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1 Abstract 
 

2 Polyphenols have great potential in regulating intestinal health and ameliorating 
 

3 pathological conditions related to increased intestinal permeability (IP). 
 

4 However, the efficacy of dietary interventions with these phytochemicals may 
 

5 significantly be influenced by inter-individual variability factors affecting their 
 

6 bioavailability and consequent biological activity. In the present study, urine 
 

7 samples collected from older subjects undergoing a crossover intervention trial 
 

8 with polyphenol-rich foods were subjected to metabolomics analysis for 
 

9 investigating the impact of increased IP on the bioavailability of polyphenols. 
 

10 Interestingly, urinary levels of phase II and microbiota-derived metabolites were 
 

11 significantly different between subjects with healthier intestinal barrier integrity 
 

12 and those with increased IP disruption. Our results support that this IP- 
 

13 dependent impaired bioavailability of polyphenols could be attributed to 
 

14 disturbances in the gut microbial metabolism and phase II methylation 
 

15 processes. Furthermore, we also observed that microbiota-derived metabolites 
 

16 could be largely responsible for the biological activity elicited by dietary 
 

17 polyphenols against age-related disrupted IP. 
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26 INTRODUCTION 
 

27 The intestinal barrier is a complex functional structure that separates the gut 
 

28 luminal environment from the inner host, which is composed of a physical wall 
 

29 comprising epithelial cells and mucus layers, but also other elements such as 
 

30 the gut microbiota, immunological elements (e.g. immunoglobulin A, cytokines), 
 

31 as well as the intestinal endocrine, neuroenteric and vascular systems.1 The 
 

32 integrity of this barrier is crucial in human health for maintaining normal 
 

33 intestinal permeability (IP), which regulates the transport and absorption of 
 

34 nutrients (e.g. sugars, vitamins, amino acids, fatty acids and other lipids) and 
 

35 other food-related compounds (e.g. polyphenols), and the translocation of 
 

36 bacterial components from the lumen to the bloodstream. The IP is controlled 
 

37 by a complex system of junctions, namely tight junctions (TJ), gap junctions and 
 

38 adherens junctions, comprising a myriad of transmembrane proteins (e.g. 
 

39 occludins, claudins) and junctional adhesion molecules that rule the flux 
 

40 between adjacent enterocytes.2 However, the disruption of these intestinal 
 

41 junctions leads to increased IP, a pathological condition also known as leaky 
 

42 gut. This results in the diffusion of toxins, viruses and bacterial fragments from 
 

43 the intestinal environment to the circulating stream, which consequently 
 

44 activates the immune function and provokes systemic inflammation.3 Increased 
 

45 IP has been proposed as a major contributor to multiple diseases, including 
 

46 gastrointestinal (e.g. irritable bowel syndrome, celiac disease),4 metabolic (e.g. 
 

47 obesity, type II diabetes),5 cardiovascular (e.g. atherosclerosis, chronic heart 
 

48 failure),6 psychiatric (e.g. depression, autism)7 and neurodegenerative (e.g. 
 

49 Parkinson’s disease, Alzheimer’s disease) disorders.8 Furthermore, it is also 
 

50 noteworthy that leaky gut can frequently be observed during aging, contributing 



 

 

 

 
 

51 to the characteristic low-grade systemic inflammation detected in older adults, 
 

52 i.e. the inflamm-aging process.9 The most common causes behind this age- 
 

53 related increase of the IP include impairments in the intestinal epithelial and 
 

54 mucus barriers,10 declined immune function (i.e. immune senescence)9 and 
 

55 changes in the gut microbiota composition.11 

 

56 Adequate nutritional status is crucial for maintaining normal gut barrier function. 
 

57 Adherence to the Western diet, characterized by high fat and sugar intake, is 
 

58 associated with increased IP,12,13 whereas the Mediterranean diet, rich in fruits, 
 

59 vegetables and fiber, prevents the leaky gut.13 In this vein, numerous studies 
 

60 have been conducted during the last years aimed to test the efficacy of dietary 
 

61 interventions for improving the IP and related conditions, with special focus on 
 

62 polyphenols.14,15 These bioactive compounds are secondary metabolites widely 
 

63 distributed in plant-derived foods, including fruits, vegetables, legumes, cereals, 
 

64 beverages (e.g. tea, coffee) and many other foods, with recognized antioxidant 
 

65 and anti-inflammatory properties. Thus, it has previously been reported that 
 

66 polyphenols can ameliorate the leaky gut by directly regulating the TJ function, 
 

67 enhancing the synthesis and redistribution of TJ proteins, such as occludin, 
 

68 claudins and zonula occludens,16,17 and by inhibiting different kinases involved 
 

69 in TJ expression.2 Polyphenolic compounds are also able to block the 
 

70 production of inflammatory cytokines (e.g. necrosis factors, interleukins) and 
 

71 oxidative stress, thus protecting the intestinal barrier integrity.2 Furthermore, 
 

72 polyphenols and the gut microbiota are interconnected through a bidirectional 
 

73 network, which plays a pivotal role in the intestinal health.18 On one hand, the 
 

74 gut microbiota is involved in the biotransformation processes needed for the 
 

75 absorption and biological activity of these compounds. Indeed, various studies 



 

 

 

 
 

76 have described that microbiota-derived metabolites could be responsible, at 
 

77 least in part, for the intrinsic biological effects traditionally attributed to 
 

78 polyphenols, especially taking into consideration the usual low bioavailability of 
 

79 the parent compounds.19 Complementarily, the prebiotic activity of polyphenols 
 

80 and microbiota derivatives is also well known,20 being the consumption of 
 

81 polyphenol-rich foods able to shape the microbiota composition towards the 
 

82 preservation of the intestinal barrier health by means of different mechanisms. 
 

