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ABSTRACT
Background The regional emergency medical service 
(EMS) in Lombardy (Italy) developed clinical algorithms 
based on operator- based interviews to detect patients 
with COVID- 19 and refer them to the most appropriate 
hospitals. Machine learning (ML)- based models using 
additional clinical and geospatial epidemiological data 
may improve the identification of infected patients 
and guide EMS in detecting COVID- 19 cases before 
confirmation with SARS- CoV- 2 reverse transcriptase PCR 
(rtPCR).
Methods This was an observational, retrospective 
cohort study using data from October 2020 to July 
2021 (training set) and October 2021 to December 
2021 (validation set) from patients who underwent a 
SARS- CoV- 2 rtPCR test within 7 days of an EMS call. The 
performance of an operator- based interview using close 
contact history and signs/symptoms of COVID- 19 was 
assessed in the training set for its ability to determine 
which patients had an rtPCR in the 7 days before or after 
the call. The interview accuracy was compared with four 
supervised ML models to predict positivity for SARS- 
CoV- 2 within 7 days using readily available prehospital 
data retrieved from both training and validation sets.
Results The training set includes 264 976 patients, 
median age 74 (IQR 55–84). Test characteristics for 
the detection of COVID- 19- positive patients of the 
operator- based interview were: sensitivity 85.5%, 
specificity 58.7%, positive predictive value (PPV) 
37.5% and negative predictive value (NPV) 93.3%. 
Contact history, fever and cough showed the highest 
association with SARS- CoV- 2 infection. In the validation 
set (103 336 patients, median age 73 (IQR 50–84)), 
the best- performing ML model had an AUC of 0.85 
(95% CI 0.84 to 0.86), sensitivity 91.4% (95 CI% 0.91 
to 0.92), specificity 44.2% (95% CI 0.44 to 0.45) and 
accuracy 85% (95% CI 0.84 to 0.85). PPV and NPV 
were 13.3% (95% CI 0.13 to 0.14) and 98.2% (95% 
CI 0.98 to 0.98), respectively. Contact history, fever, 
call geographical distribution and cough were the most 
important variables in determining the outcome.
Conclusion ML- based models might help EMS identify 
patients with SARS- CoV- 2 infection, and in guiding EMS 
allocation of hospital resources based on prespecified 
criteria.

INTRODUCTION
The SARS- CoV- 2 pandemic has been spreading 
worldwide over the last 4 years and the continued 
emergence of new viral variants has put a strain 
on public health systems.1 As with other prehos-
pital providers, the emergency medical service 
(EMS) in the Lombardy region (Italy) was chal-
lenged by a remarkable increase in calls directed to 
its public safety answering points (PSAP) since the 
first COVID- 19 outbreak.2 Detecting COVID- 19 
cases has been crucial to directing these patients to 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ There have been several risk tools created to 
determine either the presence of SARS- CoV- 2 
or its likely course; however, there is little 
information about the identification of these 
patients in the prehospital phase of care.

 ⇒ The use of machine learning (ML) algorithms 
in the prehospital context has been limited to 
specific conditions, such as the recognition of 
out- of- hospital cardiac arrest and predicting the 
need for critical care resources.

WHAT THIS STUDY ADDS
 ⇒ Using retrospective data from operator- based 
telephone interviews by emergency medicine 
services, several variables were sensitive for 
identifying patients who later tested positive for 
SARS- CoV- 2.

 ⇒ However, an ML model based on contact 
history, clinical parameters, geographical data 
and local epidemiology had greater sensitivity 
in detecting SARS- CoV- 2 infection.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ ML models may guide emergency medical 
service in detecting COVID- 19 cases before 
confirmation with SARS- CoV- 2 rtPCR results 
and could be useful in other pandemic 
outbreaks to allow appropriate isolation and 
referral to dedicated hospital resources.
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dedicated hospital resources while guaranteeing other routine 
EMS activity.

A strategic plan based on multiple clinical algorithms was 
implemented by the Agenzia Regionale Emergenza Urgenza 
(AREU) to manage the escalating volume of calls, control ambu-
lance allocations and ultimately avoid EMS collapse.3

Both operators and healthcare professionals working in PSAP 
use these algorithms to identify these individuals based on signs 
and symptoms severity as well as identifying early indicators of 
new local viral outbreaks in the Lombardy region.4 5

However, it is still uncertain which signs and symptoms 
obtained at the prehospital level are most predictive of SARS- 
CoV- 2 infection and no large- scale analysis has been done to 
assess the accuracy of EMS- collected clinical data in the deter-
mination of SARS- CoV- 2 as confirmed by reverse transcriptase 
PCR (rtPCR). Furthermore, machine learning (ML) models 
have shown promise in predictive tasks during the COVID- 19 
outbreak. However, this has been limited to ED cohorts rather 
than in the prehospital setting.6 7

