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I N T R O D U C T I O N

This Thesis has been completely
written by a human.

In the last years, we have witnessed a true ”Machine Learning revolution”.

Under the name of Artificial Intelligence (AI), Machine Learning (ML), and

Deep Learning (DL), statistical methods have shown that many complex

tasks can be solved automatically if data are abundant and are used in a

clever way. In many cases, such as Natural Language Processing, Computer

Vision, and recommendation systems, Machine Learning is already a stan-

dard tool. In other cases, applications are still in their infancy, despite al-

ready showing impressive results. It is almost impossible to make a list of

such breakthroughs.

Computational materials science has not been immune to the Artificial

Intelligence fever [1, 2]. More and more research groups are now trying

to integrate some degree of Machine Learning algorithms in their work.

While some applications are very close to the purely data-driven context

ML methods were originally developed, such as non-linear fitting [3, 4],

image elaboration [5], composition and properties search [6, 7, 8, 9], other

approaches search for deeper integration with the underlying physical pro-

cesses or mathematical models [10, 11, 12, 13, 14]. In many instances, ML

algorithms can provide flexible, convenient and accurate function approxi-

mators. In this sense, they promise to beat traditional schemes in terms of

scale: maybe the most successful example is that of so-called Deep Learning

potentials, in which one tries to substitute expensive Density Functional The-

ory calculations with cheaper Neural Network approximations to perform

high-accuracy molecular dynamics simulations at a reduced computational

cost [15, 16, 17, 18]. Another hope is the possibility of integrating theoretical

results and experimental data: Machine Learning algorithms are agnostic on

the origin of the data. It is at least in principle possible to train models with

hybrid computational/experimental datasets. In such a framework, ML can

be a shortcut to finding new patterns, creating surrogate models, finding cor-

rection terms for known theories, etc. All of these can be attempted, however,

only if we understand how to merge statistical learning with computational

materials science, condensed matter physics and statistical physics.

In this Thesis, I will present my effort, focused on the application of Neu-

ral Networks methods to materials simulations. In particular, I leveraged

the historical experience of my research group in multi-scale modeling. The

main objective of my PhD was to try to integrate ML methods in continuum

scale simulations involving mesoscale behaviors such as dislocations or mor-

phological evolutions. The scope is methodological: my objective for the

past three years has been to find new ways to tackle problems with known
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2 contents

bottlenecks in computational materials science. In all topics discussed, NNs

have been implemented from scratch using PyTorch framework [19].

Machine Learning, especially if considered applied to this class of prob-

lems, is a relatively novel field. For this reason, specific textbooks on the ap-

plications of DL to computational physics/materials science are scarce. An

attempt has thus been made to provide a self-contained discussion, present-

ing at least an overview of all theoretical concepts while avoiding exceeding

in too-technical details. Of course, basic tools for a physicist are assumed to

be familiar (differential equation, functional analysis, probability theory, etc).

At the same time, as NN models leverage a lot of the mathematical formula-

tion of physical models, at least general details of those are also revised. In

the end, the Thesis contains a good amount of material. For this reason, we

suggest the reader familiar with specific topics to skip introductions and go

directly to results.

I find it convenient to introduce Deep Learning methods contextually to

their applications. The hope is that by reading through the text, the reader

can appreciate how ML models emerge naturally from the characteristics

of the problems at hand. Of course, Chapter 1 represents an exception to

this rule: before diving into applications, a short overview of basic concepts

in Machine Learning and Neural Networks will be provided, together with

the essential mathematical instruments. After this introduction, I will not

proceed in strict chronological order in what I have done during my PhD.

Instead, methods and applications will be introduced progressively from

the most simple to the most sophisticated.

Chapter 2 will show an application of the staple of NN architectures, the

multilayer perceptron, to approximate interaction energy and forces between

dislocations in a semiconductor film. This idea of approximating a driving

force for a system evolution with NNs is extended to the elastic energy driv-

ing the morphological evolution of strained films in chapter 3. As this quan-

tity has an intrinsic spatial structure, this is a natural setting for introducing

Convolutional Neural Networks.

The following Chapter 4 is the most dense one, as it moves to more sophis-

ticated ML models: the idea is that it is possible to use a Neural Network to

provide the dynamics predicted by a suitable Partial Differential Equation

(PDE) without explicitly predicting the driving force or time derivatives. In

this context, subsequent states of the system are regarded as elements of

a sequence and a Recurrent structure is composed with the Convolutional

NN to provide a fast approximation of traditional solvers. This scheme is

presented in the context of Phase Field models. Additionally, a simple but

effective scheme describing how prediction uncertainty estimations can be

obtained in ML schemes is discussed. The Chapter also presents some pre-

liminary results which are currently being collected for publication.

The final part of the Thesis is dedicated to the possibility of employing

NN to learn statistical distributions. In particular, during my PhD, I focused

on the possibility of using Generative Adversarial Networks (GANs) to di-

rectly generate stochastic processes described by a Markov chain. Chapter 5

sets the foundation for this scheme for the toy problem of a single particle

diffusing in a double well potential and then outlines the work in progress

in extending results to many particles, two-dimensional systems.
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1 M A C H I N E L E A R N I N G

F U N DA M E N TA L S

In this Chapter, we will provide a quick introduction to the fundamentals

of Machine Learning and Neural Networks. First, a brief description of

what we mean by Machine Learning, what are its objective and some basic

terminology is provided (Section 1.1). In Section 1.2, we will dive a bit

deeper into the mathematics behind Machine Learning. The main actor here

will be the concept of loss function. This quantity has deep connections with

probability, but we will start slowly and first set things in a very heuristic

framework.

A discussion on probabilistic interpretations will instead be tackled in Sec-

tion 1.3. It is assumed that the reader is familiar with basic probability and

statistics concepts, such as expectation, variance, probability distributions

and densities, absolutely continuous variables, etc. A refresher can be found

in [20]. Key results and theorems will however re-stated in the notation used

in this Thesis.

Having set the game, the simplest example of Machine Learning methods,

Linear Regression, is reviewed in Section 1.4 and Section 1.5. The first one

defines and outlines the main characteristics of linear models. In doing this,

we will be mainly interested in outlining the connection between general

ML concepts and the limitations that propelled the field toward non-linear

approaches such as Neural Networks (NN). Section 1.5 will instead be ded-

icated to showing how core concepts in ML training, such as underfitting,

overfitting and validation procedures emerge naturally even in the simple

Linear model setting.

The direct answer to some of these problems is introduced in Section 1.6.

There, mainly traditional methods such as ridge regression and LASSO are

quickly described. Naturally, the topic of regularization is huge and can-

not fit a single section. Indeed, to some extent, this whole Thesis may be

regarded as a travel between different Regularization and NN architecture

choices that make them effective in a physics context. The topic will there-

fore be re-discussed at multiple points during the text.