83 For instance, the gut microbiota may directly influence the IP by contributing to 
 

84 the intestinal barrier integrity (e.g. affecting the turnover of intestinal epithelial 
 

85 cells, organization of TJs), but it is also involved in the modulation of 
 

86 inflammation.21,22 Accordingly, the dietary-driven manipulation of the intestinal 
 

87 microbial ecosystem with polyphenols has previously demonstrated great 
 

88 efficacy for improving the IP and related inflammatory processes.23-25 However, 
 

89 to the best of our knowledge, there is currently a total lack of studies focused on 
 

90 determining how increased IP and associated pathological conditions occurring 
 

91 during aging, such as inflammation and microbial dysbiosis, may affect the 
 

92 bioavailability of polyphenols, and consequently impact their biological activity. 
 

93 The aim of the present work is to investigate for the first time the impact of 
 

94 increased IP in older subjects on the bioavailability of dietary polyphenols, and 
 

95 therefore on their bioactivity and capacity to modulate the intestinal barrier 
 

96 integrity. To this end, a crossover intervention trial with a polyphenol rich diet 
 

97 was conducted in older adults, and serum zonulin was measured as a marker of 
 

98 the intestinal barrier integrity for stratifying the population in two sub-groups 
 

99 according to their IP (i.e. increased IP dysfunction and healthier subjects). 
 

100 Then, comprehensive quantitative metabolomics analyses were performed to 



 

 

 

 
 

101 characterize the urinary food-related metabolome, comprising polyphenolic and 
 

102 other food-origin compounds, metabolites derived from phase I/II metabolism, 
 

103 and microbial-transformed derivatives.26,27 

 

104 MATERIALS AND METHODS 
 

105 Study design 
 

106 A randomized, controlled, crossover intervention trial with polyphenol-rich foods 
 

107 was conducted in older people living in a residential care setting (i.e. the MaPLE 
 

108 study, Microbiome mAnipulation through Polyphenols for managing Leakiness 
 

109 in the Elderly), as described elsewhere.28 The study was performed in 
 

110 accordance with the principles contained in the Declaration of Helsinki. The 
 

111 Ethics Committee of the University of Milan approved the study protocol, and all 
 

112 the participants provided written informed consent. The trial was registered 
 

113 under ISRCTN.com (ISRCTN10214981). 
 

114 Briefly, 51 older subjects (≥ 60 y) completed a crossover trial consisting of a 
 

115 polyphenol-rich diet (PR-diet) and a control diet (C-diet), each one of the arms 
 

116 lasting for 8 weeks and being separated by an 8-week wash-out period. Serum 
 

117 zonulin levels were measured as a marker of IP (Immunodiagnostik® ELISA kit, 
 

118 Bensheim, Germany),29 and the median value within the study population 
 

119 (median = 40 ng/mL) was employed to stratify subjects in two sub-groups: the 
 

120 lower serum zonulin at baseline (LSZ) group (serum zonulin at baseline ≤ the 
 

121 median value) and the higher serum zonulin at baseline (HSZ) group (serum 
 

122 zonulin at baseline > the median value). Accordingly, zonulin levels were 33.2 ± 
 

123 5.6 ng/mL and 51.5 ± 8.9 ng/mL (expressed as the mean ± standard deviation) 
 

124 for the LSZ and HSZ individuals, respectively. Subjects in these two groups 
 

125 were matched for sex (men/women: 11/15 vs 11/14), age (79.2 ± 10.4 vs 76.4 ± 



 

 

 

 

 

126 10.2 y) and BMI (26.4 ± 6.4 vs 27.2 ± 4.5 kg/m2). During the C-diet period, 
 

127 subjects consumed the regular menu provided by the nursing home, whereas 
 

128 the PR-diet was designed by substituting three portions per day of low- 
 

129 polyphenol products from the C-diet with food items with higher polyphenol 
 

130 content, but maintaining comparable levels of energy and nutrients. Specifically, 
 

131 PR-foods employed in this intervention study were berries (raw fruits and 
 

132 puree), blood orange (raw fruits and juice), pomegranate juice, green tea, 
 

133 Renetta apple (raw fruits and puree) and cocoa (chocolate callets and cocoa 
 

134 powder drink). At baseline and after each intervention period, subjects were 
 

135 asked to fast overnight for collecting serum and first morning void urine 
 

136 samples. Detailed description about the inclusion and exclusion criteria, the 
 

