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Abstract: Legumes are one of the most economically important and biodiverse families in plants
recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a
good representative because of its relatively recent African origin as well as its outstanding potential.
Africa is a great biodiversity centre in which a great number of species are spread, but only three
of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated.
This review aims at analysing and valorising these species by considering the perspective of human
activity and what effects it exerts. For each species, we revised the origin history and gave a focus
on where, when and how many times domestication occurred. We provided a brief summary of
bioactive compounds naturally occurring in these species that are fundamental for human wellbeing.
The great number of wild lineages is a key point to improve landraces since the domestication process
caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored,
and genes lost during human activity can be recovered from the wild lineages and reintroduced
in cultivated forms through modern technologies. Finally, we describe how all this information is
game-changing to the design of future crops by domesticating de novo.

Keywords: Vigna genus; introgression; hybridisation; phylogeny; de novo domestication; feralisation;
bioactive compounds

1. Introduction

Legumes (Fabaceae) are considered one of the most important families of plants for
human nutrition, especially considering the rapid growth rate of the world population [1].
However, almost all the efforts and resources invested in agriculture during the last century
were focused on improving the yield, resistance and quality of a few specific staple crops.
Neglected landraces are regarded as having interesting potential, and recent studies have
demonstrated that some wild legumes can be an important target to develop modern
functional foods because they possess various bioactive molecules that interact positively
with human health [2–5]. Among these, members of the Vigna genus show a growing social
and economic importance in several African regions, especially where the local population
is not able to afford animal proteins [6–8]. Their seeds are rich in essential amino acids and
contain a high concentration of minerals, lipids and vitamins [9,10].

The genus Vigna (Savi, 1824), which belongs to the tribe Phaseoleae of the family
Fabaceae, includes over 100 species [11] distributed in the tropical and subtropical areas
of the world [12] grouped in five subgenera: Vigna, Ceratotropis, Plectotropis, Lasiosporon
and Haydonia [13–15]. Phylogenetic findings propose the age of split between Phaseolus and
Vigna genera at about 8–10 million years (Mya) and the age of split between Ceratotropis
and Vigna subgenera at about 3–4 Mya [13–17], but the genetic relationships between
subgenera are particularly complex and far from being completely solved. Although most

Plants 2022, 11, 532. https://doi.org/10.3390/plants11040532 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11040532
https://doi.org/10.3390/plants11040532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-2672-5846
https://orcid.org/0000-0003-1065-5804
https://doi.org/10.3390/plants11040532
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11040532?type=check_update&version=1


Plants 2022, 11, 532 2 of 22

domesticated or semi-domesticated species are distributed in Asia, the greatest diversity
of the Vigna genus is located in Sub-Saharan Africa [14,18]. Vigna subgenus, distributed
in Africa, includes about 40 wild and 2 domesticated species, namely cowpea (also called
black-eyed peas, chawli and kunde) (Vigna unguiculata L.) and Bambara groundnut (V. sub-
terranea L.) [19] while Ceratotropis (Piper) Verdc., distributed in Asia, contains 21 wild
and 7 domesticated species used widely for food and forage, namely mungbean or green
gram (V. radiata L. Wilczek), black gram (V. mungo L. Hepper), moth bean (V. aconitifolia
Jacq. Maréchal), rice bean (V. umbellata Thunb. Ohwi and Ohashi), adzuki bean (V. angu-
laris L. Ohwi and Ohashi), creole bean (V. reflexo-pilosa Hayata), jungli bean (V. trilobata
L. Verdc.). [15,20–22]. Moreover, three species belonging to Plectrotropis (Schumach.) are
distributed in Africa, including tuber cowpea (V. vexillata L.) [23]. Most of the African Vigna
germplasm is based on wild plants and neglected or underutilized landraces, and many of
these lineages are declining with a high risk of extinction. The recovery of wild accessions
and research devoted to the phylogeny of the genus is therefore essential to prevent genetic
erosion and the loss of Vigna diversity.

Plant domestication is widely recognised as an accelerated evolutionary process
driven by a synergistic impact of human and natural selection, occurring in geographically
restricted areas from wild progenitors. In legumes, the main modification is the loss of seed
pod dehiscence or shattering [24,25]. The split at the dorsal and ventral sutures of the dry
pod and successive release of the seeds occurs due to the desiccation of lignified cells in
the pods [26]. The shattering habit is related to environmental aridity and persists in many
varieties of domesticated Vigna species, thereby determining severe yield losses [27,28].
Additional implementations in Vigna domesticated species include an increase in seed or
fruit size, change in seed colour, loss of seed dormancy, apical dominance and change in
flowering timing [29–33]. These modifications were inherited more or less effectively in the
various vine species currently cultivated, and this is the basis of the agrobiodiversity of
this genus.

