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Abstract

We consider the problem of computing efficiently the full matrix of second order
sensitivities of a Monte Carlo price when the number of inputs is large. Specif-
ically, we analyse and compare methods whose run time is at most O(N · T ),
where N is the dimension of the input and T is the time required to compute
the price. Since none of the alternatives from previous literature appears satis-
factory in all settings, we propose two original methods: the first one is based
on differentiation in distributional sense, while the second one leverages a func-
tional relation between first and second order derivatives. The former shows
excellent generality and computational times to achieve a given target accu-
racy. The latter is by far the most effective in at least one relevant example,
and has a theoretical interest, being the first practical estimator of the full Hes-
sian whose complexity, as a multiple of that of the only-price implementation,
does not grow with the dimension of the problem.

Keywords: Greeks; Gamma; algorithmic differentiation; derivatives pricing.

Key messages:

• The N -by-N Hessian of a price can be estimated in less than O(N2) time.

• A new O(N) estimator outdoes legacy methods in accuracy and/or ap-
plicability.

• An O(1) estimator exists with acceptable and sometimes outstanding
accuracy.

1 Introduction

In the active management of portfolios of financial products, the sensitivity of the
net position to movements of the underlying risk factors is a most precious piece of
information. Indeed, one may want to monitor which market shifts could cause a
significant jump in the value of the portfolio, and maybe build a hedging portfolio
chosen to mitigate the corresponding sensitivities.

In mathematical terms, sensitivities are usually expressed by derivatives of the
pricing functional P (also called Greeks). First order Greeks are obviously the most
important indicator for a trader to see whether his overall position is approximately
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market neutral, and are often kept under strict control by dynamically adjusting
the hedging positions as time passes. A direct consequence of this behaviour is
that the day-to-day performance of the trading desk is at leading order driven by
second order Greeks (also called Gammas). By the way, this is the discrete-time
counterpart of the fact that in an idealised Black-Scholes world, the continuously
rebalanced delta hedging replication strategy generates an Ito component 1

2
∂2P
∂X2

0
dt

in the dynamics of total wealth.
All of the above implies that the knowledge of second order sensitivities is often

crucial; which is even more true when the payoff depends on several and maybe
correlated risk factors, whose co-movements impact the portfolio value through the
mixed terms in the Hessian matrix (sometimes called Cross Gammas). This is the
case for instance of basket products, indices, multi-asset-class hybrids, and portfolio-
level non-linear valuation adjustments such as CVA and DVA (Basel Committee on
Banking Supervision, 2015).

Unfortunately, these are exactly the settings in which the pricing exercise is
computationally more demanding, as it often involves a multidimensional Monte
Carlo simulation. This rules out as infeasible the simplest way to approximate the
full N ×N pricing Hessian H, i.e.

Hij ≈
P (ψ + hi + hj)− P (ψ + hi − hj)− P (ψ − hi + hj) + P (ψ − hi − hj)

(1 + 3δij)h2
,

where ψ is the vector of pricing inputs of interest, h is a small displacement and
hi := hei is h times the i-th element of the canonical basis of RN : this method
would involve O(N2) full revaluations.

In fact, the gradient ∇P can be computed in O(T ) where T is the time to
compute P , thanks to adjoint algorithmic differentiation (AAD, see Giles, 2007;
Capriotti, 2011; Capriotti and Giles, 2012), which is more and more widespread for
first order sensitivities among practitioners. This technique and its generalizations
(e.g. Giles, 2009; Chan and Joshi, 2015; Daluiso and Facchinetti, 2018) coupled with
the approximation

Hij ≈
∇jP (ψ + hei)−∇jP (ψ − hei)

2h
or Hij ≈

∇jP (ψ + hei)−∇jP (ψ)

h
,

would already give an estimator in O(N ·T ), but this is in practice quite unsatisfac-
tory, since for small h the result is very noisy, while for moderate h it is too much
biased.

The latter fact stimulated research of alternative algorithms which could retain
the O(N · T ) cost while being unbiased and having less Monte Carlo variance. We
point out in particular the significantly different contributions Capriotti (2015),
Pagès et al. (2018) and Joshi and Zhu (2016), which seem unaware of one another
and present numerical evidences which are difficult to compare.

Our first contribution is therefore a comparative analysis of the three above
proposals, to see in which settings they can be applied. In fact, while not delving into
the details of the estimators which are already well covered in the original papers,
we sometimes go slightly beyond the authors: namely, by underlying a subtlety
needed to correctly implement Capriotti (2015), and by developing a multi-fixing
generalization of Pagès et al. (2018).
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As we will see, in some situations the rich set of alternatives outlined above
shrinks considerably: in particular, payoffs directly depending on the non random
initial state or on static parameters (e.g. forwards and deterministic interest rates),
and factorial models in general where the number of random drivers is smaller than
the number of underlyings, are usually out of scope. This motivated the devel-
opment of the second contribution of this paper, namely a fairly general-purpose
method based on second order pathwise differentiation of the payoff in distributional
sense.

Finally, most of the above methods run in O(N · T ) time. This is a theoretical
upper bound for general computer functions (see e.g. Griewank and Walther, 2008),
but can the special structure of a pricing problem with diffusive underlyings change
the verdict? To our knowledge, the only partial positive answer is provided by
the already cited Joshi and Zhu (2016) in the case in which the simulation can be
performed keeping at each time step only a low dimensional state variable.

In this respect, our third and last contribution is a positive answer to the above
question in the complementary setting in which the Brownian driver is high di-
mensional (precisely, has dimensionality at least equal to the number of underly-
ings). Our solution is based on a relation linking a suitable first order sensitivity
to ∂2P/∂X2

0 via the pricing PDE, and yields the latter in O(T ) time by an easily
implementable wrapper of any O(T ) first order estimator. In fact, also LRMAAD
from Capriotti (2015) has constant cost and almost the same perimeter of applica-
bility, but from the numerical analysis below it turns out to have too large Monte
Carlo uncertainties to be an option in practice; while we will show at least one rel-
evant example in which our new constant-cost algorithm significantly outperforms
all its linear-cost competitors.

The rest of the paper is structured as follows. Section 2 states the problem in the
diffusive setting in which all our analyses will be performed; Section 3 reviews the
methods proposed in the literature; Section 4 introduces the new methods; Section
5 compares the empirical performances and Monte Carlo uncertainties on several
test cases; finally, Section 6 summarizes the main findings and concludes.

2 Setting

We consider a description of the market where the risk factors Xt are modelled as
an RNX -valued diffusion driven by an NW -dimensional Wiener process Wt under a
fixed probability measure P:

dXt = µ(θ,Xt, t)dt+Σ(θ,Xt, t)dWt, t ≥ 0, (2.1)

where θ ∈ RNθ is a vector of parameters. A price P of interest is expressed as an
expected value

P = E [g (XT1 , . . . ,XTM
,θ)] =: E [g (XT ,θ)] , (2.2)

and is estimated by Monte Carlo simulation; to be concrete, we suppose that the
simulation is performed by Euler stepping on a time grid {S0, . . . , SL} = S ⊇ T :

XSi+1 =XSi + µ (θ,XSi , Si)∆iS +Σ (θ,XSi , Si)
√
∆iS ·Z(i),

∆iS := Si+1 − Si, Z(i) ∼ N (0, Id),
(2.3)
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although one could imagine more or less straightforward generalizations of the meth-
ods described below for more general schemes.