137 intervention trial, and the collection of biological samples has been previously 
 

138 reported by Guglielmetti et al.28 

 

139 Metabolomics analysis of urine samples 
 

140 Multi-targeted quantitative metabolomics analysis of the urinary food 
 

141 metabolome was accomplished by ultra-high-performance liquid 
 

142 chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), 
 

143 following the methodology optimized by González-Domínguez et al.26,27 To this 
 

144 end, urine samples were subjected to solid-phase extraction (SPE) using 
 

145 Oasis® HLB extraction plates (Waters, Milford, MA, USA) with the aim of 
 

146 simultaneously extracting and pre-concentrating polyphenols and other food- 
 

147 related compounds, and their biotransformed metabolites (i.e. phase I/II and 
 

148 microbiota derivatives). Complementarily, urine samples were also analyzed 
 

149 after tenfold dilution to determine highly concentrated metabolites and polar 
 

150 compounds, these latter not extracted when using SPE. A set of internal 



 

 

 

 

 

151 standards (taxifolin and caffeine-13C3, 100 μg/L) was added to all the samples 
 

152 for quantification and quality control (QC) assessment, as previously 
 

153 described.26,27 Subsequent UHPLC-MS/MS metabolomics fingerprinting was 
 

154 performed by using the chromatographic and MS conditions described 
 

155 elsewhere for the simultaneous detection and quantitation of almost 350 dietary 
 

156 compounds and their host and microbial metabolites.26 Metabolomics results 
 

157 were normalized in reference to the urinary refractive index (OPTi Digital 

 
158 Handheld Refractometer, Bellingham+Stanley, UK) to account for inter- 

 

159 individual differences in the hydration status and micturition frequency. 
 

160 Quality control assessment 
 

161 Quality control (QC) assessment of the metabolomics data was carried out by 
 

162 using a standardized protocol developed in-house. For this purpose, data were 
 

163 first pre-processed for removing metabolites with more than 20% missing 
 

164 values in all the study groups.30 The remaining missing values were imputed by 
 

165 using the root square of the limit of detection for each metabolite,26 and data 
 

166 were then log transformed and Pareto scaled. Afterwards, distances to the 
 

167 group centroid were computed based on Euclidean distances to remove outliers 
 

168 from the data matrix. Metabolites known to be influenced by pre-analytical 
 

169 factors (e.g. hippurate) were checked for the absence of abnormal values 
 

170 (±1.5×IQR), which could be indicative of improper handling/storage of urine 
 

171 samples.31 Finally, the coefficient of variation was computed for areas, retention 
 

172 times and peak widths of the internal standards added to samples with the aim 
 

173 of evaluating the analytical reproducibility along the sequence run. 
 

174 Statistical analysis 



 

 

 

 
 

175 Metabolomics data were pre-processed as detailed in the previous section, and 
 

176 were then subjected to statistical analysis by using R 3.6.2 software packages 
 

177 (http://www.r-project.org) to look for altered metabolites because of the 
 

178 intervention trial and to associate these metabolic alterations with changes in 
 

179 the IP. For this purpose, data normality was first checked by inspecting 
 

180 probability plots. Then, a linear mixed model was built to evaluate the impact of 
 

181 the PR-dietary intervention on urinary metabolites compared with the C-diet, 
 

182 taking into account the repeated measures by subject, the period (pre- and 
 

183 post-intervention) and the arm within the crossover design (i.e. first C-diet and 
 

184 then PR-diet, or vice versa). For each arm of the crossover trial, the effect of the 
 

185 intervention was estimated as the difference between the final and baseline 
 

186 metabolite concentrations. Finally, Pearson’s correlations were computed 
 

187 between serum zonulin levels and significant urinary metabolites according to 
 

188 the previous linear model. All these analyses were conducted in the entire study 
 

189 population (i.e. the MaPLE study), as well as separately in participants stratified 
 

190 according to their baseline zonulin levels (i.e. the LSZ and HSZ sub-groups), as 
 

191 reported in section 2.1. All the statistical analyses were adjusted for the age, 
 

192 sex, BMI and the allocation order in the crossover trial as covariates, and were 
 

193 adjusted for multiple comparisons using the Benjamini-Hochberg false 
 

194 discovery rate (FDR). FDR-corrected p-values below 0.05 were considered 
 

195 statistically significant. 
 

