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1 Introduction

The relation of the Cardy formula [1] to the physics of black holes and black strings is
an old subject. In this paper we consider near-horizon solutions of rotating black strings
that can be embedded in AdS5 × S5. In five-dimensional language, these are expected to
arise as supersymmetric domain walls that interpolate between AdS5 and a near-horizon
region consisting of a warped fibration of the Bañados-Teitelboim-Zanelli (BTZ) metric over
a two-dimensional compact space. By adding momentum along the string direction and
compactifying it on a circle we can obtain a black hole with a smooth near-horizon geometry
in four dimensions. We recently constructed various examples of spherical string solutions
that can be embedded in AdS5 × S5 (or AdS7 × S4) and successfully matched the entropy
of the corresponding four-dimensional black holes with a microscopic counting based on
the charged Cardy formula [2, 3]. We considered rotating and charged generalizations
of well-known AdS3 vacua in type IIB and M-theory obtained by compactifying D3- and
M5-branes on a sphere with a topological twist [4–7].
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In this paper we extend our analysis to another class of supersymmetric AdS3 vacua
in type IIB string theory which are based on D3-branes wrapped on a spindle, i.e. the
one-dimensional complex weighted projective space, WP1

[n1,n2], which is an orbifold with
spherical topology and two conical singularities at the poles [8–12]. An example of this
class of solutions was originally found in [8] and later generalized in [9] working in ten
dimensions. It can be seen as a ten-dimensional uplift of a AdS3×WP1

[n1,n2] supersymmetric
solution of minimal gauged supergravity found in [10] and generalized in [11] to the case
of multiple charges. Supersymmetry is realized through a magnetic flux along the spindle
but the theory is not topologically twisted [12]. Notably, the full ten-dimensional metric is
completely regular, i.e. the apparent conical singularities in five dimensions are smoothed
out by the embedding of the spindle inside a seven-dimensional geometry [11, 12]. The
authors of [10, 11] described these solutions as potential horizons of “unbalanced spherical
black rings”. More recently the authors of [12] successfully pursued the interpretation
in terms of N = 4 super Yang-Mills (SYM) theory wrapped on the spindle which gives
rise to a two-dimensional N = (0, 2) conformal field theory (CFT). Quite remarkably,
despite the presence of singularities, they were able to match the central charge computed
holographically with the result obtained from integrating the anomaly polynomial of N = 4
SYM on WP1

[n1,n2].
In the first part of the paper, we generalize these solutions by adding rotation and

general electric and magnetic charges. To this purpose, we work in a four-dimensional set-
ting using the recent general construction of supersymmetric dyonic rotating black holes
in four-dimensional N = 2 gauged supergravity with vector multiplets [13, 14]. Unlike
the solutions with a topological twist [4–7] that arise from the twisted branch discussed
in [13], the spindle black holes arise from the untwisted branch [14], which also contains the
Kerr-Newman black holes in AdS4. These kinds of solutions are usually discarded because
of the conical singularities. Once these are allowed, many new solutions naturally appear.
In particular, we construct the near-horizon of a family of dyonic rotating black spindles,
depending on two independent magnetic fluxes, three electric charges and one angular mo-
mentum subject to a constraint. We discuss in detail the conserved electromagnetic charges
and angular momentum, as well as the Bekenstein-Hawking entropy of the solutions. Then
we uplift them to a five-dimensional gauged supergravity, which is a consistent truncation
of type IIB on AdS5 × S5, and, finally, to type IIB.

In the last part of the paper, we successfully match the entropy with a microscopic
counting of states using the charged Cardy formula,

log ρsusy(nl, JA) ≈ 2π
√
cl
6

(
nl −

cl
24 −

1
2(k−1)ABJAJB

)
, (1.1)

for the density of states with energy nl and charges JA of a two-dimensional CFT. To use
this formula we need to compute the central charge cl and the levels kAB of the currents in
the CFT at largeN . These can be extracted from the two-dimensional anomaly polynomial,
which, in turn, can be obtained by integrating the four-dimensional anomaly polynomial of
N = 4 SYM on the compactification manifold. As for twisted compactifications, we need
to include a background for the internal U(1) isometry, which becomes a global symmetry
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in the two-dimensional theory [3, 15, 16]. The two-dimensional anomaly polynomial in the
case of the static spindle with a single magnetic flux was derived in [12]. Here, we generalize
the derivation to the case of general magnetic charges and of general background fields for
the flavor charges. As in [12], the exact two-dimensional R-symmetry mixes with the
rotational symmetry of the spindle. Interestingly, also in this case, despite the conical
singularities, all the anomaly coefficients of the two-dimensional CFT can be extracted
from purely four-dimensional physics. For future reference, we also give the expression of
the two-dimensional anomaly polynomial for a generic N = 1 CFT.

It is interesting to observe that the two-dimensional anomaly polynomial in the large
N limit can be obtained from the gluing formula (5.6). This has a clear counterpart in the
proposal for writing entropy functionals for AdS black holes and black strings by gluing
gravitational blocks [17] and, given the analogy with holomorphic blocks in quantum field
theory (QFT) [18], it could shed further light on the physics of these systems.

The paper is organized as follows. In section 2, we discuss how to obtain supersymmet-
ric spindle solutions from four-dimensional gauged supergravity and set the conventions for
the rest of this work. In section 3, we construct the near-horizon of the general family of
dyonic rotating black spindles in the stu model. We will focus explicitly on two examples,
which will be useful later. The first is a rotating, electrically charged generalization of the
static spindle discussed in [12]. The second is a static spindle depending on general mag-
netic charges under the U(1)3 isometry of S5, which was already considered in [12]. In sec-
tion 4, we derive the two-dimensional anomaly polynomial of the corresponding N = (0, 2)
CFT and match the Bekenstein-Hawking entropy of the solutions previously found with a
microscopic counting based on the charged Cardy formula. In section 5, we consider the
anomaly polynomial for the compactification of an N = 1 CFT on the spindle and exam-
ine the case of universal spindle solutions of minimal and half-maximal supergravity that
can be embedded in most AdS5 compactifications with eight and sixteen supersymmetries,
respectively. We conclude with comments and discussion in section 6.

2 5d spindle horizons from 4d supergravity

In this section we outline our approach to finding supersymmetric near-horizon geometries
in five-dimensional N = 2 gauged supergravity that are most generally fibrations of the
BTZ metric with the spindle. The solutions that we present explicitly in the next section
are generalizations of the direct product solutions of AdS3 with the spindle with purely
magnetic charges found in minimal gauged supergravity in [10] and in the gauged stumodel
in [11]. These solutions were found earlier from a ten-dimensional perspective in [8, 9], but
our approach leads to a more immediate comparison with [10, 11].

Here, we present a way to generalize the known static near-horizon spindle solutions
to include electric charges and rotation. This is done using the connection between the
five-dimensional supergravity models we consider and their corresponding four-dimensional
reduction. This step requires that we add momentum along the string direction and
compactify it to a circle in order to arrive at a smooth near-horizon solution in four di-
mensions, thus changing the global structure of AdS3 to BTZ. It is precisely this step

– 3 –



J
H
E
P
0
7
(
2
0
2
1
)
1
8
2

that allows us to add extra electric charges and angular momentum to these solutions,
which have eluded the standard classifications of AdS3 solutions in ten dimensions or di-
rect five-dimensional searches.

We first emphasize the new features of the spindle metric that we focus on, before
taking a more detailed look at the 4d/5d relation and the explicit 4d class of solutions
found in [14] that we need here. The explicit results from this preliminary analysis are
presented in the next section.

2.1 The metric on the spindle

We set our goal to look for the so-called spindle horizons, and therefore need to first describe
the characteristics that set apart these horizons when looking for a particular supergravity
solution. As described in [12, 19], the weighted projective space WP1

[n1,n2] is topologically a
sphere with conical deficit angles 2π(1−1/n1,2) at the poles with n1 6= n2 coprime positive
integers. The Euler characteristic of the spindle is then given by

χ(Σ) = 1
4π

∫
Σ
RΣvolΣ = 1

n1
+ 1
n2

, (2.1)

where for brevity we introduced the notation Σ = WP1
[n1,n2]. We should note that in the

math literature this is considered a bad orbifold in the sense that it does not admit a
manifold as a covering space. This also means that the spindle can never have a constant
curvature metric, making the distinction with other horizon topologies more manifest.1

Schematically, up to conformal rescaling and model-dependent constant factors,2 the
spindle part of the metrics that we are going to consider here has the form

ds2
Σ ∼

dp2

P (p) + P (p)
p2 + P (p) dz2 , (2.2)

where z is a U(1) isometry of the full metric (the axis of rotation) and the function P (p)
is in the general form

P (p) = s
n∏
a=1

(p− pa) , pa < pa+1 . (2.3)

Here, s is a choice of overall sign setting the asymptotics, and generically the order of the
polynomial is n = 4 for asymptotically AdS4 solutions3 and n = 3 for asymptotically AdS5
solutions, but various special cases can occur depending on the specific type of solutions,
conserved charges, etc. The spindle, like the sphere, is a compact space and therefore the
function P (p) must be positive semi-definite and bounded. In practice this leaves very little
room for choice: for example in the case n = 2 the only chance that we find a compact
metric is when s = −1 and we restrict p ∈ [p1, p2]. Similarly for n = 4, s = +1 we must

1Note however that rotating black holes with spherical horizons in four dimensions also generically do not
admit a constant curvature metric, so the deficit angle criterion discussed below remains the ultimate dis-
tinction.

2See the next section for the explicit solutions and precise constants and details of the metric; they are
not important for the general discussion here.

