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Using atomistic, million-atom screened pseudopotential theory together with configuration interaction, as well
as atomically resolved structures based on experimental characterization, we perform numerical calculations on
self-assembled GaAs/AlxGa1−xAs(111) quantum dots that we compare with our experimental data. We show
that random alloy disorder in the barrier can cause a symmetry breaking at the single-particle level (distortions
of wave functions and lifting of degeneracies) which translates into the appearance of a nonzero exciton fine
structure splitting (FSS) at the many-body level. Nevertheless, our results indicate that varying the concentration
of aluminum in the random alloyed barrier allows simultaneous tuning of the exciton fine structure splitting and
emission wavelength without altering its radiative lifetime τ ≈ 200 ps. Additionally, the optical properties of
these quantum dots are predicted to be very robust against both symmetric and asymmetric shape elongation
(with FSS � 2.2 µeV), rendering postselection less essential under well-controlled growth conditions. On the
other hand, the growth on miscut substrates introduces a structural anisotropy along the quantization axis to
which the system is very sensitive: the FSS ranges between 5 and 50 µeV while the radiative lifetime of the
transition is increased up to τ = 400 ps. The numerical results for the FSS are in perfect agreement with our
experimental measurements which give FSS = 10 ± 9 µeV for 2◦ miscut angle at x = 0.15.

DOI: 10.1103/PhysRevB.107.205417

I. INTRODUCTION

Self-assembled quantum dots (QDs) represent promising
solid-state quantum emitters for quantum information pro-
cessing applications [1]. Their potential to generate pairs of
polarized-entangled photons has been at the heart of many
studies since the biexciton-exciton ground-state cascade was
discovered [2] and progress in this area was recently reviewed
both from a general perspective [3–5] and by considering
applications in quantum information technology [6–8]. Owing
to the intrinsic C3v symmetry inherent to III-V semiconductor
nanostructures grown along the [111] crystal axis, suppression
of the fine structure splitting (FSS) between the two bright
exciton states can be achieved in such systems. As a matter of
fact, shortly after a vanishing FSS was theoretically predicted
for QDs grown along the [111] direction [9], many promising
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results were reported by several experimental groups [10–12].
Such achievements were made possible by the emergence of
droplet epitaxy techniques [13,14] which allow, in principle,
to grow perfectly symmetric strain-free structures on (111)
surfaces. In practice, however, optimal growth parameters are
still under investigation [15,16] and one must often resort to
postselection, rendering large-scale implementation unattain-
able. Moreover, it has been pointed out that future integration
of GaAs/AlxGa1−xAs(111) QDs into photonic heterostruc-
tures could require the use of misoriented substrates for their
growth [17]. However, this procedure generates steps alter-
ing the base of the quantum dots, which can affect their
optical properties and possibly be detrimental for potential
applications.

This paper is intended to address these issues
by considering the influence of frequently observed
fabrication-related perturbations on the optical properties
of GaAs/AlxGa1−xAs(111) QDs grown by droplet epitaxy
on GaAs (111)A substrates. This study will be conducted
for the most part from a theoretical perspective and the
numerical results will be confronted with their experimental
counterparts insofar as sufficient data are available. To
this purpose, information about the samples’ fabrication
and characterization is given in Appendix A. Then, after
presenting our model in Sec. II (the complete numerical
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TABLE I. Ensembles of GaAs/AlxGa1−xAs(111) QDs used for
the calculations. d , h, ds, and da are, respectively, the diameter, the
height, and the symmetric and the asymmetric deformations of the
QD. x is the Al content in the barrier material while α is the angle of
miscut. More details are given in the main text.

Series d (nm) h (nm) x ds (%) da (%) α (Deg)

S1 70 4 0.05 to 1 0 0 0
S2 70 4 0.15 0 to 1 0 0
S3 70 4 0.15 and 1 0 0 to 1 0
S4 70 4 0.15 and 1 0 0 and 0.25 0 to 3

methodology is detailed in Appendix B), we provide in
Sec. III A an analysis of the electronic structure of such QDs
at the single-particle level. The next sections in Sec. III B are
dedicated to the study of the FSS and the radiative lifetime
and their evolution under the influence of alloy disorder
and structural deformations. In particular, we focus on their
variations against (i) different random alloy compositions and
distributions, (ii) both symmetric and asymmetric in-plane
shape elongations, and (iii) base anisotropy (due to growth on
miscut structures). Finally, we sum up our main findings in
Sec. IV.

II. MODEL

The atomistic architecture of the systems examined here
is inspired by the work of Jo et al. [15] who have shown
that the GaAs/AlxGa1−xAs(111) QDs take the form of
truncated pyramidal nanostructures whose base shape can
range from hexagonal to triangular. The prototype QD for
this study is taken from the experimental work performed
by Basso Basset et al. [18] and it is an hexagonal-based
GaAs/Al0.15Ga0.85As(111) QD with a diameter d equal to
70 nm and a height h = 4 nm. Note that the QD diameter is
defined as the maximum lateral dimension of the base. The
S1 series in Table I represents the ensemble of QDs used to
investigate the effects of an alteration of the random alloy
composition on the QD properties. Moreover, it was pointed
out that, by controlling the Ga adatom incorporation during
the arsenization, it is possible to obtain nanostructures with
different shapes gradually spanning from hexagonal to trian-
gular. Indeed, the Ga adatom incorporation on facets (112̄)
and (1̄1̄2) can be regulated by changing the substrate tem-
perature [15] or the beam equivalent pressure of the As flux
[19]. This diversity in the base shape is treated in this study by
adding symmetric (in-plane) deformations to the QD base, as
indicated by the S2 series in Table I. A visual representation
of the shape irregularity ds is provided at the top of Fig. 4:
for ds= 0%, the shape of the base is a regular hexagon while
for ds= 100% it becomes an equilateral triangle; in-between,
it consists of an irregular hexagon for which the length of
the sides scales linearly with ds. Besides, we also take into
account the possible occurrence of asymmetric deformations
on one (S3 series) or two (S4 series) sides of the QD that
can result from faster growth in a specific direction due to
anisotropic diffusion. In Figs. 2 and 5, the geometrical mean-
ing of the quantity da is depicted. Finally, we investigate the
consequences of using miscut substrates during the fabrication

process; in this case, it was shown [16] that the elongation
happens to be oriented along the terraces following the [11̄0]
crystal axis when the miscut follows the [112̄] direction. A
profile image of the miscut structure is displayed in the inset
of Fig. 6(b) in order to clarify the meaning of the miscut angle
α and how it is related to the steps created at the bottom of
the QDs.

III. RESULTS

A. Single-particle physics

In this first section, we present the single-particle wave
functions for the hexagonal-based QDs (i) embedded in a
matrix of AlAs, (ii) surrounded by an alloyed barrier with
15% aluminum content, and (iii) in the presence of a base
elongation da and a miscut angle α.

1. AlAs barrier case: Ideal C3v symmetry

In the case of the GaAs/AlAs(111) QD, the wave func-
tions are perfectly symmetric, which constitutes the expected
result for a quantum dot with C3v symmetry. The first five
conduction states (labeled e0, e1, e2, e3, e4) are displayed in
Figs. 1(a)–1(e). The corresponding energy diagram shows one
s-like state followed by two degenerate p-like states and two
degenerate d-like states. The first five valence states, labeled
h0, h1, h2, h3, h4, are not degenerate but the hole and electron
probabilities of density are almost identical: their in-plane
spread is almost the same while in the quantization direction
[111] (not shown) the electrons occupy slightly more space.
The two types of carriers are also well localized within the
boundaries of the quantum dot.

It is interesting to compare the structure of the eigenstates
obtained from the atomistic empirical pseudopotential method
(EPM) and their energy spectrum with the Fock-Darwin states
[20,21], which constitute the solution of Schrödinger’s equa-
tion for the two-dimensional quantum harmonic oscillator. In
this effective mass treatment, the eigenfunctions are given in
polar coordinates by [22]

ψnr ,l (r, φ) = β√
2π

√
nr!