When the payoff does not depend on θ directly, we will write

g (XT ,θ) =: p (XT ) ; (2.4)

we will call “autonomous” this simpler case. Note that the price P still depends on
θ through the dynamics (2.1).

We aim at computing the full Gamma matrix

Γ :=
∂2P

∂X2
0

,

and possibly the full Hessian

H :=
∂2P

∂ψ2
, ψ := (X0,θ) ,

in acceptable time when NX and Nθ are large. Note that a naive approach based
on finite differences would involve respectively O(N2

X) and

O
(
(NX +Nθ)

2
)
=: O

(
N2
)

re-evaluations of the price P with displaced values of X0 and possibly θ.
Throughout the paper, the following notational conventions are adopted: scalars

are in italic (e.g. a), vectors in boldface italic (e.g. a has components ai), matrices in
straight boldface (e.g. A has entries Aij); vectors are interpreted as columns unless
transposed; for a vector a, the gradient ā = ∂P

∂a is a row vector; for a matrix A,

the gradient Ā = ∂P
∂A is a matrix with components Āij = ∂P

∂Aji
(note the inversion

of indices). Finally, for stochastic processes, we will write the time argument in
the subscript (e.g. Xt) if no confusion arises, or as a function argument (e.g. Xi(t))
otherwise.

3 Review of existing algorithms

In this section, we review from an algorithmic point of view the main methods based
on the existing literature whose theoretical complexity is O(N · T ), with a focus on
the perimeter of applicability within the setting of Section 2. For quick reference,
we gather in Table 1 the essential traits of all these algorithms.

3.1 Finite differences of pathwise adjoint

Before describing more complex methods, let us mention that the computation of
finite differences of the pathwise adjoint estimator is already a linear cost method.
Indeed, first order pathwise adjoints cost at most 4T ; repeating their computation
N times for small directional displacements of ψ, one trivially gets an estimator for
the Hessian, which will be denoted by the acronym FDPW.

However, we expect poor variance properties of this naive method, as finite
differences have high Monte Carlo uncertainties when the integrand is discontinuous,
as is the case for the gradient of typical payoffs. Therefore, we explore in the
following sections analytical alternatives levering on the structure of the problem.
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Name 1st order 2nd order Section Reference

FDIFF2 finite difference finite difference 1 N.A.
FDPW pathwise AD finite difference 3.1 N.A.

LRMAAD pathwise AD likelihood ratio 3.2 Capriotti (2015)
AADLRM likelihood ratio pathwise AD 3.2 Capriotti (2015)

VAD vibrato pathwise AD 3.3 Pagès et al. (2018)
VFD vibrato finite difference 3.3 N.A.
HOPP change var + AD pathwise AD 3.4 Joshi and Zhu (2016)

Table 1: Legacy methods to compute second order sensitivities: estimators used for
first and second order differentiation, references. Here and elsewhere in the paper,
AD stands for algorithmic differentiation.

3.2 Likelihood ratio and adjoint differentiation

The idea of Capriotti (2015) is to combine pathwise differentiation with the like-
lihood ratio method. Since the latter can handle only the autonomous case, the
same limitation applies to the resulting second order methods; moreover, as is clear
from the matrix inversions in the equations below, one needs that NX ≤ NW with
Σ (θ,XT , T ) almost surely full rank. As we believe that a crucial detail in the
correct interpretation of the final formula may be easily overlooked, we repeat the
derivation briefly.

When adjoint algorithmic differentiation is applied first, one wants to compute

∂

∂ψ
E
[
∂p

∂XT
(XT )

∂XT

∂ψ
(Z,ψ)

]
by likelihood ratio. In order to do so, one must rewrite the argument of E so that
the only random variable appearing isXS , because the method relies on writing the
expectation as an integral against the density of XS . Fortunately, Z(i) is readily
expressed as a function of XS and θ as

z(i)(XS ,θ) = Σ (θ,XSi , Si)
−1 (∆iS)

− 1
2
(
XSi+1 −XSi − µ (θ,XSi , Si)∆iS

)
.

Now a straightforward generalization of the likelihood ratio method to the case in
which the integrand has explicit dependence on the differentiation parameter leads
to the following estimator of the Hessian H:(

∂p

∂XT
(XT )

∂XT

∂ψ
(Z,ψ)

)⊺

Ωψ +
∂

∂ψ

[
∂p

∂XT
(XT )

∂XT

∂ψ
(z(XS ,θ),ψ)

]
, (3.1)

where the Ωψ is the customary likelihood ratio weight capturing the component of
the derivative due to dependence of the distribution of XS on ψ by differentiation
of the log-density, while the future path XS\{0} in the square bracket is a constant
for the purpose of differentiation. Note that in general the second addend cannot
be replaced by the simpler

∂p

∂XT
(XT )

∂

∂ψ

[
∂XT

∂ψ
(Z,ψ)

]
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which seems implicit in the implementation described by Capriotti (2015). The
resulting algorithm is denoted by the acronym LRMAAD.

From the run time point of view, the second addend of (3.1) involves differentia-
tion of the RN -valued function in square brackets, implying that the computational
cost grows linearly withN . This result cannot be improved in general, since comput-
ing an N -by-N Jacobian multiplies the run time of a function by O(N), regardless
of whether one uses AAD as suggested in the original article, or a simpler forward
differentiation (Griewank and Walther, 2008), or even finite differences.

However, if one wants to determine only Γ, then this Jacobian term can be
computed very efficiently. Indeed, for ψ =X0 it reduces to

∂

∂X0

[
∂p

∂XT
(XT )

∂XT

∂X0
(z(XS),X0)

]
;

now, one can easily note that if the quantity in square brackets is computed by
AAD, then in the implementation it takes the form

X̄S1 ·
∂XS1

∂X0
(z(XS1 ,X0),X0)

for a suitable random variable X̄S1 not depending on X0. Once this is remarked,
differentiation of this term is so fast to become practically negligible, and the com-
plexity of the algorithm is dominated by the first term in (3.1), computed in O(T )
time. Note that even there, the likelihood ratio weight ΩX0 has non-trivial de-
pendence on X0 only for what concerns the first Euler step i = 0: this makes the
overall runtime essentially comparable to that of computing the first order pathwise
estimator

∂p

∂XT
(XT )

∂XT

∂X0
(Z,X0).

Instead, if one differentiates pathwise the first order likelihood ratio estimator,
an algorithm called AADLRM is obtained. It involves the Jacobian of the calcula-
tion of the weight vectorΩψ, inclusive of the simulation scheme, which again implies
a potential O(N) factor on run times. The original paper notes that this second
method is empirically slower on a simple example, maybe because of the above Γ-
specific speedup; however, we feel that a comparison of Monte Carlo variances is
needed before discarding AADLRM as less performing.

3.3 Vibrato and adjoint differentiation

Pagès et al. (2018) apply automatic differentiation to a different first order estimator
called Vibrato Monte Carlo, which has much better sample variance properties
especially after the introduction of a trick based on the antithetic transform.1 (They
also consider the possibility of applying Vibrato twice, but they find no relevant
difference.) As in the previous section, the analysis works only for the autonomous
case and under the hypothesis NX ≤ NW with Σ (θ,XT , T ) almost surely full rank.

