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1. Introduction

One of the peculiar features of Quantum Chromodynamics (QCD) is the spontaneous and
explicit breaking of chiral symmetry. In the case with two massless quark flavours the theory is
invariant under global transformations with elements of

SUL(2)×SUR(2)×UA(1)×UV (1) . (1.1)

The UA(1) symmetry, however, is anomalously broken on the quantum level due to the Adler-Bell-
Jackiw, or chiral, anomaly. In particular, the conservation equation for the axial vector current
reads

∂µA j
µ(x) =−δ j0

N f g2
0

32π2 ε
αβ µνTr

[
Fαβ (x)Fµν(x)

]
=−δ j0N f Q(x) , (1.2)

where Q(x) denotes the operator associated with the topological charge density and

A j
µ(x) = ψ̄(x)γµγ5(τ

j/2)ψ(x) , (1.3)

is the axial current, including the Pauli matrices τ j for j = 1,2,3 and τ0 = 1. Due to this anoma-
lous breaking, the spontaneous breaking of chiral symmetry leads to three Goldstone bosons only,
neutral and charged pions, while the η ′ meson retains a finite mass, even for vanishing light quark
masses [1, 2].

The fate of the anomalous breaking of the UA(1) symmetry at finite temperature plays a key
role for the properties of the QCD phase diagram. In particular, the phase transition in the chiral
limit of the light (u and d) quarks is sensitive to the possible restoration of the UA(1) symmetry at
the critical temperature, which could change the order and/or the universality class of the transition
(see Refs. [3, 4, 5]). The two possible scenarios for the QCD phase diagram in dependence of
the masses of the three lightest quarks are shown in Fig. 1. In scenario (1), the 2nd order chiral
critical line reaches the mud = 0 axis in a tricritical point at mtric

s , rendering the chiral transition
2nd order from this point on. The universality class in this scenario depends on the strength of
the breaking of UA(1) at the chiral transition. If the effect of the breaking is negligible, i.e. the
symmetry effectively restored, the transition will be in the U(2)×U(2)→ U(2) [4, 5] universality
class (alternatively a SU(2)×SU(2)×Z4→ SU(2) universality class has also been proposed [6])
rather than in the standard O(4) universality class [3] for a substantial breaking of UA(1). It is also
possible that the restoration of the UA(1) symmetry is sufficient to keep the transition first order
for all values of the strange quark mass [3]. This is scenario (2) in Fig. 1. The question which
of the two scenarios is realised is the only remaining completely open qualitative question of the
phase diagram at vanishing chemical potential. Among the main problems to answer this questions
are the inability to simulate directly in the chiral limit and the similarity of the different types of
scaling behaviour. Investigating the fate of the UA(1) symmetry at the chiral phase transition offers
a viable alternative to the above methods (see our earlier paper [7] for a more detailed discussion
and references).

The pattern of chiral symmetry restoration can be investigated using correlation functions of
operators connected by the individual symmetries (see also [8]). One particular example are iso-
vector correlation functions in vector V j

µ(x) = ψ̄(x)γµγ5(τ
j/2)ψ(x) and axial vector A j

µ(x) chan-
nels, which are related by the SUA(2) rotation. Consequently, the restoration of chiral symmetry
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Figure 1: The two possible scenarios for the phase structure of QCD at zero chemical potential.

implies the degeneracy of the associated correlation functions. Of particular relevance for the UA(1)
symmetry are correlation functions in scalar and pseudoscalar channels. Including the iso-singlet
operators (opening up new channels for the investigation of the effective symmetry restoration, see
Ref. [9], for instance), they are related by SUA(2) and UA(1) transformations as shown in Fig. 2.
The iso-vector operators Pi and Si are comparably easy to compute on the lattice, due to the ab-
sence of disconnected diagrams, so that they have become the standard channels to look at to test
for UA(1) symmetry restoration. Since we are considering an effective restoration of the symmetry,
we expect the renormalised correlation functions to become degenerate.

A number of studies have looked at the effective restoration of the UA(1) symmetry in lattice
QCD, mostly focussing on the low mode spectrum of the Dirac operator or chiral susceptibili-
ties [10, 11, 12, 13, 14]. In contrast, we pursue a complementary approach, using the correlation
functions, in particular, the screening masses. Screening masses probe the long distance properties
of the correlation functions and are free of contact terms, which contaminate chiral susceptibilities,
for instance. Apart from screening masses, the correlation functions include additional information
in terms of matrix elements. The details of our strategy are explained in [7], where the iso-vector
screening masses obtained from Nt ×N3

s = 16× 323 lattices have been published. Nt and Ns are
temporal and spatial lattice extents in lattice units, respectively. Here we extend this study to larger
volumes, the matrix elements of the correlation functions and present first results for iso-singlet
screening masses, which provide additional information about the symmetry restoration pattern.