(nr + |l|)!e− β2r2

4 eilφ

(
βr√

2

)|l|

× L|l|
nr

(
β2r2

2

)
, (1)

where nr and l are, respectively, the radial and azimuthal
quantum numbers. β = √

mω/h̄ is a constant for a given
material, m being its effective mass while ω is the oscilla-
tor frequency. The L|l|

nr
(·) functions are generalized Laguerre

polynomials. The corresponding energies are given by

E2D(nr, l ) = (2nr + |l| + 1)h̄ω. (2)

It turns out that all the states of the GaAs/AlAs QD can be
approximated quite accurately by this simplified model. Since
the confinement potential is not cylindrical but hexagonal,
one of the main differences is that all the conduction states
have the C6v (hexagonal) symmetry while for all the valence
states the C3v atomistic symmetry of the nanostructure is
preserved (see Appendix C for more details). Besides, some
degeneracies are the same as those of the Fock-Darwin states
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FIG. 1. Cross sections in the (111) plane of the single-particle electron and hole-squared wave functions for the GaAs/AlAs QD (top panel)
and a GaAs/Al0.15Ga0.85As QD (bottom panel). The conduction states are denoted e0, e1, e2, e3, e4. An energy diagram provides the energy
splittings between the states and the reference is taken at the bottom of the conduction band (e0). Similarly, the valence states are labeled h0,
h1, h2, h3, h4 and the reference energy is set at the top of the valence band (h0). When two states have the same energy, their degeneracy is
given on the right of the diagram while for two states with a small energy splitting 	E , the numerical value of the splitting is provided. These
energy splittings between the states are also provided in Figs. 8–11 for all the wave functions relevant to this study. In the case of GaAs/AlAs
QD, the states are labeled using the Fock-Darwin notation [20–22] (nr, l) to emphasize the similarity with this simple model. On the other
hand, for GaAs/Al0.15Ga0.85As QD, the symmetry of each state, given between parentheses, is inspired from the atomic notation (s, p, d). All
the wave-function plots presented in this paper were generated using a python script based on the MAYAVI2 package [23]. The diameter and
the height of the quantum dots are, respectively, equal to 70 and 4 nm as given in Table I. The broken symmetry induced by the random alloy
for the GaAs/Al0.15Ga0.85As QD clearly manifests in the wave functions as compared to the highly symmetric nature of the GaAs/AlAs QD
states.

[e.g., for the conduction (0,±1) and (0,±2) states] while
others are lifted owing to the actual symmetry of the system.
Additional information is given in Appendix C in Figs. 8
and 9 where all the 18 conduction and valence wave functions
are plotted.

Note that we have labeled the states using the Fock-Darwin
notation (nr, l) to emphasize the similarity between the atom-
istic EPM results and this well-known analytical toy model.
It is only meant to provide an intuitive picture to the reader
who should keep in mind that all the calculations in this work
have been performed within the EPM+SLCBB framework.
Indeed, Eq. (2) supposes that nondegenerate energy levels are
equally spaced (by steps of h̄ω), an assumption in striking

contrast to our numerical results (see Appendix C for a more
comprehensive discussion).

2. Perturbation by a random alloy: Al0.15Ga0.85As barrier

When the barrier material AlAs is replaced with a random
alloy (in the present case Al0.15Ga0.85As), the C3v symme-
try is broken, as can be seen in Figs. 1(k)–1(t). For both
the conduction and valence states, the s-like ground state is
slightly deformed owing to the irregular distribution of the
atoms surrounding the dot; besides, a significant spread of the
wave functions is observed: the density of probability outside
the boundaries of the QDs has now a finite value. The random
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FIG. 2. Cross sections in the (111) plane of the single-particle electron ground-state wave functions (e0) for AlAs barrier (top) and
Al0.15Ga0.85As matrix (bottom). Their evolution with respect to an increasing miscut angle (α ∈ {0◦, 1◦, 3◦}) is depicted for QDs with regular
(a)–(c) and (g)–(i) and elongated (d)–(f) and (j)–(l) bases. The terraces and the elongation are both aligned (horizontally) with the [11̄0] crystal
direction. In all cases where α �= 0, the wave function tends to localize within the first few steps, with a stronger confinement for GaAs/AlAs
QDs than for GaAs/Al0.15Ga0.85As QDs.

alloy introduces the same preferential orientation for the first
s-like states (e0, h0) and the first p-like states (e1, h1) while
the second p-like states (e2, h2) are oriented perpendicularly to
this direction. Additional calculations not presented in this pa-
per show that this observation is valid for different realizations
of the random alloy (with a different preferential direction for
each distribution considered). Finally, the degeneracy of the
p-like and d-like conduction states is lifted and the splittings
between states of same pseudo-orbital angular momentum are
enhanced. On the other hand, the energy splittings between
s-like and p-like or p-like and d-like states are reduced due to
a weaker confinement potential (relative to the x = 1.00 case).
Further analysis including all the 18 calculated conduction
and valence states for x = 0.15 is proposed in Appendix C
(see Figs. 10 and 11).

In the following sections, we will see how the small dis-
tortions and energy splittings presented above are sufficient to
induce observable consequences on the optical properties of
the quantum dots.

3. Influence of elongation and miscut

The growth on miscut structures is often accompanied
with an elongation of the quantum dots. In Fig. 2, the elec-
tronic ground-state wave functions (e0) are compared for da =
{0.00, 0.25}, α = {1◦, 2◦, 3◦}, and x = {0.15, 1.00}. Interest-
ingly, despite an expected lift of degeneracy, the symmetry of
the wave functions for elongated quantum dots is close to the
ideal case [see Fig. 2(a) vs Fig. 2(d) and Fig. 2(g) vs Fig. 2(j)].
Base elongation allows nonetheless a bigger extension of the
carriers’ wave functions. On the other hand, the presence of
a miscut angle is responsible for creating steps affecting the
base of the QDs. In other words, the height of the quantum
dot now varies along the [112̄] crystal axis (vertical direction),
forcing the carriers to preferentially localize where the height
is the largest, i.e., on the top of the structures. Figures 2(b)
and 2(c), 2(e) and 2(f), 2(h) and 2(i), and 2(k) and 2(l) show
that increasing the miscut angle strengthens the localization of

the electrons. The hole density follows the same pattern (not
shown). It must be noted that the carriers are mostly confined
inside a single step for AlAs (x = 1.00) while they are able
to spread over two or more steps when x = 0.15. Therefore,
we can anticipate that the overlap between the electron and
hole wave functions will lead to more drastic changes in the
optical properties of these quantum dots, with a noticeable
difference between strongly confined (x = 1.00) and weakly
confined (x = 0.15) states.

B. Influence of internal perturbations on the optical
properties of GaAs/AlGaAs(111) QDs

Several types of in-built defects created during the QDs
fabrication can affect their optical properties. The rest of this
paper focuses on several kinds of perturbations and their con-
sequences on the photoluminescence (PL) emission including
FSS and radiative lifetime of the bright exciton doublet. Par-
ticular attention is given to (i) the composition x of the random
alloy barrier and its fluctuations, (ii) the symmetric deforma-
tion of the base ds, (iii) the asymmetric elongation of the base
da, and (iv) the growth on miscut substrates with an angle α

along [112̄].

