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Abstract CUPID will be a next generation experiment
searching for the neutrinoless double β decay, whose dis-
covery would establish the Majorana nature of the neutrino.
Based on the experience achieved with the CUORE experi-
ment, presently taking data at LNGS, CUPID aims to reach
a background free environment by means of scintillating
Li2100MoO4 crystals coupled to light detectors. Indeed, the
simultaneous heat and light detection allows us to reject
the dominant background of α particles, as proven by the
CUPID-0 and CUPID-Mo demonstrators. In this work we
present the results of the first test of the CUPID baseline
module. In particular, we propose a new optimized detector
structure and light sensors design to enhance the engineer-
ing and the light collection, respectively. We characterized
the heat detectors, achieving an energy resolution of (5.9 ±
0.2) keV FWHM at the Q-value of 100Mo (about 3034 keV).
We studied the light collection of the baseline CUPID design
with respect to an alternative configuration which features
gravity-assisted light detectors’ mounting. In both cases we
obtained an improvement in the light collection with respect
to past measures and we validated the particle identification
capability of the detector, which ensures an α particle rejec-
tion higher than 99.9%, fully satisfying the requirements for
CUPID.

a e-mail: cupid.publications@lngs.infn.it (corresponding author)

1 Introduction

The two-neutrino double β decay (2νββ) [1] is one of
the rarest processes in the universe, observed only in 11
nuclides, with typical half-lives in the range between 1018

and 1024 year [2]. The precision measurements performed
by several experiments allowed detailed studies of the 2νββ

spectral shape to search for distortions due to beyond Stan-
dard Model processes [3–9].

An alternative mode to this process requires the emis-
sion of 2 electrons without neutrinos in the final state and is
referred to as neutrinoless double β decay (0νββ). This has
been first hypothesised by Furry [10] and then supported by
several theoretical frameworks [11–15]. The search for this
decay plays a significant role in particle physics nowadays,
as its discovery would establish the Dirac or Majorana nature
of the neutrino, whose experimental evidence is still miss-
ing. In the former (Dirac) case, the neutrino behaves like all
the other fermions. In the latter (Majorana) case, neutrino and
antineutrino coincide, giving rise to new physics processes in
which the total lepton number symmetry is violated, such as
the 0νββ decay [16]. This would also represent an important
hint for the explanation of the matter-antimatter asymme-
try in the universe [17,18]. Several experiments have been
searching for 0νββ in different nuclides with sensitivities on
the half-life from 1024 to 1026 yr [19–27] but still no evidence
of this decay has been found.
The next generation experiment CUPID (CUORE Upgrade
with Particle IDentification) [28] aims to explore the half-life
region up to 1027 years. CUPID will use scintillating cryo-
genic calorimeters, also called bolometers. These are very

123

mailto:cupid.publications@lngs.infn.it


Eur. Phys. J. C (2022) 82 :810 Page 3 of 9 810

low temperature detectors, operated at about 10 mK, whose
main element is a crystal containing the isotope candidate
for the 0νββ emission. The crystal’s heat capacity at cryo-
genic temperatures allows to convert an energy release into a
measurable temperature increase. The temperature variation
is then turned into an electric signal by means of a cryo-
genic sensor, called a thermistor. This detection mechanism
is the key to achieve an excellent energy resolution, about
0.2% FWHM at a few MeV of energy deposit, which is one
of the fundamental ingredients to increase the experimen-
tal sensitivity to the 0νββ search. Moreover, these detectors
feature a very high 0νββ containment efficiency (∼ 80%)
as the crystals work both as source and absorber of the
decay products. The CUPID experiment is based on years
of development of such technology [29,30] culminated in
the CUORE (Cryogenic Underground Observatory for Rare
Events) experiment [31,32]. By collecting more than 1 tonne-
year of exposure in stable conditions, CUORE set a funda-
mental milestone for the next generation experiments search-
ing for rare events with cryogenic calorimeters. Despite the
many results achieved, CUORE is limited by the dominant
background source of α particles produced by surface con-
taminations [33,34]. This dominant background source can
be rejected by means of scintillating crystals with dual read-
out of light and heat signals. Indeed, at a fixed energy deposit,
the light yield of α particles is quenched with respect to β/γ