σ : ψ̄ψ = S0

π : ψ̄γ5
τ i

2 ψ = P i

P 0 = ψ̄γ5ψ : η′

Si = ψ̄ τ
i

2 ψ : a0

UA(1)

UA(1)

SUA(2) SUA(2)

Figure 2: Transformation relations between iso-vector and iso-singlet operators in P and S channels.
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scan Volume mud [MeV] mπ [MeV] Tc [MeV] βc cfg
B1κ 323 ∼ 41 ∼ 485 232(19) 5.465 ∼ 1000
C1 323 ∼ 17.5 300 211( 6) 5.405 ∼ 400
C2 483 ∼ 1000
D1 323 ∼ 8.7 220 190(12) 5.340 ∼ 750
D2 483 ∼ 800
E2 483 ∼ 3.6 135 ≈ 183 5.317 ∼ 400

Table 1: β -scans at Nt = 16. Listed are the lattice volume in lattice units, the quark mass mud , the zero-
temperature pion mass mπ (estimated via NNLO χPT, see [7]), the critical temperature Tc, the critical lattice
coupling βc and the approximate number of independent configurations per ensemble ‘cfg’ (estimated via
the integrated autocorrelation time of the plaquette at Tc). Scan B1κ has been done with a constant hopping
parameter κ rather than at constant mud . The quoted quark and pion masses correspond to the ones at Tc.
Note, that a spatial extent of Ns = 16 corresponds to a physical extent of about 1 fm at Tc. For scan E2 the
critical temperature has been estimated from the O(4) scaling fit to the Ns = 32 lattices [7].

Earlier accounts of our study have been reported in [15, 16, 17, 18].

2. Simulation Setup

We perform simulations with two flavours of O(a) improved Wilson fermions [19], with the
non-perturbatively estimated clover coefficient from Ref. [20], and Wilson’s gauge action. The
simulations employ deflation accelerated versions of the Schwarz [21, 22] and (twisted) mass [23,
24, 25] preconditioned algorithms. We vary the temperature by changing the lattice spacing via
the lattice coupling β , keeping the temporal extent fixed at Nt = 16. For more details concerning
the simulation algorithms, lines of constant physics and scale setting see [7]. In the approach to
the chiral limit we use several quark masses and volumes to control finite size effects. A list of
temperature scans with the results for the critical temperatures is given in Tab. 1

Our main observables are correlation functions in spatial direction, so called screening corre-
lators [26]. For a particular mesonic operator O the screening correlation function is given by

CO(xµ) =
∫

d3x⊥
〈
O(xµ ,~x⊥)O†(0)

〉
. (2.1)

Here xµ (we take xµ = z) is the coordinate of the direction in which the correlation function is eval-
uated and~x⊥ is the coordinate vector in the orthogonal directions. The equality of the renormalised
correlation functions of channels related by a particular symmetry signals its effective restoration.
Previously we have focussed on correlation functions with iso-vector operators, i.e. operators in-
cluding a Pauli matrix τ i, for which only quark connected correlation functions contribute. Here we
will also present first results for quark disconnected correlation functions, enabling us to compute
correlation functions in iso-singlet channels. The details will be discussed in Sec. 4.

On a periodic lattice of extent Lz, the leading order of the spectral representation, including
only the groundstate contribution, of a correlation function CO(z) is given by

CO(z) =

∣∣ZO
∣∣2

MO

(
e−MOz + e−MO(Lz−z)

)
. (2.2)
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Figure 3: Results for the differences ∆MPS and ∆MVA, for scans C1 (left) and D1 (right). The differences are
normalised to 2πT . The grey area marks the transition region. The results indicated by ∆M are an alternative
estimate for the screening mass difference (see [7]).

The exponential decay of CO(xµ) with xµ defines the ‘screening mass’ MO in this channel and
the proportionality constant contains the matrix element ZO. Consequently, the equality of the
correlation functions not only implies the equivalence of the screening masses, but also of the
renormalised matrix elements ZOZO, where ZO are the multiplicative renormalisation factors.

3. Anomalous Breaking of UA(1) from Iso-Vector Correlation Functions

We start with the discussion of the results for correlation functions in the iso-vector channels.
In particular, we look at the correlation functions from Eq. (2.1) in pseudoscalar Pi, scalar Si,
vector V i and axial vector Ai channels. In this section we conveniently drop the superscript i for
brevity. Iso-vector correlation functions include a connected part only, which we evaluate using
point sources. We typically use 48 point sources per configuration with random starting positions.
We first focus on the screening mass differences,

∆MO1O2 = MO1−MO2 , (3.1)

which are direct measures for the effective restoration of the symmetries. These differences are
extracted from plateaus in the effective masses of the ratios of the correlation functions in the
individual channels, taking into account the leading order contributions from excited states.