1. Composition and fluctuations of the AlxGa1−xAs
random alloyed barrier

Even for QDs sharing the same nominal symmetry, the
random alloy composition and fluctuations can perturb the
atomistic structure, leading to observable consequences on
the single-particle physics (see Sec. III A 2). We examine
now the excitonic properties and find out that nonzero FSS
values emerge. In order to probe the response of the sys-
tem to the disorder induced by the barrier material at the
many-body scale, the FSS is averaged here over six differ-
ent random alloy distributions for each point considered in
Fig. 3, i.e., for every barrier composition x. Indeed, for a
quantity as small and sensitive as the FSS, the way the atoms
are arranged in the surrounding matrix, even for the same
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FIG. 3. Evolution of the exciton fine structure splitting (a), the
radiative lifetime (b), and the PL emission (c) as a function of the per-
centage of aluminum x in the random alloy. Each single realization of
the alloyed matrix is represented by a black cross while the average
and standard deviation for each value of x appear, respectively, as
blue circles and blue error bars. The pure AlAs alloy (x = 1.00) is
symbolized as a red diamond.

aluminum content, can lead to a significant standard deviation
that bears physical relevance when considering the feasibility
of polarized-entangled photons emitters.

In Fig. 3(a) the FSS as a function of the fraction of alu-
minum in the barrier material x is plotted. A bell-shaped
curve is apparent but it is not centered around 50% where
the disorder is expected to be maximized. In fact, the max-
imum FSS is obtained when the concentration of aluminum
in the alloy approaches 30%–40% but, given the high stan-
dard deviation, the occurrence of the maximum at x �= 0.50
could be due simply to the small number of random alloy
realizations considered here for each value of x. The FSS
decreases to exactly zero when the aluminum concentration
is equal to 100%, i.e., when there is no randomness any-
more as the C3v symmetry is restored. This agrees well with
the corresponding wave functions presented before and the
general predictions of group theory. Interestingly, the fine
structure splitting also decreases when the Al concentration
gets closer to 0% (limiting case where the confinement is
totally lost) and drops below 1 µeV for x � 15%. Hence,
the FSS should be minimal and useful for the generation
of entangled-photon pairs if experiments are performed on
GaAs(111) QDs surrounded by a barrier material contain-
ing less than 15% of aluminum. A good compromise in the
present case is x = 10% as the carriers’ wave functions start
to leak outside the QDs considerably when the concentration
of aluminum becomes smaller. For quantum information tech-
nology applications, the PL emission also plays an important
role when designing quantum structures. It is indeed desirable,

in the context of quantum memory implementation, to gen-
erate entangled photons which will be emitted in resonance
with the D2 line of rubidium atoms (780 nm) [24–28]. In-
terestingly, as can been seen in Fig. 3(c), it turns out that by
lowering the concentration of aluminum below 15%, the de-
sired wavelength for applications in quantum memories can be
achieved. Our numerical results predict that, for the geometry
we have considered, growing GaAs/Al0.10Ga0.90As(111) QDs
can match both requirements. We then recommend from this
perspective the use of a low aluminum concentration in the
AlGaAs matrix for quantum information applications. From
an experimental viewpoint, if one wants to avoid reducing
too much the confinement, they can also achieve the desired
emission energy by using a smaller QD size, but a symmetric
and defect-free shape might become harder to obtain, which
results in a compromise between the two parameters.

Finally, Fig. 3(b) shows the evolution of the bright exciton
radiative lifetime as a function of x. The concentration of
aluminum does not seem to significantly affect the average
lifetime which remains almost constant and close to 200 ps,
except when the confinement potential becomes very weak at
x < 0.10.

2. Symmetric variation of the QD base: From regular
hexagon to equilateral triangle

As discussed in Sec. II, the base of the QD may come in
different shapes depending on the crystallization temperature.
Here, we investigate whether a symmetric transition from a
regular hexagon to an equilateral triangle (series S4 in Table I)
bears any major consequences on the optics. For this study
and in the following, averaging over several points is com-
putationally demanding and less relevant: therefore, only one
particular alloy distribution at x = 15% is selected for which
FSS = 1.46 µeV at ds = 0%. Note that, far from the QDs, the
alloy distribution is always the same. Since the diameter and
the height of the QDs are kept constant, some deviations can
exist near the QD/barrier interface, due to the alteration of the
QD base (as the volume occupied by the QDs for different ds,
da and α is not exactly the same). Nevertheless, for ds �= 0 and
da �= 0, these small differences occur far from the QDs center
where the wave function reacts more strongly to the alloy
distribution. For α �= 0, this effect is also negligible because
the localization of the carriers induced by the miscut steps is
the dominant effect.

The fine structure splitting variation with respect to a sym-
metric deformation of the QD base varies from 1 to 1.5 µeV,
as can be seen in Fig. 4(a). It is the highest for 0% and
100% deformation of the base, which corresponds to regular
hexagon and equilateral triangle, respectively; it drops in-
between for irregular hexagonal bases. Nevertheless, the range
of values is narrow relative to the variance at ds = 0% and
will fall within the uncertainty induced by the fluctuations of
the random alloy. Indeed, in spite of the fact that the specific
random alloy realization chosen for this study is the one max-
imizing the FSS at ds = 0%, most of the points remain inside
the limits of the error bars. Thus, we come to the conclusion
that the influence of a shape irregularity has only a negligible
effect on the magnitude of the FSS, as long as the system
retains its nominal C3v symmetry. This finding constitutes an
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FIG. 4. FSS (a) and τ (b) vs symmetric deformation ds. The
deformation happens on three sides: 0% corresponds to the regular
hexagon and 100% is triangular. Intermediate cases are irregu-
lar hexagons which respect the nominal C3v symmetry. The data
points (black crosses) and the standard deviation (dotted lines) from
Fig. 3(a) at x = 0.15 are reproduced in Fig. 4(a) for comparison. The
top of the figure represents different shapes of the QD base. The
diameter and the height are kept constant (d = 70 nm and h = 4 nm).

important result as it points out that a precise control of the
base shape is not paramount to minimize the FSS and achieve
entangled-polarized photon pair emission.

On the contrary, the radiative lifetime τ grows mono-
tonically when ds is increased [see Fig. 4(b)]. This result
demonstrates that when the base is an equilateral triangle,
the lifetime can exceed 300 ps while it reaches only 200 ps
for the hexagonal-based QDs. Note, however, that the QD
diameter is kept constant but not its volume that the holes
and electrons can occupy differently for each amplitude of
deformation. Hence, the observed behavior can be attributed
to a weaker overlap between the carriers’ wave functions
when ds = 100%.

3. Robustness of the optical properties of QDs with
a shape asymmetry: Base elongation

Large GaAs/AlGaAs(111) droplet epitaxial QDs can de-
velop faster in one specific direction, giving rise to a base
elongation which may, in principle, completely break the
C3v symmetry. One could therefore presume that even a tiny
shape asymmetry could lead to a visible elevation of the fine
structure splitting. In fact, this increase is remarkably small:
for da = 5%, 	FSS = 0.35 µeV for both x = 0.15 and 1.00
as depicted in Fig. 5. Thus, for the QDs considered here,
the presence of a random alloyed barrier is actually much
more relevant to the optical properties than the existence of
a small elongation. The two curves in Fig. 5 follow a linear
progression up to da = 25% (with different slopes) until they

FIG. 5. FSS vs asymmetric deformation da. The elongation hap-
pens on one side only: [112̄]. A pictorial representation of the base
shape is given on top of the plot for several values of elongation. The
proportion of aluminum in the random alloy AlxGa1−xAs is given as
x. The height is kept constant (h = 4 nm) while the length of the base
is allowed to vary only along the direction of the elongation. Inset:
plot of τ vs da.

start converging for da � 60%. It turns out that for very large
deformations, the influence of the random alloy becomes neg-
ligible relative to da. But the FSS never exceeds 2.5 µeV, a
particularly low limit given the drastic deformation applied to
the QD. The minor impact of in-plane elongation on the FSS
can be explained by the big size of the QD base which attenu-
ates quantum confinement effects, so that the system does not
strongly react to in-plane symmetry breaking. Furthermore,
the inset of Fig. 5 indicates that the lifetime is also barely
affected by the anisotropic deformation of the base. From this
analysis, we can conclude that truncated pyramidal quantum
dots with an hexagonal base grown on (111) surfaces are
extremely robust against shape asymmetry. During the growth
of an ensemble of quantum dots, the most imperfect ones
should then not have a tremendous influence on the quality
of the optical properties, rendering postselection based on the
shape asymmetry of the QD less critical.