In this study, we assessed the performance of the clinical algo-
rithms currently used in our PSAP (ie, operator- based interview) 
to identify patients that will test positive on SARS- CoV- 2 rtPCR. 
We also aimed to develop an ML model to predict SARS- CoV- 2 
rtPCR positivity, based on clinical and geospatial data obtained 
during the PSAP call and provided by the ambulance report on 
the scene. We evaluated such models: (1) as a screening test to 
detect positive patients and (2) as a support decision tool to 
guide patient’ allocation in a real- world scenario. We hypoth-
esised that an ML model could achieve a better performance 
than clinical interviews in detecting cases of COVID- 19 in the 
prehospital setting.

METHODS
Study design and participants
This observational, retrospective cohort study included all 
patients managed by the AREU EMS in Lombardy, Italy from 
October 2020 to July 2021 (training set) and from October 
2021 to December 2021 (validation set). Patients who received 
assistance by the regional EMS were included if a result of the 
SARS- CoV- 2 rtPCR was available in the timeframe of 7 days 
before or after ED admission, regardless of whether their index 
EMS call was for COVID- 19- related symptoms or not.

Setting
The AREU is responsible for the EMS in the Lombardy region 
(Italy), covering a population of almost 10 million people in an 
area of about 24 000 km2. A primary- level PSAP is the first recip-
ient of 1- 1- 2 phone calls from citizens asking for police, fire or 
medical assistance (ie, the equivalent of 9- 1- 1 or 9- 9- 9 systems 
used in other countries). When medical assistance is required, 
callers are redirected to a secondary- level PSAP (PSAP- 2), which 
manages all regional EMS resources.3

During pandemic surges, hospitals were designated by the 
regional public health authorities for COVID- 19 treatment 
through a hub- and- spoke model based on severity.8 Patients 
screened as non- COVID- 19 were allocated elsewhere (such 
as trauma or stroke centres), however, each hospital had a 
COVID- 19 and non- COVID- 19 pathway in its ED, based on 
SARS- CoV- 2 testing results.

Data sources
The following variables were retrieved and analysed:

 ► General: unique identifiers for ambulance mission and for 
individual patients, date, administrative area where the 
event occurred, caller’s Global Positioning System coordi-
nates, classification of the cause of the event requiring inter-
vention, gender and age of the patient, admitting ED.

 ► Operator- based interview: binary answers to questions asked 
by operators at the PSAP- 2: close contact with a person who 
tested positive for SARS- CoV- 2, complaining of or audible 
shortness of breath, presence of fever, vomiting, diarrhoea, 
cough and/or other cold- like symptoms, ageusia/anosmia, 
asthenia and/or diffuse pain. The caller was considered 
a suspected case for COVID- 19 if she/he reported one or 
more of these signs and symptoms.

 ► Clinical parameters, retrieved by nurses or physicians from 
on- scene ambulance reports: mental status ("Alert, Verbal, 
Pain, Unresponsive (AVPU) score), RR, oxygen saturation 
in room air (SpO2), respiratory quality (normal or distress), 
HR, systolic and diastolic BP and temperature.

 ► Daily report of SARS- CoV- 2 positivity rate in the Lombardy 
region, computed as an average over the previous 5 days 
(data source: Protezione Civile repository, https://github. 
com/pcm-dpc/COVID-19).

 ► SARS- CoV- 2 rtPCR testing: positive or negative result ±7 
days from the EMS call.9

Machine learning model development
The initial dataset was preprocessed by removing records with 
missing and outlier values (detected by the z- index method with 
a threshold set to five), and deleting the variable ‘RR’, as it was 
reported in only half of the records. Categorical variables were 
converted into dummy numerical values, and all variables were 
scaled in the 0–1 range.7

We implemented four supervised learning models to predict 
the positivity for SARS- CoV- 2 on the rtPCR test (ie, the gold 
standard), the target variable for all models (figure 1). Results 
were evaluated with a 10- fold cross- validation protocol: the 
entire available dataset was divided into 10 subsets, and each 
of them was used once to validate a model trained on the other 
9 subsets, with a final evaluation based on the distribution of 
the metrics across the different iterations.7 For each model, we 
tested four different algorithms (ie, logistic regression, random 
forest classifier, support vector machine and Gaussian Naïve 
Bayes). The different explanatory variables were included in the 
models as follows:

 ► Model 1: age, gender and variables retrieved by the operator- 
based interview.

 ► Model 2: as for model 1, plus clinical parameters retrieved 
by healthcare professionals from the on- scene ambulance.

 ► Model 3: variables in model 1, plus the current SARS- CoV- 2 
epidemiology in the Lombardy region, and the geograph-
ical distribution of EMS calls for respiratory and infectious 
diseases in the previous 7 days.4

 ► Model 4: all variables used in models 1–3.
Additional information regarding each model development 

is reported in online supplemental methods and online supple-
mental figure 1.