Generally, the current existing crops show lower resistance to biotic and abiotic stress
compared to wild relatives, and often they have reached their full yield. The selection
of desirable traits and breeding processes to improve crop productivity have caused the
depletion of diversity and the increase in the frequency of deleterious genetic variants
that are fixed in the genomes of crops [34–36]. These constraints have a serious impact on
agriculture, limiting the possibility to grow such crops under more extreme environmental
conditions. Thanks to this residual genetic diversity and also to studies performed on Vigna
species, most of the accessions are well adapted to a wide range of extreme environmental
conditions, such as sandy beaches, arid lands and wetlands, harbouring tolerance and
resistance genes towards biotic and abiotic stresses. These genetic traits are used for
developing new stress-tolerant crops [37–43]. By contrast, less is known about the effects of
domestication on the nutritional value of seeds [7] even if recent studies have reported that
cultivated legumes show a lower carotenoid and protein content in seeds compared with
the wild relatives [44,45]. Where, when and how many times the domestication process
of African Vigna crops occurred continues to be debated among researchers. Although
archaeological remains of Vigna indicate that the domestication process in Africa was started
recently compared to other field crops [46,47]. Modern evolutionary models proposed for
other crops suggest that the predomestication phase may have lasted several thousands of
years [48,49]. Generally, the centres of origin are also recognized as centres of diversity, and
thus these areas require special precautionary measures of conservation [50]. Although
for many crops the single-origin model is usually the most parsimonious, the hypothesis
that provides multiple origins starting from independent founder lineages seems well
suited for the crops of Vigna originated in Africa [51,52]. Moreover, despite whether and
to what extent introgression influences the domestication process is still underexplored,
some studies already show that gene flow between cowpea and its wild relatives may
occur. Pervasive introgression can also intensify the feralisation process, promoting the



Plants 2022, 11, 532 3 of 22

crops to return to a wild environment and causing serious problems for the conservation of
biodiversity [53].

In this review, we re-examine the available scientific information on the domestication
process of three African Vigna crops and discuss the future perspectives and challenges
in the light of modern technologies in the time of climate change and new parading of
conservative agriculture strategies. Another crucial point in exploring natural biodiversity
is not only a matter of sustainability but also a matter of human health. A balanced diet
gives extreme benefits to people’s wellbeing by properly assuming the correct amount of
micro and macro nutrients as well as useful, healthy bioactive compounds. Finding and
characterising these compounds is an ambitious challenge for researchers thus we briefly
summarise the bioactivity of some compounds, and we discuss how human activity and
breeding has impacted the variability of molecules.

Although recent genetic studies have led to a deeper understanding of these crops,
the continuation of investigating the domestication process through a multidisciplinary
approach which includes genomic, transcriptomic, metabolomic and epigenomic anal-
yses is needed to highlight the wide agronomic opportunities related to these species.
Moreover, recent techniques of gene editing have opened new and crucial ways to re-
design modern crops because traditional genetic improvement is generally limited by
the cross-compatibility between species. Thus, because the de novo domestication process
may represent a turn toward more modern and sustainable agriculture, further efforts are
needed to explore the genome diversity of wild germplasm.

2. Vigna unguiculata (L.) Walp.

V. unguiculata, which was considered an orphan crop for several decades, has recently
become one of the most important legumes in the world. Its name derives from Latin and
means “with a small claw”, referring to the size of the claw of the petals [54] or commonly
named as “cowpea” because of its use as fodder for cows [55] and black-eyed pea/bean
for the black hilum. This crop is largely cultivated, especially in semiarid regions of Africa
and Asia where other crops fail to grow [10]. Currently, on a global scale, about 15 million
hectares are dedicated to V. unguiculata, with an annual production of 7 million Mg and an
average yield of 0.6 Mg ha−1 [56]. The most interesting environmental traits of this species
are represented by the generalized low agrochemical input requirements. In fact, this crop
shows relatively high adaptation to drought, especially in comparison to other legumes [57]
and can fix up to 200 kg N ha−1 [58] with a positive soil N balance of up to 92 kg ha−1 [59].
Nevertheless, several abiotic and biotic constraints (i.e., low soil fertility, pests, diseases,
parasitic weeds, and nematodes) limit the yield [43,60,61]. Moreover, low productivity is
often associated with the use of traditional and unimproved varieties, still widely cultivated
in Africa [62]. This crop has a fundamental role in human nutrition, showing seeds rich
in proteins and essential amino acids (i.e., tryptophan and lysine), carbohydrates, folic
acid and minerals. Recent studies carried on a large sampling have shown high variability
in protein and mineral concentrations, suggesting that some lineages could be potential
sources of genes useful to produce new varieties [63–66].

The high number of wild subspecies found exclusively in Africa strongly supports
the idea of an African origin. However, intraspecies phylogeny remains far from being
completely elucidated [67]. The centre of origin of the species is probably located in the
southernmost regions of Africa, where most subspecies are found and where most genetic
diversity could be still hidden [68]. Several taxonomic revisions based on morphological
and molecular traits permitted to identify 10 perennial and 1 annual subspecies, the latter
split into two varieties: ssp. unguiculata var. unguiculata (domesticated cowpea) and ssp.
unguiculata var. spontanea (Schweinf.) Pasquet., also known as subsp. dekindtiana sensu
Verdcourt non Harms [69–76]. Besides the domesticated cowpea, the dekindtiana group
includes some obligate short-day wild forms, well adapted to arid environments. While the
var. spontanea grows especially around cultivated fields and roadsides, and it is recognized
as the progenitor of domesticated cowpea [75,77–79], the subspecies alba, pubescens, tenuis,
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stenophylla and dekindtiana are perennial plants [75,76]. The development of new molecular
tools to discriminate among wild, weedy, and cultivated accessions is considered a modern
and fundamental target, particularly needed for disentangling the complex taxonomic
relationships among subspecies and to discriminate between true wild plants and ferals.