3This case is relevant for example for the accelerating and spinning AdS4 black hole spindle in [19].
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choose p ∈ [p2, p3]. Let us now focus on the cubic case that is directly relevant for the
spindle strings in five dimensions:

n = 3 : s = +1 , p ∈ [p1, p2] , or s = −1 , p ∈ [p2, p3] . (2.4)

The two choices are physically equivalent, and with no loss of generality we are going to
choose the former case, s = +1. Note that all the solutions we present below allow also
for a non-compact hyperbolic metric with the choice n = 3, s = +1, p ∈ [p3,∞]. We
leave this potentially interesting parameter space of hyperbolic black strings for a future
investigation.4

Let us now look at the resulting metric near the poles. Using the coordinate redefinition
R ≡ 2

√
p− pl, we can write the behavior of the metric near the two roots p = pl, l = 1, 2,

ds2
Σ ∼

1
P ′(pl)

(
dR2 + P ′(pl)2

4p2
l

R2dz2
)
. (2.5)

At each of the poles separately we can always choose the period ∆z such that we get the
metric on the R2 in polar coordinates. If this were possible simultaneously for a single
choice of the period ∆z at the two poles we would find a smooth manifold, i.e. the sphere.
In the cubic case however this is only possible if p1 = p2, which is already inconsistent with
the initial requirement that the metric is compact. Therefore, one always finds at least
one conical deficit angle, prompting the initial name “unbalanced ring” in [10, 11]. We can
instead obtain the metric on the spindle with two orbifold points of the form C/Zn1 and
C/Zn2 with two positive coprime integers if we impose that

P ′(pl)2

4p2
l

=
( 2π
nl∆z

)2
, (2.6)

at both poles, thus fixing the period ∆z. This identification is going to be vital for the
uplift to ten dimensions where the conical singularities get smoothed out inside the bigger
internal space.

Let us finish the present discussion by noting that in a sense the spindle horizons are
a generic feature of BPS and thermal black hole/string solutions in AdS. The type of
function P (p) and conical deficit angles describing the spindle require no fine tuning of
parameters and in this sense are expected to show up in various solutions. It is in fact
the smooth spherical horizon that requires an extra condition to be met (namely that
n1 = n2), and therefore the spherical case generally requires one additional constraint in
the parameter space of solutions in comparison to the spindle.

2.2 The 4d/5d relation

We are interested in finding solutions to five-dimensional N = 2 gauged supergravity
coupled to nV abelian vector multiplets. The Lagrangian is determined from the cubic

4Above we already imposed that the roots of P (p) are real and non-degenerate since in the cubic case
this is the only chance for obtaining a compact metric; in the degenerate case there exist even more exotic
possibilities such as non-compact horizons with finite area [20, 21].
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prepotential function

F5d(Li) = 1
6cijkL

iLjLk = 1 , (2.7)

where the five-dimensional scalars Li, i = 1, . . . , nV, are real and cijk is a fully symmet-
ric tensor appearing in the Chern-Simons terms, corresponding to the ’t Hooft anomaly
coefficients of the dual four-dimensional N = 1 CFT [22, 23]. The bosonic action is given by

S(5) = 1
8πG(5)

N

∫
R4,1

[1
2R

(5) ?5 1− 1
2GijdL

i ∧ ?5dLj − 1
2GijF

i ∧ ?5F
j

− 1
12cijkF

i ∧ F j ∧Ak + V ?5 1
]
,

(2.8)

with R(5) being the Ricci scalar, F i ≡ dAi is the five-dimensional Maxwell field strength,
and Gij can be written in terms of F5d,

Gij = −1
2∂i∂j logF5d

∣∣∣
F5d=1

. (2.9)

The scalar potential can be written in terms of the inverse metric on the scalar manifold as

V (L) = 9ViVj
(
LiLj − 1

2G
ij
)
, (2.10)

where the constants Vi denote the five-dimensional Fayet-Iliopoulos (FI) parameters that
specify completely the model together with the tensor cijk. For more details about the
five-dimensional conventions see [24].

In the gauged stu model (nV = 3) that we are going to consider explicitly, the only
nonzero intersection numbers are c123 = 1 (and cyclic permutations). The FI parameters
are given by

V1 = V2 = V3 =
g(5)
3 , (2.11)

where g(5) sets the length scale of AdS5. This gauged stu model admits an embedding
in N = 8 gauged supergravity and an uplift on the S5 to ten dimensions [25]. It also
admits a truncation to the st2 model (L2 = L3) that can be embedded in minimal N = 4
supergravity and thus admits a larger set of string theory embeddings [26–28]. Finally, we
could even go to the t3 model (L1 = L2 = L3 = 1), which is just minimal N = 2 gauged
supergravity admitting an uplift on any SE5 and any other AdS5 solution [29].

Reducing the five-dimensional theory along the circle x5 one obtains a four-dimensional
N = 2 gauged supergravity theory based on the prepotential

F4d(XΛ) = 1
6cijk

X1X2X3

X0 , (2.12)

where the four-dimensional scalars XΛ = (X0, X i) are complex. The four-dimensional
theory contains nV abelian vector multiplets, parameterizing a special Kähler manifoldM
with metric gij̄ , besides the gravity multiplet. The following are the rules for reducing the
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bosonic fields [30–33]:5

ds2
(5) = e2ϕ ds2

(4) + e−4ϕ
(
dx5 −

√
2A0

(4)

)2
, dx5 = dw ,

Ai(5) =
√

2Ai(4) + Re zi
(
dx5 −

√
2A0

(4)

)
,

Li = e2ϕ Im zi , e−6ϕ = 1
6cijk Im zi Im zj Im zk .

(2.13)

Here, ϕ is the Kaluza-Klein (KK) scalar (called dilaton), ds2
(4) is the four-dimensional line

element, AΛ
(4), Λ = 0, . . . , nV, are the four-dimensional abelian gauge fields and zi = Xi/X0.

The resulting four-dimensional bosonic action is then given by

S(4) = 1
8πG(4)

N

∫
R3,1

[1
2R

(4) ?4 1 + 1
2 ImNΛΣF

Λ ∧ ?4F
Σ + 1

2 ReNΛΣF
Λ ∧ FΣ

− gij̄Dz
i ∧ ?4Dz̄

j̄ − V (z, z̄) ?4 1
]
,

(2.14)

where V (z, z̄) is the scalar potential of the theory,

V (z, z̄) = gΛgΣ
(
UΛΣ − 3eKX̄ΛXΣ

)
, (2.15)

with gΛ being the four-dimensional constant FI parameters. See more details about the
other four-dimensional supergravity quantities appearing in the action in e.g. [35]. Just
like in five dimensions, the four-dimensional action is completely specified by the choice of
prepotential and FI parameters. The five-dimensional gauged stu model therefore gives rise
to the cubic prepotential (2.12) with c123 = 1 (and cyclic permutations). In the fermionic
sector we do a direct Kaluza-Klein reduction (as opposed to Scherk-Schwarz, see [36, 37])
and therefore find the following four-dimensional FI parameters

g0 = 0 , g1 = g2 = g3 = g(4) , (2.16)

where, in our conventions,
g(4) =

√
2 g(5) . (2.17)

We can therefore look for a spindle near-horizon geometry of the type AdS2 fibered
over Σ satisfying the criteria from section 2.1, which upon uplift becomes a fibration of
BTZ over Σ. This would constitute a near-horizon geometry of a spindle black string in the
original five-dimensional N = 2 gauged stu model specified above. Notice, that we need
the extra circle w not to be fibered over the spindle, such that we keep the same spindle
geometry in five dimensions. We therefore impose∫

Σ
dA0

(4) = 0 , (2.18)

meaning that we need a vanishing magnetic charge m0 = 0. This is an additional re-
quirement that we impose on the four-dimensional solutions we consider next. Note that
m0 6= 0 instead leads in general to a Lens space horizon in five dimensions, which will be
explored elsewhere.

5In our conventions the four-dimensional and five-dimensional gauge fields are related by Ai(5) =
√

2Ai(4).
We make this choice for convenience to land directly at the conventions used in [14] based on the four-
dimensional BPS equations in [34].
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2.3 BPS black holes in 4d: the untwisted branch

We have now effectively reduced our initial problem from five to four dimensions, the
upshot being that the general supersymmetric near-horizon solutions in four-dimensional
N = 2 gauged supergravity with abelian vector multiplets have already been written down
exhaustively in the presence of the most general set of electromagnetic charges and rota-
tion. The BPS solutions we discuss here are derived by solving the first-order integrability
conditions following from a timelike isometry [34, 38], which were further rewritten in the
formalism and conventions we follow here in [13, 14]. In particular, one finds two disjoint
branches of solutions — the twisted6 and the untwisted7 solutions. The twisted branch in
the model described above was used in [2] to generalize the static black strings of [6] to the
case with electric charges and rotation. It is straightforward to see that the requirement
m0 = 0 for the twisted branch leads to a quadratic form of the function P (p) in (2.2) and
eventually one finds that the twisted branch can only lead to spherical and not to spindle
horizons for five-dimensional black strings. Therefore, we turn our attention completely to
the untwisted, or Kerr-Newman-like branch of solutions that lead to a cubic polynomial
for P (p). The situation here is in fact reversed and we only find spindle (as opposed to
spherical) horizons with non-vanishing area.

Referring the reader for all technical details to the original reference, [14], here we
summarize the main features of the untwisted near-horizons needed for the presentation of
the solutions. We take the following ansatz for the four-dimensional spacetime,

ds2
4 = −e2U(dt+ ω

)2 + e−2Uds2
3 , (2.19)

with a base metric

ds2
3 = e2σ

(
dp2

P (p) + dr2

Q(r)

)
+ P (p)Q(r)dz2 , (2.20)

where
e2σ = r2P (p) + p2Q(r) , (2.21)

and ω is the rotation one-form living on the base space. The physical scalars zi together
with the scalar factor eU are more conveniently packaged in the symplectic notation

{XΛ;FΛ} = e−2UR+ iI , R = − 1
2I4(I)I

′
4(I) = −1

2e
4UI ′4(I) , (2.22)

where FΛ ≡ ∂F4d(XΛ)
∂XΛ and in this parametrization the symplectic vector I determines both

the real and the imaginary part of the physical scalars. In the second equality we also used
the so-called quartic invariant, I4, which is indispensable for solving the BPS equations.
The equations to be solved are given in [14, (12)-(14)]. More technical aspects of the
formalism are summarized in [13] and the appendices of [17, 40]. In the stu model with

6The most general twisted near-horizon geometry was written down in [13] generalizing [39, 40].
7The most general untwisted near-horizon geometry was written down in [14] generalizing the super-

symmetric limit of the Kerr-Newman-AdS4 black hole.
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cubic prepotential coming from the 5d reduction, (2.12), the quartic invariant and all its
derivatives are uniquely defined by the equality

I4({pΛ; qΛ}) = 4q0p
1p2p3−(piqi)2+2

3∑
i<j

qip
iqjp

j−p0
(

4q1q2q3+p0(q0)2+2q0 p
iqi

)
. (2.23)

Finally, the four-dimensional gauge fields A (or {AΛ;AΛ}, including both electric and
magnetic gauge fields) can also be expressed in terms of the three-dimensional gauge fields
A = {AΛ;AΛ} on the base space,

{FΛ;GΛ} ≡ dA = d (ζ(dt+ ω)) + F = d (ζ(dt+ ω)) + dA , ζ = R−Gpr . (2.24)

Here, G denotes the symplectic vector of gauging parameters defining the Lagrangian and
obtained from the 5d reduction

G = {0; 0, g, g, g} . (2.25)

Note that here we omitted the subscript (4) in comparison with (2.16) for simplicity and
will consistently do so below as long as we stay in four dimensions. It is important here to
note that the specific cubic prepotential and gauging parameters lead to the identity

I4(G) = 0 , (2.26)

which is always satisfied for models coming from a 5d reduction as it signifies that there
cannot exist AdS4 asymptotics in these models (instead there is a runaway hvLif4 vacuum,
see more in [13]).