A further ML model was developed to simulate a real- world 
application. Specifically, the model was implemented to support 
the EMS decision- making capability to allocate patients to 
the appropriate hospital, based on specific criteria such as the 
patient’s clinical condition and her/his SARS- CoV- 2 positivity. 
Here, an iterative procedure was implemented using historical 
data, repeating the whole process on every week of records for 
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Figure 1 Model description. The performance of the operator- based interview in detecting patients with COVID- 19 is evaluated by matching the 
results of the available SARS- CoV- 2 rtPCR (box A). The machine learning models are implemented considering different combinations of the variables 
of the operator- based interview, the clinical parameters provided by on- scene ambulances, the local epidemiology and the distribution of EMS calls 
in the previous 7 days. The ultimate goal of the models is to detect cases of COVID- 19. An additional model is also tested in two scenarios that could 
be used to guide the decision to refer patients to the proper hospital destination, based on prespecified criteria (box B). The explanatory variables 
included in each model are reported in the table (box C). rtPCR, reverse transcriptase PCR; AREU, Agenzia Regionale Emergenza Urgenza; EMS, 
emergency medical service; PSAP- 2, secondary- level public safety answering point; SpO2, pulse oximeter oxygen saturation.
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a total of 38 cycles. Additional information regarding this model 
development is provided in online supplemental methods and 
online supplemental figure 2.

The first analysis included all patients in the low prevalence 
period (online supplemental table 1). Here, we assumed that 
positive patients should be allocated to hub hospitals and nega-
tive patients to non- hub hospitals. A second analysis included 
only patients presenting with severe features (ie, SpO2<94% 
or RR >30) at EMS calls in the high prevalence period (online 
supplemental table 1). Therefore, in the latter, positive patients 
would be addressed to hub hospitals, whereas negative patients 
would be addressed to non- hub hospitals. Therefore, the two 
analyses assessed the model’s capability to address patients to 
the appropriate hospital, which was the ultimate outcome of the 
model.

Statistical analysis
Continuous variables were expressed as median (IQR) and cate-
gorical variables as count (n) and percentage (%). Sensitivity, 
specificity, positive predictive value (PPV) and negative predicted 
value (NPV) were calculated to quantify the performance of 
the variables collected through the operator- based interview as 
compared with the rtPCR gold standard. In order to study the 
variability of the operator- based interview performance among 
the different phases of the pandemic, the dataset was divided 
into quartiles. The official daily number of positive patients in 
the Lombardy region was retrieved for the entire period and 
filtered with a 7- day window moving average, with each day 
assigned to one of the four quartiles accordingly. Four different 
datasets were thus obtained, each one reporting the records that 
occurred on all days belonging to the same quartile of SARS- 
CoV- 2 prevalence in the territory (online supplemental table 1 
and online supplemental figure 3).

To assess the importance of clinical variables, univariate 
and multivariate logistic regression models were implemented 
including predictor variables retrieved by the operator- based 
interview (alone) and with the on- scene ambulance report (ie, 
clinical parameters). The OR, 95% CI and C- statistics were 
calculated. A two- sided p value of <0.05 was considered statis-
tically significant.

To assess the performance of the ML model in the training 
set, receiver operating characteristic curves were plotted and 
the area under the curve (AUC) was calculated. Sensitivity, 
specificity, PPV, NPV and accuracy were also calculated for 
the ML- based model at a fixed cut- off with a sensitivity target 
threshold of 90% (95% CIs were estimated with the Clopper- 
Pearson method, considering the median values across five cycles 
of 10- fold cross- validation).10 In order to assess the contribution 
of each variable to our models, Shapley additive explanations 
(SHAP) were applied.11 This method builds on the game- theory 
approach to explain the results of ML models.

The performance of each ML model was additionally tested on 
a validation dataset, independent of the training set. A detailed 
assessment of the real- world simulation model is described in 
online supplemental methods and online supplemental figure 2.

Data were first collected in regionally developed software 
for computer- aided dispatch (Emma, V.6.8.5, Beta80 Group, 
Milan, Italy) and exported using SAS Web Report Studio V.4.4 
M4 (SAS Institute, Cary, North Carolina, USA). Data anal-
ysis and model implementation were performed with Python 
(V.3.9); the libraries used are provided in the online supple-
mental methods. Quartiles distribution was performed with 
MatLab (V.2018b). Call distribution in the Lombardy region was 

performed with QGIS (V.3.4.6). All model scripts used in the 
analysis are publicly available on GitHub (https://github.com/
LGpolimi/Detection- of-patients-with-COVID-19/tree/master/
env/COVID_DIAGNOSIS_MODEL).