The algorithm to compute the estimator, here generalized toM > 1 fixing times
in the spirit of what Giles (2009) mentions for first order Vibrato, is as follows:

1Note that the antithetic idea may also be beneficial for the likelihood ratio method itself, as
first remarked in Capriotti (2008).
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Algorithm 3.1 (VAD). 2

1. For each fixing time Ti = St(i)+1, compute the derivatives of the (approximate)
Gaussian log-density of XTi given its neighbours in the simulation grid S; if
Ti = SL is the maturity date of the payoff, this is given by the Euler step (2.3),
otherwise it is described by the law of a Brownian bridge based interpolation.

2. For each fixing time Ti = St(i)+1, simulate XTi from this conditional law,
by an inner sub-Montecarlo consiting of few independent draws and their
corresponding antithetic variates. On these scenarios, use the conditional
likelihood ratio weights computed at step 1. to estimate the first order price
sensitivities to the realized drift and diffusion coefficients.

3. Propagate backwards the so obtained sensitivities through the adjoint of the
drift and diffusion computation and through the adjoint of the Euler scheme.

4. Apply again automatic differentiation to all of the above steps.

Note that the last step multiplies by O(N) the cost of the whole algorithm.
As for the methods of the previous section, if the payoff is discontinuous then the
method cannot be applied as is;3 However, in this case we can conceive to perform
the last step with a finite difference with non-small displacement: we will denote
this variant as VFD.

3.4 Optimal partial proxy for Hessians

In real payoffs, direct pathwise second order differentiation is not possible only
because of a few discontinuity points of the gradient or of the payoff. Exploiting
this fact, Joshi and Zhu (2016) manage to change the integrand without changing
the integral, so that one can differentiate algorithmically twice the modified payoff.
More precisely, they rewrite the expected value as a function of a multivariate
uniform U ,

P = E [g (XT ,θ)] =: E [g (xT (Z,ψ),θ)] =: E
[
g
(
xT (N−1(U),ψ),θ

)]
and then perform a change of variables V = v(U ,ψ), designed in such a way that
while moving ψ from its unperturbed value ψ0, the path generated by v(U ,ψ) does
not cross the discontinuities. After the change of variables,

P = E
[
g
(
xT (N−1(v(U ,ψ)),ψ),θ

)
· ω(U ,ψ)

]
for a suitable weight ω; the mapping v ensures that if the payoff is smooth except
when

U
(t(i))
NW

= a
(i)
j

(
ψ,U (1), . . . ,U (t(i)−1), U

(t(i))
1 , . . . , U

(t(i))
NW−1

)
for some j,

2The algorithms in the previous section are called LRMAAD when LRM is applied after AAD,
and AADLRM otherwise; while here, somewhat confusingly, VAD is the method which applies
V(ibrato) before AD. We keep the acronyms chosen by the original authors nonetheless.

3Of course one can always smooth out the payoff, as is suggested in the original paper; see also
the discussion at the beginning of Section 5.
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where {Tt(i)+1}i=1,...,h are the maturities of the payoff’s discontinuities, then4

U
(t(i))
NW

∈
[
a
(i)
j (ψ0,U), a

(i)
j+1(ψ0,U)

)
⇐⇒ ∀ψ, V (t(i))

NW
∈
[
a
(i)
j (ψ,V ), a

(i)
j+1(ψ,V )

)
.

Joshi and Zhu (2016) proceed suggesting an implementation based on a smart
backpropagation of second order derivatives (Joshi and Yang, 2011), which should
improve the computational burden when there are significantly fewer state variables
in the stochastic process than parameters in the model. We do not pursue this level
of optimization in our implementation, which aims at being generic; the analysis of
the applicability and efficacy of such model-dependent and payoff-dependent trick
on the different competitors described in this paper could be the subject of future
research.5 For the moment being, we sketch a less ad hoc algorithm to compute the
estimator:

Algorithm 3.2 (HOPP).

1. During simulation, compute the critical values a
(i)
j , the transformed drivers

V and the weight ω. (In fact we know a priori that V = U and ω = 1
at ψ = ψ0, but the instructions computing V and ω should be taken into
account when in the sequel this step will be differentiated.)

2. Multiply the payoff g by the weight ω (with the same remark about ω = 1).

3. Differentiate algorithmically twice the previous two steps, inclusive of simula-
tion, with respect to ψ for fixed ψ0.

Step 3 is an O(N) multiplier on the execution time of the first two steps, which
in turn is typically little more than that of a plain Monte Carlo run, the overhead
of computing ω being slightly significant only when the discontinuities are very
frequent as in barrier options.

4 New methods

In this section we move to new proposals which try to overcome some limitations
of the above methods. Table 2 completes with the contents of this section the
summary which was provided in Table 1 for the algorithms of Section 3.

4.1 Second order differentiation by conditioning

We isolate in this small section a simple mathematical property, which will be used
to derive the new second order method of Section 4.2, but which is meaningful per
se. The general question is whether the ability to compute efficiently an estimator
of the Hessian of a conditional expectation can enable the fast computation of the
Hessian of the unconditional expectation.

4At least to second order, as the original article points out.
5Note that the optimization would not apply anyway to the numerical tests of this paper, whose

validity is therefore unaffected by the simplification.
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Name 1st order 2nd order Section

FDDAAD distributional AD finite differences 4.2
DAAD2 (distributional) AD distributional AD 4.2

FΓ any none 4.3

Table 2: New methods to compute second order sensitivities: estimators used for
first and second order differentiation, references. See also Table 1 for legacy meth-
ods.

More specifically, we take a set of times T̃ ⊆ S, and let

ε
(
X
T̃
,θ
)
= E

[
g (XT ,θ) |XT̃

]
.

Then one can compute the desired Hessian as E
[
∂2

∂ψ2
ε
(
X
T̃
,θ
)]
, i.e.

E

[(
∂(X

T̃
,θ)

∂ψ

)⊺
∂2ε

∂
(
X
T̃
,θ
)2 (∂(XT̃

,θ)

∂ψ

)
+

∂ε

∂X
T̃

(
∂2X

T̃

∂ψ2

)]
, (4.1)

where by the tower rule, one can substitute the terms

∂ε

∂X
T̃

,
∂2ε

∂
(
X
T̃
,θ
)2

with X
T̃
-conditional sample estimators. We note that the second addend of (4.1)

is readily computed in linear time by differentiation of the function

ψ 7→ X̄
T̃
·
∂X

T̃

∂ψ
, with X̄

T̃
any estimator of

∂ε

∂X
T̃

,

provided that X̄
T̃
is interpreted as an exogenous constant vector: which function is

easily computed by pathwise AAD. The Jacobians in the first addend of (4.1) are
similarly not a problem, and so we just need an estimator of the Hessian of ε, as
desired.

4.2 Distributional algorithmic differentiation

The methods of Section 3 are devised to avoid at least in part the need of second
order differentiation of the payoff, because its first derivative is typically discontin-
uous: a vanilla call already has

d

dX
(X −K)+ = IX>K .

However, Daluiso and Facchinetti (2018) present a generalization of the first order
pathwise method which works for discontinuous payoffs, based on careful handling
of the Dirac deltas formally arising from differentiation of Heaviside functions. Then
on the one hand, by finite differences one may immediately form a simple biased
second order estimator for discontinuous payoffs (FDDAAD); on the other hand, a
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new unbiased method for both continuous and discontinuous payoffs working also
in the non-autonomous case can be introduced as follows.