[35]. The particle identification represents the main innova-
tion of the CUPID experiment, which will couple scintillat-
ing Li2100MoO4 crystals to light detectors to reject α events
to a negligible level. Moreover, CUPID will search for the
0νββ in the isotope 100Mo which presents an important fea-
ture; indeed, its Q-value, (3034.40 ± 0.17) keV [36], lies
above the last significant γ line from natural radioactivity (at
2615 keV) and this will further reduce the background level
in the ROI, by mitigating the contribution due to γ s.
The combination of scintillating bolometers and high Q-
value ββ emitters was exploited by LUCIFER [37–44] and
LUMINEU [45–51] as well as by the AMoRE Collaboration
[52]. The experience achieved in LUCIFER and LUMINEU
resulted in two demonstrators which proved the CUPID
working principles: CUPID-0 [3,4,24,53–55] and CUPID-
Mo [27,51,56,57]. The former used cylindrical ZnSe scintil-
lating crystals and Ge-disk bolometers as light detectors and
took data from 2017 to 2020 at Laboratori Nazionali del Gran
Sasso (LNGS). CUPID-Mo operated at Laboratoire Souter-
rain de Modane (LSM) from early 2019 to mid 2020, proving
the excellent radiopurity, energy resolution and α particles
rejection achieved with cylindrical crystals of Li2100MoO4

(LMO), the compound chosen for CUPID.
The ongoing R&D measurements at the LNGS [58,59] and
at the Canfranc laboratories [60] aim to optimize the detec-
tor features and design for the CUPID experiment. In this
work we propose a new mechanical structure for the assem-

Fig. 1 Rendering of a single CUPID module which consists of 2 cubic
LMO crystals and 2 LDs spaced 0.5 mm from the bottom faces. The
detectors are held by the copper frame and PTFE elements. A tower is
built by simply stacking one module on top of the other. The detector
components are labeled in the figure

bly of the CUPID baseline detector module and present its
performance.

2 Experimental setup

All the past/present bolometric detectors, from CUORE to
CUPID-0 and CUPID-Mo, were assembled by mounting the
crystals into copper frames, that were rigidly secured on top
of each others using copper columns [44,56,61]. Experi-
ments that featured light detectors (LDs) in their setup, usu-
ally mounted these devices by “squeezing” them into poly-
tetrafluoroethylene (PTFE) clamps. To simplify the CUPID
assembly, we designed a new mechanical structure, in which
two LDs are mounted into a 2 mm thick laser-cut copper
frame (Fig. 1).

Instead of squeezing the LDs in the clamps, we keep
them positioned on the edges of the copper frame using
two PTFE “lockers”. Furthermore, LDs were re-designed
to match the CUPID crystals faces; previous measurements
used CUPID-Mo [56] and CUPID-0 [62] light detectors, con-
sisting of 170µm thick, disk-shaped Ge LDs. We replaced
the disk-shaped LDs with quasi-square ones and, to relax
the constraints on the tolerances of PTFE elements, we also
increased the thickness of the LDs from 170 to 500µm. We
verified that the effect of the volume increase on the heat
capacity does not affect the decay time of the pulse.

The copper frame is equipped with PTFE “corners” to ease
the positioning of the LMO crystals as close as possible to the
LDs (0.5 mm, largely improving the 4 mm spacing that could
be achieved with the previous assembly procedure). Finally,
the module design includes a pen flap, glued on the copper
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Fig. 2 Photo of the array during the decommissioning. Here are shown
2 baseline modules of CUPID, which form the first floors of the 2 mini-
towers. In one of the 2 modules an LMO crystal is missing and a quasi-
square LD is visible on the bottom

frame, to allow the bonding of Neutron Transmutation Doped
germanium (NTD-Ge [63]) thermistors and the heaters (P-
doped Si [64]). The former are meant for the read-out of both
the LMO crystals and LDs, and produce a typical voltage
signal of 10–100 µV per 1 MeV of deposited energy. The
latter are used to periodically inject thermal pulses at a fixed
energy for the thermal gain correction [61].

A CUPID tower will consist of 14 modules stacked on top
of each others simply by gravity. This structure shows sev-
eral advantages: it minimizes the amount of inert material,
relaxes the constraints on mechanical tolerances, simplifies
the production of copper elements and their cleaning, and
also the assembly is simplified as well. On the other hand,
such novel design was never tested before, so the thermal
properties and the propagation of noise across the floors of
the tower needed to be characterized. Furthermore, the novel
assembly of the LDs could potentially induce a larger noise,
due to a less firm positioning of the detector module compo-
nents with respect to previous assemblies. In this work we
made an exploratory study of the new mechanical structure,
by mounting 2 mini-towers of only 2 (out of 14) floors each
(Fig. 2).