The results for the screening mass differences on scans C1 and D1, as obtained in [7], are
shown in Fig. 3. We observe an approximate degeneracy of MV and MA, indicating the effective
restoration of SUA(2) at Tc. The difference ∆MPS is non-vanishing at Tc, meaning UA(1) is still
broken for these quark masses. This finding is in qualitative and quantitative agreement with find-
ings from staggered [27], domain wall [10, 28, 29] and overlap [11, 30] fermion formulations. In
the approach to the chiral limit the difference decreases. To obtain an estimate in the chiral limit
we perform a linear chiral extrapolation of ∆MPS (averaging over the transition region and using
the spread of results as a systematic uncertainty; see Ref. [7]). The results from the averaging
procedure for scans B1κ , C1 and D1 versus the quark mass are shown as the grey points in Fig. 5
together with their chiral extrapolation, the grey point at mud = 0. To enable an assessment whether
the breaking is weak or strong in the chiral limit, Fig. 5 also includes a phenomenological estimate

4



P
o
S
(
C
D
2
0
1
8
)
0
5
5

Strength of the UA(1) anomaly at the N f = 2 chiral phase transition Bastian B. Brandt

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.7 0.8 0.9 1 1.1 1.2 1.3

∆
M

/
(2

π
T

)

T/TC

C2

preliminary

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.7 0.8 0.9 1 1.1 1.2 1.3

∆
M

/
(2

π
T

)

T/TC

D2

preliminary

∆MPS
∆MV A

∆MPS
∆MV A

Figure 4: Results for the differences ∆MPS and ∆MVA, for scans C2 (left) and D2 (right).
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Figure 5: Results for ∆MPS from the temperature scans with a volume of N3
s = 483. The grey points are the

results from the N3
s = 323 volumes for comparison and the black points are the reference values at T = 0

(see text).

for the mass difference in the chiral limit and at the physical point in full QCD at T = 0 [7]. A
comparison between the chiral extrapolation and the phenomenological estimate shows that the
UA(1) breaking screening-mass difference is comparably small at Tc, indicating a weak breaking
or even a restoration of the UA(1) symmetry at mud = 0.

For the N3
s = (L/a)3 = 323 volumes and smaller quark masses, the value for mπL, with mπ the

T = 0 pion mass, becomes smaller than 3. To be able to extend the study to smaller quark masses
and to test for finite size effects, we have thus repeated the computations on N3

s = 483 lattices.
The results for the screening mass differences on these new scans C2 and D2 are shown in Fig. 4.
While the results for ∆MVA look very similar to the ones from scans C1 and D1, ∆MPS tends to
become larger with increasing volume. The result for ∆MPS at Tc, once more averaged over the
transition region, are shown in Fig. 5. One can see the tendency towards larger screening mass
differences with increasing volume. This tendency seems to remain for the chiral limit. To perform
a reliable chiral extrapolation, however, we need to extend the simulations to smaller quark masses
and increase the statistics for scan D2.

To extend our study to smaller quark masses we have started a temperature scan at the phys-
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ical pion mass, labelled E2 in Tab. 1. So far only results at T > Tc (Tc estimated using O(4)
scaling [7]) are available, for which we have performed measurements with 16 point sources per
configuration. The results are shown in Fig. 6. While the results for T/Tc > 1.1 indicate a smaller
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Figure 6: Results for the differences ∆MPS,
for scans C2, D2 and E2.

value for ∆MPS the one at T/Tc ≈ 1.05 is further
away from zero as for scans C2 and D2 at similar
values for T/Tc. The latter, however, lacks statis-
tics and thus can still change considerably. We are
currently increasing precision and are extending the
runs to Tc and below.

An alternative observable extracted from cor-
relation functions are the matrix elements ZO from
Eq. (2.2). In contrast to the screening masses,
however, these observables demand multiplicative
renormalisation. The analogue to ∆MPS for the ma-
trix elements is the renormalised difference

∆ZPS = ZP|ZP|−ZS|ZS| . (3.2)

For the determination of ZP, we have interpolated the results from [31] as discussed in [7]. The
determination of ZS is a bit more involved and we refer to the renormalisation of the chiral conden-
sate in [7] for the details. The renormalised difference is plotted for scans C1 and D1 in Fig. 7. As
the screening mass difference, ∆ZPS remains non-zero at Tc. In contrast to ∆MPS, however, ∆ZPS

shows a tendency to increase when the quark mass is lowered.