Although little is known about the domestication process, some scientists have hy-
pothesized that ancient cowpea progenitors, such as the modern wild forms, were adapted
to dry habitats and grew spontaneously south of the Sahara Desert [80]. These plants were
gathered, cultivated and dispersed by men near the villages, but they were unsuited for
cultivation. Although they did not show high yield, the wild lineages were spread in the
humid zones thanks to their pods that remained closed for the humid atmosphere. Through
several generations of cultivation, new mutants have arisen, showing interesting domestic
traits, including resistance to shattering. Subsequently, humans have selected and helped
spread these landraces by exchange and trade activities. Since the oldest archaeological
records of domesticated forms found in central Ghana are dated around 1500 BC, the
domestication process likely started before that period (Figure 1) [47,81]. However, the
precise origin is widely debated, and two independent domestication centres in West and
East Africa are proposed by different authors [68,74,79,82–86].
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Figure 1. Primary and secondary domestication sites in Africa.

Morphological and DNA markers support the idea that domestication occurred only
once, but analyses on whole genomes provide evidence for more independent domestica-
tion events in Africa and diversification events out of Africa [51,87]. Analyses of genetic
variability are generally applied to identify the origin of species and the groups of acces-
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sions that show high variability in certain geographic areas and are interpreted as the
most ancient populations. Although cowpea from West Africa showed a high genetic
variability [88], cultivated accessions grown in East and West Africa were shown to be
most closely related to the respective local wild lineages [52,89], thereby indicating that
domestication could have occurred in both regions. Outside Africa, cultivated cowpea was
exposed to different ecological conditions, including new biotic and abiotic stresses that
probably have contributed to shaping the genetic structure of landraces. When cowpea
moved through Asian regions (especially in Thailand, China, the Philippines and India), it
encountered environments with more humidity and less brightness where the drying of
pots and grains was hindered. Some accessions were selected for the use of the immature
pods to produce a peculiar form of vegetable called yardlong bean (V. unguiculata ssp.
unguiculata cv. sesquipedalis) [51,90,91]. Although Chinese accessions show lower genetic
diversity compared to African cowpea, signals of genetic bottlenecks lead to the conclusion
that a limited number of relatively recent selection events occurred;however, where the
selection process arose is still unknown [92]. Moreover, other cultivar groups (e.g., ‘Textilis’,
‘Biflora’ or ‘Cylindrica’, ‘Melanophthalmus’) are classified by morphological traits [75,93].
Still, additional genomic analyses should be performed to confirm the genetic relationships
and understand how and where these accessions originated [67,85,88,94,95].

3. Vigna subterranea (L.) Verdc.

Vigna subterranea, also named Bambara groundnut, is an indigenous African grain
legume. Its common name derives from the groundnut (Arachis hypogaea L.) due to the
hypogean pods’ growth, whereas the “Bambara” name is derived from a Malian tribe [96].
Despite its potential in terms of nutritional value and resistance to biotic and abiotic
stresses [97,98], Bambara is cultivated mainly in small farms or in families as a subsistence
crop [99], and naturally grows in semi-arid regions in Africa. Regarding the origin of the
species itself, the domesticated or semi-domesticated Vigna subterranea var. subterranea was
most likely generated from its wild counterpart Vigna subterranea var. spontanea using both
morphological and isozyme data [100,101].

The origin of this species is hypothesised to be in Mali, in the Timbuktu region [102],
but the precise centre of origin is still unknown. In fact, there is no evidence of wild lineages
in Mali [103]. Dalziel, Begemann and Goli [104–106] analysed a lot of morphologic traits
such as seed morphology, seed pattern diversity and other diversity indices (number of
days to maturity, pod length, number of stems per plant and internode length). They
found that the most diversity is located in an area that spans from Jos Plateau and Yola
Adamawa (Nigeria) to Garoua (Cameroon). Somta and Olukolu [107,108] evaluated the
phylogeography of several accessions spread in Africa. The markers used (i.e., SSR and
DaRT) showed a cluster with higher diversity in the area between Nigeria and Cameroon.
The authors confirm the area of origin while suggesting a possible subsequent introduction
of Western domesticated accessions in East Africa (Figure 1). In contrast, Aliyu et al. [97],
in an overview of the past two decades of genetic diversity analysis, also proposed that
the Southern African region could constitute a divergent time-spaced domestication event.
However, the authors suggest that these hypotheses need further examination.

In terms of genetic diversity, Bambara has a peculiar behaviour. In fact, many authors
studied Bambara’s genetics with different techniques to clarify how wide the genetic pool
is and how homogeneous the single landraces are. Molosiwa et al. [109] evaluated genetic
distances between 24 landraces with phenotypic and genetic markers (i.e., SSR and DaRT).
The main results report that landraces are different to each other, suggesting the existence
of great allelic diversity among the various populations. At the same time, though, single
landraces tend to be very homogeneous, and in three generations of inbreeding became
pure lines. This is due mainly to its self-pollinating nature [110] but also small farmers, who,
by breeding the same landraces, also acted as selection drivers [111,112]. Molosiwa [113]
selected 12 SSR markers and 5 Bambara accessions to evaluate the potential for creating
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pure lines, finding that these accessions at the second cycle of selection completely have
lost the heterozygosity.