Each floor hosted 2 natural LMO cubic crystals, with
dimensions 45 × 45 × 45 mm3 and mass ∼ 280 g each, for
a total of 8 crystals with the same specifications foreseen for
CUPID. High radiopurity copper and PTFE elements were
selected for the mechanical structure. Each crystal faces 2
LDs, on top and bottom. These are thin cryogenic germanium
calorimeters. An antireflecting 60 nm thick layer of SiO [65]

Fig. 3 Schematic view of the 2 LD configurations: the grey squares
and the purple strips represent respectively the LMO crystals and the
LDs. Left: “baseline” configuration with LDs spaced 0.5 and 4 mm from
the bottom and top of the crystal respectively. Right: “gravity-assisted”
configuration with LDs spaced 0.5 mm on bottom and leaned on top of
the crystal

was deposited on both sides of the Ge faces to increase the
light collection, as already done in CUPID-Mo [56]. This is
the most reliable technology to be operated at cryogenic tem-
peratures to detect scintillation light from the crystals, which
typically corresponds to an equivalent deposition of keV per
MeV of energy deposit in the crystal [49,51,56,58,66].

We tested 2 possible configurations of the LDs as outlined
in Fig. 3:

– in the first floor, LDs were spaced 0.5 and 4 mm from
the bottom and top of the crystal respectively. From now
on, we will refer to this configuration as the “baseline”
configuration for the CUPID experiment, as it allows a
simple engineering of a large modular array.

– in the second floor, the bottom LDs were again spaced
0.5 mm, but the top LDs were leaned on the LMO crys-
tals. This “gravity-assisted” positioning, originally pro-
posed in Ref. [67], could allow to further increase the
light collection.

One of the goals of this measurement was to establish
if the larger light collection which could be offered by the
“gravity-assisted” configuration is worth the complication in
the detector engineering and assembly. Indeed, leaned LDs
are difficult to implement on a large scale experiment with a
proper assembly reproducibility.

We performed two experimental runs, one in the config-
uration described above, and the second one by surrounding
the crystals with a Vikuiti™ reflecting foil. The latter would
complicate the assembly in view of CUPID, it would be an
additional source of background and it would affect the effi-
ciency of coincidence tagging of α events. Thus we consider
the reflecting foil only as a potential back-up solution to fur-
ther enhance the light collection (see [58]).

The LDs were constantly exposed to an X-rays source
(55Fe, which produces peaks at 5.9 and 6.4 keV) to energy-
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calibrate the scintillation light signals. The prototype was
operated in a wet cryostat located in the Hall C of the deep
underground Laboratori Nazionali del Gran Sasso of INFN,
Italy.

3 Data analysis

The voltage signals from the detectors were amplified and
filtered with a 120 dB/decade, six-pole anti-aliasing active
Bessel filter [68–74]. We used a custom DAQ software pack-
age to save on disk the data stream acquired through a 18 bit
analog-to-digital board with a sampling frequency of 2 kHz
[75]. Then, a derivative trigger [76] was applied to the data, to
identify thermal pulses, and a random trigger was fired every
60 s to sample the noise waveforms. The trigger parameters
were tuned for each detector to optimize the noise level. We
acquired heat and light pulses with a 5 s and 0.5 s long win-
dow respectively.

The triggered data were then processed offline via a ded-
icated analysis chain, which was adapted from a C++ based
analysis framework developed for CUORE [33], CUPID-0
[77] and their predecessors [78]. The first step of the analysis
was the application of a matched filter algorithm (optimum
filter) [79,80] to enhance the signal-to-noise ratio suppress-
ing the most intense noise frequencies. This algorithm takes
as input an average pulse and an average noise power spec-
trum, computed from recorded signal and noise waveforms,
after a quality selection cut. The filter allows to improve the
reconstruction of the basic pulse characteristics such as the
amplitude, the baseline value (which is a proxy for the tem-
perature), the baseline RMS and the pulse shape parameters.
The filter was applied to both LD and LMO events.