4. Change of optical properties for QDs with a structural
asymmetry due to a growth on miscut surfaces

Contrary to the case of in-plane elongation, the symmetry-
breaking generated by growing QDs on misoriented substrates
is very pronounced as it impacts the quantization axis of the
nanostructure. Owing to the formation of steps, the height of
the system becomes dependent on the X = [11̄0] and Y =
[112̄] coordinates so that quantum confinement effects are
expected to considerably influence the optical properties of
the QDs. For this reason, two distinct aluminum concentra-
tions (x = 0.15 and 1.00) will again be considered. Besides,
since the presence of a miscut surface generally provokes an
in-plane elongation for large QDs [16], this contribution will
be singled out by comparing the two cases da = 0% and 25%.

The FSS, the radiative lifetime and the degree of linear
polarization (DLP) of the QDs from series S4 in Table I are
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FIG. 6. Exciton fine structure splitting (a), degree of linear polarization (b), emission energy (c), and radiative lifetime (d), (e) for regular
(dotted lines) and elongated (solid lines) QDs and length of the steps introduced by the miscut (f) vs miscut angle α. The blue color corresponds
to x = 0.15 (alloyed barrier) while the red color represents QDs with nonalloyed barrier. A schematic view of the miscut QDs is provided in
the inset of (b). The DLP is plotted with respect to [112̄] rather than in absolute value, i.e., it is defined as (I[11̄0] − I[112̄] )/(I[11̄0] + I[112̄] ), a
choice justified by the orthogonal polarizations of the two bright exciton states and useful for its comparison with the contrast in lifetime in
Fig. 7.

plotted as a function of the miscut angle α in Fig. 6. We
observe that all these quantities are strongly amplified when
the value of the miscut angle increases. Let us have a closer
look at this behavior quantitatively by separating the effects of
alloy randomness and base deformation, starting with the FSS.
First, we consider the QDs surrounded by an alloyed barrier
with 15% of aluminum content [described by the blue points
in Fig. 6(a)]. The addition of elongation raises the value of
the FSS from 1.46 to 3.25 µeV at α = 0◦ and shifts the cor-
responding plots by a quasiconstant amount of about 1.7 µeV
when α �= 0◦. This value is almost independent of x and α and
consistent with the results of Sec. III B 3 (although the elon-
gation occurs here in another direction). Note that we expect
the nonalloyed QDs to share the same qualitative behavior
with respect to the base elongation, but with a much steeper
slope due to stronger confinement for x = 1.00 (bringing the
electron and the hole closer to each other, hence enhancing
the value of the electron-hole exchange matrix elements).
The apparent anomalies (α = 1.5◦, α = 2◦, α = 2.5◦) come
from a slightly different design in the geometry of these QDs.
Nonetheless, these fluctuations of the FSS with respect to the
exact atomic arrangement of the terraces are consistent with
what we observe in our experiments. There exists indeed a

large standard deviation in the experimental data [represented
by the black error bars in Fig. 6(a)] which is due to a naturally
large dispersion that we attribute to the potentially large vari-
ance in the position of the atomic terraces with respect to the
base of the quantum dot. Furthermore, our numerical results
are in excellent agreement with our measurements performed
for α = 0◦ and 2◦ (at x = 0.15) which give FSS(α = 0◦) =
4.5 ± 3.1 µeV and FSS(α = 2◦) = 10 ± 9 µeV as reported in
Fig. 6(a) by the black points (the average and the standard
deviation are estimated over a sample size of 29 and 32 QDs,
respectively). Both our regular [FSS(α = 0◦) = 1.46 µeV,
FSS(α = 2◦) = 11.84 µeV] and elongated [FSS(α = 0◦) =
3.25 µeV, FSS(α = 2◦) = 13.28 µeV] QDs calculated points
fall within the experimental standard deviations and are rea-
sonably close to the measured averages. Indeed, there exists
a small difference between the numerical and experimental
averages, but it should be also accounted in this comparison
that the real angle of miscut of the substrates can deviate
from the nominal value by ±0.5◦. Hence, the substantial
robustness of GaAs/AlxGa1−xAs(111) QD properties against
in-plane shape anisotropy discovered in the previous section is
confirmed for [11̄0]-elongated QDs, whereas the miscut an-
gle carries more serious consequences. These findings are
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interesting from an experimental point of view as they indicate
that unwanted deformations occurring during QD growth do
not significantly degrade their optical properties while the
boost in the FSS caused by the miscut angle can be controlled
during the fabrication process. Moreover, for small x, the FSS
only grows by a negligible amount between α = 2◦ and 3◦.
Thus, for an optimal control over the miscut QD properties,
it is advisable to use intermediate values of α. They are also
more easily accessible since the experimental uncertainty on
the miscut angle is equal to 	α = ±0.5◦, so that the use of
α < 1◦ can lead to poor reproducibility. In order to minimize
the FSS for bigger α, we predict, based on our previous find-
ings in Sec. III B 1, that the choice of x = 0.10 should again
constitute a good alternative as we anticipate the slope of the
curve to be flatter.

In addition, we note that our QD ensembles for both α =
0◦ and 2◦ emit in a narrow range of energy 	E (X )expt =
1.58–1.61 eV, making miscut QDs suitable to emit at a de-
sired energy. This interval is also calculated, and we get
	E (X )th = 1.603–1.618 eV. The predicted trend is linear for
both regular and elongated QDs [see Fig. 6(c)] but the slope
is too small to be noticed experimentally due to the hetero-
geneity of the samples. More precisely, the size dispersion
characteristic of the growth technique is larger than the dif-
ference observed by increasing the miscut angle with the
x = 0.15 barrier. Note that the linear trend implies that the
FSS as well as the DLP and the lifetime (discussed below)
will possess the same dependence with the emission energy
EX as they have with α. This observation should remain valid
for x = 1.00 if the anomalies are not considered. Since only
two values of x have been considered in this work, it is not
possible to conclude that this behavior is transferable to any
random alloy composition. It could nonetheless constitute a
plausible generalization and a hypothesis to investigate further
in future research.

Another interesting feature that emerges from the study
of miscut QDs is the appearance of two distinct polarized
excitonic states X[11̄0] and X[112̄], where the |X[11̄0]〉 → |
0〉
transition is energetically lower. This results in a net total
polarization of the emission for α > 0◦ which is highlighted in
Fig. 6(b) by the nonzero values of the DLP for both x = 0.15
and 1.00. Nevertheless, the DLP only increases by a few per-
cent which is comparable to the degree of polarization induced
by the optical elements in the collection path. The emission
observed in the experiments is compatible with an unpolarized
source within such interval of confidence. In practice, the
application of external strain or the use of InAs QDs can
enhance the value of the DLP and provide a test to substantiate
these numerical predictions [29]. Size effects could also play
an important role as linear polarization values up to 50%
were recently reported [30] for smaller (111)A QDs without
elongation.

Finally, the exciton is now allowed to decay through two
distinct channels with radiative lifetimes τ[11̄0] and τ[112̄], as
pictured in Figs. 6(d) and 6(e). Qualitatively, the two curves
are similar but X[112̄] possesses higher lifetime compared to
X[11̄0] when α > 0◦ because the exciton lifetime asymmetry
	τ = |τ[11̄0] − τ[112̄]| is enhanced by the miscut angle. For
x = 1.00 and α = 0◦, 	τ = 0 because the two exciton bright
states belong to the same irreducible representation in the

FIG. 7. Contrast in lifetime Cτ = (τ[11̄0] − τ[112̄] )/(τ[11̄0] + τ[112̄] )
given in % vs miscut angle α. The curves exhibit exactly the same
dependence on α as their counterparts in Fig. 6(b) but with a negative
sign, indicating that Cτ and the DLP are closely correlated quantities.