In the AdS2 × Σ near-horizon geometry conformal invariance requires Q(r) = R2
0r

2,
where R0 is a free constant, and

e2σ = r2e2σ0 , e2U = r2e2U0 , ω = 1
r
ω0 , (2.27)

where σ0, U0 and ω0 are functions of p.
Taking an ansatz for I in terms of a symplectic vector H polynomial in p,

I = e−2σH , H = r

(C
Ξ + p C1 + p2 C2 + p3 C3

)
, (2.28)

with a free constant Ξ, the full set of BPS equations are solved in terms of the free constant
symplectic vector C. The symplectic vectors C1,2,3 determining the scalars, metric functions
and the three-dimensional gauge fields A are then explicitly fixed by C, the gauging vector
G and the quartic invariant I4 using [14, (22)]. The rotation one-form reads

ω0 = −P (p)e−2σ0

2Ξ 〈G, I ′4(C)〉 , (2.29)

and thus vanishes in the special case that the symplectic product between the symplectic
vectors G and I ′4(C) vanishes. In the explicit examples below this indeed corresponds to
the static spindle string solutions in [10–12].
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Finally, let us again focus on the form of the function P (p), given by

P (p) = e−2σ0 −R2
0p

2 = Ξ−1
(

1 + 2〈G, C〉p+ k2p
2 + 1

2〈I
′
4(G), I ′4(C)〉p3

)
, (2.30)

where we defined k2 ≡ 〈G, C〉2− 1
4I4(C, C, G,G)−ΞR2

0 . Note that in general P (p) also has
a quartic power proportional to I4(G) that vanishes identically in the model of interest.
Lead by an interest in smooth spherical horizons, [14] imposed in addition that 〈G, C〉 =
〈I ′4(G), I ′4(C)〉 = 0, which is where our present analysis diverges. The only requirement
that we impose on the a priori arbitrary constant vector C is dictated by the condition of
vanishing fibration of the additional circle with the spindle, (2.18). We therefore arrive at
the most general solution in the gauged stu model corresponding to spindle black strings,

C =
{

0, 1
2ga1

,
1

2ga2
,

1
2ga3

; b0, b1, b2, b3
}
, (2.31)

where a1,2,3, b0,1,2,3 are arbitrary constants and we inserted the factors of g for later conve-
nience. The choice of C in turn fixes all the conserved electromagnetic charges, rotation and
entropy of the spindle horizons, which we evaluate explicitly in a couple of special exam-
ples. Note also that we can rescale some of the parameters by a change of coordinates. In
the following examples, we use this freedom to set R0 and Ξ to a convenient value without
loss of generality on the physical observables and then analyze the metric on the spindle
according to the considerations in section 2.1.

3 Spindle black strings in the stu model

So far we outlined a general procedure for finding spindle horizons via a passage through
four-dimensional horizons. We formally wrote down the most general solution in the gauged
stu model corresponding to a spindle black string horizon in (2.31), parametrized by a
number of free constants. We now turn to discuss the physics behind the solution in a
couple of different limiting cases.

First, we look at the equal magnetic charges case (setting a1 = a2 = a3 in (2.31)),
allowing for arbitrary electric charges and rotation. Then, we consider carefully the static
case with different magnetic charges but vanishing electric charges (setting b1 = b2 = b3 = 0
in (2.31)). This solution was already discussed in [11]. In both cases we elaborate on the
spindle metric and evaluate the conserved electromagnetic charges and angular momentum,
as well as the Bekenstein-Hawking entropy. In the first case, the full ten-dimensional
regularity was already shown in [10, 12] for a general SE5 uplift in agreement with [8]. We
discuss the ten-dimensional solution in the second case that only allows an S5 uplift, where
we again see that the conical singularities are smoothed out [11], as was seen also directly
in ten dimensions [9].

At the end of this section we also discuss how to obtain the resulting entropy from
the procedure of gluing gravitational blocks generalizing [17] to spindle horizons, which
will turn out to mimic the way that the anomaly polynomial of the holographic dual CFT
factorizes at the poles of the spindle.
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3.1 Rotating dyonic spindles with equal magnetic charges

In this section we present a rotating and electrically charged generalization of the solution
in [10, 12]. As described in the previous section, we first present the solution in four-
dimensional language where it corresponds to the near-horizon of a rotating black hole
with electric and magnetic charges. To have a real and positive entropy, we introduce a
momentum along the compactifying circle which shows up in four dimensions as an electric
charge q0. Similarly to [2, 3], upon uplifting to five dimensions, the solution becomes a
fibration of BTZ and the spindle. We allow for arbitrary electric charges qi, i = 1, 2, 3, but
we restrict to equal magnetic charges, for simplicity.

Solving the BPS equations [14, (22)] with the following choice of the symplectic vec-
tor C,

C =
{

0, 1
2ag ,

1
2ag ,

1
2ag ; b0, b1, b2, b3

}
, (3.1)

and a convenient choice for the parameters R0 and Ξ,8 leads to a metric specified by the
following functions

Q(r) = r2 , P (p) = 4
27(p+ a)3 − p2 ,

e2σ0 = 4
27(p+ a)3 , ω0 = − a

27g

(
1− 27

4
p2

(p+ a)3

) 3∑
i=1

bi ,

e2U0 = 4g
3
2 (p+ a)3√

8b0(p+ a)3 − agΠ (4(p+ a)3 − ap2)− 2g(ap)2∑3
i=1 b

2
i

,

(3.2)

where we defined

Π =
3∑
i=1

b2i − 2(b1b2 + b2b3 + b1b3) . (3.3)

The regularity of the metric can be directly checked following the procedure in sec-
tion 2.1. We however decide to first change to the coordinates of [12] for a simpler com-
parison. Using the variable

p = 3y − a , (3.4)

we can write the polynomial P as

P (y) = 4y3 − (3y − a)2 = −
(
3y + 2y3/2 − a

) (
3y − 2y3/2 − a

)
. (3.5)

Near the zeros of P (y), we have conical singularities and it is impossible to obtain a
smooth metric. We can instead obtain a metric with two orbifold singular points of the
form R1,1 × C/Zn1 and R1,1 × C/Zn2 , where n1 and n2 are two positive coprime integers.
Consider the part of metric described by the coordinates (y, z). Near a zero yl of P (y),
using R = 2

√
y − yl, we can write

ds2
Σ ∼

1
P ′(yl)

(
dR2 + P ′(yl)2

36 e2σ0(yl)
R2dz2

)
. (3.6)

8Here, we set R0 = 1 and Ξ = 27
4a3 .
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Choosing the period ∆z for z such that

P ′(yl)2

36 e2σ0(yl)
≡
( 2π

∆znl

)2
, for l = 1, 2 , (3.7)

we obtain a metric with deficit angles 2π/n1 and 2π/n2 at y1 and y2, respectively. Taking
the zeros such that 3yl − 2y3/2

l − a = 0 for l = 1, 2, we obtain, by consistency,

a = (n1 − n2)2(2n1 + n2)2(n1 + 2n2)2

4
(
n2

1 + n2n1 + n2
2
)3 , ∆z = 4π n

2
1 + n2n1 + n2

2
3n1n2(n1 + n2) , (3.8)

and
y1 = (n1 − n2)2(2n1 + n2)2

4
(
n2

1 + n2n1 + n2
2
)2 , y2 = (n1 − n2)2(n1 + 2n2)2

4
(
n2

1 + n2n1 + n2
2
)2 . (3.9)

With y ∈ [y1, y2] we obtain a positive definite metric on the orbifold Σ = WP1
[n1,n2]. Observe

that y1 < y2 for n1 < n2.
The symplectic vector of gauge fields A = {0,Ai;AΛ} is given by

Ai = 1
6g

3y − a
y

dz , for i = 1, 2, 3 ,

A0 = (3y − a)
[
b0 + ga(3y − a)

4(3y)3

(
a2(b1 + b2 + b3)2 − 9Πy2

)]
dz ,

Ai = a(3y − a)
4(3y)3

(
36y2bi − (9y2 − a2)(b1 + b2 + b3)

)
dz , for i = 1, 2, 3 .

(3.10)

Notice that A are just the components of the gauge fields on the base. The full expression
for the gauge fields is given in (2.24) and contains components along dt that are too long
to be reported.

We can now evaluate the conserved charges. The electromagnetic charges read

Γ = 1
4π

∫
F =

{
mΛ; qΛ

}
, (3.11)

with

m0 = 0 , mi = 1
6g

( 1
n1
− 1
n2

)
, for i= 1,2,3 ,

qi = (n1−n2)3(2n1+n2)2(n1+2n2)2

122n1n2
(
n2

1+n2n1+n2
2
)4 (

(n1−n2)2
3∑
j=1

bj−12
(
n2

1+n1n2+n2
2

)
bi

)
.

(3.12)

There is also a non-zero q0 but its expression is not illustrative and we shall not present
its explicit form here. Notice that the R-symmetry gauge field

AR = g

2

3∑
i=1

Ai (3.13)

has a flux
1

2π

∫
Σ
FR = 1

2

( 1
n1
− 1
n2

)
, (3.14)
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along the spindle. Since the gauge field AR is the one appearing in the covariant derivative
of the gravitino, we see that supersymmetry is realized with a mechanism analogous to
the one discussed in [12]. In particular, the components of AR along the spindle in the
gauge (3.17) precisely coincide with those in [12].