All these findings suggest that Bambara has incredible genetic potential. The genetic
screening through the different lineages and the consequent discovery of peculiar sites of
interest could be the basis for an improvement of crop programs. Moreover, the use of pure
lines in agriculture is fundamental not only for the optimisation and standardisation of
agricultural practices but also for the development of breeding programs. Currently, to the
best of our knowledge, there are no reports of ongoing improvement or breeding programs
for this species. The extremely wide pool of wild and domesticated accessions can be used
to create ideal crops that can better withstand climate change as well as being able to grow
with low agronomic inputs.

4. Vigna vexillata (L.) A. Rich.

Widely distributed in Africa, Asia, America and Australia, V. vexillata (Zombi pea)
is one the least known and underutilized Vigna crops. Likewise, V. unguiculata, Zombi
pea shows a high morphological diversity probably determined by geological, ecological,
climatic and anthropomorphic constraints that also determined exceptional patterns of
genetic variability [19,71]. Eight varieties including vexillata, angustifolia, ovata, dolichomena,
yunnanensis, plurifora, lobatifloria and macrosperma are recognized [12,19,23,114,115]. Var.
macrosperma shows typical traits associated with domestication syndrome such as bush-like
habit, early flowering and higher seed yield [116,117]. Moreover, loss of seed dormancy
and various degrees of pod shattering were detected in different crop accessions while the
wild seeds remained intrinsically dormant [118,119]. Several authors reported that two
forms were domesticated independently (i.e., seed type and tuber type), and some evidence
lines suggest that the seed type was domesticated in Sudan, whereas the tuber type was
domesticated in India (Figure 1) [120–124]. However, molecular analyses were performed
on a limited number of accessions and loci [124], and the phylogenetic intra-specific delim-
itation has resulted in much more complexity than that of other Vigna crops [125]. Thus,
modern genomic analyses are needed to resolve the genetic relationships and confirm the
origin of the two forms.

Several studies have also shown that the Zombi pea is the result of a long adaptation
process to different environmental stress, including acid, alkaline, saline, drought and
wet soils [115,117,126–128]. Moreover, since some accessions were found to be resistant to
different viral diseases and parasite insects, widely recognized as major pests of cowpea,
this species is an important harbour of resistances to various biotic stresses, particularly
useful to improve modern Vigna crops [129–134].

5. Healthy Natural Compounds for Designing Sustainable Crops

The process of domestication was selected during the early millennia due to all the
characteristics that made a species very productive or easier to harvest. Nowadays, a lot of
crops varieties that have a great yield and high contents of macronutrients exist, such as
carbohydrates or proteins. However, bioactive compounds that are naturally present in the
Vigna genus were never taken into account. In a world where the main concern is no more
denutrition but instead malnutrition, the adoption of crops with high-value nutraceutical
compounds becomes a challenge for the next generation. The Vigna genus is a great source
of small proteins and secondary metabolites with nutraceutical roles in everyday diet.

Often agricultural practices themselves could stimulate the production of these com-
pounds, such as hydric stress or no tillage with cover crops fields. However, they could
not be sufficient to enhance the output of bioactive molecules. In this perspective, de novo
domestication programs should consider these compounds to develop future healthy crops.
In the next paragraph, we listed and discussed some of these molecules based on the
nutraceutical activity they exert against three great world concerns.
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5.1. Antioxidant and Anti-Inflammatory Activity

Nowadays, inflammation and oxidative stress are becoming great concerns due to
detrimental effects on human health, and diet is a powerful way to protect cells from the
rise of reactive oxygen species (ROS) as well as inflammatory processes. In this view, seeds
of cowpea contain different phenols, and other pigments present in the seed coat [135]
are able to promote antioxidant action; among these, quercetin and flavonols are very
well represented [136]. Different works [137,138] demonstrated a clear correlation be-
tween antioxidant properties and the colour of the seed coat in different accessions of
Vigna vexillata and Vigna subterranea. Sowndhararajan and Leu [139,140] identified that
Vigna vexillata extracts three molecules with strong antioxidant properties. Daidzein, ab-
scisic acid and quercetin were highly active and displayed a pivotal capacity to deny the
inflammation pathway.

Studies performed on protein extracts of Vigna subterranea suggest that different protein
fractions exert crucial properties against ROS relevant in cellular metabolism [141]. Further-
more, a review by Quan et al. [142] summarised how polyphenols and proteins naturally
interact, providing a higher antioxidant and anti-inflammatory capacity as a result.

The presence of antioxidant compounds is clearly a good starting point for the bio-
prospecting approach. The research could start from accessions already studied and kept
in germplasm banks, with the aim of breeding the most promising ones (e.g., more colour-
ful, thicker coat or better nutrient profile) with domesticated landraces to create variants
that are, at the same time, easy to cultivate but with the most interesting characteristics
found from the available natural pool. In addition, this could lead to new experiments to
understand better the synergic role of the phenolic fraction with bioactive proteins.