4. Iso-Singlet Screening Correlators

Iso-singlet correlation functions open up new channels to investigate the chiral symmetry
restoration pattern. In two-flavour QCD with degenerate quark masses, the difference between iso-
vector and iso-singlet correlation function is the presence of quark disconnected diagrams for the
latter. In this section we will distinguish explicitly between iso-vector Oi and iso-singlet O0 oper-
ators/correlation functions. Introducing quark connected Cconn

O (z) and quark disconnected Cdisc
O (z)
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correlation functions, defined by traces over quark propagators as depicted in Fig. 8, iso-vector and
iso-singlet correlation functions of an operator O are given by,

COi(z) =−1
2

Cconn
O (z) and CO0(z) =−1

2
Cconn

O (z)+Cdisc
O (z) . (4.1)

0

z

0

z

O†

O

O†

O

Figure 8: Graphical representation of quark
connected (left) and disconnected (right) dia-
grams in lattice QCD.

Here O refers to the operator in Dirac and colour
space only, excluding the flavour matrices from
the operator O, and the correlation functions in-
clude only a single fermion propagator (since u and
d propagators are indistinguishable in QCD when
quark masses are degenerate). Note, that the iso-
singlet correlation function might include a con-
stant contribution, which is a finite size effect re-
sulting from imperfect sampling of topological sec-
tors [32]. The constant piece is absent in the shifted
correlator C̃(z) = C(z)−C(z + 1) [33], which we
use to fit the correlation function in the P0 channel.

We will focus on correlation functions in P and
S channels at Tc. The transformation relations between iso-vector and iso-singlet channels are
shown in Fig. 2. We see that the inclusion of the disconnected diagrams enables to test the effective
restoration of both symmetries using P and S correlation functions. In particular, in the case that
SUA(2) is restored, for which we have seen indications above, we expect a degeneracy of P0 and
Si, as well as Pi and S0 correlation functions. If, the UA(1) symmetry remains broken, correlation
functions in Pi and Si channels and P0 and S0 channels remain non-degenerate.

We will first compare the connected and disconnected parts of the correlation functions, shown
in the left panel of Fig. 9. The disconnected correlation functions have been computed with 32
Hadamard probing vectors for hierarchical probing [34]. While the magnitude of connected and
disconnected correlation functions in the P channel is similar, the disconnected correlator is nega-
tive, leading to a large cancellation. At T = 0 this cancellation results in the exponential decay of
the iso-singlet correlator with the η ′ mass. In the S channel, both correlation functions are positive,
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Figure 9: Screening correlation functions (left) and masses (right) for the different channels at the critical
temperature of scan C2.
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but the disconnected correlation function has a slower exponential decay and thus governs the iso-
singlet correlator. To investigate the pattern of chiral symmetry restoration, we have extracted the
iso-singlet screening masses from the correlators, which we compare to the iso-vector screening
masses in the right panel of Fig. 9. Both, the screening masses in Pi and S0 channels, as well as
in P0 and Si channels agree within (their large) uncertainties, confirming the effective restoration
of SUA(2). At the same time, also the screening masses in P0 and S0 channels are non-degenerate,
indicating a residual breaking of UA(1), as seen in the previous section.

Note, that the results are preliminary in the sense that currently the statistics is not sufficient
to extract the iso-singlet screening masses reliably. In particular, the screening masses in Fig. 9
(except for MPi) have been extracted without taking excited states into account. This is problematic
since the signals become lost in noise already at comparably small values of z. The obvious next
task is to increase statistics and to confirm the results presented in this section.

5. Conclusions

In this proceedings article we have updated our initial study [7] to larger volumes, showed first
results for a scan at physical light quark masses, extended our set of observables and presented first
results for the extension to iso-singlet correlation functions. Larger volumes show the tendency
to strengthen the effect of the anomalous breaking of the UA(1) symmetry. However, a chiral
extrapolation of the screening mass difference at Tc is currently not possible for the larger volumes,
lacking a third quark mass. We are currently extending our simulations to the physical quark mass,
for which we have shown first results. Additional observables are renormalised matrix elements
of the screening correlators. Evaluated on the N3

s = 323 volumes, they tend to show an increase in
the strength of the breaking of UA(1) for smaller quark masses. A first look at screening masses
in iso-singlet channels at Tc for scan C2 shows that the breaking of UA(1) is also present in P0

and S0 channels, while invariance under SUA(2) transformations appears to be restored. To be able
to reliably extract information from the iso-singlet correlators, however, a substantial increase in
precision is mandatory.
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