The angular momentum can be computed via the Komar integral associated to the
spacelike Killing vector ξ = ∂φ,

J = − 1
8π

∫
Σ

(
?4 dξ + 2(ξ ·AΛ)dAΛ

)
, (3.15)

where φ = 2πz/∆z is the angular coordinate on the spindle with period 2π. The above
equation is the symplectically covariant generalization of the formula presented recently
in [19, appendix E]. As already noticed there, the angular momentum evaluated at the
horizon is not gauge invariant and depends crucially on the choice of pure gauge that one
can add to the electric gauge fields. We employ the gauge transformation AΛ → AΛ +AΛ

G ,

A0
G = 0 , AiG = − 1

3g dz , for i = 1, 2, 3 , (3.16)

so that at the poles we find

Ai(yl) = − 1
3gnl

dφ , for i = 1, 2, 3 , and l = 1, 2 , (3.17)

as will be justified later. The angular momentum J is then given by

J = 1
72g

(n1 − n2)3(n1 + n2)(2n1 + n2)2(n1 + 2n2)2

n2
1n

2
2(n2

1 + n2n1 + n2
2)3

3∑
i=1

bi . (3.18)

It is also interesting to observe that the conserved charges obey the following constraint

2
3g

3∑
i=1

qi + ε̊J = 0 , ε̊ = 3 n1n2(n1 + n2)
n2

1 + n2n1 + n2
2
. (3.19)

Constraints among charges are common for supersymmetric AdS black holes and occur
both for twisted and Kerr-Newman ones.

Finally, the Bekenstein-Hawking entropy reads

SBH = Area
4G(4)

N

= 3
8G(4)

N

(3g
2

)− 3
2
√
b0+ag

(
2(b1b2+b2b3+b3b1)− 1

2

(
1+ a

27

)
(b1+b2+b3)2

)
(y2−y1)∆z

= π

gG
(4)
N

√√√√ (n2−n1)3

18gn1n2(n2
1+n1n2+n2

2)

(
q0−

1
2

2∑
A,B=1

(qA−q3)(k−1)AB(qB−q3)−J
2

2k

)
,

(3.20)
where

kAB = 1
6g

( 1
n1
− 1
n2

)(2 1
1 2

)
, k = − 1

(3g)3

( 1
n3

1
− 1
n3

2

)
. (3.21)
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The solution can be uplifted to five dimensions using the formula (2.13). When J = 0
and qi = 0, i = 1, 2, 3, by rescaling the time coordinate, we obtain9

ds2
5 = 1

g2
(5)

(4y
9 ds2

BTZ + y

P (y)dy2 + P (y)
(6y)2 dz2

)
, (3.22)

with the extremal BTZ metric

ds2
BTZ = 1

4

(
dr2

r2 − r
2dt2

)
+ r2

+

(
dw + r

2r+
dt
)2

, (3.23)

where r+ = 1
2(3g)3/2√b0 is related to the four-dimensional electric charge q0. Since BTZ

is metrically equivalent to AdS3, we can replace ds2
BTZ with ds2

AdS3
in (3.22) and recover

the solution found in [12], corresponding to a two-dimensional CFT with central charge

cCFT = N2

3
(n2 − n1)3

n1n2(n2
1 + n1n2 + n2

2)
. (3.24)

In the solution (3.22) there is a momentum along the BTZ circle, which is necessary to
have a black hole without naked singularities in four dimensions. From the field theory
point of view, we are considering states in the CFT2 with energy proportional to q0.

For non-vanishing angular momentum and electric charges, the five-dimensional metric
is more complicated and it is a non-trivial fibration of the spindle and the BTZ metric. The
physical interpretation is however simple. The solution is dual to an ensemble of states of
the CFT2 with energy proportional to q0 and conserved abelian charges qi and J . And,
indeed, the entropy (3.20) is strongly reminiscent of the charged Cardy formula (1.1) that
captures the density of states of a CFT2. We confirm this interpretation in section 4.

3.2 Static spindles with different magnetic charges

We now look more closely at the case of three different magnetic charges and vanishing
electric charges qi = 0 (b1 = b2 = b3 = 0 in (2.31)). This is the four-dimensional version
of the solution presented in [11] with extra momentum along the string direction. We
first write the solution in four dimensions and then uplift it to five dimensions, where it
becomes a warped product of BTZ and the spindle, and, later on, to a smooth solution in
ten dimensions.

We parametrize the symplectic vector C in the following way,

C =
{

0, 1
2ga1

,
1

2ga2
,

1
2ga3

; b0
(2g)3a1a2a3

, 0, 0, 0
}
, (3.25)

which leads to a static solution with10

Q(r) = a1a2a3r
2 , P (p) =

3∏
i=1

(p+ ai)− p2a1a2a3 ,

e2σ0 =
3∏
i=1

(p+ ai) , e2U0 = 1
2(2g)3eσ0

√
a1a2a3
b0

.

(3.26)

9Recall that in our conventions g(5) = g(4)/
√

2 and we denoted g(4) ≡ g. We also used the expression
ζ = r

{
− 1

2b0
, 0, 0, 0; 0, ga, ga, ga

}
, valid for zero angular momentum and zero electric charges, to evaluate

the time component of the gauge field A0.
10Here, we choose for convenience R0 = 1√

Ξ and Ξ = 1
a1a2a3

.
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To find a metric on the spindle, we follow the procedure in section 2.1. The cubic
polynomial P (p) has three real positive roots which we denote by pl, l = 1, 2, 3. Near pl,
the (p, z) part of the metric behaves as

ds2
Σ ∼

1
P ′(pl)

(
dp2

p− pl
+ a1a2a3
e2σ0(pl)

(p− pl)P ′(pl)2 dz2
)
. (3.27)

Using R = 2
√
p− pl, we obtain

ds2
Σ ∼

1
P ′(pl)

(
dR2 + a1a2a3P

′(pl)2

4e2σ0(pl)
R2dz2

)
. (3.28)

Choosing the period ∆z for z such that

a1a2a3P
′(pl)2

4e2σ0(pl)
≡
( 2π

∆znl

)2
, for l = 1, 2 , (3.29)

where (n1, n2) are arbitrary coprime positive integers with n1 < n2, we obtain conical
singularities with deficit angles 2π/n1 and 2π/n2 at p1 and p2, respectively. The roots of
the cubic polynomial P (p) can then be written as

p1 = − 1
18n1n2 (n1 + n2)

(
L+ 2(n1 − n2)

√
2π
∆z

)(
L − 2(2n1 + n2)

√
2π
∆z

)
,

p2 = − 1
18n1n2 (n1 + n2)

(
L+ 2(n1 − n2)

√
2π
∆z

)(
L+ 2(n1 + 2n2)

√
2π
∆z

)
,

p3 = − 1
18n1n2 (n1 + n2)

(
L − 2(2n1 + n2)

√
2π
∆z

)(
L+ 2(n1 + 2n2)

√
2π
∆z

)
.

(3.30)

Here, we also included the third root of P (p) for completeness and, for the ease of notation,
we defined

L =
√

4(n2
1 + n1n2 + n2

2) 2π
∆z + 6(a1 + a2 + a3 − a1a2a3)n1n2(n1 + n2) . (3.31)

We choose p ∈ [p1, p2] to obtain a positive definite metric on the orbifold Σ = WP1
[n1,n2].

Observe that p1 < p2 for n1 < n2.
The symplectic vector of gauge fields on the base is given by

A =
{

0, a1a2a3
2g

p

p+ a1
dz , a1a2a3

2g
p

p+ a2
dz , a1a2a3

2g
p

p+ a3
dz ; b0

(2g)3 pdz , 0 , 0 , 0
}
,

(3.32)
and the complete expression for the gauge fields is given by (2.24) with

ζ = r

{
−4g3a1a2a3

b0
, 0, 0, 0; 0, ga1, ga2, ga3

}
. (3.33)

The corresponding electromagnetic charges

Γ = 1
4π

∫
Σ
F =

{
mΛ; qΛ

}
, (3.34)
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are given by

m0 = 0 , q0 = b0
32πg3 (p2 − p1)∆z ,

mi = a1a2a3(p2 − p1)
8πg

ai
(p1 + ai)(p2 + ai)

∆z , qi = 0 , for i = 1, 2, 3 .
(3.35)

Note the following useful relations among the magnetic charges

3∑
i=1

mi = 1
2g

( 1
n1
− 1
n2

)
,

3∏
i=1

mi = p2
3

( 1
8πg (p2 − p1)∆z

)3
,

m1m2 +m2m3 +m1m3 = (p1 − p3)(p2 − p3) + p1p2p
2
3

p1p2

( 1
8πg (p2 − p1)∆z

)2

= − 1
(2g)2

( 1
n1n2

− a1a2a3
4π

( 1
n1

+ 1
n2

)
∆z
)
.

(3.36)

The first equation in (3.36) ensures again that the R-symmetry field AR = g
∑3
i=1A

i/2
has a flux

1
2π

∫
Σ
FR = 1

2

( 1
n1
− 1
n2

)
, (3.37)

along the spindle, which is necessary to enforce supersymmetry [12]. The electric charge
can be also rewritten as

q0 = b0
(2g)2

m1m2m3

1
(2g)2n1n2

+m1m2 +m2m3 +m1m3 . (3.38)

With this information we can evaluate the Bekenstein-Hawking entropy

SBH = Area
4G(4)

N
=

√
b0

2(2g)3G
(4)
N

(p2 − p1)∆z

= π

gG
(4)
N

√√√√ m1m2m3

1
(2g)2n1n2

+m1m2 +m2m3 +m1m3 q0 .