196 RESULTS AND DISCUSSION 
 

197 Differential bioavailability of dietary polyphenols depending on the IP 
 

198 status 



 

 

 

 
 

199 Metabolomics analysis of urine samples was accomplished to investigate the 
 

200 metabolism and bioavailability of polyphenols supplied through a PR-dietary 
 

201 intervention in older adults. For evaluating the impact of increased IP on 
 

202 metabolomics results, serum zonulin was measured as a surrogate marker of 
 

203 the intestinal barrier integrity, because the high rate of incontinence amongst 
 

204 the elderly participants participating in the intervention trial impeded the 
 

205 lactulose-mannitol urinary test to be performed. In this vein, although there is 
 

206 growing debate about the reliability of using zonulin as a marker of IP,32 it has 
 

207 been previously demonstrated a high correlation between serum zonulin and 
 

208 the urinary lactulose/mannitol ratio.33 On this basis, we stratified the study 
 

209 population according to the baseline zonulin levels with the aim of separately 
 

210 assessing the effect of the PR intervention in subjects with healthier intestinal 
 

211 barrier integrity (i.e. the LSZ group) and in those with increased IP dysfunction 
 

212 (i.e. the HSZ group). This is in line with previous works reporting that serum 
 

213 zonulin concentrations are normally raised during aging,34 but especially in older 
 

214 adults with gastrointestinal symptoms compared to the general older 
 

215 population.35 

 

216 The PR-diet supplied an average of 724 mg of total polyphenols per day, thus 
 

217 almost doubling the estimated polyphenol intake compared with the C-diet.28 

 

218 We observed that this PR-dietary intervention induced a slight decrease of 
 

219 serum zonulin levels in the MaPLE population.36 This finding is supported by 
 

220 numerous scientific evidence that highlight the great potential of polyphenols in 
 

221 regulating the intestinal barrier function and preventing leaky gut, both in vitro 
 

222 and in vivo.2,16 However, different behaviors were interestingly observed when 
 

223 stratifying subjects according to the serum zonulin levels at baseline, since only 



 

 

 

 
 

224 the subjects with higher IP (i.e. HSZ group) experienced a significant decrease 
 

225 of serum zonulin, whereas those with LSZ were unaffected. Overall, these 
 

226 results underline the potential existence of different phenotypic groups in the 
 

227 older subjects characterized by the degree of IP, which significantly influences 
 

228 the efficacy of the PR-dietary intervention. This therefore demonstrates the 
 

229 crucial need of investigating the inter-individual variability in the bioavailability of 
 

230 polyphenols driving these discrepancies. 
 

231 To this end, we employed a multi-targeted metabolomics platform with 
 

232 integrated QC assessment, which provided a comprehensive, accurate and 
 

233 quantitative characterization of the urinary food metabolome based on the 
 

234 simultaneous analysis of around 350 diet-related metabolites, including 
 

235 polyphenols and other food-origin compounds, metabolites derived from the 
 

236 host metabolism (i.e. phase I and II transformation processes), and microbiota 
 

237 derivatives.26,27 Among all the metabolites measured, the intervention with PR- 
 

238 foods in the MaPLE trial induced a significant increase of the urinary levels of 
 

239 numerous food and microbiota-related metabolites compared with the C-diet (ca 
 

240 70), as shown in Table 1. The concentrations within the four study groups (i.e. 
 

241 C-diet baseline, C-diet post-intervention, PR-diet baseline, PR-diet post- 
 

242 intervention) for the metabolites significantly altered because of the PR dietary 
 

243 intervention are listed in Tables S1-S3, for the entire MaPLE population, the 
 

244 LSZ and the HSZ sub-groups, respectively. Many of these metabolites are well 
 

245 known food-intake markers, as defined in the Food Biomarker Ontology,37 thus 
 

246 accurately mirroring the consumption of the specific PR-foods employed in this 
 

247 intervention study. The most remarkable finding was the increased urinary 
 

248 content of phase II metabolites of flavan-3-ols (i.e. (epi)catechins and 



 

 

 

 
 

249 methyl(epi)catechins) and their microbiota derived hydroxyphenyl-valeric acids 
 

250 and hydroxyphenyl-γ-valerolactones, associated with the consumption of 
 

251 procyanidin-rich foods (e.g. tea, berries, apple, cocoa). The intake of tea, cocoa 
 

252 and berries during the PR period was also reflected in the urinary excretion of 
 

253 methylgallic acid derivatives, theobromine and cyanidin 3-glucoside, 
 

254 respectively. The production of urolithins, derived from the microbial 
 

255 transformation of ellagitannins, could be attributed to pomegranate and berries. 
 

256 Furthermore, other numerous non-specific metabolites derived from the 
 

257 microbial metabolism of a wide range of polyphenol classes were also 
 

258 accumulated in urine samples, including phenolic acids (e.g. hydroxybenzoic 
 

259 acids, hydroxycinnamic acids) and enterolignans (e.g. enterolactone). 
 