RESULTS
Baseline characteristics
The AREU managed 684 481 ambulance dispatches from 
October 2020 to July 2021 (training set), of which 549 755 were 
transported to a regional hospital. Of these, 264 976 (48.2%) 
patients had SARS- CoV- 2 rtPCR tests performed within 7 days 
prior to (n=40 731, 15.4%) or after (n=224 245, 84.6%) their 
EMS call and were included in the training set. Median age was 
74 (IQR 55–84) years, 127 215 (48%) were female and 59 526 
(22.5%) tested positive.

The validation set included 238 387 ambulance dispatches 
from October 2021 to December 2021, of whom 191 838 were 
transported to a regional hospital. A SARS- CoV- 2 rtPCR test 
result was available in 103 336 patients, and 8253 (8%) were 
positive.

The population characteristics of training and validation sets 
are reported in table 1. The distribution of positive cases in the 
Lombardy region during the study periods is reported in online 
supplemental figure 4. Overall, the prevalence in the study 
period ranged from 73 cases/100 000 to 2528 cases/100 000 
population.

Operator-based interview
The operator- based interview is based on binary answers to 
questions asked by receiver technicians at the PSAP- 2, investi-
gating signs and symptoms related to SARS- CoV- 2 infection. 
The caller was considered a suspected case of COVID- 19 by the 
PSAP- 2 operator if they reported one or more of the signs and 
symptoms detailed in the ‘Methods’ section. The sensitivity and 
specificity of the interview in the whole training set were 85.5% 
and 58.7%, respectively. The PPV and NPV were 37.5% and 
93.3% and accuracy 0.65 (table 2).

Importance of clinical variables retrieved by operators and 
EMS
To assess the importance of clinical variables, univariate and 
multivariate logistic regression models were implemented 
including predictor variables retrieved by the operator- based 
interview alone or variables provided by the on- scene ambulance 
report (ie, clinical parameters) combined with variables retrieved 
by the operator- based interview. Complete results are reported 
in table 3. When variables retrieved at the operator- based inter-
view and clinical parameters obtained in the field by EMS were 
both included in the analysis, close contact, fever, cough and 
SpO2<94% showed the highest association with SARS- CoV- 2 
infection. The C- index of the model based on the operator- based 
interview alone was 0.79. The logistic regression model that 
included all variables (ie, operator- based interview plus clinical 
parameters) had a C- index of 0.83.

Machine learning models
The best performing algorithm for all models was the random 
forest (table 4) in both training and validation sets. Complete 
metrics of the different ML algorithms that were tested in the 
training set are reported in the online supplemental table 2.

The performance of ML models was lower in the validation 
set, especially model 1. Model 4 had the highest AUC in training 
(0.94, 95% CI 0.93 to 0.95) and validation (0.85, 95% CI 
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0.84 to 0.86) sets, respectively (figure 2 left, and table 4). The 
importance of each explanatory variable in the model output is 
reported as SHAP value and graphically represented in figure 2 
(right). Briefly, close contact and fever were the most relevant 
variables in determining the outcome in all four models. Other 
important variables were cough and age in model 1, and SpO2 
and cough in model 2. Caller geographical distribution was the 
third most important variable in both models 3 and 4.

A further ML model was developed to test the ability to refer 
patients to the hub hospitals based on arbitrary criteria.

In the first simulation (panel A, figure 3), in the low preva-
lence period (n=96 984), positive patients would be addressed 
to hub hospitals, and negative patients to non- hub hospitals. 
Based on actual data, the goal was achieved in 61.6% (n=59 
724) patients, while it would be achieved in 81.8% (n=79 386) 
in an ML- based scenario.

In the second simulation (panel B, figure 3), in patients 
presenting with severe features in the high prevalence period 
(n=37 230), positive patients would be addressed to hub hospi-
tals, while negative patients would be addressed to non- hub 

Table 1 Population characteristics

Training set
(n=264 976)

Validation set
(n=103 336)

Missing, n (%) Missing, n (%)

Age, years 74 (55–84) 0 (0) 73 (50–84) 0 (0)

Male, n (%) 133 209 (50.3) 4552 (1.7) 49 955 (48.3) 1662 (1.6)

EMS call

  Accidents, n (%) 46 336 (17.5) 23 587 (22.8)

  Heart disease, n (%) 50 489 (19.0) 20 762 (20.1)

  Respiratory disease, n (%) 54 630 (20.6) 15 611 (15.1)

  Neurological disease, n (%) 23 816 (9.0) 10 033 (9.7)

  Other medical disease, n (%) 83 387 (31.5) 30 565 (29.6)

  Other/Unknown, n (%) 6318 (2.4) 2778 (2.7)

Operator- based interview

  Close contact, n (%) 28 343 (10.7) 3528 (3.4)