Any time the trigger of an LMO crystal fired, the wave-
form of the corresponding LDs was acquired and flagged as
“side pulses”. We exploited the fixed time delay between light
and heat pulses due to the electronics in order to improve the
estimate of the side pulses amplitude, which presents a poor
signal-to-noise ratio at low energies. We estimated this fixed
time delay for each LD from the average pulse corresponding
to each channel and we evaluated the light pulses amplitude
at the exact time delay with respect to the corresponding heat
pulse. This allows to remove some non-linearities introduced
by the optimum filter at low energies, while it does not affect
significantly the light signals amplitude in the region of inter-
est (ROI) [77].

The light signals amplitudes were energy-calibrated by
using a linear function with zero intercept. The calibration
coefficient was derived by fitting the peaks at 5.9 and 6.4 keV
of the 55Fe source.

Concerning the heat channel, a further improvement of
the pulses amplitude estimation was possible through a ther-
mal gain correction. Unlike the LDs, which exhibit typical

resolutions of ∼ 1% [60], the heat channels are expected
to reach a resolution of a few ∼ 0.1%. Such energy resolu-
tion could be spoiled by thermal instabilities of the cryostat.
During the data taking we placed a 232Th source outside the
cryostat to derive the amplitude vs. temperature dependence
in the highest energy peak from 208Tl at 2615 keV, and cor-
rect the pulse amplitude accordingly. Finally, to convert the
corrected amplitudes into energy, we identified and fitted the
most intense mono-energetic peaks from the 232Th decay
chain. Then, we calibrated the heat signals by using a second
order polynomial function crossing the origin, which showed
residuals lower than ∼ 1 keV in absolute value.

4 General performances

The temperature at which we operated the detectors of the
array is ∼ 15 mK. The results presented in this paper are
focused on the LDs which showed the best performances.
We discarded 2 LDs for reasons related to the wiring and
the 55Fe source placement, which are not relevant in view of
CUPID. We operated the LDs with working resistances in the
range of 4–7 M�, to obtain a response spanning from 0.9 to
5.2µV/keV (average ∼ 2.7µV/keV), depending on the bias
current.

We evaluated the baseline RMS from a Gaussian fit to the
energy spectrum of noise events and found a result between
35 and 70 eV with an average of (57 ± 6) eV, well below the
threshold required for CUPID (100 eV) [28].

We did not find any correlation between the LD perfor-
mance and its position in the tower. This confirms the homo-
geneity of the cooling along the tower and the uniformity of
the results among the different LDs assembly methods. The
validation of the new detector structure used in this mea-
surement is the first important result towards the successful
construction of a 14-floor tower prototype for the CUPID
experiment.

We operated the LMO crystals with working resistances of
2–13 M� and we measured the response to be in the range of
31–72 µV/MeV (average ∼ 50µV/MeV). We evaluated the
baseline resolution as done for the LDs, with a result between
0.52 and 0.95 keV RMS depending on the LMO detector,
with an overall average of (0.69 ± 0.06) keV RMS. The
obtained performance is in agreement with previous cubic
LMO detectors tested in the same facility [58] and consis-
tent with cylindrical and cubic LMO detectors operated in
similar conditions [49,56,60]. We didn’t observe any signif-
icant correlation between LMO detectors performances and
the kind of configuration it belongs to (“baseline” or“gravity-
assisted”).

We evaluated the energy resolution at different energies
by fitting the most intense γ peaks in the sum spectrum of
the 8 LMO crystals (Fig. 4).
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Fig. 4 FWHM of the most intense γ peaks as a function of the energy
in the sum spectrum of the 8 LMO crystals. We find that the function

which best describes the data is FWHM =
√
p2

0 + p2
1 × E , here shown

with a blue line. The green dotted line represents the 100Mo Q-value

We find a resolution of (5.6 ± 0.3) keV FWHM at the 2615
keV 208Tl γ -peak. To extrapolate the energy resolution at the
Qββ of 100Mo (3034 keV), we performed different tests to
evaluate the best function to describe the energy dependence
of the energy resolution. We find that a square root function

with a linear dependence on energy, namely
√
p2

0 + p2
1 × E ,

is the best fit to the data (Fig. 4). We also included in the fit
the baseline resolution estimated on noise events from the
overall spectrum, to better constrain the p0 parameter. The
extrapolated FWHM at the Qββ of 100Mo is (5.9 ± 0.2) keV,
which corresponds to a percentage resolution of 0.19%. The
improved signal-to-noise ratio, due to an extensive charac-
terization of the noise sources of this facility, allowed us to
improve the energy resolution compared to the previous tests
[58], approaching the final CUPID goal of 5 keV FWHM.