260 Nonetheless, the most remarkable results were obtained when subjects were 
 

261 stratified according to the baseline zonulin levels. For LSZ individuals, the PR 
 

262 dietary intervention induced similar metabolomics changes to those previously 
 

263 described for the entire MaPLE population (Table 1). However, the number of 
 

264 metabolites that were significantly increased as a consequence of the PR-diet in 
 

265 HSZ subjects was considerably lower with respect to the LSZ group, especially 
 

266 regarding microbiota derivatives. The HSZ group of subjects only showed 
 

267 urinary alterations in the levels of flavan-3-ol phase II metabolites, 
 

268 hydroxycinnamic acids and a few other microbiota compounds compared with 
 

269 the C-diet. Interestingly, the fold of increase after the PR-diet for most of these 
 

270 metabolites was more pronounced in LSZ subjects compared with HSZ ones, 
 

271 except for methyl(epi)catechin derivatives that were excreted in larger amounts 
 

272 in this latter group. All this therefore suggests that the baseline IP status could 
 

273 be an important factor affecting the bioavailability of dietary polyphenols, 



 

 

 

 
 

274 considering that only subjects with a healthier intestinal integrity were able to 
 

275 properly metabolize them. Particularly, metabolic discrepancies between the 
 

276 LSZ and HSZ groups were mainly observed in microbial metabolites, as shown 
 

277 in Table 1, which could support that alterations in the gut microbiota 
 

278 composition might play a central role in this hypothesized IP-driven reduced 
 

279 bioavailability. 
 

280 In this context, the gut microbiota has been proposed as one of the most 
 

281 important factors influencing the bioavailability of polyphenols and, 
 

282 consequently, their bioactivity.19 The microbial metabolism of polyphenols 
 

283 usually comprises an initial hydrolysis step of the conjugated species present in 
 

284 foods to release the corresponding aglycones, which can subsequently be 
 

285 transformed by a range of reactions, including ring fissions, dehydroxylations, 
 

286 decarboxylations, demethylations, reductions, and many others.18,38 While 
 

287 numerous enterobacterial species from the four most abundant phyla can be 
 

288 involved in the deconjugation of polyphenols (i.e. Firmicutes, Bacteroidetes, 
 

289 Actinobacteria and Proteobacteria), only two phyla have been associated with 
 

290 further metabolism of the aglycones (Firmicutes and Actinobacteria), as 
 

291 illustrated in Figure 1. Among them, Clostridium and Eubacterium species from 
 

292 the Firmicutes phylum are essential for the bioavailability of most polyphenols 
 

293 by driving C-ring cleavage reactions, which lead to the production of simpler 
 

294 phenolic acids and other intermediates that may undergo subsequent 
 

295 conversions to generate more complex microbiota derivatives (e.g. 
 

296 hydroxyphenyl-γ-valerolactones, urolithins, enterolignans). In contrast, 
 

297 hydroxycinnamic acids are mainly released in the colon by the action of 
 

298 microbial species from the Bifidobacterium and Lactobacillus genera (Figure 



 

 

 

 

 

299 1).38 Within this complex interplay between the gut microbiota and dietary 
 

300 polyphenols, it should be also noted that aging-related impairments in the 
 

301 intestinal health have closely been associated with significant gut dysbiosis. In 
 

302 general, the microbiota composition in older adults is characterized by an 
 

303 overall decrease of the bacterial diversity and stability, with a shift in the 
 

304 proportion of Bacteroidetes (increased) and Firmicutes (decreased) species,39,40 

 

305 and increased abundance of potentially pathogenic and pro-inflammatory 
 

306 bacteria.40-42 Among the Firmicutes, numerous studies have demonstrated that 
 

307 older subjects with impaired intestinal health have decreased content of 
 

308 Clostridium and Eubacterium species,42-44 which are directly involved in the 
 

309 microbial biotransformations of polyphenols as described above. On the other 
 

310 hand, various authors have recently described that aging has not a significant 
 

311 impact on the Bifidobacterium genus,41,44 refuting earlier studies;45,46 whereas 
 

312 contradictory results have been published regarding the influence of aging in 
 

313 Lactobacillus bacteria.47,48 Therefore, these previous metagenomics findings 
 

314 totally support the metabolomic discrepancies observed in the present study 
 

315 between the LSZ and HSZ groups, since older subjects with increased IP (i.e. 
 

316 HSZ) are expected to have lower Firmicutes diversity, thus negatively affecting 
 

317 the bioavailability of most polyphenols and consequently reducing the urinary 
 

318 excretion of their microbiota derivatives, while showing only a minor impact on 
 

319 the content of hydroxycinnamates produced by Bifidobacterium and 
 

320 Lactobacillus species. 
 

321 On the other hand, increased methylation of dietary (epi)catechins was also 
 

322 observed in the HSZ group, which was paralleled by decreased rate of 
 

323 glucuronidation and sulfation processes (Table 1). In this vein, it has been 



 

 

 

 
 

324 previously described that the in vitro bioavailability and intestinal absorption of 
 

325 methylated polyphenols is considerably higher than that elicited by the 
 

326 corresponding glucuronide and sulfate species.49 These results could therefore 
 

327 suggest that a shift towards increased methylation is induced in HSZ individuals 
 

328 to partially compensate the impairments in the microbial metabolism of 
 

329 polyphenols described above. This sharpened excretion of phase II 
 

330 methyl(epi)catechin metabolites in the HSZ group could be attributed to altered 
 

331 expression of catechol-O-methyltransferase, the enzyme responsible for the 
 

332 conversion of dietary polyphenols into their methylated analogues.50 The proper 
 

333 regulation of this catechol-metabolizing system has been demonstrated to be 
 

334 crucial in human health due to its potential pathophysiological and pathogenic 
 

335 role in neurodegenerative diseases, cancers and cardiovascular disorders.51 

 

336 However, this is the first time to our knowledge that an IP-dependent regulation 
 

337 of this methylation system is described in older adults. 
 