C3v point group. When this condition is not satisfied (e.g.,
for x �= 1.00 or α �= 0◦), the lifetime asymmetry differs from
zero [31]. Just as the FSS previously studied constitutes an
important figure of merit regarding applications in quantum
technologies as the main limiting factor to achieve high fi-
delity in polarized-entangled photon states [32,33], it has been
pointed out [34] that 	τ provides a good measure of the
symmetry of InAs/GaAs(001) QDs. We show here that this
idea can in fact be extended and generalized to the case of
GaAs/AlxGa1−xAs(111) QDs. Moreover, the contrast in life-
time

Cτ = τ[11̄0] − τ[112̄]

τ[11̄0] + τ[112̄]
(3)

increases monotonically to negative values with the miscut
as shown in Fig. 7. It can be noted that Fig. 7 would look
exactly the same as Fig. 6(b), were it not for the negative sign.
This observation suggests that the DLP and the contrast Cτ

should be strongly correlated quantities and indeed it is found
numerically that for all x, α, and da,

||DLP(x, α, da)| − |Cτ (x, α, da)|| < ε, (4)

where ε < 0.1%. An analytical derivation showing that
DLP = −Cτ is provided in Appendix D for the case of inter-
est, i.e., when the two exciton bright transitions have orthog-
onal polarizations. This condition is always fulfilled in this
study and in Ref. [29] where polar diagrams have been plotted
for both GaAs/AlxGa1−xAs(111) and InAs/GaAs(111) QDs.

The base elongation affects the radiative lifetime by down-
shifting the curve for da = 0.25 relative to da = 0.00. This
effect is ascribed to the larger extension of the carriers’ wave
functions mentioned in Sec. III A 2. Once more, the random
alloy provokes an attenuation of the slope as a consequence of
weaker confinement potential. On the other hand, the different
trends between x = 0.15 and 1.00 pose a more puzzling ques-
tion. While for x = 0.15 τ[11̄0] and τ[112̄] evolve monotonically
and gradually with α in a quasilinear fashion, for x = 1.00, a
sudden increase is observed for α � 1◦ which is followed by
a saturation for larger angles.
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In order to identify the origin of these contrasting behav-
iors, we need to examine in more details the geometry of
miscut QDs. First of all, we remark that the volume of the
QDs is not kept constant so that the electron and hole wave
functions could in principle localize differently for different
α, altering the overlap integrals on which the calculation of
the recombination rates very much depends. However, a direct
correlation between τ and the QD volume does not provide a
sufficient explanation in the present case and it is actually nec-
essary to understand how exactly the QD base is transformed
across the whole range of study. If we assume only steps of
one monolayer (ML) along Z = [111], the number of steps
nsteps produced by the miscut grows linearly with it for small
angles [35]:

nsteps = 3

2

d

a0
tan (α) ≈ 3

2

d

a0
α. (5)

On the other hand, their length lstep (along Y = [112̄]) is
inversely proportional to the miscut angle according to [35]

lstep = a0√
3 tan (α)

≈ a0√
3

1

α
. (6)

By looking at Fig. 6(f), we can notice that lstep critically drops
for α � 1◦ and tends to vary more slowly for α > 1◦ until
it stabilizes. Now, it becomes apparent [see Figs. 2(a)–2(f)]
that the single-particle carriers’ wave functions try to localize
within the first two steps and that the size of these first steps
will determine the effective volume over which the interaction
can take place. Additionally, this volume remains nearly the
same for higher angles, and so does the radiative lifetime.
Thus, these observations support the interpretation that the
combination of lstep and the strong localization of the states is
responsible for the behavior of τ for x = 1.00. In the x = 0.15
case, the wave functions can spread over several steps and
occupy a larger volume [see Figs. 2(g)–2(l)] such that the rise
in the radiative lifetime is not limited anymore and is more
likely to follow a similar pattern as nsteps (i.e., quasilinear).
These considerations complete our theoretical treatment of the
radiative lifetime in miscut QDs and we eventually proceed
to the last part of this study, namely, the comparison with
our experiments. At α = 0◦, τexpt = {158, 160} ps while for
α = 2◦, τexpt = 230 ps. The experimental data corroborate the
predicted tendency of the miscut angle to enhance the lifetime.
Indeed, we find that the ratios

τexpt(α = 0◦)

τexpt(α = 2◦)
≈ 0.7 (7)

and

τth(α = 0◦)

τth(α = 2◦)
≈ 0.6 (8)

are in reasonable agreement given the limited set of experi-
mental points. Nevertheless, the measured values are clearly
below the ones obtained numerically. Excitons are laterally
weakly confined in QDs with a large in-plane extension.
As a consequence, in such nanostructures, correlation effects
among the confined carriers play a major role in the descrip-
tion of the optical properties [36]. Now, these effects are well
captured by the EPM+CI approach as long as a sufficiently

large size for the CI basis is selected [37]. It is the case in this
work (where an 18 × 18 basis is employed) so that the use of
the CI method should not cause of any discrepancy between
τexpt and τth. Theoretically, another possible path to explore
would be to go beyond Eqs. (B9) and (B10) in order to assess
by how much τth can vary when the medium is not assumed
to be homogeneous (or even local). That is to say, when
the quantized vector potential operator is dependent on the
dielectric function ε(r, r′) in a nontrivial way and cannot be
written in terms of plane waves anymore (see, e.g., Table 1 in
[38]). Besides, the experimental measure could underestimate
the lifetime in presence of nonradiative decay channels [39],
even if those have been deemed negligible in similar emitters
under resonant two-photon excitation [7]. On the other hand,
the predicted simultaneous increase of the exciton FSS and
lifetime with α suggests the existence of a connection between
these two quantities in miscut GaAs/AlxGa1−xAs(111) QDs.
Since the selected QDs for the lifetime measurements have
relatively low FSS values (respectively 1.0 and 1.4 µeV for
α = 0◦ and 2.4 µeV for α = 2◦), further experimental investi-
gations are required to explore any possible link between FSS
and exciton lifetime.

IV. CONCLUSION

In summary, we have shown that the predicted
and measured FSS are in excellent agreement for
GaAs/Al0.15Ga0.85As(111) QDs. Indeed, for α = 0◦ the
theoretical FSS are evaluated at 1.5 and 3.3 µeV for
the regular and elongated QDs, respectively, while the
experimental value is found to be 4.5 ± 3.1 µeV. Likewise,
at α = 2◦, the measurements estimate that the FSS is equal
to 10.0 ± 9.0 µeV and the numerical results provide 11.8 and
13.3 µeV for the regular and elongated shapes, respectively.

Moreover, we have found that the FSS is exactly equal
to zero for hexagonal-based GaAs/AlAs(111) QDs, in accor-
dance with the predictions of group theory for C3v systems.
On the other hand, we have shown that the addition of a
disordered random alloy AlxGa1−xAs causes a loss of symme-
try leading to finite values of FSS. However, the magnitude
of this FSS does not exceed 2 µeV, showing that this sym-
metry breaking can actually be leveraged: a careful choice
of the aluminum composition in the barrier material allows
to tune the emission spectrum, a property of great interest
for wavelength-critical applications such as interfacing with
quantum memories.