One of the cornerstones of modern Machine Learning, the feedforward,

Multi-Layer Perceptron (MLP) is presented, together with some fundamental

mathematical results, in Section 1.7. Approximation capabilities will also be

discussed and a simplified version of the Universal Approximation Theorem

will be provided. Section 1.8 outlines how the optimization problem set by

the loss function is tackled in practice. Some details on the backpropagation

algorithm and how it is used in practice will be outlined.

Lastly, Section 1.9 discusses the role of symmetries in Machine Learning.

Similarly to regularization, this is a huge topic: entire NN architectures have

been developed to satisfy symmetry constraints. Again, in this Chapter we

will only give some general hints on this topic, as the introduction of specific

methods is better discussed contextually to applications in the following.

5



6 mach ine learning fundamentals

The Chapter cannot be an exhaustive presentation of Machine Learning

and Neural Networks. Rather, it will hopefully just provide a quick and self-

contained foundation for the terminology and general strategies that will be

used in the rest of the Thesis. In general, we refer the reader who would like

a more in-depth discussion to Refs. [21, 22, 23, 24, 25], which are the main

source of information for this Chapter.

1.1 what is machine learning

Machine Learning (ML) has become ubiquitous in the last few years. Nowa-

days, terms like ”Machine Learning”, ”Artificial Intelligence” and ”Deep

Learning” are everywhere in newspapers and scientific articles. Despite

providing impressive results, the main idea behind most Machine Learning

is quite straightforward: suppose we have couples of variables (x,y) (they

could be scalars, vectors, words, images, etc.), and we know that variable y

is correlated to variable x. This means that there is a function f such that:

y = f(x) (1.1)

In the context of Machine Learning, x is usually considered as an ”input

variable” or a ”feature vector”, while y is often referred to as a ”target”,

”label” or ”output variable”. Different terms come from the traditional dis-

tinction between classification (the task of assigning the correct label y to the

features x) and regression tasks (the task of assigning the most appropriate

output variable y to an input variable x, being x and y continuous values).

In this Thesis, however, these terms will be used interchangeably, as hap-

pens in most modern ML. Indeed, in practice, the same methods can often

be adapted for both contexts with minor modifications.

In most of this Thesis we will deal with so-called supervised learning [21,

22, 23, 25]. Informally, this can be described as the set of approaches to find

a good approximation of the (unknown) function f. Indeed, ML reverses the

standard scheme of computation: traditionally, we have some input for the

calculations (e.g. initial conditions in a Differential Equations, x), and know

the rules that will give the output (the Differential Equation itself, f). Then

we perform some algorithm, either by pen and paper or by programming

a computer, and obtain the solution of the equation (in our terminology, y).

In supervised learning, on the other hand, we possess the input and the

output, but we miss a representation of the mapping. The procedure of

obtaining a ”good” map (in a formal sense which will be defined in the next

section) is called training. This kind of approach has proven to be particularly

convenient for tasks in which formalizing the relationship between the x and

y is hard. The typical example is recognizing cats from dogs: it’s (usually)

easy for humans to tell these two animals apart, but what are the exact

features that allow for such a distinction?

This quality, however, is also very appealing for Materials Science, specif-

ically if Machine Learning approaches are to be used in conjunction with

experimental data: theory usually deals with idealized situations and reality

is far more complex. ML could therefore provide an extremely flexible tool
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1.2 setting the game: parameters and loss func-

tions

Up to this point, the discussion has been very informal, with concepts like

”appropriate output” and ”close approximation” without a precise defini-

tion. We will now start to be more systematic. In this section, we will have

in mind mainly supervised learning regression schemes. This is because

they are usually more straightforward, closer to the typical material scientist

work and more similar to most of the approaches presented in this Thesis.

First, let us reconsider the supervised learning task in a more mathemat-

ical framework. As stated in the previous section, most Machine Learn-

ing approaches involve the problem of approximating an unknown func-

tion f, given a set of its possible inputs x = {xi, i = 1, ...,N} and outputs

y = {yi, i = 1, ...,N}. Since the collection of (x,y) is used to train a model, it

is usually called a training set.

We can formulate the training problem in a variational form: suppose

that the function f̂ is a candidate approximation of f. Then its outputs f̂(xi)

should be as close as possible to yi. It is natural to consider the average sum

of squared differences1:

L[f̂] =
1

N

N∑

i=1

(f̂(xi) − yi)
2 = E(f̂(x) − y)2 (1.2)

where E is the expectation value operator. Since L measures how good or

bad an approximation f̂ is, it takes the name of Loss function. The choice of

squared differences instead of absolute differences is for the moment arbi-

trary. Indeed, different functional forms for L are often used in ML, depend-

ing on the task at hand. In principle, any convex function with a minimum

in the origin could be used as a Loss function. In the next section, however,

we will draw some connections with Bayesian methods in probability, which

will highlight some rationale behind the choice of L.

The concept of ”best possible approximation” can then be formalized in

the search for the f̂∗ which minimizes L. Of course, this search cannot be

performed on the space of all functions. It is therefore convenient to consider

a parametric class: f̂ = f̂(·|ϑ), where ϑ represent a set of (usually) real number

parameters which prescribe how to map the input variable to the output one.

Although it is not unique, this approach is very general and flexible. With

the parametric form, L can be converted in a regular function of parameters:

L(ϑ) =
1

N

N∑

i=1

(f̂(xi|ϑ) − yi)
2 = E(f̂(x|ϑ) − y)2 (1.3)

The training procedure amounts, in principle, to find parameters ϑ∗ which

minimize the loss function.

1 As N→∞, this is equivalent to considering the L2 distance between functions.
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1.3 probabilistic interpretation of loss function

Before moving to examples of Machine Learning concepts in practice, we

will take a small detour on a probabilistic interpretation of the loss func-

tion and the optimization procedure of learning. In the following, we will

consider familiarity with basic probability theory [20].

First, we need to introduce the concept of parametric probabilistic model [22].

A probabilistic model is, informally speaking, a set of assumptions which

define a probability distribution relating variables. In our case, we will con-

sider parametric models. This means that there exists a set of parameters

ϑ which define the probability distribution of some variable. In concrete,

we can regard the function approximation f̂(x|ϑ) of the previous section as

an object mapping an input variable x to the probability distribution of the

output variable y.

Let us make this more concrete by considering a regression task in phys-

ical sciences: in general, experimental data are affected by noise, which

is usually assumed to follow some Normal/Gaussian distribution N(µ,σ),

where µ is the noise mean and σ the standard deviation. The central limit

theorem supports the ubiquitous presence of Gaussians. Suppose that x and

y variables are measured and we are interested in finding the best approx-

imation of the function f such that y = f(x). To ease the notation, we will

also assume that y is scalar, but generalization to vector-valued functions is

straightforward. Under these assumptions, the actual realizations of y are

independent and normally distributed around f(x). For each couple i in the

dataset:

yi = f(xi) + εi; εi ∼ N(0,σ) (1.4)

where we assumed that µ = 0 and σ does not depend on the index i (ho-

moscedasticity2).