338 Association between dietary polyphenols, microbial metabolites and 
 

339 intestinal barrier health 
 

340 To further investigate the possible impact of the hypothesized IP-driven reduced 
 

341 bioavailability on the beneficial effects of polyphenols supplied through the PR- 
 

342 diet, linear correlations were computed between urinary metabolite 
 

343 concentrations and serum zonulin levels. For the LSZ sub-group, two 
 

344 conjugated phenolic acids were strongly and negatively correlated with zonulin 
 

345 levels, namely 3,4-dihydroxybenzoic acid 3-glucuronide (r = -0.47, FDR- 
 

346 corrected p = 0.042) and m-coumaric acid glucuronide (r = -0.50, FDR- 
 

347 corrected p = 0.061), but no significant associations were found with parent 
 

348 polyphenol compounds (Table S4). In contrast, no statistically significant 



 

 

 

 
 

349 correlations were observed between zonulin and food-derived metabolites when 
 

350 considering the HSZ group (FDR-corrected p > 0.2, Table S4). Phenolic acids 
 

351 are common microbial metabolites derived from the intestinal degradation of 
 

352 multiple polyphenol classes, although they can also be present in original 
 

353 foods.18 Thus, these results reinforce that the gut microbiota is responsible to a 
 

354 large extent for the bioavailability and subsequent biological activity elicited by 
 

355 dietary polyphenols. In this context, multiple in vitro and in vivo studies have 
 

356 previously reported that polyphenols (e.g. quercetin, kaempferol, myricetin, 
 

357 genistein, catechin, curcumin) can modulate the intestinal barrier function by 
 

358 promoting TJ integrity, protecting against inflammatory and oxidative 
 

359 disruptions, and consequently decreasing intestinal permeability.16 However, 
 

360 the results presented here allows hypothesizing that (i) microbial phenolic acids 
 

361 could be the major contributors to the IP improvement induced by the PR- 
 

362 dietary intervention in older subjects, and (ii) that the efficacy of dietary 
 

363 polyphenols is considerably impaired in subjects with increased IP dysfunction. 
 

364 In conclusion, we have demonstrated in the present study a connection 
 

365 between the degree of IP at baseline and the bioavailability of dietary 
 

366 polyphenols in older adults. On the basis of our findings and previous literature, 
 

367 we hypothesize that disturbances in the gut microbiota composition and IP- 
 

368 associated regulation of the phase II methylation of polyphenols could explain, 
 

369 at least in part, the metabolomics results presented here. Furthermore, we also 
 

370 found that microbial metabolites could be the major contributors to the biological 
 

371 activity elicited by dietary polyphenols, being this bioactivity significantly 
 

372 impaired in older subjects with increased IP. To validate these hypotheses, 
 

373 future metagenomics studies are needed to associate polyphenol-driven 



 

 

 

 
 

374 changes in the IP (i.e. serum zonulin) and the food metabolome with the gut 
 

375 microbiota composition. Therefore, this work highlights the crucial need of 
 

376 developing personalized nutritional strategies for managing the IP in older 
 

377 adults, and the pivotal role of gut microbiota in modulating the beneficial effects 
 

378 of the diet on human health. 

 
379 379 

 

380 Abbreviations. C, control; HSZ, higher serum zonulin at baseline; IP, intestinal 
 

381 permeability; LSZ, lower serum zonulin at baseline; PR, polyphenol-rich;TJ, 
 

382 tight junction 
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620 Figure Captions 
 

621 Figure 1. The interplay between the gut microbiota and the metabolism of 
 

622 polyphenols. 



 

 

 

 

 

 

Table 1. Urinary Food and Microbiota-related Metabolites Significantly Altered after the PR-diet for the Entire MaPLE Population, 

the LSZ and HSZ Sub-groups. Results are Expressed as the Percentage of Change, with FDR-corrected p-values in Brackets (NS, 

Non-Significant). 

metabolite MaPLE (N=51) LSZ (N=26) HSZ (N=25) 

phenolic acids, hydroxybenzenes & hydroxybenzaldehydes (microbiota) 

2-hydoxybenzoic acid glucuronide 186.7 (3.3·10-2) 317.5 (1.1·10-2) 44.4 (NS) 

3-hydoxybenzoic acid glucuronide 208.5 (1.8·10-3) 87.6 (1.1·10-2) 81.7 (NS) 

4-hydoxybenzoic acid glucuronide 85.1 (4.5·10-2) 92.9 (NS) 76.1 (NS) 

3-hydoxybenzoic acid sulfate 634.9 (1.1·10-4) 332.6 (8.4·10-3) 454.4 (NS) 

3,4-dihydoxybenzoic acid 3-glucuronide 217.6 (2.3·10-4) 329.9 (9.1·10-3) 95.0 (NS) 