As in most applications, suppose that there exist smooth scalar functions

f̃i(XT ,θ), g̃a(XT ,θ) for i ∈ 1, . . . , h, a ∈ {−1,+1}h,

such that g is naturally represented as

g(XT ,θ) = g̃a(XT ,θ) on Xa := {(XT ,θ) : ai · f̃i(XT ,θ) ≥ 0 ∀i ≤ h}. (4.2)

We call Mi = St(i)+1 the last time in T such that f̃i depends on XMi .

Now we exploit the conditioning idea of (4.1) using as T̃ the (often quite small)
set obtained substituting in T eachMi with its first neighbours in the simulation grid
S. Recall that XMi can be simulated conditionally on its neighbours by Brownian
bridge interpolation, because diffusions are locally Gaussian and the simulation
grid is fine. With this choice of T̃ , we can estimate the Hessian of ε by applying
firstly pathwise differentiation to its definition (with distributional corrections if the
payoff itself is discontinuous), and then distributional algorithmic differentiation to
the result.

In more detail, call fi, ga the functions computing f̃i, g̃a from pre-simulated
X
T̃
, which functions include conditional simulation of XMi . In view of (4.1), we

only need an estimator of the Hessian of the conditional expectation ε, which thanks
to our hypotheses has the following form:

ε = E
[
ϕ
(
If1(Θ,Z)>0, . . . , Ifh(Θ,Z)>0,Θ,Z

)]
= E

[
ϕ
(
If(Θ,Z)>0,Θ,Z

)]
,

where Z is a standard Gaussian random vector, Θ = (X
T̃
,θ) is a constant in the

context of this expected value, and ϕ and the fi are suitable functions, smooth in
Θ and Z.

To proceed, we take from Daluiso and Facchinetti (2018) the following conven-
tions: given a vector v ∈ Rd and k ∈ {1, . . . , d}, we denote by v−k ∈ Rd−1 the
vector obtained from v removing its k-th component, and with v(vk = x) the vec-
tor obtained from v substituting the k-th component with the value x; Iv>0 is the
vector (Iv1>0, . . . , Ivd>0), not to be confounded with the d-by-d identity matrix Id;
finally, for a function ψ defined on {0, 1}h and for i = 1, . . . , h, we define

∆(i)ψ(a) = ψ(a(ai = 1))− ψ(a(ai = 0)).

We can now express the following weak assumption:

Hypothesis 4.1. fi is twice differentiable with respect to Θ and zk(i). Moreover,
for almost every Z−k(i), the function zk(i) 7→ fi(Θ,Z(Zk(i) = zk(i))) is zero only for
zk(i) in a finite set Ai

k(i)(Θ,Z−k(i)), and its derivative in such points is non-null.

Note that with our definition of fi, this means that we should be able to find
k(i) such that the k(i)-th component of

∂f̃i
∂XMi

Σ(t(i))

is almost-surely different from zero.
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We also suppose for notational convenience and with no loss of generality that

∆(i)ϕ
(
If(Θ,Z)>0,Θ,Z

)
= 0 ∀i < c,

so that the indicator functions before c represent the discontinuities in the gradient
of the payoff, while the indicator functions from c onwards represent the disconti-
nuities of the payoff itself, if any.

The cited paper tells us that the first order sensitivity is

∂ε

∂Θ
= d0 +

h∑
i=c

di,

where

d0 = E
[
∂ϕ

∂Θ

(
If(θ,Z)>0,Θ,Z

)]
,

di = E

 ∑
ζ∈Ai

k(i)
(θ,Z−k(i))

{
e−ζ2/2

√
2π

[∣∣∣∣ ∂fi∂zk(i)

∣∣∣∣−1 ∂fi
∂Θ

]
(Θ,Z(Zk(i) = ζ))

×∆(i)ϕ
(
If(Θ,Z(Zk(i)=ζ))>0,Θ,Z(Zk(i) = ζ)

)
 .

Now we have to differentiate d0 and di. The first task is a direct application of
the first order result to ∇ϕ:

∂d0
∂Θ

= H00 +
h∑

i=1

H0i,

where

H00 = E
[
∂2ϕ

∂Θ2

(
If(θ,Z(Zk(i)=ζ))>0,Θ,Z

)]
,

H0i = E

 ∑
ζ∈Ai

k(i)
(θ,Z−k(i))

{
∆(i)

(
∂ϕ

∂Θ

)⊺ (
If(Θ,Z(Zk(i)=ζ))>0,Θ,Z(Zk(i) = ζ)

)

× e−ζ2/2

√
2π

[∣∣∣∣ ∂fi∂zk(i)

∣∣∣∣−1 ∂fi
∂Θ

]
(Θ,Z(Zk(i) = ζ))


 .

If the payoff is continuous (c > h), we are done; otherwise, we need the derivative
of di, which is slightly trickier. In order to compute it, we note that by the implicit
function theorem, in a neighbourhood of Θ, the zeros ζ in the definition of each di
can be expressed as functions ζ

(l)
i of Z−k(i) and Θ with gradient6

−

[(
∂fi
∂zk(i)

)−1
(

∂fi

∂
(
Θ, z−k(i)

))] (Θ,Z(Zk(i) = ζ)
)
.

6In fact the neighbourhood may depend on Z; we neglect this kind of technicalities, which
should be addressable along the lines of the Appendix of Daluiso and Facchinetti (2018).
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Now each summand in the definition of di can be differentiated with the DAAD
method, provided that the composition of fj with ζ

(l)
i satisfies Hypothesis 4.1 for

some coordinate h(i, j) ̸= k(i). We define

Ai,j (Θ,Z) :=
{
(ζ, η) : (fi, fj)

(
Θ,Z(Zk(i) = ζ, Zh(i,j) = η)

)
= (0, 0)

}
.

We are ready to state the result:

∂di
∂Θ

= Hi0 +

h∑
j=c

Hij ,

where

Hi0 = E


∑

ζ∈Ai
k(i)

(θ,Z−k(i))

∂

∂(Θ, zk(i))

∣∣∣∣
zk(i)=ζ

[
e−ζ2/2

√
2π

∣∣∣∣ ∂fi∂zk(i)

∣∣∣∣−1(∂fi
∂Θ

)⊺

∆(i)ϕ

]

×

 INθ

−
[(

∂fi
∂zk(i)

)−1 (
∂fi
∂Θ

)] (
Θ,Z(Zk(i) = ζ)

)

 ,

Hij = E

 ∑
(ζ,η)∈Ai,j(Θ,Z)

e− ζ2+η2

2

2π

∣∣∣∣ ∂fi∂zk(i)

∣∣∣∣−1(∂fi
∂Θ

)⊺
∣∣∣∣∣ ∂fj
∂zh(i,j)

− ∂fj
∂zk(i)

(
∂fi
∂zk(i)

)−1 ∂fi
∂zh(i,j)

∣∣∣∣∣
−1

(
∂fj
∂Θ

− ∂fj
∂zk(i)

(
∂fi
∂zk(i)

)−1 ∂fi
∂Θ

)
∆(j)∆(i)ϕ (If>0,Θ,Z)


Zk(i)=ζ,Zh(i,j)=η

 .

Note that the expression in the second absolute value should be different from zero,
or to say it differently, ∂(fi, fj)/∂(zk(i), zh(i,j)) should be full rank.