  Shortness of breath, n (%) 87 944 (33.2) 1037 (1)

  Fever, n (%) 51 549 (19.4) 11 393 (11)

  Vomit, n (%) 16 704 (6.3) 7793 (7.5)

  Diarrhoea, n (%) 7896 (3.0) 1976 (1.9)

  Asthenia/Diffuse pain, n (%) 31 573 (11.9) 8034 (7.8)

  Ageusia/Anosmia, n (%) 2424 (0.9) 239 (0.2)

  Cough, n (%) 27 515 (10.4) 6570 (6.4)

Clinical parameters

AVPU score

  Alert, n (%) 233 228 (88.1) 91 512 (93.7)

  Verbal, n (%) 8736 (3.2) 3059 (3.1)

  Pain, n (%) 3418 (1.3) 1180 (1.2)

  Unresponsive, n (%) 2730 (1.0) 1029 (1.1)

  Unknown, n (%) 16 864 (6.4) 897 (0.9)

RR, bpm 20 (17–22) 114 996 (43.4) 18 (16–20) 45 032 (43.6)

Room air SpO2 97 (94–98) 35 273 (13.3) 97 (96–99) 13 144 (12.7)

Respiratory quality

  Normal, n (%) 191 327 (72.2) 79 419 (81.3)

  Altered, n (%) 51 173 (19.3) 15 225 (15.6)

  Absent, n (%) 961 (0.4) 406 (0.4)

  Non- specified 21 515 (8.1) 2627 (2.7)

HR, bpm 86 (75–100) 54 594 (9.9%) 86 (74–100) 10 089 (9.8%)

SBP, mm Hg 135 (120–150) 32 225 (12.2) 138 (120–155) 12 430 (12)

DBP, mm Hg 80 (70–90) 32 523 (12.3) 80 (70–90) 12 554 (12.1)

Body temperature, °C 36.5 (36.1–36.8) 31 700 (12) 36.4 (36–36.7) 13 667 (13.2)

NEWS

  Low, n (%) 182 314 (68.8) 76 466 (74)

  Low- medium, n (%) 32 891 (12.4) 9013 (8.7)

  Medium, n (%) 28 967 (10.9) 11 255 (10.9)

  High, n (%) 20 806 (7.9) 6602 (6.4)

Data reported as numbers and percentages, n (%) or median (IQR).
.DBP, diastolic BP; EMS, emergency medical service; NEWS, National Early Warning Score (low: 0–4; low- medium: 3 in any parameter; medium: 5–6; high: 7 or more)29. SBP, 
systolic BP; SpO2, pulse oximeter oxygen saturation.
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hospitals. Based on actual data, the goal was achieved in 50.6% 
(n=18 850) of cases and would be achieved in 74.4% (n=27 
688) in an ML- based scenario. Complete data of both simula-
tions are provided in online supplemental figures 5- 8 and online 
supplemental table 3.

DISCUSSION
This cohort study, conducted in one of the most involved areas 
in Europe during the pandemic, investigated the association 
of prehospital demographic data and clinical features among 
patients with a rtRCR- confirmed infection who called EMS.12 13

Similar to other studies, close contact with a known case, 
cough and fever were most predictive of COVID- 19.14 15 The 
presence of altered consciousness, vomiting, diarrhoea and 
haemodynamic instability was associated with a reduced risk of 
infection, suggesting that aetiologies other than COVID- 19 were 
responsible for the symptoms for which the patient was seeking 
care.16 17 A clinical algorithm using the variables obtained by 
an EMS operator had a sensitivity of >80%, but low spec-
ificity, which is reasonable for a screening test in the prehos-
pital setting.18 However, a ML model using additional clinical 
and epidemiological data, which were available to EMS in the 
prehospital setting, showed superior performance in detecting 
cases with greater sensitivity and specificity.

The implementation of ML models to guide clinical decisions 
has gained interest recently, especially in hospital settings.6 During 
the pandemic, studies focused on early COVID- 19 detection and 
prediction of disease progression.19–24 Canas et al estimated the 
probability of an individual being infected with SARS- CoV- 2 
based on self- reported symptoms. They found that a hierarchical 
Gaussian process model trained on 3 days of symptoms had 
an AUC of 0.80 (95% CI 0.80 to 0.81), which is comparable 
to our models.24 Soltan et al developed a tool (CURIAL- Lab) 
to screen for SARS- CoV- 2 infection in the ED, with an AUC 

Table 2 Operator- based interview performances

Time interval
(prevalence range) rtPCR+ rtPCR−

Whole training set
(73–1579 per 100 000 people)

  Suspected cases, n 50 980 84 897 37.5% PPV

  Not suspected cases, n 8618 120 553 93.3% NPV

  85.5%* 58.7%†

Q1
(73–290 per 100 000 people)