Besides, a deformation preserving the C3v symmetry was
applied to the base of the QDs (ranging from hexago-
nal to triangular shape), and it was proven to have only
a negligible impact on the QDs optical properties. It was
also demonstrated that both the radiative lifetime and the
FSS are very robust against in-plane elongation, making
GaAs/AlxGa1−xAs(111) QDs promising candidates for the
generation of polarized-entangled photon pairs without heav-
ily relying on QDs postselection. As a comparison, a FSS of
1 µeV with a lifetime of 200 ps would result in a decrease in
fidelity of approximately 2 percentage points compared to the
zero FSS case, which is comparable to the typical impact of
the other parameters lowering the degree of entanglement in
current state-of-the-art devices [6].
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In contrast, when the growth is carried out on misoriented
substrates, a substantial augmentation of both the FSS and
the lifetime was demonstrated, with a slope that strongly de-
pends on the random alloy composition. In particular, for low
aluminum fraction (x = 0.15), the FSS remains sufficiently
low so that it can be readily compensated by external tuning
strategies [26]. Overall, our findings are very encouraging to
push forward the study of such nanostructures.
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APPENDIX A: EXPERIMENTAL DETAILS

The optical properties of QDs from samples with x = 0.15
Al content in the barrier and a miscut angle α of either 0◦ or 2◦
were investigated by means of polarization- and time-resolved
photoluminescence (PL) spectroscopy. The sample was kept
in a low-vibration closed-cycle He cryostat at a temperature
of 5 K and excited via a 0.42 NA objective. The PL signal,
collected through the same objective, was sent to a double-
grating spectrometer with 1200 gr/mm gratings, resulting in
a resolution of approximately 40 µeV near 1.6 eV. Spatial
filtering passing through a single-mode fiber was occasionally
employed.

For the fine structure splitting measurements, QDs were in-
dividually excited above barrier by a 532-nm continuous wave
laser. The signal was acquired using a deep-depletion, back-

illuminated LN2-cooled CCD. Several spectra were recorded
by including a rotating half-wave plate and a linear polarizer
in the collection path. This method allows to estimate the fine
structure splitting [40] with an accuracy down to 1 µeV.

To estimate the radiative lifetime, the QDs were excited in
pulsed mode using a Ti:sapphire laser, whose spectral width
and pulse duration were adjusted to 200 µeV and 10 ps, re-
spectively, in a 4 f pulse shaper. The approach of resonant
two-photon excitation [41] was chosen to avoid introducing
time jittering due to the process of carrier relaxation from the
barrier, while also conveniently suppressing laser background
with notch filters. After selecting the emission line relative to
the exciton to ground-state transition through the spectrom-
eter, the PL signal is acquired by a single-photon counting
module with a time resolution slightly above 50 ps. The ra-
diative lifetime is estimated from a fit of the time-resolved
PL curve with a convolution of the instrument response func-
tion (obtained recording the attenuated laser pulse) and an
exponential decay. We assume a negligible impact of non-
radiative recombination channels and scattering onto dark
exciton states, consistently with previous studies [18].

APPENDIX B: COMPUTATIONAL METHODS

For each calculation, the GaAs QD is placed at the cen-
ter of a simulation box containing 124a0 × 124a0 × 124a0

eight-atom zinc-blende unit cells (corresponding to nearly
1.5 ×107 atoms) filled beforehand with the barrier mate-
rial AlxGa1−xAs. a0 refers to the lattice constant of the
AlxGa1−xAs matrix. This procedure accurately captures the
exact atomistic symmetry of the QD system, without any
extra assumption. Note that we will refer here to the C3v

symmetry as the nominal symmetry, i.e., the QD symmetry
of the system without taking into account the perturbations
introduced by the surrounding AlxGa1−xAs matrix. Once the
geometry of the system has been set up, the minimization of
the strain energy is carried out via a generalized valence force
field (GVFF) approach [42–44] which allows the ideal atomic
positions to be relaxed. Then, the single-particle electron and
hole states (ψ j) and energies (Ej) are obtained by solving
two times Schrödinger-Pauli’s equation within the empirical
pseudopotential framework:

[
− h̄2

2m0
∇2 +

∑
α

(vα (r − rα ) + V SO
α (r − rα ))

]
ψ j (r, σ ) = Ejψ j (r, σ ), (B1)

where j denotes either the holes (h) or the electrons (e)
depending on whether the calculation is performed for va-
lence or conduction states. The first term is the kinetic energy
(where m0 represents the bare electronic mass and h̄ denotes
the reduced Planck constant) while vα (r − rα ) is the screened
atomic pseudopotential for each atom of type α located at po-
sition rα , i.e., a local potential fitted to experimentally known
bulk quantities (such as energy band gaps, effective masses,
and deformation potentials). Moreover, the spin of the wave
function is described by the index σ ∈ {↑,↓}. Finally, the
spin-orbit interaction is included as the only nonlocal part

under the formal form [43,45–49]

V SO
α (r − rα ) =

∑
l

|l〉V SO
l,α (r − rα )L̂ · Ŝ〈l|, (B2)

in which |l〉 is the projection operator of orbital angular
momentum l and only l = 1 is used in practice. Besides,
L̂ ≡ (L̂x, L̂y, L̂z ) is the orbital angular momentum vector op-
erator, Ŝ ≡ (Ŝx, Ŝy, Ŝz ) is the spin-vector operator, and V SO

l,α (r)
is a potential describing the spin-orbit interaction (that we
set to a Gaussian). The strained linear combination of bulk
bands (SLCBB) method [50], which constitutes an efficient
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approach to handle multimillion-atom systems, is particularly
suited to tackle the problem at hand and is employed here with
a 10 × 10 × 10 k-points grid centered around the  point.
The resulting wave functions are subsequently plugged into a
screened configuration interaction (CI) scheme [51,52] which
can simulate Slater determinants from single-particle wave
functions. Including Kramers spin, Nv = 18 valence states and
Nc = 18 conduction states form the CI basis onto which the
construction of the correlated (multi)exciton wave functions
|�(X )〉 relies. In this study, the exciton states |�(X 0)〉 are
of particular interest and the corresponding many-body wave
functions are formally written

|�(X 0)〉 =
Nv∑
hi

Nc∑
e j

A(hi, e j )|
hi,e j 〉, (B3)

where

|
hi,e j 〉 = d̂†
hi

ĉ†
e j
|
0〉, (B4)

and d̂†
hi

(ĉ†
e j

) is an operator that creates a hole (an electron) in
the state φhi (φe j ), while the A(hi, e j ) terms are coefficients

accounting for the weight of each basis determinant |
hi,e j 〉.
In other words, Eq. (B4) describes the promotion of an elec-
tron from the valence state φhi with energy Ehi to a conduction
state φe j with energy Eej . Here, the φ states are spinors related
to the ψ states by the relationship

φ(r) =
(

ψ (r,↑)
ψ (r,↓)

)
. (B5)

Thus, the sum in Eq. (B3) runs over all the 36 (conduction and
valence) states that are used to produce singly excited Slater
determinants from the ground-state Slater determinant |
0〉
(or equivalently the Fermi vacuum state in the electron-hole
picture). The many-body Hamiltonian Ĥ is then diagonalized
in the CI basis and its matrix elements can be extracted from
the following formula [51,53]:

Hhe,h′e′ = 〈
h,e|Ĥ|
h′,e′ 〉,
= (Ee − Eh)δhh′δee′ − Jhe,h′e′ + Khe,h′e′ .