All the gradients appearing in these formulas are readily computed by algo-
rithmic differentiation; the only practical concern is the fact that there are (up
to) (h − c + 1)2 terms Hij . In fact in most applications, fi and fj depend on
non-overlapping sets of fixing times, so that∣∣∣∣∣ ∂fj

∂zh(i,j)
− ∂fj
∂zk(i)

(
∂fi
∂zk(i)

)−1 ∂fi
∂zh(i,j)

∣∣∣∣∣
−1(

∂fj
∂Θ

− ∂fj
∂zk(i)

(
∂fi
∂zk(i)

)−1 ∂fi
∂Θ

)

=

∣∣∣∣ ∂fj∂zk(j)

∣∣∣∣−1(∂fj
∂Θ

)
,

which does not depend on i any more. As a consequence, the only portion of the
algorithm which truly grows quadratically with the number of payoff discontinuities
is ∆(j)∆(i)ϕ. This should not be dramatic in the economy of a Monte Carlo pricing
exercise inclusive of a costly Euler simulation, unless there is a really large number
of digital features as in frequently monitored barrier options, which anyway are
often already handled by regularizing the payoff accounting for touch probabilities
(see e.g. Glasserman, 2004).
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For ease of reference, we collect as a conclusion the full set of addends contribut-
ing to the estimator of the Hessian:

∂2ε

∂Θ2
= H00 +

h∑
i=1

H0i +
h∑

i=c

Hi0 +
h∑

i,j=c

Hij .

To conclude this section, we detail here below for the sake of clarity the algorithm
under the hypothesis that only the gradient is discontinuous. Recall that fi, ga are
the composition of f̃i, g̃a defined in (4.2) with the conditional simulation of theXMi

given X
T̃
, well approximated by Brownian bridges.

Algorithm 4.2. [DAAD2] On each Monte Carlo scenario:

1. Define a0 = If̃(XT ,θ)>0, and apply pathwise adjoint differentiation to ga0 ,

getting estimators θ̄, X̄
T̃
.

2. Differentiate again the previous step ignoring discontinuities, getting a matrix
D0 representing the smooth part of the X

T̃
-conditional sample estimator for

the Hessian of ε.

3. For each i = 1, . . . , h compute the values ω which substituted into W
(i)
k(i) make

a W̃ (i) such that fi equals zero, and the corresponding perturbed version of
XT , which we denote by X̃T . Then for each such ω:

(a) There should be exactly two a ∈ {−1,+1}h such that X̃T ∈ Xa, corre-
sponding to ai = ±1: call them a±.

(b) Use AAD to compute in the perturbed scenario the gradients

∂fi

∂
(
W (i),X

T̃
,θ
) , ∂ga±

∂
(
X
T̃
,θ
) .

(c) Increment the discontinuity’s contribution to
∂2ε

∂
(
X
T̃
,θ
)2 as follows:

Di +=
e−

ω2

2

√
2π

∣∣∣∣∣∣ ∂fi

∂W
(i)
k(i)

∣∣∣∣∣∣
−1(

∂fi
∂(X

T̃
,θ)

)⊺ [ ∂ga+

∂(X
T̃
,θ)

−
∂ga−

∂(X
T̃
,θ)

]
. (4.3)

4. Compute the Jacobian
∂X

T̃

∂ψ
, which is the only unknown part of

∂(X
T̃
,θ)

∂ψ
.

5. Compute by adjoint differentiation X̄
T̃
·
∂X

T̃

∂ψ
, then differentiate it again with

respect to ψ getting a matrix ¯̄ψ.

6. The final estimator is ¯̄ψ +

(
∂(X

T̃
,θ)

∂ψ

)⊺
(

h∑
i=1

Di

)(
∂(X

T̃
,θ)

∂ψ

)
.
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As for complexity, the multiplier on the cost of simulation comes from step 5,
with a factor of order O(N), plus step 4, with a factor either of order O(h · NX)
if computed by adjoint differentiation, or of order O(N) if computed by forward
differentiation. The cost of steps 1 through 3 has to do with the number of discon-
tinuities h, but is also proportional to the computational time of fi and g, which is
usually much less relevant than the time required to perform the Euler simulation.

4.3 Functional Gamma

The idea of this section is that if NX ≤ NW , the Feynman-Kac theorem can sup-
ply enough equations to determine the Gamma matrix Γ = ∂2P/∂X2

0 given the
time decay of suitable first order sensitivities, whose computation is fast (O(T ))
thanks to adjoint differentiation. This fact is essentially a consequence of the multi-
dimensional version of a known relationship between Gamma and “functional Vega”,
which is exploited for instance in Reghai et al. (2015) to compute pricing valuation
adjustments.

Indeed, it is well known that the price P , as a function of X0 and of the evalu-
ation time, satisfies the PDE

∂P

∂t
+
∂P

∂x
· µ+

1

2
tr

[
∂2P

∂x2
ΣΣ⊺

]
− Pr +

∑
Ciδ(t− ti) = 0,

where r is the risk-free rate and Ci is the cashflow paid at time ti. Now one can note
that if P ′ is the price for a different diffusion coefficient function Σ′, then P ′ − P
satisfies the same equation except that the discrete last addend is substituted by a
continuous source term

1

2
tr

[
∂2P

∂x2
(
Σ′Σ′⊺ −ΣΣ⊺)] ,

so that by Feynman-Kac we can conclude that

P ′(x, t) = P (x, t) +
1

2
E
{∫ T

t
e−

∫ s
t r(Xu,u)du tr

[
∂2P

∂x2
(
Σ′Σ′⊺ −ΣΣ⊺)] (Xs, s) ds

}
.

Now we fix a perturbation matrix K and time τ > 0 and choose

Σ′(t, x) = Σ(t, x) +KIt<τ ;

differentiation with respect to K gives

∂P ′(x, 0)

∂K
=

∫ τ

0
E
{
e−

∫ s
0 r(Xu,u)du

[
Σ⊺∂

2P

∂x2

]
(Xs, s)

}
ds;

finally, differentiation in τ = 0 gives

∂2P ′(x, 0)

∂τ∂K
= Σ⊺ (X0, 0)Γ, (4.4)

which for full rankΣ (X0, 0) allows for the determination of Γ given ∂2P ′(x, 0)/(∂τ∂K);
we expect the computation of the latter to be faster because the second order dif-
ferentiation is with respect to a scalar τ .
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To compute ∂2P ′(x, 0)/(∂τ∂K), we note that for small τ , the payoff depends on
K only through the first simulated point XS1 . This makes the following decompo-
sition possible:

∂P ′

∂K
= E

[
∂P (XS1 , S1)

∂XS1

· ∂XS1

∂K

]
, (4.5)

where we suppose that the price P at time S1 is a smooth function of XS1 : this is
true unless the payoff has a discontinuity maturing at time S1, in which case one
can add a point to the simulation grid S.