  Suspected cases, n 1302 17 461 6.9% PPV

  Not suspected cases, n 463 37 518 98.8% NPV

  73.8%* 68.2%†

Q2
(306–542 per 100 000 people)

  Suspected cases, n 9227 24 040 27.7% PPV

  Not suspected cases, n 1665 31 230 94.9% NPV

  84.7%* 56.5%†

Q3
(543–815 per 100 000 people)

  Suspected cases, n 14 432 23 355 38.2% PPV

  Not suspected cases, n 2528 29 249 92.0% NPV

  85.1%* 55.6%†

Q4
(823–1579 per 100 000 people)

  Suspected cases, n 28 667 21 488 57.2% PPV

  Not suspected cases, n 4175 25 438 85.9% NPV

  87.3%* 54.2%†

*Sensitivity.
†Specificity.
Q, quartile; rtPCR, reverse transcriptase PCR; PPV, positive predictive value; NPV, 
negative predictive value.

Table 3 Logistic regression analysis

Operator- based interview alone Operator- based interview plus clinical parameters

OR 95% CI P value OR 95% CI P value

Operator- based interview

  Age >74 years 0.19 0.19 to 0.2 <0.001 0.17 0.17 to 0.18 <0.001

  Male gender 0.24 0.24 to 0.25 <0.001 0.3 0.3 to 0.31 <0.001

  Close contact 67.54 63.78 to 71.52 <0.001 55.26 51.84 to 58.91 <0.001

  Shortness of breath 0.71 0.69 to .073 <0.001 0.78 0.75 to 0.81 <0.001

  Fever 3.26 3.16 to 3.35 <0.001 3.69 3.57 to 3.82 <0.001

  Diarrhoea 0.67 0.62 to 0.71 <0.001 0.71 0.67 to 0.77 <0.001

  Cough 3.35 3.22 to 3.49 <0.001 3.2 3.06 to 3.34 <0.001

  Ageusia/Anosmia 3.14 2.74 to 3.59 <0.001 3.02 2.62 to 3.48 <0.001

  Asthenia/Diffuse pain 1.09 1.05 to 1.13 <0.001 1.09 1.05 to 1.14 <0.001

  Vomit 0.28 0.27 to 0.3 <0.001 0.33 0.31 to 0.35 <0.001

Clinical parameters

  EMS call for respiratory disease / / / 1.07 1.03 to 1.12 0.002

  Non- alert / / / 0.39 0.36 to 0.42 <0.001

  Altered respiratory quality / / / 0.99 0.95 to 1.03 0.595

  Body temperature >38°C / / / 1.22 1.17 to 1.28 <0.001

  Room air SpO2 <94% / / / 2.25 2.17 to 2.33 <0.001

  HR >100 bpm / / / 0.3 0.29 to 0.31 <0.001

  SBP <90 mm Hg / / / 0.64 0.57 to 0.72 <0.001

  DBP <60 mm Hg / / / 0.52 0.48 to 0.55 <0.001

DBP, diastolic BP; EMS, emergency medical service; SBP, systolic BP; SpO2, pulse oximeter oxygen saturation.
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range of 0.84–0.85 (95% CI 0.81 to 0.89) in validation cohorts. 
However, their model is based on full blood count values, along 
with vital signs, and is not applicable prehospital.22

The use of ML algorithms in the EMS context has been 
limited to specific subjects, such as the recognition of cardiac 
arrest and the need for critical care resources.25–27 We developed 
an ML model that showed promise in helping EMS to detect 
COVID- 19 cases. The integration of contact history, signs and 
symptoms, clinical parameters collected by ambulance personnel, 
along with geographical call distribution and current number 
of positive cases in a specific area, led to a model that could 
more accurately predict COVID- 19 positivity by considering 
clinical data and up- to- date viral distribution in a specific terri-
tory. We included different explanatory variables in our models 
integrating the different information in a gradual manner. The 
first two models (ie, model 1 and model 2) include variables 
commonly retrieved by worldwide PSAP and might be appli-
cable to other settings. The other models also include variables 
retrieved from local epidemiology and analysis of the geospa-
tial distribution of EMS calls, hence leveraging information 
sharing between EMS and local public health authorities. The 
study also highlights that the weight of each variable changes 
throughout the analyses performed. In fact, when focusing on 
only interviews and clinical variables, close contact, fever and 
cough showed the strongest association with patients’ positivity. 

When the same variables were included in the ML models, 
close contact and fever still showed the strongest association. 
However, call geographical distribution and local epidemiology 
played a significant role as well as improving the model’s ability 
to detect positive cases.