With these assumptions, i.e. with this probabilistic model, the conditional

probability of observing the values y given the input variable x and the set

of parameters ϑ can be simply defined:

P(y|x, ϑ) =
N∏

i=1

1√
2πσ

exp−
(yi − f̂(xi|ϑ))

2

2σ2
(1.5)

On the notation side, in the following we will use capital letters for discrete

probabilities, lowercase letters for probability densities and the calligraphic

P when the distinction is not important. The term P(y|x, ϑ) is called likeli-

hood. Reverting to our original goal of ”finding the best approximation of

f”, a reasonable alternative to the variational formulation might be to select

parameters ϑ which maximize equation 1.5, a procedure called Maximum

likelihood Estimation (MLE). In practice, it is equivalent but more convenient

2 Many methods can still be applied if this assumption is relaxed. Still, notation is more
opaque, hence we will always assume homoscedasticity.
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to consider minimizing the negative logarithm of the likelihood (as log is a

monotonous function), as will become clear. Equation 1.5 becomes:

− log P(y|x, ϑ) =
N∑

i=1

− log
√
2πσ+ (yi − f̂(xi|ϑ))

2 − 2σ2 (1.6)

Since the first and last terms do not depend on ϑ, this corresponds to mini-

mize

N∑

i=1

(yi − f̂(xi|ϑ))
2 = NL(ϑ) (1.7)

which is equivalent to Equation 1.3 up to multiplicative constants. Notice,

however, that the quadratic form of the loss function emerged automatically

by the assumptions of the generative model: using a Mean Squared Error

(MSE) loss function is equivalent to postulating that the data have a Gaussian

distribution. Another interesting fact is that the actual value of σ does not

influence the MLE. Indeed, as in most applications we will be interested in

approximating deterministic calculations, we can imagine that σ→ 0, and the

probabilistic formulation is a trick to get to rational Loss functions.

Up until now, it seems that we complicated the simple heuristic scheme

which we introduced in the previous section. There are however at least

three advantages that we have obtained from this more elegant probabilistic

interpretation. First, we provided a rationale, based on statistical assump-

tions, on the specific forms the loss function should have. If, for example,

we are developing a model of a Bernoulli random variable (which will be

necessary in section 5), we now have the instruments to derive the correct

loss function. Second, we have made an important connection with statistics:

this means that we can exploit statistical methods to improve or to correctly

interpret trained models. Third, this framework will be more flexible in the

case the ML task is no longer to approximate a function, but instead it is to

learn a probability distribution itself.

1.3.1 Bayesian interpretation

There is a further elaboration which we can do to obtain an even more flexi-

ble scheme for training. First, we need to review Bayes theorem:

Theorem 1. Consider random events X and Y. Be P(X) indicate the probability of

event X and P(X|Y) the conditional probability of X given Y. If P(Y) 6= 0:

P(X|Y) =
P(Y|X)P(X)

P(Y)
(1.8)

The theorem is the same if all probabilities are conditioned on some third event Z:

P(X|Y,Z) =
P(Y|X,Z)P(X|Z)

P(Y|Z)
(1.9)

Let us now shift perspective: while in the previous Section there was

no uncertainty in the value of parameters (except for the fact that we were
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searching for the optimal value), now parameters are themselves a random

variable. Applying Bayes theorem, we can assign a probability to different

sets of parameters:

P(ϑ|x,y) =
P(y|x, ϑ)P(ϑ|x)

P(y|x)
(1.10)

In Bayesian statistics, the term P(ϑ|x,y) is called posterior probability and rep-

resents the probability we should assign to the parameters ϑ after having

observed the dataset (x,y). On the right side of the equation, notice that

P(x,y|ϑ) is exactly the likelihood. The new term P(ϑ|x) is instead called the

prior and represents the set of previous assumptions we had on the values

of the parameters. Instead of simple maximization of the likelihood, let us

consider maximization of the posterior probability. This procedure is called

Maximum A Posteriori (MAP) estimation. Similar to MLE, it is common to

minimize the negative log-posterior. If we consider a normally distributed

likelihood, we then obtain a new loss function:

L(ϑ) =
1

N

N∑

i=1

(yi − f̂(xi|ϑ))
2

2σ2
− log P(ϑ|x) (1.11)

where we already got rid of all terms which do not depend on ϑ and normal-

ized the summation. The first term in equation 1.11 is the usual MSE loss

term used in regression, except for the σ term rescaling. There is however

an additional prior term. For the moment, let us consider prior assump-

tions on the values of parameters that are independent of the training set

observations, i.e. P(ϑ|x) = P(ϑ).

The most general assumption is that we have no prior belief on ϑ: all val-

ues have equal probability3, hence the prior term log P(ϑ) = const. Since the

prior term is not dependent on ϑ, then the posterior probability reduces to

the likelihood term only: Maximum Likelihood Estimation can be recovered

in the Bayesian picture as the special case of an uninformative prior.

Let us consider now another simple case in which ϑ are independent from

x. If they follow a joint Gaussian probability distribution with zero mean,

then

L(ϑ) =
1

N

N∑

i=1

(yi − f̂(xi|ϑ))
2

2σ2
+ λ||ϑ||2 (1.12)

where we have already got rid of all terms not depending on ϑ again. The

|| · ||2 term indicates the L2 euclidean norm of ϑ treated as a vector of R
n. For

this reason, this term is called L2 regularization. The meaning of this name

will become more clear in section 1.5. λ is a so-called hyperparameter (to be

distinguished from model parameters ϑ) balancing the effects of the likeli-

hood and the prior term. Notice that this additional term in L(ϑ) is pushing

the optimal solution of the training procedure to have smaller parameters

than the unconstrained procedure. In the specific example considered here,

3 Notice that, in principle, it is not possible to have a normalized uniform probability density
on an unbounded region of R

n. However, the assumption of such an improper prior is often
performed in MAP because of its connection with MLE.
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λ amounts to the ratio between the variances of the two Gaussian distri-

butions: if this term is very small, we believe that the prior distribution is

much broader than the model output one, hence the MAP will favor so-

lutions which reproduce training examples almost exactly. If, on the other

hand, λ is big, the optimal solution will have ϑ as small as possible, while the

exact reproduction of the training examples will be less important. Notice

that this moves the optimization procedure from the optimal value of likeli-

hood. The reason why such a feature should be appealing will be discussed

in Section 1.5.

Of course, normal prior is not the only convenient distribution. Another

common choice is the Laplace distribution:

pLapl(x) =
1

2α
exp

( |x− µ|

α

)

(1.13)

If the position parameter µ = 0, then the loss function is modified in the

following way:

L(ϑ) =
1

N

N∑

i=1

(yi − f̂(xi|ϑ))
2

2σ2
+ λ|ϑ| (1.14)

where | · | indicates now the L1 norm of ϑ. Again, λ = 1/α controls the

relative importance of the two objectives. In general, one can consider priors

belonging to the exponential family and obtain Lp regularization terms. Of

course, there is no reason beyond practicality why every parameter should

not have a different distribution and a corresponding individual λ term and

we merely made this assumption here for ease of notation.