(3.39)

The spindle black string, using the uplift formula (2.13), can be recast as

ds2
5 = 1

4g2
(5)

( 4e
2
3σ0

a1a2a3
ds2

BTZ + e
2
3σ0

P (p) dp2 + a1a2a3P (p)
e

4
3σ0

dz2
)
,

Ai(5) = ρi(p)dz ≡ a1a2a3
2g(5)

p

p+ ai
dz , Li = e

2
3σ0

p+ ai
, for i = 1, 2, 3 ,

(3.40)

with the extremal BTZ metric given in (3.23) and r+ =
√
b0

2
√

2 . Note that the dilaton is
given by

e2ϕ = 2g(5)

√
2a1a2a3
b0

e−
1
3σ0 . (3.41)
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Since the BTZ is locally equivalent to AdS3, we can replace ds2
BTZ with ds2

AdS3
in (3.40)

and find a generalization of the AdS3 solution found in [12] depending on general magnetic
charges and discussed in [9, 11]. We compute the central charge of the corresponding CFT2
and explicitly match the entropy (3.39) with the charged Cardy formula in section 4. Our
solution reduces to the one in [12] for a1 = a2 = a3.11

We can uplift the solution to ten dimensions using [25, (2.1)]

ds2
10 =

√
∆ ds2

5 + 1
g2

(5)
√

∆

3∑
i=1

1
Li

(
dµ2

i + µ2
i

(
dϕi + g(5)A

i
(5)

)2
)
, (3.42)

where ∆ =
∑3
i=1 L

iµ2
i , and

µ1 = sin θ , µ2 = cos θ sinψ , µ3 = cos θ cosψ , (3.43)

so that
3∑
i=1

µ2
i = 1 , ds2

S5 =
3∑
i=1

(
dµ2

i + µ2
i dϕ2

i

)
. (3.44)

The metric (3.42) can then also be rewritten as

ds2
10 =

√
∆ e

2
3σ0

4g2
(5)

 4
a1a2a3

ds2
BTZ + dp2

P
+ a1a2a3P

e2σ0

(
1 +
√

2g(5) pe
2
3σ0

P∆

3∑
a=1

ρaµ2
a

)
Dz2


+ 1
g2

(5)
√

∆
ds2

B5 ,

(3.45)
where

Dz ≡ dz + 2
√

2pe
2
3σ0

∆(P + e2σ0)

3∑
a=1

µ2
adϕa ,

ds2
B5 =

3∑
a=1

1
La

(
dµ2

a + µ2
adϕ2

a

)
+ P − e2σ0

∆(P + e2σ0)

( 3∑
a=1

µ2
adϕa

)2
,

(3.46)

which allows to see the transverse seven-dimensional metric as a fibration of the angular
variable z over a six-dimensional base.

In the ten-dimensional metric the U(1)3 torus in S5 is non-trivially fibered over the
spindle with Chern numbers determined by mi. The regularity of the ten-dimensional
solution has been explicitly checked in [8, 12] for a1 = a2 = a3 and in [9, 11] for the general
case. In the case of equal magnetic charges, the Reeb direction ψ = φ1 +φ2 +φ3 is fibered
over the spindle parameterized by (p, z) with connection 2A, where (3.14) holds. This gives
a Lens space S3/Z(n2−n1)/3 fibration over P2.12 When n1 and n2 are relatively prime and

11Define p = 4
9a

3
herey − ahere where a1 = a2 = a3 ≡ ahere and identify athere = 27

4a2
here

and zthere =
a3

here zhere.
12The total space of the fibration over the weighted projective space WP1

[n1,n2] with Chern number
1

2π

∫
F = r/(n1n2) is the Lens space S3/Zr where Zr acts as (z1, z2) → (e2πin1/rz1, e

2πin2/rz2) on
S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} — see for example appendix A in [19]. The extra factor of 3
comes from the 6π periodicity of ψ.
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n1 − n2 is a multiple of 3, the fibration is regular [8, 12]. In the general case, the Reeb
direction is still fibered on the spindle with the same Chern number, which is fixed by
supersymmmetry. In addition, the flavor symmetry directions φ1 − φ3 and φ2 − φ3 are
further fibered over the base. It follows from the analysis done in [9, 11] that the metric
is still regular, for example, if 2gn1n2m

i ∈ Z [11], which just imposes further quantization
conditions on the flavor magnetic charges m1−m3 and m2−m3. We leave the full analysis
of the quantization conditions for the future.

3.3 Entropy function from gravitational blocks

In this section we show that can write an entropy functional for the spindle solution by
gluing gravitational blocks, thus confirming the general prescription introduced in [17].

It has been shown in [17] that all known entropy functionals for AdS4 black holes and
dimensional reduction of AdS5 black strings can be written as

I(pΛ, λΛ, ε) ≡ π

4G(4)
N

( 2∑
σ=1
B
(
XΛ

(σ), ε(σ)
)
− 2iλΛqΛ − 2εJ

)
, (3.47)

where λΛ and ε are the chemical potentials conjugated to the electric charges qΛ and the
angular momentum J , respectively, and the gravitational block

B(XΛ, ε) ≡ −F4d(XΛ)
ε

, (3.48)

is constructed in terms of the prepotential F4d of the corresponding gauged supergravity.
The functional I must be extremized with respect to the chemical potentials λΛ and ε

subject to a constraint and the extremum value is the entropy of the black hole. The
details of the gluing functions (XΛ

(σ), ε(σ)) and of the constraint depend on the type of black
hole, either twisted or of Kerr-Newman type, and are discussed in [17]. The construction
is the gravitational dual of the realization of three-dimensional supersymmetric partition
functions obtained by gluing holomorphic blocks [18], and fusing partition functions on
hemispheres. The two factors σ = 1 and σ = 2 correspond, in this language, to the North
and South hemisphere of the horizon geometry S2.

In the case at hand, the prepotential is given by

F4d = X1X2X3

X0 , (3.49)

and the sphere is replaced by the orbifold Σ = WP1
[n1,n2]. The gluing that works for the

spindle is
X0 = λ0 ,

Xi
(1) = λi − iε

(
mΛ − 1

6gχ
)
, ε(1) = ε ,

Xi
(2) = λi + iε

(
mΛ + 1

6gχ
)
, ε(2) = −ε ,

(3.50)
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where χ is the Euler number of spindle, given in (2.1), and the chemical potentials are
constrained to satisfy

gΛλ
Λ = g

3∑
i=1

λi = 2 . (3.51)

One can explicitly check that the entropy of both the rotating and magnetically charged
spindle black holes, (3.20) and (3.39), can be obtained by extremizing the entropy func-
tional (3.47).

We can shed some light on the form of the gluing (3.50) by considering first the case
of equal magnetic charges mi = 1

6g
( 1
n1
− 1

n2

)
with i = 1, 2, 3. The gluing of the components

i = 1, 2, 3 simplifies to

Xi
(1) = λi + iε 1

3gn2
, ε(1) = ε ,

Xi
(2) = λi + iε 1

3gn1
, ε(2) = −ε .

(3.52)

We see that supersymmetry requires shifting λi by a quantity proportional to the value of
R-symmetry gauge field at the two hemispheres, see (3.17). This is a natural generalization
of what happens for twisted black holes [17], which motivated our ansatz. In the general
case, we can write

Xi
(1) = λi − iε

(
si − 1

3gn2

)
, ε(1) = ε ,

Xi
(2) = λi + iε

(
si + 1

3gn1

)
, ε(2) = −ε ,

(3.53)

where, using (3.36), we parameterized

mi = si + 1
6g

( 1
n1
− 1
n2

)
, for i = 1, 2, 3 , (3.54)

with
∑3
i=1 s

i = 0. The si can be seen as magnetic fluxes for the flavor symmetries of N = 4
SYM. They enter in the gluing formula in analogy with the examples discussed in [17].

The form of the gluing (3.50) should follow from the gluing of holomorphic blocks in a
field theory computation. The identification and evaluation of the supersymmetric index
relevant for the spindle is left for future work. It is not completely obvious what partition
function we should consider in the presence of singularities. We can however observe that
the form of the gluing (3.50) suggests that the relevant index is obtained by considering
two hemisphere partition functions with the insertion of background magnetic fluxes 1

3gn1
and 1

3gn2
, respectively, and gluing them together in the spirit of [18].

We will see the interpretation of the gluing in terms of the field theory anomaly poly-
nomial in the next section.

4 The charged Cardy formula and the spindle microstates

In this section we provide a microscopic counting of the states of the black spindle using
the charged Cardy formula.
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The black spindle horizon solutions discussed in this paper are dual to an ensemble
of states of a (0, 2) supersymmetric CFT (SCFT) with energy L0 = nl and charges JA
under a set of abelian symmetries. The density of supersymmetric states can be derived
from the modular transformation of the elliptic genus and it is given by the charged Cardy
formula [3]

log ρsusy(nl, JA) ≈ 2π
√
cl
6

(
nl −

cl
24 −

1
2(k−1)ABJAJB

)
, (4.1)

where cl is the left-moving central charge and kAB is the matrix of levels of the abelian
currents

kAB = −Tr γ3JAJB . (4.2)

All information needed to evaluated the Cardy formula can be extracted from the two-
dimensional anomaly polynomial A2d. In particular, the levels coincide (up to a sign) with
the ’t Hooft anomaly coefficients, kAB = −AAB, defined as13

A2d = 1
2AABc1(FA)c1(FB) + . . . . (4.3)

The exact R-symmetry of the two-dimensional CFT is a linear combination of the abelian
symmetries, R =

∑
δ̊AJA that can be found by extremizing the trial central charge

cr(δA) = 3 Tr γ3R(δ)2 = 3AABδAδB , (4.4)

where R(δ) =
∑
δAJA, with respect to the mixing parameters δA. The restriction of the

anomaly polynomial to the exact R-symmetry thus reads

A2d = cr
6 c1(R)2 , (4.5)

where cr = cr (̊δ) ≡ cCFT is the exact central charge. Since we work in the holographic
regime, c = cl = cr.

We now compute the anomaly polynomial for the CFTs dual to the spindle solution
and match the charged Cardy formula with the gravitational entropy.

4.1 A2d for N = 4 super Yang-Mills on the spindle

The N = (0, 2) SCFT is obtained by compactifying a set of N D3-branes on the spin-
dle, and we expect to read off the 2d anomaly polynomial from the integration of the
4d anomaly polynomial of N = 4 SYM on Σ = WP1

[n1,n2] in the presence of magnetic
charges for the U(1)3 ⊂ SO(6) global symmetries of the four-dimensional theory. The
two-dimensional theory has an extra abelian symmetry, in addition to the U(1)3 inherited
from the four-dimensional parent theory, that arises from the U(1) isometry of the spindle.
The corresponding conserved charge is what we would call angular momentum from the
higher-dimensional perspective. As noticed in [12], the isometry along the spindle mixes in

13As in [3], we use notations where supersymmetry is realized in the anti-holomorphic sector and the 2d
chirality matrix γ3 is taken to be positive on anti-holomorphic fermionic movers. We also choose the signs
in such a way that the level matrix kAB in a unitary theory is positive definite for holomorphic currents.
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a non-trivial way with the R-symmetry of the two-dimensional theory and we need to take
it properly into account. The inclusion of the symmetries coming from the internal ge-
ometry in the anomaly polynomial of the lower-dimensionsional CFT has been extensively
discussed in [3, 15, 16] in the case of S2. The generalization to the spindle was discussed
in [12]. Here we need to further generalize it to the case of arbitrary charges.