5.2. Anti-Tumor Compounds

Concerning the anti-cancer activity, Bowman–Birk inhibitors (BBI), present exclusively
in the Fabaceae family and some cereals [143], have proven anticancer effects [144,145].
Panzeri et al. [146] demonstrated that aqueous extracts from boiled seeds containing BBI
are, as expected, effective against some colorectal cancer cell lines, but the healthy line
was not hit by the treatment. Mehdad et al. [147] proved its activity on breast cancer lines,
and they were the first to discover a potential intracellular target, the proteasome 20S.
Furthermore, they demonstrated cytostatic activity and increased apoptosis in cancer lines,
but BBI was ineffective on the healthy mammary epithelial line. It is important to underline
that this protein is kept by evolution due to its defensive role; in fact, it inhibits herbivores’
digestion by interacting negatively with trypsin and chymotrypsin. Preliminary results
obtained via the alignment of sequences downloaded from genebanks (NCBI) showed
a high variability of BBI gene in some cowpea accessions, confirming the greatness of
natural biodiversity. Unfortunately, little is known about the impact of domestication
on the variability of the BBI gene. The domestication process can have acted as a strong
constraint causing a bottleneck in the gene pool and reducing the variability of genes and
exchange of alleles between cultivated and wild accessions. However, the exploration of
haplotypes by sequencing several accessions is needed to verify the effective impact of
human activity on gene diversity. Moreover, methods of ancestral sequence reconstruction
(ASR) based on phylogenetic inference can predict the existence of stable, soluble, and
active variants of proteins. The comparison of the structure of modern proteins with the
corresponding ancestral intermediates can highlight functionally important substitutions
within proteins and consequently drive the protein engineers to design variants that confer
novel or more efficient activities (Figure 2). While different case studies are discussed in
the literature where ancestral reconstructions were applied in eukaryotes, few instances
are available in plants. Since ASR can be used to explore the remote evolutionary past
as well as to investigate molecular evolution on shorter timescales, we argue that the
proteins expressed in different genera of legumes are particularly well suited for ancestral
reconstruction studies.
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Phenolic acids (e.g., gallic acid, ferulic acid, caffeic acid and chlorogenic acid) and
flavonols (catechins, kaempferols and quercetins) are groups of molecules that are very
active against cancer. Teixera-Guedes et al. [148] found some of these molecules in the
phenolic fraction of cowpea sprouts. Sprouting is an alternative method to consume food,
especially seeds, grains and pulses. As a matter of fact, sprouting refers activating the
metabolism of the dormant seeds and this way, complex reserve molecules are degraded
into simpler ones, releasing other molecules and secondary metabolites [149]. The authors
demonstrated at first the efficacy of the extracts against CRC cell lines; then combined
it with 5-Fluorouracil (5-FU). This drug is potent but is susceptible to the occurrence of
resistance by the tumour mass [150]. Among all these compounds, quercetin is one of the
most common, was found to be the main representative of extracts and is well known to be
active against different cancer lines [151–153].

The capacity to exert different kinds of bioactivities appoints phenolics and small pro-
teins as very potential phyto complexes with an extreme wideness of possible applications.
In this paragraph, the fact that extracts can be much more effective than single drugs is
underlined. The use of a mixture of bioactive compounds in addition to the chosen drug
could help in the treatment of many diseases.
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5.3. Anti Hypercholesterolemic

One of the major world concerns is the role of the diet for healthy living. In particular,
the main problem is malnutrition, 1.9 billion adults are overweight, and 452 million are
underweight [154]. These numbers are going to increase during the next few years, so a
healthy diet must become a worldwide topic. One way to prevent obesity is to find food or
molecules that can lower LDL cholesterol concentration or production. Legumes are known
to have a good nutritional profile and possess some interesting anti hypercholesterolemic
capacities. For example, in the work of Tan et al. [155], Vigna subterranea was the object of
study to create a powdered drink mix. The authors managed to characterise the extracts
and proved the ability to lower the total cholesterol content in a population of rats. The
observed effects were comparable to those given by the commercial drug simvastatin,
demonstrating a potential commercial formulation usable in everyday life. In addition,
Bambara powder fat content was lower than the soybean, while it had more proteins.
Regarding Vigna unguiculata, Kanetro [156] studied the hypocholesterolemic feature of
protein extracts from the sprouts. The tests were performed on rats that mimicked a
diabetic condition. This kind of extract established the potential of Vigna unguiculata in
fighting high cholesterol concentrations. Vigna unguiculata was also studied in rabbit
models by Janeesh and Abraham [157]. Rabbits received a rich fraction polyphenols and
flavonoids extracted from the leaves that showed antioxidant capacity, hypolipidemic and
anti-atherogenic properties in ill animals. The road opened by the studies reported here is
encouraging and already tending to practical applications usable worldwide by combining
the natural nutritive features to bioactive compounds present in the seeds.

Although many important bioactivities are reported in this paragraph, the actual
knowledge is still incomplete. Small proteins and polyphenols were objects of these studies,
and their versatility in terms of the panel of bioactivities exerted was highlighted and
valorised over and over. A topic that we would like to stress more and encourage research
on is the variability of seed coat colours. In fact, human activity has selected a wide range
of shapes, textures and pigments in coats (including eye shapes and sizes), allowing us
to clearly distinguish seeds of domestication accessions from unattractive seeds of wild
lineages. The seed colours are correlated to the presence of tannins and flavonoids [158,159],
and phenolic profiles showed that seed coats contain up to 10 times more flavonoids if
compared to whole seeds [160]. The seed coat pattern is a fundamental aspect of consumer
preference, but in different regions, only some patterns are preferred. On the other hand,
local landraces contain a great variability of colours, selected through centuries by human
activity, but often this richness remains undervalued [135,137,161]. Our suggestion is
to use this kind of information to correlate the colours of seed coats with the proper
chemical characterisation regarding previously mentioned bioactivities. Moreover, modern
experimental planes should include wild accessions/species and underused landraces
because these mostly unexplored taxa could hide important micronutrients. Finally, we
underline that the introduction of new dishes based on a mix of seeds that show different
colours could be a new way to assimilate a great variety of nutrients into the diet.