In some applications, the mathematical convenience of these priors also

offers a nice interpretation (e.g. in linear regression they lead to ridge re-

gression and LASSO). However, more general schemes can be considered.

An example will be reported in Chapter 4, together with the relaxation of

the usual assumption of independence between ϑ and x.

1.3.2 Prior alternative interpretations

There are at least two other interpretations of the prior term in the loss

function. The first one is in terms of penalty: the prior term increases the cost

(i.e. the loss) of some parameter choices. Indeed, it penalizes solutions with

undesired properties, moving the optimal ϑ to a set of parameters which are

more compliant with, for example, small Lp norms.

The second interpretation is in terms of constrained optimization: the hyper-

parameter λ can be regarded as the Lagrange multiplier associated with a

constraint. In the case of L2 regularization, we can rephrase the optimiza-

tion task of equation 1.12 as finding the minimum-loss set of parameters ϑ

contained in a hypersphere centered at the origin, with λ being (inversely)

proportional to the radius of the hypersphere itself. This is a critical insight,

as sets a correspondence between fixed parameters, i.e. infinitely strong con-

straints, and infinitely strong priors, i.e. certainty of some property. This

will be useful when discussing specialized NN structures.
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We close this section with a last key remark on prior distribution and

the corresponding regularization theme: unfortunately, it introduces a new

element in the optimization, the hyperparameter λ. If no other information

is available, finding the best value of hyperparameters might be a non-trivial

task: when models are simple and/or quick to train, this could be identified

through a hyperparameter scan. In the case of more sophisticated models

(e.g. Neural Networks), however, a systematic search could be too time or

computationally demanding. Therefore, one has often to rely on trial-and-

error procedures, which may miss optimal combinations.

1.4 linear regression as machine learning

We already introduced a lot of ingredients of modern Machine Learning.

This is therefore a good point to stop and to see these concepts in action

with a model familiar to all scientists: Linear Regression.

In linear regression, the relationship between the input variable x and the

output variable y is mediated by a linear combination:

yi =

N∑

i=1

wiXij (1.15)

the parameters wi are called weights. The symbol w instead of the ϑ will

be used specifically for linear models. Here we also introduced the design

matrix elements Xij, where row i corresponds to the i − th observation of

the input variable ~xi. The index j, instead, runs on individual features of

input variables. Simply put, the rows of X represent values for all the input

variables in a single observation, while columns represent different values

for the same feature across observations. As such, Xij is the (scalar) value

of feature j in observation i in the training set. Instead of linear transforma-

tions, we can consider the (slightly) more general case of affine mappings by

augmenting X with an additional column4 constant across observations and

set to 1. If x is one dimensional, the coefficient related to this additional term

represents the intercept value of the line approximating the (x,y) mapping

and is usually called bias.

Linear regression can be generalized to encompass non-linear relation-

ships between input and output variables. Indeed, the design matrix can

be augmented with non-linear functions of the original input variables, un-

der the constraint that the combination of such additional features is still

linear. Linear models therefore include polynomial regression and expan-

sion on basis functions. As an example, consider a third-degree polynomial

fit:

ŷ = w3x
3 +w2x

2 +w1x+w0 (1.16)

4 This is the well-known trick of considering affine transformations in R
n as the projection of

linear transformations in R
n+1
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Despite the relationship being explicitly non-linear, Equation 1.16 still is con-

sidered a linear model, as it is defined in terms of linear combinations of

features, here represented by powers of x.

For simplicity, we are here assuming that the output variable is a scalar

quantity. If we use matrix notation, a linear model tries to approximate the

output variable vector ~y with the prediction ~̂y:

~̂y = X~w (1.17)

Using the same intuition of section 1.2 (or using the MLE formalism), we

can therefore search the ”best” linear model as the minimum of the usual

regression MSE loss function:

L(~w) =
1

N
||~̂y− ~y||2 =

1

N
||X~w− ~y||2 (1.18)

Minimization can be performed analytically by setting ∇~wL(~w) = ~0 and

yields the MLE of the coefficient vector ~w∗ in terms of the design matrix and

the training output variables ~y only:

~w∗ = (X
T
X)−1X

T
~y (1.19)

Equation 1.19 is commonly called normal equation or least square solution. In

linear models, training amounts to a single, ”one-shot” inversion of the X
T
X

matrix, if possible. Indeed, matrix inversion could be ill-defined if the num-

ber of observations is too small with respect to the number of features in the

input variable.

This can be understood from a statistical perspective. Let’s go back to the

design matrix itself, and consider its ”centered” version X such that:

Xij = Xij − E(xj) (1.20)

As this is just a constant shift for features, the least squares equation will

lead to the same solution but for a modified bias term. Performing the same

analysis of ordinary least squares, we have to invert the matrix X
T
X, whose

elements are:

(X
T
X)ij =

∑

k

XkiXkj =
∑

k

[Xki − E(xi)(Xkj − E(xj)] (1.21)

If we remember that the first index in the design matrix runs on observations,

we realize that this is just a re-scaled version of the covariance matrix of

features in ~x. This highlights that to have reasonable results with linear

models, we should have a training set large enough to also have a reasonable

estimation of covariance between features.

Another consideration comes from algebraic arguments. X
T
X is a symmet-

ric square matrix whose rank is bounded by the number of observations: if

the number of samples in the dataset is smaller than the number of features,

then it is impossible to perform exact matrix inversion. While this fact may

seem like a pathological case that is never encountered in the big data era,

there are instead situations in which this may become relevant. Consider
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If instead we choose as parameter vector ~̃wN+1 = [~w∗
N, 0], the loss function

will be higher or equal to the minimum one. Then

L(~w∗
N+1) 6 L( ~̃wN+1) = L(~w∗

N)

Notice that the proof generalizes to any N by induction and that no assump-

tions on the functional form of the loss function have been made.

This tells us that one should be careful to add parameters to a model:

while adding terms to the linear combination will always decrease the loss

function or keep it the same, this does not guarantee that the trained model

will be useful in practice. And this is not even considering that the number of

training examples conditions the rank of X
T
X or the curse of dimensionality!

Something is missing in what we have discussed so far: up until this

point, we considered the best possible model as the one that minimizes the

loss function on some training sets. Looking at the results in Figure 3, how-

ever, we are forced to change our perspective, as we want a ML model not

only to reproduce the training set but also to provide reasonable predictions

for unseen data. To assess this capacity, it is customary to split the available

dataset into two subsets without overlaps: a training set and a validation set.