5 Light collection results

One of the main purposes of the run was the evaluation of the
light collection of quasi-square light detectors and a compar-
ison of the results obtained with different spacing between
LDs and crystals. To estimate the total light collection, we
added the corresponding light amplitude of top and bottom
LDs and divided by the energy estimated from the heat chan-
nel. The total light yield (LY) is then calculated as the mean
of the resulting distribution.

We report the total LY as a function of energy for two
crystals representative of the two configurations (baseline
and gravity-assisted) in Fig. 5. The results obtained with the
other crystals of the respective configuration are very similar,
with differences smaller than 20%.

Fig. 5 Light Yield as a function of the energy deposited in the LMO
crystal. Red: baseline configuration; blue: gravity-assisted configura-
tion. Green vertical line: Q-value of 100Mo

In both configurations we can clearly identify the β/γ

events, which populate the plot up to the 208Tl γ -line at
2615 keV, and the α events, which present a quenched light
yield and extend up to higher energies. In particular, we
identify a cluster of events due to an internal crystal con-
tamination in 210Po(210Pb) [47], which produces a peak
with nominal energy ∼ 5.4 MeV. Since the detector was
energy-calibrated using gamma’s, the α peak is observed at
slightly higher electron-equivalent energy (+ 7%, in agree-
ment with previous studies with lithium molybdate bolome-
ters [42,48,49,56,81]). The α events at lower energies are
produced by a 234U/238U source placed in the inner face of
the copper shield surrounding the detector and covered with
a thin Mylar foil to smear the energy of α particles, to study
the light collection in the ROI for the 0νββ search. The LY
distribution shows a spread at very low energies due to the
superposition of the noise with the light pulses. For this rea-
son, to avoid the impact of noise on the LY estimation, we
selected scintillation events with energy deposit in the crystal
above 1.2 MeV.

The average total LYβ/γ is found to be (0.62±0.04) keV/MeV
and (0.70 ± 0.05) keV/MeV in the “baseline” configuration
and in the “gravity-assisted” configuration, respectively.

In particular, for the “baseline” configuration, the LYs of a
single LD resulted to be on average (0.28 ± 0.02) keV/MeV
for the LD spaced 4 mm and (0.33 ± 0.03) keV/MeV for the
LD spaced 0.5 mm. In the “gravity-assisted” configuration
we found the LY of a single LD to be (0.36 ± 0.03) keV/MeV
for both the LDs. More details on the LYs of a single LD are
reported in Table 1.

The total LY for α particles resulted to be (0.08 ±
0.03) keV/MeV for the “baseline” configuration and (0.11
± 0.03) keV/MeV for the “gravity-assisted” one.

We repeated the same study on the prototype in which the
LMO crystals were surrounded by reflecting foils, obtaining
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Table 1 Light yield for LD top (t), LD bottom (b) and the sum of the two
light detectors in the case of bare crystals. LMO-1 to LMO-4 are in the
baseline configuration (bottom LD spaced 0.5 mm and top LD spaced
4 mm). LMO-5 to LMO-8 are in the “gravity assisted” configuration
(bottom LD spaced 0.5 mm and top LD leaned on crystal). The missing
values correspond to LDs we discarded for the analysis (LMO-1 top
LD corresponds to LMO-5 bottom LD). The associated uncertainty is
the width of the LY distribution

LYβ/γ (t) LYβ/γ (b) LYβ/γ (sum)
[keV/MeV] [keV/MeV] [keV/MeV]

LMO-1 – 0.35 ± 0.06 –

LMO-2 0.29 ± 0.04 0.33 ± 0.04 0.62 ± 0.06

LMO-3 0.26 ± 0.04 – –

LMO-4 0.30 ± 0.04 0.32 ± 0.05 0.63 ± 0.06

LMO-5 0.38 ± 0.05 – –

LMO-6 0.35 ± 0.08 0.35 ± 0.06 0.69 ± 0.09

LMO-7 0.34 ± 0.05 0.35 ± 0.04 0.69 ± 0.07

LMO-8 0.36 ± 0.07 0.37 ± 0.04 0.74 ± 0.09

in both the configurations an increase of the LY by a factor
2, as already found in Ref. [58].

From these results we conclude that the increased com-
plexity in engineering and mounting the LDs in the “gravity-
assisted” configuration is not motivated by a substantial
gain in the light collection performance. For this reason,
we decided to discard the “gravity-assisted” configuration
in view of CUPID and from now on we will focus on the
“baseline” configuration.