If we substitute the original SDE with its Euler discretization, in which drift
and diffusion coefficients are constant on time intervals [Si, Si+1), we get:7

XS1 = (Σ(X0, 0) +K)Wτ +Σ(X0, 0) (WS1 −Wτ ) = Σ(X0, 0)WS1 +KWτ

= Σ(X0, 0)WS1 +K

(
S−1
1 τWS1 +

√
S−1
1 (S1 − τ)τZ̃

)
(4.6)

for Z̃ ∼ N (0, INW
) independent from WS , as prescribed by the Brownian bridge

distribution ofWτ givenWS (see e.g. Karatzas and Shreve, 1991). This means that
we can rewrite (4.5) as

∂P ′

∂K
= E [Wτ · ∇P (XS1 , S1)

⊺] = E

 τ

S1
WS1 +

√
(S1 − τ)τ

S1
Z̃

 · ∇P (XS1 , S1)
⊺

 .
This expression is not yet ready for ordinary differentiation with respect to τ

because of the
√
τ dependence in the second addend. However, since we are only

concerned with the value of the right hand side in K = 0, in which point XS1 is a
function of WS1 but not of Z̃, we can use independence to deduce

E

√(S1 − τ)τ

S1
Z̃ · ∇P (XS1 , S1)

⊺

 = E

√(S1 − τ)τ

S1
Z̃

 · E [∇P (XS1 , S1)
⊺] = 0.

To sum up, to apply (4.4), we have to estimate simply

∂

∂τ
E
[
τ

S1
WS1 · ∇P (XS1 , S1)

⊺
]
= E

[
WS1

S1
· X̄S1

]
(4.7)

where in the second equality we have substituted the Delta sensitivity ∇P with any
estimator thereof.

The final equation (4.7) closely resembles that of likelihood ratio based estima-
tors like LRMAAD, while being both simpler to implement since it does not involve
second order differentiation of the drift and diffusion coefficients, and more flexible
since it does not prescribe which first order estimator X̄S1 to use. This also means
that it shares the main drawback of likelihood ratio weights, i.e. the reciprocal
dependence on the small discretization step S1, which may impact negatively the

7This way we differentiate the price as approximated by the pricing engine; this should make
little difference in practice, and is anyway arguably even more useful than the differentiation of
the abstract price which would arise from the theoretical exact solution of the SDE. Note that the
argument in fact needs this approximation only in the first time interval [0, S1).
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Monte Carlo variance. However, as is the case in vibrato, a simple antithetic trick
can save the day, since the resulting estimator becomes

Σ⊺ (X0, 0)
−1 WS1

2S1
·
[
X̄S1(WS1)− X̄S1(−WS1)

]
, (4.8)

where, roughly speaking, we expect

WS1 = O(
√
S1) and X̄S1(WS1)− X̄S1(−WS1) = O(WS1) = O(

√
S1),

jointly counterbalancing the S−1
1 factor.

We stress that for maximum effectiveness of this variant, one should change the
sign only of WS1 , unlike in standard antithetic Monte Carlo which inverts the full
Brownian path. This does not prevent the usage of ordinary antithetic trajectories
on top of the final estimator (4.8), as one would do for any other method.

5 Empirical results

In this section, we will compare empirically the above algorithms on several test
cases. We will always suppose that the payoff is written on one or more underlying
assets Ai with the simplest Black-Scholes dynamics

Ai = exp(Xi), dXi = −σ
2
i

2
dt+ σidBi, d⟨Bi, Bj⟩ = ρijdt, (5.1)

where Bi are correlated Brownian motions; of course, in this stylised case Euler sim-
ulation is not strictly necessary since finite-step transition probabilities are available
in closed form, but we neglect this simplification which would not apply to general
diffusive models. Note that (5.1) is readily expressed in the form (2.1), which for-
mally prescribes independent Brownian motions, by a Choleski factorization of the
instantaneous correlation matrix R = (ρij)i,j≤NW

:

dX = µdt+ΣdW ,

µ :=
(
−σ2i /2

)
i≤NW

and Σ := diag (σi)i≤NW
· Choleski(R).

The following names will be used to denote subsets of the full Hessian H:

Gamma =

(
∂2P

∂Xi(0)∂Xj(0)

)
i,j

, Vanna =

(
∂2P

∂Xi(0)∂σj

)
i,j

,Volga =

(
∂2P

∂σi∂σj

)
i,j

;

this is slight abuse of terminology, since to adhere to common jargon one should
substitute in the definitions X with A, but in our numerical analysis we prefer
to display the sensitivity with respect to the simulated driver X, because for most
estimators this is more natural. One can always obtain the sensitivity toA plugging
the result into the elementary relations

∂2P

∂Ai(0)∂Aj(0)
=

1

Ai(0)Aj(0)

∂2P

∂Xi(0)∂Xj(0)
− δij

1

Ai(0)2
∂P

∂Xi(0)
,

∂2P

∂Ai(0)∂σj
=

1

Ai(0)

∂2P

∂Xi(0)∂σj
.
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Vanna will sometimes be referred to by the phrases “Delta of Vega” of “Vega of
Delta” to stress the order of differentiation: in the former case we mean that deriva-
tives are first taken with respect to volatility, while in the latter case that they are
first taken with respect to X0.

In the sequel, all algorithms will be denoted by acronyms: we point to Tables 1
and 2 for easy reference. Note that FΓ can be based on any first order estimator,
hence we will use the notations FΓ-PW, FΓ-VB, FΓ-OPP, FΓ-DAAD to indicate
the functional Gamma method of Section 4.3 where the first order estimator used
to compute X̄S1 is respectively given by pathwise differentiation, vibrato Monte
Carlo, Optimal Partial Proxy and DAAD.

All the test payouts will be autonomous in the sense of (2.4), so that all methods
described above apply; only when the payoff is discontinuous, some of them will
be unavoidably excluded. In fact in those cases one might smooth the payoff,
not only to enable otherwise unusable estimators, but also to try and improve the
performance of other ones. We neglect this possibility since smoothing techniques
would involve a careful choice of their parameters to correctly balance the variance
gain with the bias introduced, which is problematic already for first order estimators:
see the analysis in Daluiso and Facchinetti (2018).

In fact, also the choice of the displacement for finite difference based algorithms
(FDIFF2, FDPW, VFD, FDDAAD) may be a serious concern. We will use for
∆Xi(0) and ∆σi the largest power of 10 such that the confidence interval of the
finite difference estimator contains the analytical result when available, or does not
appear to diverge significantly from the confidence intervals of unbiased methods
otherwise. This is a bit of cheating, and is only justified because we are just looking
for benchmarks to the analytical methods which are the main subject of our anal-
ysis; however, if one would actually choose a finite difference method as his only
sensitivity calculation engine, such comparison terms would not be available, and
much attention should be paid to accurate heuristics for the choice of a good finite
shift.

5.1 Single-asset payoffs: stability of the estimators

Before analysing settings in which the high number of sensitivities to compute is
a major driver in the choice of the algorithm, we deem it useful to explore the
behaviour of the several estimators in the simpler task of computing the Gamma
sensitivity with respect to a single underlying asset. This way, we can for a moment
forget about the computational burden, which is comparable and affordable for
all methods, and concentrate on more intrinsic and implementation-independent
properties, among which we put the focus on the following:

• Variance: how large is the confidence interval for a fixed number of Monte
Carlo paths? We will analyse the standard deviation of the result for 105

simulated paths, which by the central limit theorem should be proportional
to the width of a centred confidence interval for any confidence level desired.

• Stability: does the result change smoothly while moving the initial condition
S0? This is a highly desirable property in practice, since one does not want
the Greeks to jump wildly as the market evolves.
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Method T = 1d T = 1y

FDIFF2 48.562839 3.604733
FDPW 41.621283 3.097918
HOPP 47.695944 3.719352

LRMAAD 104.264491 12.588643
AADLRM 104.264491 12.588643

VAD 23.330228 1.881182
DAAD2 19.015445 1.552514
FΓ-PW 53.021142 6.652639
FΓ-VB 65.882049 8.471453

Table 3: Gamma sensitivity of a vanilla call: standard deviation for 105 Monte
Carlo paths, averaged over 40 values of A0.