The training set is used to optimize the parameters in the ML model, as we

have seen in previous sections. The validation set serves as a proxy for esti-

mating the generalization error: in practice, the loss function is calculated also

on the validation set to monitor the overfitting phenomenon and to perform

model selection. As an example, we reconsider a last time the polynomial fit

case. In Figure 4 we show how the training and validation loss change with

the degree of the polynomial. As it can be seen, the validation loss has a

minimum: in some sense, there is an optimal polynomial degree which will

give the best generalization results. Notice that this is not necessarily the

degree of the (unknown) true polynomial. If, in any training algorithm, a di-

minishing of training loss is observed together with an increase of validation

loss, overfitting is probably happening.

It is common in ML to discuss in terms of model complexity or capacity: very

complex models (e.g. with a lot of parameters) will be capable of approxi-

mating highly non-linear relationships but are more prone to overfitting, as

in the case of high degree polynomials. On the other hand, models with low

”complexity” will not be able to capture all functional forms, but they will

not incur in the risk of fitting noise or learning ill-behaved functions, like the

simple linear model of Figure 2.

A more precise analysis in terms of bias-variance trade-off can be conducted.

In this Thesis, however, we will not re-derive these results, as they are exact

only for (generalized) linear regression. We therefore refer the interested

reader to Refs. [21, 22, 24]. The main message, however, should be clear from

Figure 4: just looking at the training loss is not enough for ML applications,

and there is an optimal model ”complexity” for generalization.
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dataset called test set, which is used as a proxy for real-world applications of

the model.

While regularized linear models are a very powerful tool, we have not

provided yet protection against the curse of dimensionality. Additionally,

one would like to have a more general scheme for non-linear function selec-

tion than adding as many as possible and hoping that LASSO finds a sparse

solution.

1.7 neural networks

Up until now, we have only considered linear combinations as a means to

approximate functions. In recent years, however, Machine Learning has re-

lied more and more on non-linear approaches, the most famous of which are

Neural Networks (NN). The idea behind NN dates back at least to the late

fifties [33], and their name comes from connections with models for biologi-

cal neuron systems. In this Thesis, however, we will consider NN ”just” as a

sophisticated Machine Learning method, which provides a flexible scheme

for function approximation.

First, we need to define what a Neural Network is. To do that, we start

with the simplest NN architecture, that of single hidden layer, fully connected,

feedforward Neural Network. While this name may sound complex, from a

mathematical perspective, it is very straightforward to define such a func-

tion:

NN(~x) =W2 · σ(W1 ·~x) (1.24)

here, W1 and W2 represent matrices, ~x is the vector of input variables6 and

σ is a non-linear transformation, often called an activation function. When

applied to vectors/matrices, non-linear functions are intended to operate

component by component, i.e. for a vector ~v = [v1, v2, ..., vN]T , σ(~v) =

[σ(v1),σ(v2), ...,σ(vN)]T . W1 ·~x is referred to as the hidden layer, as its val-

ues are normally only used in calculations and are therefore ”hidden” in

the NN black box (hence single hidden layer). Notice also that, depending on

the number of columns of W2, Neural Networks can have vector-valued out-

puts. Figure 6 reports the typical graphical representation of this structure

in the case of a vector input and scalar output. The fully-connected part of

the name comes from the fact that W1 and W2 are dense matrices. If we

consider their elements as ”interaction weights”, then all variables in ~x are

interacting with each other. Finally, the term feedforward is used to describe

operation flow: the simple NN we are discussing here has an output, which

is calculated from the hidden layer, which in turn depends only on the in-

put. At no point there is an inversion of this order. While this may seem

like a useless specification at this point, the ”feedforward” adjective is used

to distinguish this ordered structure from more sophisticated architectures

(see for example Recurrent NNs discussion in Chapter 4). In the language

of NN, the dimensionality of W1 ·~x is referred as the number of neurons or as

6 As in linear regression, ~x can be augmented with a ”dummy” constant value so that matrix
multiplication by Wi also encompasses affine transformations.
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This freedom in the choice of σ may seem suspicious. Notice, however,

that proposition 1 assures that if we increase the dimensionality of W1 · ~x,

the loss function on the training set will decrease, as we are adding more

and more terms to the linear combination mediated by W2. This is how-

ever a quite weak statement, as there is no guarantee that L will strictly

decrease. In other words, we are still not sure that an arbitrary function can

be approximated arbitrarily well by a Neural Network. Fortunately, univer-

sal approximation capabilities of NN have been proven under a very broad

range of hypotheses. For instance, we report one of the classical theorem

formulations by Cybenko [34].

Theorem 2. Let σ be any continuous sigmoidal7 function and ~x ∈ R
n the input

variable. Then, the finite sums of the form

G(~x) =

N∑

j=1

αjσ(~y
T
j ~x+ bj)

are dense on the set C(In) of continuous functions on the unit interval In = [0, 1]n.

In other words, given any f ∈ C(In) and ε > 0, there is a sum, G(~x), of the above

form for which

|G(~x− f(~x)|∞ < ε

where | · | indicates the uniform norm |f(s)|∞ = sup(f(s)|s ∈ In).

The proof of this theorem requires results in functional analysis and is out-

side the scope of this Thesis. In the case of scalar functions, however, there

is a simpler (and weaker) version of the universal approximation theorem8:

Theorem 3. Given a primitive function f of a single variable x ∈ [0, 1], a series in

the form GN converges point-wise to f as N→∞.

GN(x) =

N∑

j=1

wjσ(ajx+ bj)

σ is a function which can approximate the Heaviside function9 H

H(x) = 0 if x < 0; H(x) = 1 if x > 0

Proof. We start by considering that the function f is primitive, hence it has a

first derivative f ′ and can be written in the form:

f(x) =

∫x

0

f ′(y)dy =

∫1

0

H(x− y)f ′(y)dy

7 Defined as a continuous function σ(x)→ 1 as x→∞ and σ(x)→ 0 as x→ −∞

8 This was shown in the 2023 workshop in Roscoff GDR-IAMAT by Prof. Ludovic Goudenège;
I take credit for possible unclarities or mistakes in the following

9 Being x = 0 a set of measure zero, the actual value of H(0) is not important.
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By hypothesis, H can be approximated by σ. For example, consider the

logistic sigmoid:

H(x) = lim
ε→0+

1

1+ exp x
ε

= lim
ε→0+

σ
(x

ε

)

This means that by a suitable choice of parameter α, the following equation

can be made arbitrarily close to the integral form of f:

f(x) ≈
∫1

0

f ′(y)σ(αx−αy)dy

If integration is approximated by the series

f(x) ≈
∫1

0

σ(αx−αy)f ′(y)dy = lim
N→∞

N∑

j=1

1

N
σ
(

αx−α
j

N

)

f ′
( j

N

)

Now set f ′(j/N)
N = wj, α = aj and −αj

N = bj:

f(x) ≈ lim
N→∞

N∑

j=1

wjσ(ajx+ bj)

If instead of approximating H with σ, we integrate by parts the integral

representation of f, the same steps yield the approximation theorem for

ReLU networks, under suitable hypotheses. Both theorems 2 and 3 refer

to unit intervals. Notice, however, that this generalizes to generic (closed) in-

tervals by a simple rescaling of the input variables, which in principle could

be learned by the Machine Learning algorithm itself.