6. Introgression and Feralisation Processes

Through the domestication process, one or more populations that showed desirable
traits are selected by humans producing new independent lineages. Farmers have strongly
influenced the survival of these cultivated lineages that continued to diverge from wild
ancestors because they were affected by different selective pressures. However, crops and
their wild relatives can exchange genetic information spontaneously or through human
activity. Generally, wild relatives of legumes show undesirable traits, but their genomes can
hide a precious gene pool that is mostly untapped that can be recovered and reintroduced
in cultivated forms.

Introgression of useful genes remains a fundamental way to improve the cultivar [162],
and successful crosses mediated by humans were acquired, especially in cowpea [163].
Although domesticated cowpea is known as an inbred crop, outcrossing is reported sug-
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gesting that frequency and distance can vary depending on the environment, climate,
subspecies, genotype and insect involved [73,164,165]. In Vigna unguiculata, spontaneous
introgressive events between wild perennial subspecies of the dekindtiana group, includ-
ing accessions of var. spontanea, are widely described observing different morphological
traits [71,84,166–168]. Molecular analysis using AFLP [74] and internal transcribed spac-
ers [53,169,170] have confirmed the natural propensity to hybridisation between subspecies
and have revealed intricate intraspecies phylogenetic relationships. Intragenomic 5S rRNA
repeat unit heterogeneity was interpreted as the consequence of extensive hybridisation
events [170], and recently, plastid DNA sequences have confirmed chloroplast capture
events [76].

In recent decades, several researchers have tried to produce introgressive lineages
obtaining interesting results and showing that the most important gene pool for breeding
programs could be harboured in wild subspecies. Intraspecific hybrids obtained crossing
ssp. unguiculata with ssp. pubescens and cv. sesquipedalis with ssp. tenuis have shown
vigorous growth and partial fertility [171–173]. Some authors attributed the incomplete
success to chromosomal disturbances that ensue in endosperms and embryos during early
seed development when crosses between wild perennial accessions and domesticated
cowpeas are performed [174]. However, different accessions showed diverse propensity to
hybridize, and a recent study suggests that temperature and humidity also have a prevalent
role in increasing the success of hybridisation [175]. A wild lineage of cowpea (TVNu-
1158) collected in the Republic of Congo showed resistance to Aphis craccivora, surviving
long after infestation [176], and was successively crossed with cowpea to produce new
lineages [177]. Moreover, resistance to Maruca vitrata was observed in the wild lineage of
ssp. dekindtiana (Tvnu 863) from Zimbabwe andresistance to Clavigralla tomentosicollis was
observed in ssp. dekindtiana (TVnu 151) from Ghana; however, literature about their use to
produce new cultivars is missing [178,179].

Limited information is available about the intraspecific introgression of V. subterranea
and V. vexillata. The success of the artificial cross of Bambara is constrained by scarce
pollen viability, the small size of the flower and the reduced stigma–anther separation,
which improves the transfer of pollen to the stigma but at the same time complicate the
emasculation process [180–183]. However, F1 and F2 lines were obtained by crossing Vigna
subterranea var. spontanea (Harms) Pasquet and Vigna subterranean var. subterranea (L.) Verdc.
varieties, allowing us to identify that the main morphological traits to distinguish the two
forms (internode length and stems per plant) are regulated by relatively limited numbers of
genes [184]. Intraspecific introgression success was also obtained by James and Lawn [185]
who crossed African and Australian accessions of V. vexillata with the aim to explain the
resistance to mottle carmovirus (CPMoV). Recently, modern hybridisation techniques were
applied to cross var. macrosperma cultivated and wild accessions obtaining encouraging
results [186,187]. Unfortunately, scarce findings are achieved by interspecific hybridisation.
Differently from Asian taxa, where the compatibility was confirmed in different studies, the
African taxa show a cross incompatibility barrier that has so far prevented the introgression
of useful genes (e.g., V. vexillata × V. unguiculata) [168,188–190].

In recent years, advances in sequencing technologies have allowed the generation of a
large number of genomic resources that, if combined with approaches that estimate the
rate of gene flow, enable us to detect which lineages are prone to hybridisation. Screening
the level of introgression already existing in nature is an important opportunity that
can help us to obtain advanced information useful in breeding activity. For example,
natural hybrid zones harbour genetic variance and, pervasive and occasional introgressive
events are identified in several crops such as kiwi, common bean, soybean, sunflower
and grape [191–196]. Differently from neutral introgression, which could be lost during
successions of generations, adaptive introgression events are maintained by selection,
and foreign gene variants introduced by gene flow can increase the fitness of receiver
populations as observed in potato, rice and millet [197–199].
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African Vigna species have a potential for introgression that today remains mostly
unexplored. V. unguiculata and V. vexillata show an elevated number of wild lineages that
probably have diverged well before the Pleistocene due to climate changes [71,125]. Several
subspecies are adapted to different environments, and Padulosi and Ng [68] proposed that
the southernmost region of Africa is presumably the origin center for V. unguiculata where
most subspecies grow, while Pasquet [71] indicated that some lineages from Namibia to
Zimbabwe are the result of spontaneous introgression events. However, genomic studies
are needed to confirm these hypotheses, including in the analyses of populations spread
at the margins of species distribution that could hide local adaptation to extreme condi-
tions. Principal component analysis, Bayesian clustering methods (e.g., NEWHYBRIDS,
STRUCTURE and ADMIXTURE) and divergence statistics such as FST are used to ex-
plore patterns of divergence in Vigna species, but they manifest shortness to provide the
effective migration rate. To overcome this limitation, different probabilistic approaches
recently developed are able to identify recent and ancient signals of introgression such as
tree-based methods (e.g., Treemix), coalescent-with-introgression simulations (e.g., MSci
model implemented in BPP), composite-likelihood test (e.g., VolcanoFinder), site frequency
spectrum to explicitly model migrations (e.g., ∂a∂i), gene genealogies (e.g., Twisst) and
ABBA–BABA statistics [200–204]. Moreover, only some genomic regions could be involved
in gene flow, and thus introgression might be localised in specific chromosomes [205]. Since
alleles shared through incomplete lineage sorting remain complex to distinguish from
alleles shared through introgression and none of the measures described above is without
simplifying assumptions, we suggest that different methods should be applied to ascertain
the origin of introgression.