Consider N = 4 SYM on Σ. We use a basis of the U(1)3 ⊂ SO(6)R symmetry
assigning charge +1 to chiral superfields Φ1,2,3, respectively; we call their generators and
field strengths as Q1,2,3 and F1,2,3, respectively. The 4d anomaly polynomial in the large
N limit, for the gauge group SU(N), is

A4d = N2

2 c1(F1)c1(F2)c1(F3) . (4.6)

The gravity solution corresponds to the situation where we turn on background gauge
fields Ai = ρi(p)dφ on the spindle with magnetic fluxes

1
2π

∫
ρ′i(p)dpdφ = ρi(p2)− ρi(p1) = pi , for i = 1, 2, 3 , (4.7)

where, for convenience, we normalize the angle φ = 2πz/∆z to have period 2π. As in [12],
the supersymmetry constraint (3.37) requires a flux 1

2

(
1
n1
− 1

n2

)
for the R-symmetry which

in our notations translate to14
3∑
i=1

pi = 1
n1
− 1
n2

. (4.8)

We need to pay attention to the choice of gauge. By a gauge transformation, we can always
add additive constants to the functions ρi(p). We work in the gauge where

ρi(p2) = 1
2
(
pi − 1

3χ
)
, ρi(p1) = 1

2
(
− pi − 1

3χ
)
. (4.9)

In particular, the R-symmetry background field satisfies

ARφ (p2) = − 1
2n2

, ARφ (p1) = − 1
2n1

. (4.10)

As argued in [12], this choice of gauge ensures that the Killing spinors are independent
of φ.15 Notice that this is the same gauge used to compute J in section 3.1 (see (3.17)).
The functions ρi(p) can be read off from section 3.2, after normalization and a gauge
transformation, but their explicit forms will not be important in the following.

In order to compute the two-dimensional anomaly polynomial, we also turn on back-
ground fields AR and AJ probing the R-symmetry and the internal U(1) isometry, respec-
tively,

Ai = ∆iAR + ρi(p)(dφ+AJ) , for i = 1, 2, 3 , (4.11)
14The field theory background fields Ai are identified with g(4)A

i
(4) = g(5)A

i
(5) on the gravity side.

15This requirement only fixes the gauge for the R-symmetry. We could use a different gauge for the flavor
symmetries, under which the Killing spinors are neutral. This ambiguity can be reabsorbed in a shift of
the chemical potentials ∆i in the trial function cr(ε,∆i) and leads to the same physical prediction for the
central charge. Notice however that a change of gauge also leads to a redefinition of the charge associated
with the internal isometry. The same is true in gravity, see (3.15).
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with curvature

Fi = ∆iFR + ρ′i(p)dp(dφ+AJ) + ρi(p)FJ , for i = 1, 2, 3 , (4.12)

where now AR and AJ are fields in the two-dimensional theory and we have embedded
the 2d U(1)R symmetry in the direction ∆iQi with

∑3
i=1 ∆i = 2. We can now substitute

this expression into (4.6) and integrate it over the spindle to obtain the two-dimensional
anomaly polynomial

A2d =
∫

Σ
A4d , (4.13)

as a function of the background fields AR and AJ . All integrals in p can be explicitly done
and we obtain

A2d = N2

2

[1
2c1(FR)2 ∑

i 6=j 6=k
∆i∆j [ρk(p2)− ρk(p1)]

+ 1
2c1(FR)c1(J)

∑
i 6=j 6=k

∆i[ρj(p2)ρk(p2)− ρj(p1)ρk(p1)]
]

+ c1(J)2[ρ1(p2)ρ2(p2)ρ3(p2)− ρ1(p1)ρ2(p1)ρ3(p1)] .

(4.14)

It is interesting to observe that the previous expression can be recast as a sum over fixed
points

A2d = N2

2

[ 1
c1(J)

3∏
i=1

(∆ic1(FR) + ρi(p2)c1(J)) + 1
(−c1(J))

3∏
i=1

(∆ic1(FR) + ρi(p1)c1(J))
]
,

(4.15)
of the internal U(1) isometry.

Using (4.9), the 2d anomaly polynomial can be compactly written as a gluing formula

A2d = 16
27c1(J)

(
a4d
(
∆(1)
i

)
− a4d

(
∆(2)
i

))
, (4.16)

with

∆(1)
i = ∆ic1(FR) + c1(J)

2
(
pi − 1

3χ
)
, ∆(2)

i = ∆ic1(FR)− c1(J)
2

(
pi + 1

3χ
)
. (4.17)

Note that (4.16) becomes a quadratic polynomial in c1(FR) and c1(J), after taking the sum
over fixed points. Here, a4d(∆i) is the 4d trial central charge in the large N limit, which
for N = 4 SYM reads

a4d(∆i) = 27
32N

2∆1∆2∆3 . (4.18)

The equations (4.17) are the field theory counterparts of the gravitational gluing (3.50)
for the components i = 1, 2, 3.
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4.2 The case with one magnetic charge

The anomaly polynomial of the two-dimensional theory obtained by compactifying N = 4
SYM on the spindle with equal magnetic fluxes

p1 = p2 = p3 = 1
3

( 1
n1
− 1
n2

)
, (4.19)

is then given by

A2d = 2a4d
27

(
9(∆1∆2 + ∆1∆3 + ∆2∆3)

( 1
n1
− 1
n2

)
c1(FR)2

+
( 1
n3

1
− 1
n3

2

)
c1(J)2 − 6

( 1
n2

1
− 1
n2

2

)
c1(FR)c1(J)

)
.

(4.20)

Here, a4d = N2

4 is the exact central charge of N = 4 SYM in the large N limit and the
chemical potentials ∆i, i = 1, 2, 3, for the U(1)3 ⊂ SO(6)R are constrained by

3∑
i=1

∆i = 2 . (4.21)

This expression coincides with [12, (30)] after setting ∆1 = ∆2 = ∆3 = 2
3 .

We see that J mixes non-trivially with the U(1)3 symmetries of N = 4 SYM. A
convenient to way extract the trial central charge is to allow a mixing c1(J) = εc1(FR) and
then compute cr(ε,∆i) = 6A2d/c1(FR)2:

cr (∆i, ε) = 4a4d
9

[
9(∆1∆2 +∆1∆3 +∆2∆3)

( 1
n1
− 1
n2

)
+
( 1
n3

1
− 1
n3

2

)
ε2−6

( 1
n2

1
− 1
n2

2

)
ε

]
.

(4.22)
This has to be extremized over the set of chemical potentials (ε,∆i), under the con-
straint (4.21). We obtain the critical points

ε̊ = 3n1n2(n1 + n2)
n2

1 + n1n2 + n2
2
, ∆̊i = 2

3 , for i = 1, 2, 3 . (4.23)

We can then read off the exact central charge of the two-dimensional CFT [12]

cCFT = 4a4d
3

(n2 − n1)3

n1n2(n2
1 + n1n2 + n2

2)
. (4.24)

We can define two independent flavor charges, K1 = Q1 − Q3 and K2 = Q2 − Q3,
and we can extract their matrix level kAB, A,B = 1, 2, as well as the level k of the U(1)
rotational symmetry using (4.3)

kAB = 2a4d
3

( 1
n1
− 1
n2

)(2 1
1 2

)
, k = −4a4d

27

( 1
n3

1
− 1
n3

2

)
. (4.25)

We can now compare these results with the gravity prediction obtained in section 3.1.
The massless supergravity vector fields Ai, i = 1, 2, 3, are associated with the Cartan
subalgebra U(1)3 ⊂ SO(6). In particular, (3.12) implies

pi = 2gmi = 1
3

( 1
n1
− 1
n2

)
, for i = 1, 2, 3 . (4.26)
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We also need the following relations among 5d and 4d quantities [3]

G
(5)
N = 2πG(4)

N , J = 1
2G(4)

N
J , Q0 = 1

2
√

2G(4)
N
q0 ,

Qi = 1
2
√

2g(5)G
(4)
N
qi , for i = 1, 2, 3 .

(4.27)

Finally, we will use the well-known holographic relation for AdS5 × S5

N2 = π

2g3
(5)G

(5)
N

. (4.28)

The constraint (3.19) can be now interpreted as the fact that the black spindle has
charge zero with respect to the exact R-symmetry

R̊ =
3∑
i=1

∆̊iQi + ε̊J , (4.29)

of the CFT. An analogous phenomenon was observed for the rotating black strings dis-
cussed in [3].

At this point, the entropy of the rotating black spindle (3.20) can be written as16

SBH ≡ log ρsusy(Q0, QA, J)

= 2π

√√√√√cCFT

6

Q0 −
1
2

2∑
A,B=1

(QA −Q3)(k−1)AB(QB −Q3)− J2

2k

 , (4.30)

in complete agreement with the charged Cardy formula (4.1).
The charged Cardy formula can be reformulated as an extremization problem. The

standard derivation of the Cardy formula extracts the density of states from the high-
temperature behavior of the CFT partition function that is uniquely fixed by modular
transformations [1]. Analogously, the asymptotic density of supersymmetric states can be
extracted from the asymptotic behavior of the elliptic genus of the CFT, which is in turn
fully determined by the ’t Hooft anomalies of the theory. In our particular context, the
density of states can be obtained via extremizing [3]

ICFT(ε,∆i) = π2

6β cr(∆i, ε) + βQ0 + iπ
3∑
i=1

∆iQi + iπεJ , (4.31)

with respect to β, ε,∆1,2,3, under the constraint (4.21). In this language, the constraint on
charges (3.19) arises from imposing the reality condition

Im ICFT
∣∣∣
crit.