Using the Neural Network slang, these theorems assure that a single layer

NN can approximate arbitrarily well any continuous function as the hidden

layer width increases. While the name universal approximation theorem sounds

like a capital result, notice that similar results also hold for polynomial or

Fourier series expansion. Why, then, NN are so successful with respect to

more traditional approaches in linear models? The real difference between

between linear regression models and NN is that in some sense they are

optimizing the basis functions and the coefficients in a linear combination at

the same time. This simple fact is very powerful, as it brings the solution to the

curse of dimensionality. An intuition for this comes from simple mechanics

as also illustrated in Figure 7.

Consider as an example the motion of a point mass attached to an an-

chor point, forming a pendulum. In general, the position of a point mass

in 3D is described by three variables [x,y, z]. If however, we consider a non-

linear combination of the input variables yielding the angle the pendulum

describes with the vertical α = arcsin

√
x2+y2

z , then there exists a single de-

gree of freedom describing the motion. The same kind of idea works also

for other high dimensional data. A prototypical example (e.g. [22]) is that

of photos: if we consider 100× 100 images and turn on or off pixels with

random intensity, it is very unlikely that we obtain an intelligible image. On
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approaches. In practice, most ML choices are motivated by empirical testing

and observation of what works best in the specific application at hand.

1.8 training a neural network

Now that we have assessed that NNs have many interesting mathematical

properties, we have to turn to the most problematic issue we have bypassed

up to this point: Neural Networks are non-linear by construction, hence

linear algebra cannot be used anymore to analyze their behavior and train

them. Moving to the realm of non-linear functions comes with its price.

One of the most important effects is that the possibility of having gen-

eral, closed-form solutions to optimization problems is lost: an equivalent

to equation 1.19 is no longer available, hence iterative solvers have to be

considered. One of the simplest ideas for minimum search of a function is

the same as for gradient descent10, a simple (local) minimization algorithm

which is used in atomic configuration relaxation: given an initial condition

(e.g. atom coordinates), forces are calculated through energy derivatives and

atoms are moved proportionally in that direction. The proportionality factor

is usually called learning rate (lr) in the ML community. The method proceeds

in this fashion until a convergence criterion, usually on the force magnitudes,

is met. If we substitute energy with L and atomic positions with parameters

ϑ, this method could in principle be effectively used to train Deep Neural

Networks.

In order to train a model through gradient descent an essential ingredient

is an efficient way to obtain the full ∇ϑL. Fortunately, NNs are composed

of functions that are analytical and differentiable almost everywhere. It is

therefore possible to calculate the gradient of L exactly, at least in principle.

In modern Deep Learning, this is done through the so-called backpropagation

algorithm. Despite its fancy name, this is essentially just an implementation

of the Leibniz chain rule. To illustrate the main idea, let us consider a NN

composed of N layers. To calculate NN(~x), we have to traverse the so-called

computational graph in the forward direction. In the simplest case of feedfor-

ward multilayer networks, for every layer we have to calculate the hidden

activations ~hi:

~hi = σ(Wi · ~hi−1) (1.27)

where σ is the activation function as defined in the previous section, Wi

represents the i-th affine transformation and ~h0 = ~x. This passage is com-

monly referred to as the forward pass in the NN, as iterations start from the

Network inputs and proceed towards its output, or, in the ML slang, from

the input to the output nodes. Backpropagation efficiency comes from the

10 Also known as steepest descent, since movement in the configuration space is along the (nega-
tive) gradient direction, which corresponds to the fastest decrease in energy.
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sway us away from searching the global optimum, especially if the number

of parameters is in the order of thousands (if not millions) and we lack any

reasonable guess. In ML, however, we are often not interested so much in

such a minimum, and we turn instead to a good enough set of parameters.

While it is true that lower loss function models should perform better, there

are at least two classes of arguments that suggest that searching for the exact

global minimum is not so as critical as it seems: one is practical the other

comes from overfitting.

1.8.1 Global minimum and convenient training

One possibility to approach the global minimum problem would be to ig-

nore it. In practice, even though the optimization procedure converges to a

local minimum, the solution found often provides reasonable generalization

capabilities.

Of course, it would be nicer to have an explanation on why NN models

not reaching global minimum perform so well. A good interpretation comes

from integrating the discussion on the overfitting problem for NN. As we

have seen in section 1.5, when the model capacity increases the possibility of

obtaining a model that performs very well on the training set and extremely

poorly in generalization also increases. Since NNs have universal approxi-

mation capabilities and it is not uncommon that the number of parameters

used is in the order of millions, overfitting should be a main concern. Pretty

much as in the case of high-degree polynomials, this phenomenon almost

surely affects the global minimum of the loss function. In other words, re-

member that the real task of training is not to minimize the training loss as

much as possible, but to obtain a model with as little generalization error

as possible. In this respect, training is fundamentally different from pure op-

timization. In truth, most NN currently used not only are not at L global

minimum, they are not even at a local one. This is due to the use of one of

the most used regularization techniques, called early stopping. Basically, as

iterative minimization of the training loss proceeds, validation loss is also

calculated. As soon as the latter increases, gradient descent is stopped, as

the model is starting to be affected by overfitting. It does not make sense

to continue optimization, after all, as generalization capabilities (estimated

through the validation loss) degrade as the procedure converges to a minimum

of the training loss.

Before closing this Section, we will briefly discuss a suggestive analogy

between Loss minimization and statistical mechanics. Let’s reconsider MAP

through Equation 1.10 (analogous considerations can be drawn for MLE by

switching to an uninformative prior). The posterior probability P(ϑ|x,y) can

be rewritten as:

P(ϑ|x,y) =
P(y|x, ϑ)P(ϑ|x)
∫

P(y, ϑ|x)dϑ
(1.29)

The quantity at the denominator ensures that the probability distribution

is normalized and is called the partition function. The fact that this name

is the same as the normalization constant in statistical physics is not a co-
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once. Standard gradient descent has one evident disadvantage: since the

loss function is some expectation value estimated on the whole training set,

it performs a single optimization step in one epoch. This can make training

extremely slow if the model considered is very big and the training set is

very large. One way to speed up things is to consider that the expectation

value can be calculated on a smaller subset of the data. This is the main idea

behind minibatch stochastic gradient descent: at each epoch the training set is

partitioned at random in sets of prescribed size, called minibatches or batches,

and optimization steps are performed calculating L and gradients on the

minibatch. The term stochastic gradient descent (SGD) is sometimes reserved

for the limit case in which the batch size equals one, but in the following

we will use the two names interchangeably. As the nomenclature suggests,

this technique makes the optimization updates stochastic, as the gradient

estimation will be affected by sampling noise. The smaller the batch size,

the more noisy loss and gradient estimations will be12. While this may seem

a big price to pay for a computational speed-up, there are many theoretical

analyses proving that this procedure is indeed generating a Markov chain

leading to a (local) minimum of the loss function [37, 38, 22, 39].