In all experiments, the volatility parameter is set to σ = 0.2 in yearly time units.

5.1.1 Call option

As a prototypical example of a continuous payoff we take a vanilla call option
(AT −K)+ with strike K = 100, and vary the initial condition A0 and the maturity
time T . In particular, we take both a moderate maturity T of one year, divided for
the purpose of Euler simulation into 100 equal time intervals; and a short maturity
T = 1 day, with hourly steps in the Euler simulation. The analytical price is well
known and will serve as a check.

First of all, we compare the Monte Carlo uncertainties in Table 3. We make two
main remarks:

• Likelihood ratio based methods have by far the largest confidence intervals,
followed by functional Gamma.

• For this simple payoff, only DAAD2 and VAD offer a material improvement
over naive finite differences.

As far as smooth dependence on A0 is concerned, we first consider the case in
which T is one year. Figure 1 plots the complete results: all methods appear to work
reasonably well, but those based on likelihood ratio or functional Gamma display
larger errors, because of the larger confidence intervals. The smoothest analytical
methods are HOPP and DAAD2; also VAD performs well, while FDPW is quite
more erratic. However, one should again note that for this simple payoff, elementary
second order finite differences FDIFF2, here with displacement ∆X0 = 0.01, are not
that bad.

We tried to stress the exercise considering an option expiring in T = 1 day:
the results are in Figure 2. One notable difference is that FDIFF2 (∆X0 = 0.001)
and HOPP lose some smoothness, while DAAD2 still follows the shape of the exact
solution remarkably well. Moreover, FΓ-VB becomes the most stable alternative,
even though it is still significantly more noisy than most of its competitors, as we saw
in Table 3. This smoothness is not observed in FΓ-PW, showing that the flexibility
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Figure 1: Gamma sensitivity of a vanilla call with maturity T = 1y and strike
K = 100 as a function of the spot price A0: all estimators, 105 paths.

in the choice of the underlying first order estimator which functional Gamma offers
over traditional likelihood ratio methods is a valuable asset.

5.1.2 Digital option

The archetypal example of a discontinuous payoff is the digital option IAT>K , for
which we repeat the analyses of the previous subsection. Note that several methods
cannot be used any more.

The detail of Monte Carlo uncertainties is in Table 4. The winners are FΓ-
DAAD, DAAD2 and FΓ-VB, followed by the biased VFD; all methods are much
better than FDIFF2, so we exclude it from the graphs of this subsection.

Figure 3 shows that for T = 1 year, DAAD based methods (DAAD2, FDDAAD,
FΓ-DAAD) display the smoothest dependence on A0. The same remarks apply to
T = 1 day, which was plotted in Figure 4, where the analytical exact Gamma has
been subtracted from the estimated value for a better display cleaned from the
trend.

5.2 Multi-asset payoffs: efficiency of the algorithms

We now move to multi-asset payoffs, where the full Hessian H has a high number
of entries. This imposes a rethinking of how the various estimators are compared,
because a more noisy one may still be preferable if it is significantly faster. We
believe that the most objective metric is therefore the estimated run time which
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Figure 2: Gamma sensitivity of a vanilla call with maturity T = 1d and strike
K = 100 as a function of the spot price A0: all estimators, 105 paths.

Method T = 1d T = 1y

FDIFF2 865.468515 6.303787
HOPP 198.053629 1.672700
VFD 88.642863 0.699658

FDDAAD 134.068248 1.095060
DAAD2 73.659168 0.587246
FΓ-VB 75.564853 0.652947
FΓ-OPP 123.806197 1.030655
FΓ-DAAD 61.683419 0.547219

Table 4: Gamma sensitivity of a digital call: standard deviation for 105 Monte Carlo
paths, averaged over 40 values of A0.
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Figure 3: Gamma sensitivity of a digital call with maturity T = 1y and strike
K = 100 as a function of the spot price A0: low-variance estimators, 105 paths.

would be needed to achieve a unit Monte Carlo variance. This is easily computed
as

(run time)× (estimated standard deviation)2, (5.2)

since it is well known that to reduce the uncertainty by a factor of two one should
increase the number of simulated paths by a factor of four.

In all examples, all assets have spot value Ai(0) = 100 and volatility parameter
σi = 0.2, while the instantaneous correlation between couples of Brownian drivers is
set to a flat value ρij = 0.5. Each method was tested on a Monte Carlo simulation
with 104 paths.

We computed the chosen metric (5.2) separately for each second order sensitivity
in the Hessian matrix, because while on the one hand the run time is a common
number, on the other hand the standard deviation is different entry by entry. Then,
to get synthetic tables, for each Greek we produced two averages of the resulting
metrics: one comprising those sensitivities in which both differentiation variables
refer to the same asset (i.e. the diagonal entries), and another one comprising the
remaining “cross” sensitivities.
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Figure 4: Gamma sensitivity of a digital call with maturity T = 1d and strike
K = 100 as a function of the spot price A0: residual of low-variance estimators
with respect to the analytical value, 105 paths.
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Method
Gamma Volga

diagonal cross diagonal cross

FDIFF2 120.91 57.70 57.49 10.24
FDPW 31.80 30.23 16.49 5.66
HOPP 25.87 23.19 20.52 5.00

LRMAAD 1904.96 1909.96 3467.84 3392.80
AADLRM 5365.08 5379.16 210343.67 9555.40

VAD 16.11 15.59 173.42 10.64
DAAD2 6.56 5.80 4.37 1.01

Table 5: Gamma and Volga sensitivities of a call with maturity T = 1y and strike
K = 100 on a basket of 8 underlyings: average time per unit Monte Carlo variance,
all methods.

Method
Delta of Vega Vega of Delta

diagonal cross diagonal cross

FDIFF2 30.40 24.38 30.40 24.38
FDPW 14.06 12.27 16.77 14.44
HOPP 13.69 10.37 13.69 10.37

LRMAAD 2124.18 2165.37 3003.85 2997.39
AADLRM 8459.99 8441.78 133381.34 6098.50

VAD 8.14 7.44 147.59 13.74
DAAD2 3.36 2.41 3.36 2.41

Table 6: Vanna sensitivities of a call with maturity T = 1y and strike K = 100 on a
basket of 8 underlyings: average time per unit Monte Carlo variance, all methods.

5.2.1 Basket call

The multidimensional generalization of the first example of Section 5.1 is a call on
the average of several assets:(

1

NX

NX∑
i=1

Ai(T )−K

)+

,

which we will price for NX = 8, T = 1 year and K = 100.
The results are in Tables 5 and 6. First of all, we note that likelihood ratio

methods are more than one order of magnitude slower than all other algorithms.
In particular, finite differences should be preferred to likelihood ratio regardless of
their higher cost per path; while all other estimators outperform FDIFF2. DAAD2 is
consistently much more effective than its competitors, while the second-best depends
on the sensitivity of interest: it is VAD for Gamma, but becomes FDPW for Volga,
VAD for Delta of Vega, HOPP for Vega of Delta (although Delta of Vega and Vega
of Delta estimate theoretically the same number by the Schwarz theorem, see the
last paragraph of this subsection).