To quantify the particle identification capabilities of the
baseline configuration, we define the Discrimination Power
(DP) [82] as:

DP ≡
∣∣LYβ/γ − LYα

∣∣
√

σ 2
β/γ + σ 2

α

. (1)

We find that the DP for the sum of LDs ranges between 7.3
and 8.2, thus largely exceeding the requirements of CUPID.
Indeed, the minimum DP needed to reject the 99.9% of α

particles is 3.1 (see [28]). In the unlikely event of a loss of
a light detector, the DP would diminish. Assuming that a
single LD is working, we obtain a DP between 3.9 and 6.2,
thus closer but still higher than the required threshold. It is
worth noticing, in this context, that in the assembly of the
CUORE detector only 4 out of 988 contacts were lost and
that in the CUPID-0 detector none of the ∼ 30 LDs exhibited
any malfunction.

We report in Table 2 the DP values achieved with a single
LD or with the pair of LDs in both the configurations we
studied.

Finally, we compared our results with the R&D test made
on disk-shaped LDs and cubic LMO crystals in the same
facility [58]. To allow a coherent comparison, we consid-

Table 2 Discrimination Power (DP) achieved with the top LD (t), the
bottom LD (b) and the sum of the two light detectors with bare crystals.
LMO-1 to LMO-4 are in the baseline configuration (bottom LD spaced
0.5 mm and top LD spaced 4 mm). LMO-5 to LMO-8 are in the “gravity
assisted” configuration (bottom LD spaced 0.5 mm and top LD leaned
on crystal). The missing values correspond to LDs we discarded for the
analysis (LMO-1 top LD corresponds to LMO-5 bottom LD)

DP (t) DP (b) DP (sum)

LMO-1 – 3.9 –

LMO-2 5.7 6.2 8.2

LMO-3 4.4 – –

LMO-4 5.5 4.5 7.3

LMO-5 5.7 – –

LMO-6 3.3 4.2 5.3

LMO-7 4.3 5.9 7.4

LMO-8 3.5 6.8 5.9

ered the results obtained with the “baseline” configuration,
in which the spacing between the LDs and the LMOs was
similar to the assembly used in the previous test. The LY cal-
culated from the light collected by both top and bottom LDs
shows an average improvement of about 26%. This factor is
consistent with the improvement expected from increasing
the geometrical size of the detector (∼ 27%).

6 Summary and conclusions

In view of the CUPID experiment, we modified the detec-
tor design to optimize its engineering and improve the light
collection efficiency.

We validated the assembly of the new detector structure,
which did not show any temperature gradient throughout
the setup. This is a first fundamental step towards the con-
struction of the 14-floor prototype tower of CUPID, which
is planned for the first half of 2022.

We achieved a baseline resolution of (0.69 ± 0.06) keV
RMS for the LMO crystals and we estimated an energy res-
olution of (5.9 ± 0.2) keV FWHM at the Q-value of 100Mo
(3034 keV). We reached to improve the energy resolution
with respect to what reported in [58] thanks to a debug of the
noise (both vibrational and electrical) of the facility and to a
lower (∼ 15 mK instead of ∼ 18 mK) and more stable work-
ing temperature operation. We foresee that an even lower
temperature (down to about ∼ 11 mK as done for CUORE
[32]) and an optimized electronic system will further improve
this result in view of CUPID.

To optimize the light collection we also redesigned the
LDs to fully cover the faces of the CUPID crystals. For
the first time, we characterized the performances of quasi-
square LDs coupled to LMO cubic crystals. We estimated and
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demonstrated an improvement of the light collection of about
26% with respect to disk-shaped LDs, which have been tested
in the same facility [58]. Moreover, the noise level achieved
with the new LDs falls in the range of 35–70 eV which is
well below the threshold required for CUPID (100 eV). This
pushes at limits the particle identification capabilities for
CUPID, which guarantee an α particles rejection higher than
99.9%.

Finally, we tested 2 possible configurations for the LD
mounting. In the “baseline” CUPID configuration, LDs are
spaced 0.5 mm and 4 mm from the bottom and top faces of
the crystal respectively. We also tested a “gravity-assisted”
configuration in which the top LD is leaned on the crystal.
We eventually discarded the latter option as a viable solution
for CUPID, since the gain in light collection is not worth the
increased technical complexity of the assembly.
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