3,4-dihydoxybenzoic acid 4-glucuronide 99.0 (2.3·10-4) 118.1 (2.0·10-2) 74.8 (3.2·10-2) 

3,4-dihydoxybenzoic acid 3-sulfate 134.0 (4.3·10-2) 156.0 (NS) 111.0 (NS) 

hippuric acid 864.6 (3.7·10-2) 1062.3 (NS) 658.8 (NS) 

3-hydroxyhippuric acid 1715.4 (4.3·10-2) 1009.7 (NS) 2450.5 (NS) 

vanillic acid glucuronide 174.2 (6.8·10-4) 129.3 (2.8·10-2) 221.1 (NS) 



 

 

 

 

 

 
isovanillic acid glucuronide 193.9 (2.0·10-3) 281.9 (2.3·10-2) 94.0 (NS) 

syringic acid 155.1 (2.2·10-3) 104.5 (1.0·10-2) 61.7 (NS) 

4-methylgallic acid 548.8 (2.6·10-2) 824.4 (1.4·10-2) 287.1 (NS) 

methylgallic acid glucuronide 75.3 (5.5·10-4) 85.6 (1.8·10-2) 64.5 (NS) 

methylgallic acid sulfate 235.3 (2.5·10-2) 248.9 (NS) 221.1 (NS) 

3-hydoxyphenylacetic acid 187.3 (2.3·10-4) 150.7 (4.0·10-3) 185.7 (NS) 

4-hydoxyphenylacetic acid glucuronide 91.6 (4.1·10-2) 77.4 (NS) 78.2 (NS) 

3,4-dihydoxyphenylacetic acid glucuronide 870.3 (1.8·10-3) 107.3 (1.1·10-2) 56.9 (NS) 

homovanillic acid glucuronide 200.2 (1.9·10-2) 263.3 (NS) 131.6 (NS) 

homovanillyl alcohol 104.5 (1.7·10-2) 65.8 (NS) 77.9 (NS) 

o-coumaric acid 133.6 (9.9·10-4) 215.2 (1.3·10-2) 76.4 (NS) 

o-coumaric acid glucuronide 158.9 (NS) 223.6 (4.5·10-2) 88.3 (NS) 

m-coumaric acid glucuronide 222.5 (1.2·10-5) 292.3 (2.8·10-3) 169.3 (2.4·10-2) 

p-coumaric acid glucuronide 224.9 (1.2·10-3) 303.3 (4.7·10-2) 143.2 (3.2·10-2) 

m-coumaric acid sulfate 257.3 (2.7·10-2) 293.8 (1.5·10-2) 219.2 (NS) 



 

 

 

 

 

 
caffeic acid 3-glucuronide 84.4 (2.2·10-3) 118.9 (2.4·10-2) 48.5 (3.2·10-2) 

caffeic acid 4-glucuronide 167.4 (7.3·10-4) 206.8 (NS) 126.3 (2.2·10-2) 

ferulic acid glucuronide 582.2 (2.1·10-3) 57.5 (NS) 100.2 (3.2·10-2) 

isoferulic acid glucuronide 1158.7 (9.4·10-3) 168.5 (NS) 80.9 (NS) 

ferulic acid sulfate 44.9 (4.8·10-2) 55.3 (NS) 34.0 (NS) 

isoferulic acid sulfate 109.1 (3.6·10-2) 157.1 (NS) 57.0 (NS) 

methylpyrogallol sulfate 312.0 (2.6·10-3) 492.4 (1.8·10-2) 124.1 (NS) 

4-methylcatechol glucuronide (isomer 1) 166.7 (1.3·10-3) 190.1 (1.7·10-3) 141.0 (NS) 

4-methylcatechol glucuronide (isomer 2) 333.5 (3.8·10-2) 495.2 (3.5·10-2) 157.1 (NS) 

vanillin 119.0 (3.3·10-2) 183.8 (3.3·10-2) 51.4 (NS) 

flavan-3-ols 

(epi)catechin glucuronide (isomer 1) 169.7 (1.2·10-4) 281.4 (7.6·10-3) 72.9 (NS) 

(epi)catechin glucuronide (isomer 2) 433.2 (1.9·10-5) 602.2 (6.1·10-3) 348.7 (1.1·10-2) 

(epi)catechin glucuronide (isomer 3) 679.6 (5.5·10-4) 1053.2 (2.1·10-2) 341.6 (NS) 

(epi)catechin glucuronide (isomer 4) 4462.2 (6.1·10-2) 7009.2 (2.9·10-3) 2157.8 (1.1·10-2) 



 

 

 

 

 

 
(epi)catechin sulfate (isomer 1) 1678.6 (2.0·10-2) 3790.6 (3.2·10-2) 1150.9 (NS) 