= iπ
( 3∑
i=1

∆̊iQi + ε̊J

)
= 0 , (4.32)

and we obtain log ρsusy = Re ICFT
∣∣∣
crit.

. We note that the functional (4.31) is the field theory
counterpart of the entropy functional (3.47) based on gravitational blocks. Using (4.16)
and (4.17), it is easy indeed to check that the two extremization problems can be mapped
onto each other by identifying λΛ with (β,∆i) (up to a suitable rescaling).

16Here, we absorbed the vacuum energy in the definition of Q0 = nl − cl
24 .
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4.3 The case with arbitrary magnetic charges

In the case of arbitrary magnetic charges, the anomaly polynomial is given by

A2d = a4d

(
2(∆1∆2p

3+∆1∆3p
2+∆2∆3p

1)c1(FR)2

+
( 1

18

( 1
n1

+ 1
n2

)( 1
n2

1
− 1
n2

2

)
+ 1

2 p
1p2p3

)
c1(J)2

− 1
3

( 1
n2

+ 1
n1

)
((∆1+∆2)p3+(∆1+∆3)p2+(∆2+∆3)p1)c1(FR)c1(J)

)
,

(4.33)

with pi, i = 1, 2, 3, being the fluxes through the spindle for the U(1)3 ⊂ SO(6)R symmetry,
satisfying

3∑
i=1

pi = 1
n1
− 1
n2

. (4.34)

By allowing a mixing c1(J) = εc1(FR) and extremizing the trial central charge cr(ε,∆i) =
6A2d/c1(FR)2 over the set of chemical potentials (ε,∆i), under the constraint (4.21), we
obtain the critical points

ε̊=
( 1
n2
− 1
n1

)2 n1n2(n1 +n2)
n1n2 ((p1)2 +(p2)2 +(p3)2)+(n2

1 +n2
2)(p2p3 +p1p2 +p1p3)

,

∆̊1 = 1
18

( 1
n2
− 1
n1

)2 3n1n2(3n2p
1 +2)−n2

1(3n2p
1(6n2p

1 +3)−3)+3n2
2

n1n2 ((p1)2 +(p2)2 +(p3)2)+(n2
1 +n2

2)(p2p3 +p1p2 +p1p3)
,

∆̊2 = 1
18

( 1
n2
− 1
n1

)2 3n1n2(3n2p
2 +2)−n2

1(3n2p
2(6n2p

2 +3)−3)+3n2
2

n1n2 ((p1)2 +(p2)2 +(p3)2)+(n2
1 +n2

2)(p2p3 +p1p2 +p1p3)
.

(4.35)

Using (4.5), we can then read off the exact central charge of the two-dimensional CFT

cCFT = 12a4d p
1p2p3

1
n1n2

+ p1p2 + p3p2 + p1p3 . (4.36)

Using (4.27), we can then write the entropy of the magnetically charged spindle (3.39) as

SBH ≡ log ρsusy(Q0) = 2π

√
cCFT

6 Q0 , (4.37)

in perfect agreement with the Cardy formula.
Notice, that for arbitrary magnetic charges, the flavor symmetries K1 = Q1 − Q3,

K2 = Q2−Q3 and K3 = J mix in a non-trivial way. For completeness, we give the matrix
level kAB, A,B = 1, 2, 3,

k1,1 = 4a4d p
2 , k1,2 = 2a4d(p1 + p2 − p3) , k1,3 = −1

3a4d

( 1
n1

+ 1
n2

)
(p1 − p3) ,

k2,2 = 4a4d p
1 , k2,3 = −1

3a4d

( 1
n1

+ 1
n2

)
(p2 − p3) ,

k3,3 = −a4d

(1
9

( 1
n1

+ 1
n2

)( 1
n2

1
− 1
n2

2

)
+ p1p2p3

)
.

(4.38)
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5 A2d for general N = 1 theories on the spindle

The black string solution in [12], being a solution to minimal gauged supergravity, can
be embedded in all AdS5 string and M-theory compactifications,17 in particular in all
the type IIB vacua AdS5× SE5 associated with five-dimensional regular Sasaki-Einstein
manifolds SE5. It would be interesting to find spindle black string solutions depending on
more general charges and angular momentum in such compactifications. While finding the
explicit solution is a difficult task, there is a simple quantum field theory prediction for the
anomaly polynomial and the central charge of the corresponding CFT2. In this section, we
briefly discuss the form of the anomaly polynomial for general theories. We also discuss the
case of solutions of mimimal and half-maximal gauged supergravity that can be embedded
in infinitely many type II and M theory compactifications.

5.1 Integrating the anomaly polynomial

Consider the compactification of a four-dimensional N = 1 SCFT with d abelian global
symmetries dual to AdS5× SE5 on Σ. In the large N limit, the 4d anomaly polynomial
can be written as

A4d = 1
6

d∑
i,j,k=1

cijk c1(Fi)c1(Fj)c1(Fk) , (5.1)

where Fi is a basis of R-symmetries with generators Qi and cijk are related to the ’t Hooft
anomaly coefficients. In the toric case, there is a quite explicit description of the generators
Qi on fields and the anomaly coefficients cijk in terms of toric data [23, 41–44].18 We turn
on background gauge fields Ai = ρi(p)dφ on the spindle with magnetic fluxes pi satisfying

d∑
i=1

pi = 1
n1
− 1
n2

, (5.2)

and work in the gauge

ρi (p2) = 1
2

(
pi − ri0

2 χ
)
, ρi (p1) = 1

2

(
−pi − ri0

2 χ
)
, (5.3)

where
∑d
i=1 r

i
0 = 2, which fixes the values of R-symmetry background field at the poles as

in formula (4.10).
We also turn on background fields AR and AJ for the R-symmetry and the internal

U(1) isometry, with curvature

Fi = ∆iFR + ρ′i(p)dp(dφ+AJ) + ρi(p)FJ , for i = 1, 2, . . . , d , (5.4)

where we have embedded the 2d U(1)R symmetry in the direction ∆iQi with
∑d
i=1 ∆i = 2.

17There are restrictions due to the quantization conditions of the charges and the regularity of the uplift
that need to be discussed on a case-by-case basis.

18We follow the conventions of [45], where more details can be found. In particular, cijk =
N2

2 | det(vi, vj , vk)| where vi are the integer vectors defining the toric fan. For N = 4 SYM, c123 = N2/2
and for the conifold c123 = c124 = c234 = c134 = N2/2. Notice that, in our normalizations, the Fi assign
charge +1 to the superpotential.
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The two-dimensional anomaly polynomial reads

A2d =
∫

Σ
A4d . (5.5)

Repeating the same arguments as in section 4.1, it is easy to see that the anomaly polyno-
mial can be compactly written again as a gluing formula

A2d = 16
27c1(J)

(
a4d
(
∆(1)
i

)
− a4d

(
∆(2)
i

))
, (5.6)

where

∆(1)
i = ∆ic1 (FR)+ c1 (J)

2

(
pi − ri0

2 χ
)
, ∆(2)

i = ∆ic1 (FR)− c1 (J)
2

(
pi + ri0

2 χ
)
, (5.7)

and we have defined the 4d trial central charge in the large N limit

a4d (∆i) = 9
32

d∑
i,j,k=1

cijk∆i∆j∆k . (5.8)

More explicitly, we can write

A2d = 16
27

d∑
i=1

∂a4d (∆i)
∂∆i

pi c1 (FR)2 − 4χ
27

d∑
i,j=1

∂2a4d (∆i)
∂∆i∂∆j

pirj0 c1 (FR) c1 (J)

+ 2
81

d∑
i,j,k=1

∂3a4d (∆i)
∂∆i∂∆j∂∆k

[
pipjpk + 3χ2

4 pirj0r
k
0

]
c1(J)2 .

(5.9)

By allowing a mixing c1(J) = εc1(FR) and extremizing the trial central charge cr(ε,∆i) =
6A2d/c1(FR)2 under the constraint

∑d
i=1 ∆i = 2, we can determine the exact central charge

of the CFT2.
Let us consider, for example, the Klebanov-Witten theory [46]. The manifold in this

case is Y5 = T 1,1. The quiver contains two SU(N) gauge groups with two bi-fundamental
chiral fields Ai in the representation (N,N) and two bi-fundamental chiral fields Bi in the
representation (N,N) with a quartic superpotential

W = Tr
(
A1B1A2B2 −A1B2A2B1

)
. (5.10)

We introduce four chemical potentials ∆I and fluxes pI , one for each of the four fields
{Ai, Bi}, associated with the four global symmetries of the theory and satisfying

4∑
I=1

∆I = 2 ,
4∑
I=1

pI = 1
n1
− 1
n2

. (5.11)

The 4d trial central charge in the large N limit reads19

a4d(∆i) = 27
32N

2(∆1∆2∆3 + ∆1∆4∆3 + ∆2∆4∆3 + ∆1∆2∆4) . (5.12)

19See footnote 18 for the ’t Hooft anomaly coefficients.
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The exact R-symmetry corresponds to ∆I = 1/2 and the exact central charge is given by

a4d = 27
64N

2 . (5.13)

Using ri0 = 1/2, we can write the anomaly polynomial

27
a4d
A2d = 32

(
(∆3∆4 + ∆2∆3 + ∆2∆4) p1 + (∆1∆3 + ∆1∆4 + ∆3∆4) p2

+ (∆2∆4 + ∆1∆2 + ∆1∆4) p3 + (∆1∆2 + ∆1∆3 + ∆2∆3) p4
)
c1(FR)2

+ 1
2

(
3
( 1
n1
− 1
n2

)( 1
n1

+ 1
n2

)2
+ 16

∑
I<J<K

pIpJpK
)
c1(J)2

− 8
( 1
n1

+ 1
n2

) 4∑
I=1

(2−∆I)pIc1(FR)c1(J) ,

(5.14)

and, with the same method used in section 4.3, we can extract from it the exact central
charge of the CFT2 and the levels of the various U(1) symmetries. Defining

ΘKW(p) =
4∑

I<J
( 6=K)

pIpJ(pK)4 − 2
4∑

I,J=1
pIpJ

4∏
K=1

pK , (5.15)

we find the exact central charge

cCFT = 64
9 a4d

(n1 − n2)2(p1p2p3 + p1p4p3 + p2p4p3 + p1p2p4)
(n2

1 + n1n2 + n2
2)
∏4
I<J(pI + pJ) + n1n2 ΘKW(p)

. (5.16)

Furthermore, organizing the flavor symmetries in the basis Ki = Qi−Q4 for i = 1, 2, 3 and
K4 = J , we read the levels

k1,1 = 64
27a4d(p2 + p3) , k2,2 = 64

27a4d(p1 + p3) , k3,3 = 64
27a4d(p1 + p2) ,

k4,4 = −16
27a4d

( 3
16

( 1
n1

+ 1
n2

)( 1
n2

1
− 1
n2

2

)
+ p1p2p3 + p1p4p3 + p2p4p3 + p1p2p4

)
,

k1,2 = k1,3 = k2,3 = 32
27 a4d (p1 + p2 + p3 − p4) ,

k4,j = 8
27a4d

( 1
n1

+ 1
n2

)
(p4 − pj) , for j = 1, 2, 3 .