(B6)

Here, δ j j′ symbolizes the Kronecker delta while the J and
K terms represent the electron-hole direct and exchange
Coulomb integrals, respectively, and their matrix elements can
be calculated as [51]

Jhe,h′e′ = e2

4πε0

∑
σ1,σ2

∫∫
dr1dr2

ψ∗
h′ (r1, σ1)ψ∗

e (r2, σ2)ψh(r1, σ1)ψe′ (r2, σ2)

ε(r1, r2)|r1 − r2| , (B7)

Khe,h′e′ = e2

4πε0

∑
σ1,σ2

∫∫
dr1dr2

ψ∗
h′ (r1, σ1)ψ∗

e (r2, σ2)ψe′ (r1, σ1)ψh(r2, σ2)

ε(r1, r2)|r1 − r2| , (B8)

where e is the elementary charge of the electron and ε0 is
the permittivity of free space while ε(r1, r2) is a screening
function based on the Thomas-Fermi model for semiconduc-
tors first introduced by Resta [54]. Once all these steps have
been performed, accessing the theoretical PL emission and
the fine structure of the exciton [52] is straightforward. As
for the radiative lifetime τi f (X 0

ν ), the calculation is carried out
according to the formula [55]

1

τi f
(
X 0

ν

) = e2nQD

3πε0m2
0c3

0 h̄2 Ei f
(
X 0

ν

) ∑
e=ex,ey,ez

∣∣Me
i f

(
X 0

ν

)∣∣2
, (B9)

with

Me
i f

(
X 0

ν

) = 〈
�

(
X 0

ν

)|e · p̂|
0
〉
. (B10)

In Eqs. (B9) and (B10), nQD is the refractive index of GaAs,
Ei f (X 0

ν ) is the energy of the transition, c0 is the speed of light
in vacuum, e is a polarization unit vector, while p̂ = −ih̄∇
is the momentum operator which commonly appears in the
electric dipole transition matrix elements. The subscript ν in-
dicates a specific state of the exciton manifold (consisting here
of two dark states and two bright states). Note that Eq. (B9)
strictly describes the characteristic radiative recombination
rate of the transition |�(X 0

ν )〉 → |
0〉. In order to take into
account the populations of each state in the calculation of
the radiative lifetime, a model including rate equations must
be used [56], which is out of the scope of this study. Our

simpler model is nonetheless sufficient to provide insightful
comparison with our experiments, as detailed in Appendix A.

Finally, we will characterize the optical anisotropy by the
degree of linear polarization (DLP) which is defined in the
[11̄0]-[112̄] plane as

DLP = Imax − Imin

Imax + Imin
, (B11)

where Imax (Imin) represents the maximum (minimum) inten-
sity of the polarization ellipse.

APPENDIX C: SINGLE-PARTICLE WAVE FUNCTIONS:
FROM THE 2D QUANTUM HARMONIC OSCILLATOR TO

THE ATOMISTIC C3v EPM RESULTS

In this Appendix, we provide more details on the EPM
single-particle wave functions. The 18 first single-particle
conduction and valence states used to form our CI basis for the
quantum dot with x = 1.00 are shown, respectively, in Figs. 8
and 9. The corresponding states for x = 0.15 are plotted in
Figs. 10 and 11. For a quantum dot with hexagonal shape,
large in-plane diameter (≈70 nm) and small height (≈4 nm),
a model based on a two-dimensional parabolic potential con-
finement constitutes a reasonable starting point to understand
the single-particle physics. Hence, we propose to analyze our
results in light of a widely known simplified model whose
main features are reminded thereafter.
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FIG. 8. Cross sections in the (111) plane of the 18 first single-particle electron-squared wave functions for a GaAs/AlAs QD. At the top of
each plot is given the energy splitting with respect to the previous state. The bottom labels indicate the radial and azimuthal quantum numbers
associated with the state in the Fock-Darwin notation (nr, l) (see text).

The solution of the Schrödinger’s equation for a two-
dimensional isotropic quantum harmonic oscillator (2D-
QHO) is given by the Fock-Darwin states which can be

expressed in polar coordinates (r, φ) as [22]

ψnr ,l (r, φ) = β√
2π

√
nr!

(nr + |l|)!e− β2r2

4 eilφ

(
βr√

2

)|l|

FIG. 9. Cross sections in the (111) plane of the 18 first single-particle hole-squared wave functions for a GaAs/AlAs QD. At the top of
each plot is given the energy splitting with respect to the previous state. The bottom labels indicate the radial and azimuthal quantum numbers
associated with the state in the Fock-Darwin notation (nr, l) (see text).
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FIG. 10. Cross sections in the (111) plane of the 18 first single-particle electron-squared wave functions for a GaAs/Al0.15Ga0.85As QD.
At the top of each plot is given the energy splitting with respect to the previous state. The bottom labels are inspired from the atomic physics
notation: s, p, d, f , g, h.

× L|l|
nr

(
β2r2

2

)
, (C1)

where nr and l are, respectively, the radial and azimuthal
quantum numbers. Visually, nr can be interpreted as the

number of nodes in the wave function in the radial direction.
l determines the size of the dip in the center and the radial
extent of the wave function (see, e.g., Fig. 6 of Ref. [22]).
These two quantum numbers will be used to label the states for
the GaAs/AlAs(111) QD in order to highlight the similarities

FIG. 11. Cross sections in the (111) plane of the 18 first single-particle hole-squared wave functions for a GaAs/Al0.15Ga0.85As QD. At the
top of each plot is given the energy splitting with respect to the previous state. The bottom labels are inspired from the atomic physics notation:
s, p, d, f , g, h.
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TABLE II. Fock-Darwin states and their energies.

(nr, l) E2D(nr, l )

(0,0) 1 h̄ω

(0, ±1) 2 h̄ω

(0, ±2); (1,0) 3 h̄ω

(0, ±3); (1, ±1) 4 h̄ω

(0, ±4); (1, ±2); (2,0) 5 h̄ω

(0, ±5); (1, ±3); (2, ±1) 6 h̄ω

between the 2D-QHO model and our results. β = √
mω/h̄ is a

constant for a given material, m being its effective mass while
ω is the oscillator frequency. The L|l|

nr
(·) functions are gener-

alized Laguerre polynomials. The corresponding energies are
given by

E2D(nr, l ) = (2nr + |l| + 1)h̄ω. (C2)

From Eq. (C2) it is evident that there exist degenerate levels
in the 2D-QHO, which are listed in Table II together with
their respective energies. It implies that (i) energy levels for
which 2nr + |l| = const are degenerate and (ii) nondegenerate
energy levels are equally spaced (by steps of h̄ω).

It is manifest from Eq. (C1) that |ψnr ,l (r, φ)|2 =
|ψnr ,−l (r, φ)|2. This equality means that for a given value
of nr , the two densities of probability for l and −l will be
identical. We recall here that this model is valid for a quantum
system with cylindrical symmetry (C∞v) and neglects atom-
istic effects by making use of an effective mass framework.
Thus, it would be unexpected that such a simple model could
provide insights to understand the physics of realistic nanos-
tructures. Nonetheless, both the conduction and valence states
for x = 1.00 states look remarkably similar to the description
given by |ψnr ,l (r, φ)|2 (but without the perfect cylindrical
symmetry C∞v). They are also energetically ordered in the
same way although the energy splittings between the states
are not equidistant and certain degeneracies are lifted, which
points out a first limitation of the 2D-QHO approach.

Now, let us emphasize these differences by looking more
closely at the atomistic results in order to see how the sym-
metry reduction C∞v → C6v → C3v → Cs affects the wave
functions. The QDs investigated in this work differ from this
idealized picture in two aspects: the hexagonal geometry of
the base lowers the symmetry to C6v while the crystal atom-
istic structure of the underlying zinc-blende lattice in [111]
further reduces it to the C3v point group [57]. Note that for
a system quantized along [111] in a cubic simulation box, it
is estimated that the SLCBB code can resolve energy split-
tings down to 	E ≈ 30–40 µeV, such that two states with
an energy splitting below this threshold will be considered
degenerate.

Consider the x = 1.00 case. All the 18 conduction states
plotted in Fig. 8 exhibit a very clear C6v symmetry. In other
words, their symmetry is determined only by the hexagonal
geometry of the quantum dot base. This observation comes
as a surprise as it indicates that the electron states are only
sensitive to the QD shape and do not feel the actual crystal
symmetry, in striking contrast with lens-shaped QD grown
along [001] [57]. Moreover, a large amount of the symmetries

predicted for the C∞v systems by the 2D-QHO model are
retained. Indeed, for a given value of nr , most of the states of
the form (nr,±l ) are degenerate (with the notable exception
of |l| = 3). Once again, we point out that despite these sim-
ilarities with the 2D-QHO model, the advanced calculations
show also manifest differences since the states with nr �= 0
and l = 0 are never degenerate and the states with 	l = 1 are
not equidistant in energy.