Although the impact of the pandemic is declining, other similar 
calamities might occur in the future. It is therefore conceivable 
that ML- based models might be adapted and applied in the 
EMS setting to other events. It may be crucial for public health 
authorities to estimate the extent and spread of a pandemic 
disease, especially in the early phases when the course is unpre-
dictable. EMS has a role in managing calls and patients one step 
before hospital care. In that sense, if ML algorithms were inte-
grated into the out- of- hospital data process, EMS might provide 
public health authorities with early clues of disease spread.4 On 
the other hand, with the differences between health systems, it 
would be essential to have algorithms flexible enough to adapt to 
prespecified criteria, for instance, to allocate patients to different 
hospitals in a network. For this reason, we simulated the appli-
cation of an ML model to test its utility in referring patients 
to hospital resources with different characteristics (ie, hub vs 
non- hub hospitals). We found that the algorithm could ‘correct’ 
the hospital destination for a significant proportion of patients. 
For instance, in a high prevalence scenario, it may be desirable 
to limit access to hub hospitals for positive patients with severe 
features, with >20% of patients correctly re- addressed by the 
ML algorithm. Therefore, although our models do not predict 
individual clinical severity and outcome, they might be poten-
tially useful at a prehospital level for operational or public health 
reasons.

This study included a large number of patients managed by 
a regional EMS that links out- of- hospital clinical presentation 
with the result of the gold standard rtPCR test performed in a 
close time frame and retrieved from an official database directly 
provided by the regional public health authorities. Moreover, 
most variables included in the analysis are relatively simple, 
precise and commonly retrieved by other EMS. Thus, the infor-
mation provided by our study could be relevant and applied 
to other services worldwide. The signs, symptoms and clinical 
parameters were screened and retrieved precisely and contem-
poraneously by trained personnel and using the same software. 
The dimension of the dataset allowed for consistent analysis, 
enabling the application of a 10- fold validation protocol. Finally, 
the ML models maintained a good performance (AUC >0.8) 
on validation on a large, independent dataset. This suggests a 
stable application of our models in the setting of different viral 
variants presenting with different clinical and epidemiological 
characteristics.

Our study has some limitations. First, we included in the 
analysis patients whose rtPCR test was done within 7 days of 
their EMS call. Therefore, patients whose tests were performed 
outside this time frame have been excluded. As most studies 
assume a median incubation period of up to 5–7 days, it is 
unlikely that this timeframe might significantly impact the 
performance of the models implemented in the study.28 Second, 
the EMS in Lombardy is part of a two- level PSAP system, where 
the PSAP- 2 dispatches ambulances in the regional territory and 
allocates them to different hospitals, which have different char-
acteristics and resources. Thus, the applicability of our model 
might be challenged in areas with very different EMS and 
hospital systems. However, we tried to overcome such limita-
tion by including in our models variables commonly retrieved 
by EMS worldwide. Third, our analysis does not consider the 
different viral variants that have been shown to impact viral 

Table 4 Detailed metrics of different machine learning (random 
forest) models in the training and validation sets

Machine learning model Metrics Training set Validation set

Model 1
 ► Age
 ► Gender
 ► Variables retrieved by 

the operator- based 
interview

AUC 0.85 (0.84 to 0.87) 0.76 (0.75 to 0.77)

SENS 0.96 (0.96 to 0.97) 0.92 (0.91 to 0.92)

SPEC 0.18 (0.17 to 0.19) 0.17 (0.17 to 0.18)

ACC 0.58 (0.57 to 0.59) 0.75 (0.74 to 0.75)

PPV 0.35 (0.34 to 0.36) 0.09 (0.09 to 0.09)

NPV 0.91 (0.90 to 0.93) 0.96 (0.96 to 0.96)

Model 2
 ► Model 1 variables
 ► Clinical parameters 

retrieved on- scene 
ambulance

AUC 0.92 (0.91 to 0.94) 0.80 (0.79 to 0.81)

SENS 0.90 (0.89 to 0.91) 0.92 (0.92 to 0.93)

SPEC 0.73 (0.72 to 0.74) 0.23 (0.23 to 0.23)

ACC 0.94 (0.93 to 0.95) 0.77 (0.77 to 0.78)

PPV 0.71 (0.70 to 0.72) 0.1 (0.1 to 0.1)

NPV 0.62 (0.60 to 0.63) 0.97 (0.97 to 0.97)

Model 3
 ► Model 1 variables
 ► Current local SARS- 

CoV- 2 epidemiology, 
and geographical 
distribution of EMS 
calls for respiratory and 
infectious diseases in 
the previous 7 days

AUC 0.92 (0.91 to 0.93) 0.82 (0.81 to 0.82)

SENS 0.90 (0.89 to 0.91) 0.91 (0.90 to 0.91)

SPEC 0.70 (0.69 to 0.71) 0.41 (0.41 to 0.41)

ACC 0.71 (0.70 to 0.72) 0.85 (0.85 to 0.85)