Although introgression from wild to crops has important economic consequences
and many attempts are made to understand the evolutionary dynamics, in recent years,
attention to the gene flow from crop to wild is rapidly increasing. Introgression of domesti-
cated alleles can stimulate the evolution of weeds or increase the risk of extinction of wild
populations with dramatic evolutionary consequences, as demonstrated in several annual
and perennial plants [206–211]. Moreover, under specific circumstances, the spread of
ferals escaped from cultivation and adapted to wild environments can hardly be contained.
Although several authors consider feralisation the opposite process of domestication, few
population genomics studies show how these genetic changes occurred in plants [212].
Some authors show that multiple de-domestication events have occurred in rice, highlight-
ing that some crops are exceptionally prone to feralisation [213,214]. The introgression
process is probably improved when the wild forms grow along the road margins, villages
and fields where domesticated forms are cultivated. To date, few studies have investigated
the introgression effects on the wild populations of African Vigna species. Some researchers
have proposed that alleles from cowpea may be incorporated into wild forms especially
improved by their cohabitation, replacing the original alleles and making new lineages well
adapted to wild environments [215]. A molecular study based on analysis of isozyme loci
showed that outcrossing rates in West Africa range from 1% to 9.5%, confirming possibili-
ties of gene flow from domesticated cowpea to var. spontanea [216]. The distinction between
feral and truly wild lineages is ever more complicated because introgression produces
fertile offspring and the small seed-size typical of wild forms is dominant to large seed
size [76,217]. Moreover, var. spontanea is represented by both annual and perennial plants,
and it is acknowledged that while the annual and inbred habit is an adaptive strategy in
dry and warm environments (e.g., in warm tropical savannas), perennials tend to grow in
mountainous regions where the environment is often cooler and wetter [76]. Annual inbred
plants produce more seeds and show a competitive advantage on perennials when they
are sympatric in environments. Although few data about introgression are available, we
cannot exclude that perennial outcrossed subspecies can be fertilized by cowpea pollen, and
consequently, domesticated alleles can be introgressed. Moreover, feralisation can involve
adaptive changes in genes related to flowering timing, dormancy and metabolic pathways,
which are also unknown. Therefore, several aspects of the feralisation process, including the
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ability to spread domesticated alleles accross long distances by seeds and pollen through
mammals or birds and the predisposition to invade territories where perennial subspecies
grow, should be further explored.

7. Domestication-Related Traits and De Novo Domestication

As described by Darwin [218], most plants subjected to intensive domestication have
lost the ability to survive in the wild environment for more than a few generations. Traits se-
lected by humans allow us to clearly distinguish a domesticated plant from its wild progen-
itor, and several studies were recently proposed to highlight the genes at the base of these
changes. In recent years, modern genomic techniques were applied to Vigna germplasm,
accelerating research activity and opening new avenues to identify domestication-related
traits [33,161,219–221].

Among the main domesticated traits in legumes, the loss of pod shattering and increase
of organ size are most relevant for breeding. In cowpea, two main quantitative trait loci
(QTLs) were identified for pod shattering, whereas QTLs identified for seed weight, leaf
length, leaf width and pod length were located in the same region, suggesting a potential
pleiotropy that controls the organ size [177]. Lonardi et al., 2019 [222] managed to obtain the
entire genome sequence in order to analyse and identify the eventual putative syntelog for
organ gigantism. They found a region containing a cluster of QTLs controlling pod length,
seed size, leaf length and leaf width (CPodl8, CSw8, CLl8, CLw8). Similar results were also
observed in V. vexillata where the main domestication traits, including seed size, pod size
and leaf size, were controlled only by one or a major QTL and some minor QTLs [33,90,124].
More complex is the control of seed dormancy, which is generally managed by water-
impermeable layers of cells of the seed coat. In yardlong bean, a vegetable crop that
has experienced divergent domestication from cowpea, six QTLs were detected for seed
dormancy-related traits [90]. The seed coat pattern is an essential trait in cowpea, intensely
selected by human preferences that change in the different areas of Africa. For example,
pigmentation displays high variability of colours, including varied eye shapes and sizes.
Recent studies show that the colour and position of the pigmentation can be defined by
expression patterns, and some genes that encode for proteins involved in the flavonoid
biosynthesis pathway were identified [161]. Moreover, phenotypic observations show
that a lack of pigment in flowers is often correlated with a lack of pigment in the seed
coat, and a gene was recently proposed to have a dual function in cowpea controlling
the colour in both organs [177]. As observed for several species, the flower was involved
intensely in the domestication process, and it has a fundamental trait that allows us to
distinguish domesticated cowpea from their wild relatives. Recently, innovative studies
focused on exploring the genetic basis of floral scent. A group of five O-methyltransferase
genes involved in the biosynthesis of melatonin and located within the floral scent QTL
region was identified [221]. Melatonin is recognized as an essential molecule in several
plants used to interact with pollinators. Flowering timing undoubtedly plays a key role
in plant adaptation and diffusion of crops because several agronomic traits such as grain
quality, plant growth and plant height are directly influenced by this characteristic [223].
However, how the domestication process has affected the timing of flowering in legumes is
unclear [224]. Flowering timing is a complex trait generally regulated by genetic networks.
While in Arabidopsis thaliana L., the existence of up to 80 loci [225] was shown, in a cowpea
genome-wide association study (GWAS) seven reliable SNPs were revealed that explained
phenotypic variance [220]. Important agronomic implications are expected because the
candidate genes could be transferred by hybridisation in crops. Early flowering accessions
can mature earlier, avoiding periods of drought stress, whereas late-flowering accessions
can mature later and extend the vegetative period, thereby increasing biomass production.