On the other hand, when the valence states are considered
(see Fig. 9), all the degeneracies are lifted although the first
eight states are almost identical to the conduction states and
possess the C6v symmetry. On the contrary, the higher-energy
states with opposite azimuthal quantum number are now dis-
tinct and their symmetry is lowered to C3v , showing that the
hole states are actually sensitive to the crystal lattice symme-
try. For example, by summing the valence states (1,+1) and
(1,−1), one can see that the the resulting state will look like
the conduction states (1,±1). The same observation can be
made for (0,±4), (1,±2), and (0,±5), i.e., all the valence
states which have the C3v symmetry. The origin of this behav-
ior is yet to be elucidated.

For the GaAs/AlxGa1−xAs(111) QDs with x = 0.15, the
rotational symmetry is broken and the Fock-Darwin notation
(nr, l) is no longer meaningful. Instead, a notation inspired
from atomic physics (s, p, d, f , g, h) is adopted in Figs. 10
and 11. By comparing Fig. 10 with Fig. 8, it is clear that the
ground state e0 is a 1s state with only a distortion compared
to the (0,0) state. Besides, the (0,±1) states are evidently split
into two p-like states labeled 1px and 1py whose orientation
depends on the arrangement of the atoms in the disordered
barrier material surrounding the quantum dots. The same ob-
servation is valid for the (0,±2) states which become d-like
states. Higher energetic states also follow the same pattern.
Note that the (1,±1) can be thought as a linear combination of
1p states, as for an ensemble of QDs with x = 0.15 averaged
over a large number of random distributions there would be
no privileged orientation.

In conclusion, we have shown in this Appendix that (i) the
2D-QHO toy model constitutes a reasonable approximation
which can provide preliminary interesting insights to grasp
the physics of realistic C3v systems, (ii) the conduction states
of hexagonal-based GaAs/AlAs(111) QD have the same sym-
metry of the QD shape C6v , and (iii) the hole is more sensitive
to the atomistic crystal lattice symmetry C3v , which is the
expected result from group theory and previous works [57].

APPENDIX D: RELATIONSHIP BETWEEN THE
CONTRAST IN LIFETIME AND THE DEGREE

OF LINEAR POLARIZATION

In this Appendix, we present a simple relationship connect-
ing the contrast in lifetime to the degree of linear polarization
in self-assembled quantum dots using only a single assump-
tion, based on the argument developed in Ref. [31] that two
exciton states belonging to different irreducible representa-
tions must have different characteristic lifetimes.

The prototypical nanostructure that is considered in the
following derivation is a quantum system with a fourfold
nondegenerate exciton ground state. It is assumed that the two
dark states X1 and X2, which are lower in energy, can safely be
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neglected hereafter owing to their very small transition dipole
moments in the absence of dark-bright exciton coupling. We
will therefore focus on the two bright states X3 and X4 which
are the optically active ones. Their respective energies are
such that EX1 � EX2 < EX3 < EX4 as hinted by the notation.
The main assumption that will be used later on is that the two
transitions |X3〉 → |
0〉 and |X4〉 → |
0〉, where 
0 is the
ground state, have orthogonal polarizations. Such a condition
is usually fulfilled when the exciton ground state possesses
a pure heavy-hole character, but it is not restricted to this
case. We show below that it is possible for these systems to
derive an analytical formula connecting the degree of linear
polarization to the contrast in lifetime.

Starting with Eq. (B9) and setting κ = e2nQD

3πε0m2
0c3

0 h̄2 , one can

write the recombination decay rates for the two bright exciton
states as

1

τX3,4

= κEX3,4

∑
e=ex,ey,ez

|Me(X3,4)|2. (D1)

The contrast in lifetime can be expressed in general as

Cτ = τX3 − τX4

τX3 + τX4

. (D2)

For a quantum dot with C3v symmetry, the two bright
exciton states X3 and X4 belong to the same irreducible rep-
resentation of the point group so that τX3 = τX4 and Cτ = 0.
When this symmetry is broken, a lifetime asymmetry can exist
and Cτ �= 0 (for example, in the main body of the text, it is
lowered to Cs by introducing a miscut angle α �= 0◦). Defining
IXi ≡ ∑

e=ex,ey,ez

|Me(Xi )|2 and using Eq. (D1), the expression of

Cτ in Eq. (D2) can be rewritten as

Cτ =
1

κEX3 IX3
− 1

κEX4 IX4

1
κEX3 IX3

+ 1
κEX4 IX4

= EX4 IX4 − EX3 IX3

EX4 IX4 + EX3 IX3

= IX4 − IX3 (EX4/EX3 )

IX4 + IX3 (EX4/EX3 )
. (D3)

Since EX4/EX3 = 1 + FSS/EX3 and FSS/EX3 ≈ 10−5 � 1, the
equation for the contrast in lifetime is finally given by

Cτ = IX4 − IX3

IX4 + IX3

. (D4)

Besides, in the [11̄0]-[112̄] plane, the optical anisotropy
can be characterized by the degree of linear polarization as
follows:

DLP = I[11̄0] − I[112̄]

I[11̄0] + I[112̄]
, (D5)

where the intensities are simply related to the transition dipole
matrix elements by

I[11̄0] =
∑
i=3,4

|M[11̄0](Xi )|2,

I[112̄] =
∑
i=3,4

|M[112̄](Xi )|2.
(D6)

Note also that the two definitions of the DLP given by
Eqs. (B11) and (D5) become equivalent if and only if the
polarizations of the two bright transitions are orthogonal to
each other. Indeed, under this condition, Imax will coincide
either with I[11̄0] or I[112̄] (and conversely for Imin).

If the intensities IX3 and IX4 can be written as functions of
I[11̄0] and I[112̄], then the DLP and Cτ can be connected to
each other. In general, finding a direct correlation between
these two quantities is not possible. However, when X3 is
entirely polarized along ex = [11̄0] whereas X4 is completely
polarized along ey = [112̄] as this is the case in this study
and in Ref. [29] (where polar diagrams are provided), the
following approximations can be introduced:

|M[112̄](X3)| = |M[111](X3)| = 0,

|M[11̄0](X4)| = |M[111](X4)| = 0.
(D7)

Equation (D7) is the key assumption to relate the contrast in
lifetime Cτ to the DLP as it straightforwardly leads to⎧⎨⎩IX3 = |M[11̄0](X3)|2 = I[11̄0],

IX4 = |M[112̄](X4)|2 = I[112̄].
(D8)

Under this hypothesis, τX3 and τX4 can be relabeled as τ[11̄0]
and τ[112̄], respectively, so that a more convenient expression
for the contrast in lifetime can be formulated:

Cτ = τ[11̄0] − τ[112̄]

τ[11̄0] + τ[112̄]
. (D9)

And, finally, using Eqs. (D4) and (D8),

Cτ = I[112̄] − I[11̄0]

I[11̄0] + I[112̄]

= −DLP.

(D10)

The presence of a minus sign in Eq. (D10) is related to
the ordering of the polarizations for the X3 and X4 states.
If, for a given quantum dot, IX3 = I[112̄] and IX4 = I[11̄0], then
one would get Cτ = DLP. Nonetheless, when taking the abso-
lute value, the relationship between the contrast in lifetime and
the DLP obtained here is the same as in Eq. (12) in Ref. [31].
The latter formula was derived using an effective model to
describe the optical properties of InGaAs QDs grown along
[001] with C2v nominal symmetry.

Our numerical results and the above analytical derivation
demonstrate that this equality can be generalized to any quan-
tum dot whose optically active excitonic structure consists of
two bright states with orthogonal polarizations. This conclu-
sion does not rely on any specific model and is valid as long
as Eq. (D1) constitutes a reasonable definition for the lifetime.

Finally, note that in Ref. [31] perturbations lowering the
QD symmetry from C2v to C1 are considered via an angle θ .
The latter accounts for deviations of the exciton polarization
angle from the main symmetry axes ([11̄0] and [110]) and
allows to distinguish between extrinsic and intrinsic lifetimes.
This distinction is not addressed in our proof.
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