(5.17)
Notice that in our discussion we allowed a generic gauge for the flavor symmetries

parameterized by the quantities ri0. One can choose, for example, the value ri0 = 2/d for all
models. The effect of a change of gauge for the flavor symmetries can be reabsorbed by a
shift of ∆i in cr(ε,∆i) and leads to the same exact central charge cCFT. It leads however to
a redefinition of charges. In particular, the charge J associated with the internal isometry
would be shifted by a linear combinations of the flavor charges. These redefinitions should
be taken into account when computing the levels and writing the charged Cardy formula,
but all physical conclusions are obviously unchanged.
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5.2 The universal spindles in theories with 8 and 16 supercharges

There are two simple universal cases where we can test (5.6) against supergravity predic-
tions. As already mentioned, the stu model in five dimensions admits truncations to both
minimal N = 2 and N = 4 gauged supergravites and the corresponding solutions can be
uplifted to any AdS5 compactification with eight and sixteen supercharges, respectively
(charge quantization conditions and regularity of the uplift allowing). This calls for a
universal field theory counting of microstates in N = 1 and N = 2 SCFTs, in the spirit
of [7, 47–49].

Let us consider first the case with eight supercharges, which is a straightforward gen-
eralization of the universal static case discussed in [12]. The rotating black spindle of
section 3.1 when restricted to equal electric charges q1 = q2 = q3 is a solution of minimal
gauged supergravity and, as such, it can be embedded in all string and M-theory compact-
ifications with an AdS5 vacuum and eight supercharges [29]. For all these solutions, the
entropy takes the universal form

SBH ≡ log ρsusy(Q0, J) = 2π

√
cCFT

6

(
Q0 −

J2

2k

)
, (5.18)

with
cCFT = 4a4d

3
(n2 − n1)3

n1n2(n2
1 + n1n2 + n2

2)
, k = −4a4d

27

( 1
n3

1
− 1
n3

2

)
, (5.19)

where a4d = π

8G(5)
N g3

(5)
is the exact central charge of the dual N = 1 SCFT. These solutions

can be interpreted as universal compactifications on the spindle with angular momentum
and magnetic charges aligned with the exact four-dimensional R-symmetry

∑d
i=1 ∆̄iQi of

the N = 1 SCFT20

pi = 1
2

( 1
n1
− 1
n2

)
∆̄i , for i = 1, 2, . . . , d . (5.20)

It is easy to see that the anomaly polynomial of the two-dimensional CFT (5.6) collapses
to the anomaly polynomial (4.20) of N = 4 SYM with ∆i = 2/3,21

A2d = 2a4d
27

(
12
( 1
n1
− 1
n2

)
c1(FR)2 +

( 1
n3

1
− 1
n3

2

)
c1(J)2 − 6

( 1
n2

1
− 1
n2

2

)
c1(FR)c1(J)

)
,

(5.21)
as already computed in [12, (30)]. Notice that this expression only depends on a4d. The
universal form of (5.18) then follows from the universality of the anomaly polynomial and
the charged Cardy formula.

Consider now the case with sixteen supercharges, in the spirit of [49]. The five-
dimensional uplift of the static spindle of section 3.2 when restricted to the magnetic

20Notice that the exact R-charges ∆̄i should satisfy some conditions for the construction to work, in
particular they should be at least rational. This restrict the class of compactifications that can be used.

21The best way of doing this computation is to use the gauge ri0 = ∆̄i. Since there are no flavor charges
and (5.6) is extremized at ∆i = ∆̄i, we can restrict to ∆i = ∆̄i. Recall that the exact four-dimensional
R-symmetry ∆̄i is obtained by extremizing (5.8) and a4d = 9

32
∑d

i,j,k=1 cijk∆̄i∆̄j∆̄k.
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charges m2 = m3 are solutions of the half-maximal gauged supergravity in five dimensions.
Such solutions can be embedded in all AdS5 type II or M-theory backgrounds with sixteen
supercharges [26–28]. For these solutions the exact central charge of the corresponding
CFT2 is given by

cCFT = 12a4d p
1(p2)2

1
n1n2

+ 2p1p2 + (p2)2 , (5.22)

where pi = 2gmi and p1 + 2p2 = 1
n1
− 1

n2
. The universality of this formula follows again

from the universality of the four-dimensional trial central charge for N = 2 SCFTs [50].
As discussed in [49], for all the theories with a holographic dual in the large N limit we
have

a4d(∆i) = 27a4d
8 ∆1∆2

2 , (5.23)

where ∆1 and ∆2, with ∆1 + 2∆2 = 2, are associated with the U(1)R and the Cartan
generator of the SU(2)R symmetry, respectively.22 It is then straightforward to check
that the anomaly polynomial of the two-dimensional CFT (5.6) collapses to the anomaly
polynomial (4.20) of N = 4 SYM with ∆2 = ∆3. The expression (5.22) then follows from
the same computation as in section 4.3.

6 Discussion and outlook

In this paper we constructed supersymmetric near-horizon solutions describing dyonic ro-
tating spindle black strings that can be embedded in AdS5 × S5 and successfully matched
the corresponding density of states with the charged Cardy formula. Many questions are
left open.

First of all, we were able to construct horizon geometries only. Given the successful
field theory analysis based on N = 4 SYM, we expect these solutions to arise as supersym-
metric domain walls that interpolate between the near horizon region and AdS5. It would
be interesting to construct the full interpolating solution by generalizing the ansatz in [14].
Similarly, it would be interesting to find spindle solutions in more general compactifications
than AdS5 × S5. The case of universal solutions has been discussed in section 5.2. More
general solutions are more difficult to find. In order to use gauged supergravity, we need
the existence of a consistent truncation and deal with supergravity theories with hypermul-
tiplets. Some recent examples in the context of AdS black strings obtained from twisted
compactifications can be found in [3].

Another important question concerns the field theory interpretation of the spindle
compactifications. From the four-dimensional point of view, we are considering a SCFT
on a singular manifold. It would be interesting to understand whether this makes sense
as a field theory in the presence of defects or it has an interpretation as the reduction
of a more complicated quantum field theory on a higher-dimensional smooth manifold.

22In a perturbative theory the 4d trial R-symmetry is R(∆) = ∆1r1/2 + ∆2r2, where r1 assigns charge
2 to the chiral field φI in the vector multiplet and zero to the chiral pairs qa, q̃a in a hypermultiplet and r2

assigns charge zero to φI and charge 1 to qa, q̃a. Compared with [49] we rescaled ∆there
2 = 2∆here

2 , for ease
of comparison with N = 4 SYM.
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We have seen that the anomaly polynomial of the low-energy CFT in two dimensions
computed from purely four-dimensional data correctly reproduces the holographic results
in the bulk. On the other hand, the anomaly polynomial of the two-dimensional CFT
should be also computable from a ten-dimensional point of view using the anomaly inflow
method developed in [51]. This could not only put the computation on firmer ground but
it could also shed some light on the physics of the system.

Another natural question is whether the anomaly and other physical quantities, in
particular the elliptic genus of the CFT2, can be encoded in a higher-dimensional super-
symmetric index, which could give information also at finite N . In the analogous case of
compactifications on the sphere, the relevant quantity is the refined topologically twisted
index [52], which is the partition function on T 2 × S2 with a topological twist and an
Ω-background along S2. This has been explicitly discussed in [2, 53]. Here the relevant
index should be associated with a refined partition function on T 2 × WP1

[n1,n2], with an
appropriate prescription for dealing with the singularities. We notice that the supersym-
metry on the spindle is not realized with a topological twist, but it is still supported by a
magnetic flux (3.14). The gluing formulae (3.47) and (5.6) suggest that the relevant index
for the spindle could be obtained by fusing two copies of the four-dimensional holomorphic
block [18] with fluxes 1/2n1 and 1/2n2 for the R-symmetry, respectively.

Finally, we notice that there exist also supersymmetric accelerating and spinning black
holes with conical singularities in four dimensions. These can be interpreted as domain
walls that interpolate between (conformal) AdS4 and a warped product of AdS2 and the
spindle and can be embedded in AdS4 × S7 [19]. There are many analogies with the
situation considered in this paper. The near-horizon geometries can be found again with
the formalism in [14]. Moreover, it is easy to check that an entropy functional for these black
holes can be written by gluing two gravitational blocks with a formula similar to (3.47)
using the prepotential F4d =

√
X0X1X2X3. This corresponds to the familiar fact that,

while the entropy of supersymmetric black objects in AdS5 is controlled by anomalies and
the central charge a4d(∆) of the dual four-dimensional SCFT, the entropy of black holes
in AdS4 is controlled by the free energy on S3 of the dual three-dimensional SCFT, which
for the ABJM theory [54] reads FS3 = 4π

√
2k1/2N3/2

3
√

∆0∆1∆2∆3 in the large N limit [55].
This again suggests the possible existence of an index obtained by fusing two copies of the
three-dimensional holomorphic block with fluxes 1/2n1 and 1/2n2 for the R-symmetry.

The present work, taken together with [12, 19], also raises a more general question
outside the realm of holography and microscopic entropy counting. We already noted that
the solutions with conical singularities actually represent the most generic cases in lower-
dimensional supergravity theories with a non-vanishing scalar potential, where no special
restrictions are imposed on the black hole geometry and asymptotic charges. The fact
that we can make sense of the supersymmetric solutions holographically might suggest the
interesting possibility that the spindle horizons are also relevant for more realistic thermal
black hole models.

We leave all these questions for future work.
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