PPV 0.57 (0.56 to 0.58) 0.12 (0.12 to 0.12)

NPV 0.94 (0.94 to 0.95) 0.98 (0.98 to 0.98)

Model 4
All variables included in 
models 1–3

AUC 0.94 (0.93 to 0.95) 0.85 (0.84 to 0.86)

SENS 0.90 (0.89 to 0.91) 0.91 (0.91 to 0.92)

SPEC 0.81 (0.80 to 0.82) 0.44 (0.44 to 0.45)

ACC 0.72 (0.71 to 0.73) 0.85 (0.85 to 0.85)

PPV 0.69 (0.68 to 0.71) 0.13 (0.13 to 0.14)

NPV 0.95 (0.94 to 0.95) 0.98 (0.98 to 0.98)

Detailed metrics (with 95% CIs) of the random forest algorithm trained to predict 
the positivity to the rtPCR test. Metrics are the AUC of the ROC curve, the SENS, 
SPEC, ACC, PPV and NPV of a custom working point (chosen as the first point with 
SENS ≥90%).
ACC, accuracy; AUC, area under the curve; NPV, negative predictive value; PPV, 
positive predictive value; ROC, receiving operating characteristics; SENS, sensitivity; 
SPEC, specificity.
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Figure 2 Machine learning models performance. Left: receiver operating characteristic (ROC) curves of the four models implemented, as compared 
with the performance of the operator- based interview (*). The box within each graph reports the AUC with the respective 95% CI, relevant to the 
random forest classifier. Black line, training set; blue line, validation set. Right: graphical representation of the contribution of each explanatory 
variable in predicting SARS- CoV- 2 positivity within each model, according to SHAP. The impact on the model is reported as SHAP value. The lines 
represent the variables, whereas each dot represents a single record. The importance of the variable within the specific model decreases from the top 
to the bottom. The colour of a single dot is red if the value is high or blue if the value is low. AUC, area under the curve; DBP, diastolic blood pressure; 
SBP, systolic BP; SHAP, Shapley additive explanations; SpO2, pulse oximeter oxygen saturation.
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Figure 3 Real- world scenario simulation. Upper panel: a first simulation was performed in the low prevalence period (n=96 984). Here, positive 
patients would be addressed to hub hospitals, while negative patients to non- hub hospitals. Based on actual data (ie, actual scenario), the goal was 
achieved in 61.6% (n=59 724) patients, while it would be achieved in 81.8% (n=79 386) in a machine learning- based scenario. Box C, n=49 198 
(50.7%). Box D, n=30 188 (31.1%). Box E, n=7072 (7.3%). Box F, n=10 526 (10.8%). Lower panel: a second simulation was performed in patients 
presenting with severe features at EMS calls in the high prevalence period (n=37 230). Here, positive patients presenting with severe features would 
be addressed to hub hospitals, while negative patients presenting with severe features would be addressed to non- hub hospitals. Here, the goal was 
achieved in 50.6% (n=18 850) in the actual scenario and it would be achieved in 74.4% (n=27 688) patients in a machine learning- based scenario. 
Box C, n=13 134 (35.3%). Box D, n=14 554 (39.1%). Box E, n=3826 (10.3%). Box F, n=5716 (15.3%).
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shedding, contagiousness, transmissibility and clinical severity. 
Fourth, the analysis does not include the vaccination status of 
either single patients or the general population. However, as the 
training and the validation sets are temporally independent, it 
could be hypothesised that the patient profiles were different, 
especially with respect to different viral variants and vaccination 
status. Performance in the validation cohort was good, with an 
AUC >0.8 in most models. Fifth, we acknowledge that an rtPCR 
result was unavailable in about half of the subjects included in 
the study period. However, the risk of verification bias is low 
as all patients underwent an rtPCR test once admitted to the 
ED regardless of the reason for calling EMS. Moreover, RR was 
not included in model development due to the high proportion 
of missing data. Given that respiratory symptoms were a key 
feature of COVID- 19, this may have impacted model perfor-
mance. Finally, the estimated improvement in the achievement 
of hospital destination (hub vs non- hub) does not consider oper-
ational components of the real- world scenario, such as crowding 
level of different facilities and urgency of interventions, which 
could have affected decisions about actual hospital destination.

CONCLUSIONS
An operator- based interview that explores signs and symptoms 
most commonly associated with COVID- 19 showed a sensitivity 
>80% for detecting patients with COVID- 19. An ML model 
that integrates clinical variables, geographical information and 
current local epidemiology showed the best performance in 
detecting cases. When the ML model is tested in real- world 
scenarios, such as the determination of hospital destination, 
the model can guide EMS to refer a remarkable percentage of 
patients to the proper hospital resources, based on prespecified 
allocation criteria.

Twitter Stefano Spina @ste_spi
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