If one wants to compute only Gamma, then functional methods are also avail-
able; moreover, LRMAAD might in principle become competitive thanks to its
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Method
Gamma

diagonal cross cross (symm)

FDIFF2 29.64 14.14 13.96
FDPW 15.16 14.41 14.01
HOPP 12.87 11.54 11.80

LRMAAD 164.90 165.33 72.24
VAD 7.97 7.71 3.73

DAAD2 3.40 3.01 3.23
FΓ-PW 71.14 70.83 33.66

Table 7: Gamma sensitivities of a call with maturity T = 1y and strike K = 100
on a basket of 8 underlyings: average time per unit Monte Carlo variance on and
off the diagonal, with and without symmetrization, all methods.

efficient implementation described in Section 3.2. For a fair comparison we updated
also the run times of the other methods, which are smaller if sensitivities to σi are
not required. Our empirical findings in this setting are in the first two columns of
Table 7, and are not encouraging: LRMAAD is still far too noisy even considering
that it is much faster than linear-cost methods (not to speak of FDIFF2), and FΓ,
while significantly better, does not improve the variance sufficiently. We remark
that now that the number of required sensitivities is “only” 64, beating the dumb
FDIFF2 benchmark is harder then one might expect, and off the diagonal only
DAAD2 is a neat improvement.

Before resigning, we note that most of the analytical estimators we test produce
asymmetric matrices, although we know that Hessians are symmetric: so we have
two distinct estimators for each off-diagonal entry. Therefore, we can look for a
linear combination to reduce the Monte Carlo variance: equivalently, we can correct
the estimator Γij using the mean-zero (Γji−Γij) as a control variate. The coefficients
will be chosen by a small-sample preliminary Monte Carlo run as is customary for
control variates (Glasserman, 2004). Some methods benefit from this trick more
than others, as one can see from the last column of Table 7: in particular, functional
Gamma comes closer to finite differences (but is still takes more than twice the time
to get unit variance), and VAD becomes as good as DAAD2 on Cross Gammas.

5.2.2 Basket digital

A good representative example of a discontinuous multi-asset product is a digital
option on a basket:

I(K,+∞)

(
1

NX

NX∑
i=1

Ai(T )

)
.

As in the previous subsection, we take NX = 8, T = 1 year and K = 100.
The results for the full Hessian are in Table 8: they show that FDIFF2 is

inadequate for discontinuous multi-asset payoffs, while FDDAAD and HOPP are
not optimal either. DAAD2 and VFD are comparable, with a slight preference on
the latter especially on the diagonals.
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Method
Gamma Volga Vanna

diagonal cross diagonal cross diagonal cross

FDIFF2 24494.36 2521.50 11644.63 870.75 1282.64 1277.06
HOPP 619.69 565.07 308.62 102.61 277.85 229.02
VFD 85.31 86.34 45.81 24.15 46.36 45.30

FDDAAD 377.14 380.68 165.97 164.79 265.57 268.29
DAAD2 131.27 120.78 74.61 26.69 62.35 55.48

Table 8: Second order sensitivities of a digital call with maturity T = 1y and strike
K = 100 on a basket of 8 underlyings: average time per unit Monte Carlo variance
on and off the diagonal, all methods.

Method
Gamma

diagonal cross

FDIFF2 6311.20 649.68
HOPP 344.73 314.35
VFD 45.28 45.83

FDDAAD 206.68 205.29
DAAD2 71.28 65.58
FΓ-VB 26.50 26.25
FΓ-OPP 27.02 27.73
FΓ-DAAD 11.66 11.50

Table 9: Gamma sensitivities of a digital call with maturity T = 1y and strike
K = 100 on a basket of 8 underlyings: average time per unit Monte Carlo variance
on and off the diagonal, all methods.

The biggest surprise, however, comes from the estimators restricted to the
Gamma matrix in Table 9. Indeed, we see that the best linear-cost methods DAAD2
and VFD are clearly overcome by constant-cost functional Gamma methods, with
FΓ-DAAD being 4-5 times faster than the fastest linear-complexity algorithm (al-
ways in uncertainty-adjusted terms). This is at odds with the results obtained in
the previous subsection on the “easy” call payoff, probably because on continuous
payouts traditional methods already work very well.

6 Conclusions

In this paper, we have compared a wide range of old and new methods for the
computation of second order sensitivities of Monte Carlo prices of financial products,
with special emphasis on algorithmic efficiency when a large number of Greeks must
be computed.

From the literature review viewpoint, we have examined, with extensions (LR-
MAAD, VAD) and variations (VFD), the main algorithms to compute the full
Hessian matrix of an expected value when the underlying is driven by a multidi-
mensional Brownian diffusion. Several limitations of applicability are found:
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1. Many methods have too high Monte Carlo uncertainties: in particular, those
based on likelihood ratio (LRMAAD, AADLRM), and to a lesser extent those
based on finite differences of the pathwise estimator (FDPW).

2. Most methods only apply when there is at least one random driver per un-
derlying (NX ≤ NW ) and the payoff does not depend directly on the initial
state X0, nor on the model parameters θ (the exceptions being HOPP and
the dumb FDPW).

3. Most methods cannot handle discontinuous payoffs (the exceptions being
HOPP and VFD).

4. For all methods except LRMAAD restricted to sensitivities to X0 only, the
multiplicative overhead on the run time for only-price grows linearly in the
number of rows of the Hessian.

The original estimators of this paper should be considered in view of the above
limitations of their many competitors (see Table 10 for a visual summary):

• DAAD2 is the only method besides HOPP which solves simultaneously issues
1, 2 and 3, and in our tests was always significantly more effective then the
latter from the statistical uncertainty point of view, while showing remarkable
smoothness properties with respect to small changes in the input parameters.

• FΓ is the first estimator solving simultaneously issues 1 and 4 in at least one
relevant case; it is also the first constant-complexity algorithm applicable to
discontinuous payoffs. Its best-of-class efficacy in the basket digital test case,
coupled with the easy implementation, qualify it as a must-try when tackling
a new tough high-dimensional problem. Since it is in fact a meta-algorithm
based on any first order estimator, it offers significant flexibility for either
seamless introduction in any financial library already capable of computing
first order sensitivities, or for fine tuning to specific payoffs.

Besides systematic testing on a large range of payoff types and model dynamics,
a couple of issues remain open for further research. In the field of linear-cost meth-
ods, the main challenge is related to payouts with many discontinuities, for which
the computational complexity of the adjustments becomes relevant, particularly
when it scales quadratically in the number of digital features as for the current im-
plementation of DAAD2. Moreover, this paper opens the new field of constant-cost
methods, where a general-purpose algorithm is still to be found, since FΓ in one
example showed poor performance, and is anyway limited to derivatives with re-
spect toX0. Finally, one might consider the possibly varied effectiveness of variance
reduction techniques to different estimators.
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Table 10: Properties and domain of applicability of the methods.

FDPW LRMAAD AADLRM VAD HOPP DAAD2 FΓ

Low variance ✗ ✗ ✗ ✓ ✓ ✓ ✗/✓1

Non-autonomous ✓ ✗ ✗ ✗ ✓ ✓ ✓

Discontinuous ✗ ✗ ✗ ✓2 ✓ ✓ ✓3

Constant-cost Γ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Full Hessian ✓ ✓ ✓ ✓ ✓ ✓ ✗
1 Depending on the payoff.
2 In fact one must substitute AD with a finite difference (VFD).
3 If handled by the underlying algorithm.
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