitzer, 2014; 305 
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Redgrave, Prescott, & Gurney, 1999). These alterations in turn bias future choice selections, 306 

favoring the repetition of the stimulus-response combination that led to dopamine signals, resulting 307 

in instrumental conditioning, thus providing the neural mechanisms underlying the described 308 

increased reliance on model-free control (Barto, 1995; M. J. Frank, Seeberger, & O'Reilly R, 2004; 309 

Gurney, Prescott, & Redgrave, 2001a, 2001b). Furthermore, the presence of multiple parallel 310 

cortico-striatal circuits characterized by different functions, but similar architectures (Haber, 2016; 311 

Jahanshahi, Obeso, Rothwell, & Obeso, 2015; Obeso, Rodriguez-Oroz, Stamelou, Bhatia, & Burn, 312 

2014) led to the hypothesis that dopamine signals could affect the neural dynamics of multiple 313 

circuits at the same time (Fiore et al., 2018). In particular, the neural dynamics of dorsal 314 

(sensorimotor selections) and ventral (value processing and goal selections) cortico-striatal circuits 315 

are usually associated with model-free and model-based control (Dolan & Dayan, 2013; 316 

O'Doherty, Cockburn, & Pauli, 2017). Therefore, in the dorsal circuit dopamine signals are 317 

assumed to bias sensorimotor selections and model-free behavior. Conversely, in the prefrontal 318 

circuit, these signals are hypothesized to bias the selections of goals or future values, affecting 319 

forward planning and goal selection plasticity, or the model-based control system (Fiore et al., 320 

2018).  321 

 In terms of neural circuit transient dynamics (Durstewitz, Huys, & Koppe, 2021) cortico-322 

striatal long-term potentiation triggered by mesolimbic dopamine signals results in increased 323 

circuit stability (Fiore et al., 2018). Neural models indicated that drug-induced mesocortical 324 

dopamine signals have a similar effect on prefrontal cortico-cortical connectivity and dynamics 325 

(Lapish, Balaguer-Ballester, Seamans, Phillips, & Durstewitz, 2015), further deteriorating state-326 

transition flexibility, and strengthening attractor-like dynamics. Although the effects of 327 

mesocortical dopamine release in substance use disorders are multifaceted (Ceceli, Bradberry, & 328 

Goldstein, 2022), attractor-like dynamics in the prefrontal cortex are consistent with the reported 329 

rigid representation of future state-action values (cf. 'incentive salience', Ceceli et al., 2022) and 330 

interoceptive states (Gu et al., 2015; Naqvi & Bechara, 2009), both key elements in the phenomena 331 

of craving and relapse. As discussed for the mesolimbic dopaminergic signals, these phenomena 332 

associated with mesocortical dopamine-induced alterations are not restricted to pharmacological 333 

manipulations, since behavioral addictions are based on the same dopamine dynamics (Antons et 334 

al., 2020; Baik, 2013). Further studies into the specific neural mechanisms underlying behavioral 335 

addictions will be needed to confirm or disprove this hypothesized similarity. 336 
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 337 

Conclusions and future directions 338 

 The objective of computational psychiatry (Huys, Maia, & Frank, 2016; Montague, Dolan, 339 

Friston, & Dayan, 2012) is to develop neurocomputational measures of disease- and subject-340 

specific neural and cognitive mechanisms underlying decision-making, with the ultimate goal to 341 

inform precision diagnosis and treatment. Models relying on RL algorithms, Bayesian inference 342 

and neural dynamics that focus on vulnerabilities related to model-free and model-based control 343 

can explain the emergence and rigidity of maladaptive choices, despite the adverse consequences. 344 

Although most of the models here discussed were developed to describe substance use disorders, 345 

they can explain hallmark features of a wide range of behavioral addictions, with RL and active 346 

inference models more suitable to investigate (aberrant) structures of rewards and beliefs, 347 

respectively, and neural models dedicated to the investigation of (aberrant) attractor dynamics in 348 

neural activity. A key challenge in relation with behavioral addictions is to determine which of 349 

these compulsive behaviors qualifies as a legitimate form of addiction. We propose that the 350 

multifaceted neurocomputational representations of substance use disorders here described across 351 

modelling frameworks can be used as a benchmark to formally define a cluster of alterations that 352 

characterizes addictions. Those behavioral addictions found to meet these criteria -e.g., behavioral 353 

rigidity due to over-reliance on model-free control, impaired forward planning due to inadequate 354 

representations in model-based control, or increased stability in transient neural dynamics- should 355 

be included as a form of addiction. Some data suggested that behavioral and brain activity 356 

measures estimated relying on computational models can outperform traditional clinical measures 357 

in predicting clinical status, likelihood of relapse or vulnerability in substance use disorders (e.g., 358 

see: Harle, Stewart, et al., 2015; Yu et al., 2020). Thus, we expect the discussed computational 359 

models could provide a guide for behavioral addiction classification, in the near future.  360 

Finally, it has been suggested (Heilig, Epstein, Nader, & Shaham, 2016; van den Ende et 361 

al., 2022) that these models have so far neglected the complex interplay of social (e.g., peer 362 

influence or isolation, societal stigma or tolerance etc.) and psychobiological factors. As many 363 

behavioral addictions are clearly affected by social interactions, it will be crucial for future 364 

investigations to include these social components (cf. Frolichs, Rosenblau, & Korn, 2022), using 365 

a new generation of tasks and neuro-computational models. 366 

 367 
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