(epi)catechin sulfate (isomer 2) 4687.8 (5.5·10-3) 5271.0 (1.7·10-2) 2157.8 (NS) 

methyl(epi)catechin glucuronide (isomer 1) 294.7 (1.3·10-3) 324.1 (NS) 181.4 (NS) 

methyl(epi)catechin glucuronide (isomer 2) 334.7 (2.0·10-3) 428.9 (NS) 168.6 (NS) 

methyl(epi)catechin glucuronide (isomer 3) 1034.0 (2.6·10-8) 1232.1 (3.5·10-4) 813.9 (2.7·10-3) 

methyl(epi)catechin glucuronide (isomer 4) 391.6 (8.1·10-8) 556.0 (6.5·10-4) 207.7 (2.7·10-3) 

methyl(epi)catechin sulfate (isomer 1) 711.0 (2.5·10-3) 700.6 (NS) 721.8 (NS) 

methyl(epi)catechin sulfate (isomer 2) 1194.0 (1.9·10-5) 725.3 (1.9·10-2) 1662.6 (6.4·10-3) 

methyl(epi)catechin sulfate (isomer 3) 4601.4 (1.2·10-6) 1833.2 (8.9·10-4) 7485.0 (4.6·10-3) 

methyl(epi)catechin sulfate (isomer 4) 1619.9 (3.5·10-8) 1291.8 (1.3·10-4) 1962.2 (4.6·10-3) 

methyl(epi)catechin sulfate (isomer 5) 2701.9 (6.0·10-6) 1964.3 (2.3·10-3) 3471.5 (1.1·10-2) 

methyl(epi)catechin sulfate (isomer 6) 817.5 (1.2·10-6) 861.1 (1.6·10-3) 767.7 (4.4·10-3) 

hydroxyphenyl-γ-valeric acids & hydroxyphenyl-γ-valerolactones (microbiota) 

5-(3’,4’-dihydroxyphenyl)-4-hydroxyvaleric acid 3’-glucuronide 367.7 (9.5·10-4) 681.5 (2.3·10-2) 116.6 (NS) 

5-(3’,4’-dihydroxyphenyl)-4-hydroxyvaleric acid 4’-glucuronide 884.5 (8.5·10-4) 1038.5 (NS) 723.5 (NS) 



 

 

 

 

 

 
5-(3’,4’-dihydroxyphenyl)-4-hydroxyvaleric acid 3’-sulfate 2579.2 (7.9·10-4) 4018.7 (2.8·10-2) 1079.7 (NS) 

5-(3’,4’-dihydroxyphenyl)-γ-valerolactone 3’-glucuronide 6782.4 (1.2·10-5) 10020.4 (3.1·10-3) 3544.4 (3.2·10-2) 

5-(3’,4’-dihydroxyphenyl)-γ-valerolactone 4’-glucuronide 1415.3 (1.0·10-4) 2534.3 (4.8·10-3) 245.4 (NS) 

5-(3’,4’-dihydroxyphenyl)-γ-valerolactone 3’-sulfate 948.5 (4.1·10-5) 605.6 (4.2·10-3) 195.6 (NS) 

5-(3’,4’-dihydroxyphenyl)-γ-valerolactone 4’-sulfate 7772.8 (1.2·10-3) 13594.6 (3.5·10-2) 1673.8 (NS) 

5-(3’,4’,5’-trihydroxyphenyl)-γ-valerolactone 3’-sulfate 2393.4 (7.6·10-4) 331.6 (8.9·10-4) 320.6 (NS) 

5-(3’,4’,5’-trihydroxyphenyl)-γ-valerolactone 4’-sulfate 12184.4 (2.0·10-2) 22850.4 (NS) 548.7 (NS) 

5-(4’-hydroxy-3’-methoxyphenyl)-γ-valerolactone 377.3 (9.3·10-3) 507.2 (3.2·10-2) 247.5 (NS) 

5-(4’-hydroxy-3’-methoxyphenyl)-γ-valerolactone glucuronide 4957.0 (7.2·10-5) 7987.1 (4.5·10-3) 1800.6 (NS) 

5-(4’-hydroxy-3’-methoxyphenyl)-γ-valerolactone sulfate 1342.5 (1.1·10-4) 2065.2 (4.5·10-3) 589.8 (NS) 

Urolithins (microbiota) 

urolithin A glucuronide 23040.5 (7.6·10-4) 38347.0 (3.5·10-4) 10649.5 (NS) 

urolithin A sulfate 998.1 (8.2·10-4) 1397.2 (1.3·10-3) 660.4 (NS) 

Enterolignans (microbiota) 

enterolactone glucuronide 2882.1 (3.2·10-2) 495.5 (2.3·10-2) 83.9 (NS) 



 

 

 

 

 

 
Anthocyanins 

cyanidin 3-glucoside 523.6 (8.5·10-4) 649.3 (1.0·10-2) 421.4 (NS) 

xanthine alkaloids 

theobromine 2138.1 (3.2·10-3) 3983.6 (2.1·10-2) 215.7 (NS) 

other flavonoids 

naringenin glucuronide 520.7 (NS) 804.3 (2.6·10-2) 237.1 (NS) 

luteolin 3’-glucuronide 19.6 (4.3·10-2) 34.6 (9.2·10-3) 3.3 (NS) 
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