There are actually arguments for stochasticity being beneficial in training,

in particular in avoiding shallow local minima and can be regarded as a

regularization technique itself. A formal analysis of SGD characteristics is

beyond the scope of the current Thesis, hence we refer the interested readers

to Refs. [37, 22]. However, we will briefly discuss them from a heuristic point

of view. While global minima of L do not necessarily yield well-generalizing

models, it remains true that shallow, high-loss minima have a low likelihood

and are not expected to provide good models. In standard gradient descent,

where loss is calculated on the whole training set, avoiding such bad local

minima is difficult: if the initial (random) set of ϑ is in the attraction basin of

such a point, following gradients will result in a poorly performing model.

If, on the other hand, SGD is used, there is a probability of escaping the

basin by performing moves that are not aligned with the gradient or even in

the opposite direction.

Of course, this is not the only available strategy to avoid bad local minima.

In optimization literature, there are multiple techniques to modify the simple

gradient descent method. From a ML perspective, two main approaches can

be considered:

• Gradient rescaling: to speed up training in flat regions of the loss func-

tion landscape, the gradient is rescaled. At the same time, step size

shrinks in high curvature regions. This is usually performed using

some estimation of the gradient magnitude, the local curvature, or a

combination.

• Momentum: similarly to damped motion in dynamical systems, infor-

mation on the velocity at which the model is moving in parameters

space is retained. This allows for easily surpassing shallow local min-

ima (this effect combines with stochasticity in SGD) and speeds up

12 This is one reason why bigger minibatches are usually preferred to proper SGD with batch
size one.



30 machine learning fundamentals

training in flat regions, but can slow down convergence in very steep

regions. In any case, updates are no longer aligned with gradients.

Maybe the most successful algorithm in the last years is Adam [40], which

combines both strategies. All training in this Thesis uses this method, which

is reported as pseudocode in Appendix A. Some publications, however, sug-

gest that Adam has shortcomings in some non-stationary problems [41, 42].

In the end, as for most things in ML, there is no clear best choice, however.

For this reason, there is a plethora of optimization algorithms available in

Deep Learning libraries and the related literature has substantially grown in

the last decade [43, 44, 45, 46].

1.9 symmetries in machine learning

One of the most important features in physical systems is the presence (or

lack of) symmetries. For example, an invariant Lagrangian implies con-

served quantities in the equations of motion [47]. It is therefore of utmost

importance that whatever ML tool is used to approximate physical quan-

tities complies as much as possible with known symmetries in the system.

While this reason is certainly compelling, from the ML point of view there

are other reasons why symmetries should have a role in ML model training.

From a loss minimization perspective, symmetries are constraints that the

NN should satisfy. If prior knowledge of the symmetries of the function

being approximated is inserted in the training procedure, this acts as a reg-

ularizer. From an intuitive point of view, this can be easily realized con-

sidering the following toy problem. Suppose that a polynomial regression

is used to fit the harmonic potential energy of a particle. Setting the force

constant to unity, the ground-truth expression would be 1
2x

2. Of course,

it is unreasonable that a training process would yield the exact form. In-

stead, the most probable estimate values for the polynomial coefficient will

be returned. Based on its training examples, something like this could be

produced:

f(x) = 0.50003x2 + 0.0001x

Clearly, this expression will yield satisfactory results in terms of training

loss, if x values in the training set are small enough. However, if this expres-

sion is used to integrate equations of motion, errors coming from the linear

term will slowly start to accumulate. If, on the other hand, the symmetric

property f(x) = f(−x) had been enforced, the linear term would have been

penalized13.

Symmetry encoding in NN structures will be one of the leitmotivs of this

Thesis. This is particularly critical in Deep Learning, as the huge number of

parameters and flexible, non-linear nature of NN can make it non-trivial to

insert symmetries. Several approaches have been designed for this purpose

and many of them will be used in this Thesis.

13 Notice that this approach will not help to reduce the error on the coefficient for the quadratic
term, however.
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One of the most effective ways to encode system invariances in Neural

Networks is to make their input itself invariant to system symmetries. Con-

sider for example a potential energy function for a single particle in some

external field. Naively, one would collect a training set of ([x,y, z],E) cou-

ples, relating the Cartesian coordinates of the particle to its potential energy.

Suppose however that the physical system considered has a rotational sym-

metry. Then, the original training set could yield the same amount of in-

formation if instead of using [x,y, z], the distance from the potential center

r =
√

x2 + y2 + z2 is used. This is very similar to what was discussed in sec-

tion 1.7 about the existence of a non-linear, smaller dimensional manifold on

which data live. Projecting input variables onto manifolds satisfying known

symmetries can be regarded as making some of the NN ”by hand”.

In this respect, there is a second way to consider this kind of input vari-

ables transformation: the (non-)linear projection can be regarded as an addi-

tional, ad-hoc layer (with possibly ad-hoc activation functions) at the begin-

ning of the Network. As transformations are fixed beforehand, parameters

in this imaginary extra layer should be fixed as well. In other words, opti-

mization algorithms do not affect their value. If we recall that loss function

minimization comes from a MAP interpretation, this corresponds to an in-

finitely strong prior: we are certain that the parameters in this initial layer

must be those set by hand because we are also certain that the input-output

variable mapping satisfies certain symmetries. Of course, this certainty must

come from some other sources than data. In statistical model terminology,

assumptions used in modeling are called inductive biases. If inductive bi-

ases comply with the properties of the actual data source, then the resulting

model will be more efficient (e.g. fewer parameters will be required, gener-

alizations error will be lower, etc.).

An alternative approach to invariances is through a procedure called data

augmentation [21, 22]. The main idea is to substitute the original training

set with a symmetrized version of it. In practice, every time a data point

is presented to the NN during training, a transformation of the input vari-

ables is applied. This is often performed in a randomized manner, with

a similar spirit to minibatch gradient descent, which is particularly useful

when the symmetry group acting on data is large. If the number of consid-

ered symmetries is small, on the other hand, input variables can be passed

both in the transformed and in the ”original” version. In some sense, data

augmentation can be regarded as a way to artificially increase the training

set size. Of course, these additional examples will have a different effect

than collecting actual new data, as correlations are present with the origi-

nal, non-transformed datapoints. The main advantage of data augmentation

approaches is the fact that they are usually very simple and lightweight to

implement. Finding symmetric representations, on the other hand, may be

complex, as the underlying group structure may be fairly complex in real-

world applications. The advantage is, however, that the NN output will be

invariant to transformations by construction. While data augmentation will

impose only approximate symmetries, compliance with input variable trans-

formations is exact.

We close this section noticing that invariances are not the only symmetries

present in data. Another important class is that of equivariances. These will
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be discussed in Chapter 3 contextually to Convolutional Neural Networks,

as they play a central role in image processing.