It is widely recognized that the study of domestication-related traits is a fundamental
step that enables us to understand how to design ideal crops for the future. Throughout
the process of domestication and successive breeding phases, the genetic diversity of crops
was significantly reduced, and this homogeneity is becoming a serious threat. The increase
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of disease and inability of adaptation to environmental changes that consequently cause
an increased use of pesticides and water with a severe impact on the environment are
the main issues that affect the sustainability of modern agriculture. Fernie and Yan [226]
emphasized that wild species contain less deleterious allelic variants than their crops, and
Smykal et al. [227], in a recent review, reported that modern cultivars have lower levels
of key vitamins and micronutrients, suggesting that several wild and semi-wild African
species should be de novo domesticated.

Unfortunately, few studies of re-domestication are available, but recent advances in
gene editing combined with the decryption of pan-genomes are opening new perspectives
of manipulation of genes for the creation of modern crops [228,229]. Gene editing is used
to modify the function of genes already existing, incorporate new genes and delete short or
large DNA fragments [230,231]. For instance, undesirable traits can be reduced or removed
by intervening in genes that regulate the content of secondary metabolites, accelerating the
process of domestication. Otherwise, the life cycle of cowpea could be shifted coming back
from annual to perennial, as occurred for Triticum aestivum L. [232]. Perennial cowpea crop
would show deep roots, higher water and nutrients efficiency and would not need to be
sown every year.

Modern techniques such as CRISPR/Cas9 are applied successfully in several staple
food crops. In Oryza sativa L., mutations on three yield-related genes have produced more
and larger grains and erect panicles [233], whereas, in Solanum pimpinellifolium L., eight
genes were targeted improving architectural traits, day-length insensitivity, the size and
shape of fruits and content of vitamins [234,235]. Moreover, the CRISPR-Cas9 system was
also used in cowpea to disrupt the symbiotic nitrogen fixation by the modification of a
symbiosis receptor-like kinase (SYMRK) gene, thereby demonstrating that gene editing can
be applied to the Vigna genus [236]. However, this technique requires that the genome is
sequenced to identify the ortholog gene that controls the domestication trait [237].

African Vigna species are an ideal group of plants on which to apply gene-editing
techniques and to produce modern crops. A great number of wild species, besides showing
resistance to pests and diseases and having high nutritional values, are well adapted to
diverse environmental conditions [9]. Only Angola, with 28 native Vigna species docu-
mented, is recognized as one of the most important sources of germplasm in the world [238].
V. monantha occurs in permanently dry conditions [42], whereas V. marina and V. luteola
grow well in saline lands [9]. In particular, seedlings of V. marina can survive for several
weeks in flooded conditions and high NaCl concentration [39], accumulating high levels of
salt in leaves, roots and stem [41].

However, few farmers currently use these plants because of low yield and strong
pod-shattering behaviour, which requires high labour during the harvest. Adaptation to
extreme environments often involves multiple genes, whereas domestication-related traits
are due to mutations of a single locus that affects the loss of a function. Previously reported
domestication-related traits in Vigna seem to be controlled by a restricted number of QTLs.
Thus, introducing domestication-related mutations into wild species might be preferred
rather than modifying multiple genes related to complex adaptation traits. For example, the
first steps of re-domestication were achieved by Takahashi [4], starting from the accessions
of Vigna stipulacea (Lam.) Kuntze originated in Asia. The authors obtained one mutant with
reduced pod shattering and three mutants with reduced seed dormancy, characterizing
the respective SNPs in the candidate genes. V. stipulacea was selected for their fast growth,
edible seeds andbroad resistance to pests and diseases. Thus, de novo crops can be designed
to preserve several traits that nature has selected in millions of years. Moreover, in the
next few years, the pan-genomes of several economically important crops will be available.
The investigation by sequencing multiple individuals, including wild and domesticated
accessions, will allow us to acquire full knowledge of variations at the genome level. Since
it is widely accepted that the use of few reference genomes is limiting, the pan-genome of
the Vigna species should be achieved in a short time [239,240]. Consequently, given the
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large diversity of wild Vigna germplasm spread in Africa and the modern techniques of
gene editing, great margins of genetic improvement are expected in the near future.
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