2 P R E D I C T I N G D I S LO C AT I O N

I N T E R A C T I O N S B Y M L

In this Chapter, we will apply the Neural Network theory described in Chap-

ter 1 to a materials science problem: interacting dislocations in a strained

SiGe film grown on a Si(001) substrate. This problem is technologically rel-

evant, as dislocations are one of the main plastic relaxation mechanisms in

semiconductor hetero-structures and their control is critical for the quality

of electronic devices.

As we are interested in many dislocations interacting over several hun-

dreds of nms range, atomistic approaches are out of discussion because

of computational costs. Luckily, the physical modeling of dislocations in

such systems can be done by standard tools in linear elasticity: dislocation-

dislocation and dislocation-film interactions are described by the elastic en-

ergy stored in the associated stress and strain fields. As stated in the intro-

duction, we will present physics contextually to the ML application. Linear

elasticity represents an exception to this rule, as will be used on multiple

occasions in this Thesis. For this reason, the main definitions and results

are moved to Appendix B. There, the slightly less standard topic of eigen-

strain formalism is also outlined and discussed. This general and flexible

approach in linear elasticity allows for the numerical solution of elastic equa-

tions yielding stress and strain fields even for configurations where analyt-

ical expressions are missing, as in the presence of free surfaces near dislo-

cations. The interested reader can find a more comprehensive treatment in

Refs. [48, 49, 50, 51].

The Chapter is organized as follows. Section 2.1 provides a quick and

qualitative description of flat SiGe heteroepitaxial films and the role played

by dislocations in their relaxation. Basic dislocation theory is discussed in

Section 2.2. As many ingredients are required to describe this class of defects

in solids and their interaction with free surfaces, the section is rather lengthy.

Readers familiar with dislocation theory can skip this section without loss

of continuity. Extensions and more in-depth analyses can be found in [52,

53, 48, 54] and especially in [49].

Section 2.3 describes how ML approaches can be exploited to generate

fast and accurate interaction potentials between general objects. This field

of research has recently had a surge in popularity, especially in the context

of Molecular Dynamics (MD) interatomic potentials. Here we will translate

these ideas in the context of dislocation theory, showing that this can provide

orders of magnitude speed-ups in elastic energy calculations. Section 2.4

describes how the training set is constructed. Moreover, it is discussed how

force information can be used to obtain a more reliable approximation which

allows for both statics and dynamics calculations.

Finally, Section 2.5 shows applications of the trained dislocation-dislocation

and dislocation-strained film interaction potentials. In particular, minimum

33
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energy configuration searches (static, thermodynamic calculations) and dis-

location dynamics (kinetic processes) simulations will be shown.

Results presented in this Chapter can also be found in our publication [55].

2.1 dislocations in thin films

Dislocations are very important line defects in crystalline materials [49, 56].

They are a critical ingredient to describe the mechanical response of materi-

als, both at the mesoscale and on a macroscopic level. In metallic systems,

the formation, motion and interaction of dislocations is the main ingredient

that allows for plastic behavior [49]. Their relevance, however, is not limited

to structural properties. In semiconductor systems the presence and distribu-

tion of these defects must be closely controlled, as they may have severe im-

pacts on the performance and properties of electronic devices [57, 56, 58, 59].

In this context, one of the most critical situations in which dislocation

control is necessary is in heteroepitaxial growth. This process consists of

growing a semiconductor film (called an epi-layer) on top of a crystalline

substrate. In semiconductor technology, this is used for the integration of

different materials on top of a substrate (e.g. in a heterojunction), or to ex-

ploit composition and structural effects to ameliorate electronic properties.

The growth of Ge or SiGe alloys on pure silicon is one of the most studied

systems because of its technological relevance [57]. In standard pressure

and temperature conditions, silicon and germanium have the same crystal

structure. Ge, however, has a larger unit cell by ≈ 4% [60]. As incoming

atoms have to accommodate in the substrate lattice position, the difference

in lattice parameter induces a strain state in the epi-layer. Depending on the

applications, relaxation of this strain may or may not be ideal, as deforma-

tions of the lattice cell have effects on the electronic properties of materials.

As the film grows thicker, the elastic strain energy stored in the epi-layer in-

creases, until it becomes energetically favorable to introduce dislocations in

the system. As silicon and germanium yield an almost ideal solid solution,

the same logic applies to the intermediate SiGe alloy. Indeed, the possibility

of modulating the strain level in the epi layer with Ge concentration is one of

the advantages of this system. A theoretical analysis of this process of strain

energy accumulation, if the film morphology is flat, can be easily performed

using the tools of linear elasticity.

Due to the substrate effect, volume elements of the epi-layer will be strained

by:

ε =
aSi − aGe

aGe
cGe = εxx = εzz (2.1)

where a are lattice parameters and cGe is germanium concentration. Align-

ing the free surface normal to the y direction, ε will correspond to the strain

state for both the xx and zz components. As there is no constraint along ẑ,

the system is free to relax in the vertical direction. For these reasons, the

described configuration is called a biaxial strain system. In the case of pure

Ge, ε ≈ −4%.
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Figure 12: Burgers’ circuit convention. The dislocation line is taken to be entering

into the page. Adapted from [49]. For undislocated regions, ~b = 0.

ends, that separates the ”normal” part of the material from the ”dislocated”

one. This is called dislocation line and its direction will be indicated by the

unit vector ξ̂.

The character of a dislocation may be found through a geometric con-

struction known as Burgers circuit. The idea is the following: starting from

a lattice point in the crystal, we want to form a close loop1 and count the

number of ”steps” that we take. As can be seen in figure 12, when the loop

contains the dislocation line an additional step will be needed with respect

to a loop in a ”normal” part of the material. The vector closing the loop is

called Burgers vector ~b. Burgers vectors, therefore, represent the strength or

charge of the dislocation, in analogy with electrostatics. From this discus-

sion, it is also clear that the crystal structure and symmetries of the material

will constrain possibilities for the values and directions of ~b (see 2.2.5). The

continuum equivalent of the Burgers circuit is:

~b =

∮

Γ

∂~u

∂l
dl (2.4)

where Γ is the line defining the circuit itself.

The screw or edge character of a dislocation can be established consider-

ing the angle between its line and its Burgers vector. Perpendicular config-

urations (ξ̂ · ~b = 0) yield an edge dislocation, while parallel configurations

correspond to a screw dislocation (ξ̂ · ~b = b). Other cases yield mixed dislo-

cations.

A main question remains when we are using a continuum theory for in-

herently atomistic objects. The main assumption of elastic theory is that

deformations inside solids are small. However, we expect that the relative

deformation (i.e. the strain) near the dislocation line will be in the order

of unity. Indeed, linear elasticity is reliable if and only if we are far from

the dislocation core, i.e. at points r such that r ≫ |~b|). In fact, in linear elas-

ticity stress and strain fields diverge near the core. These singularities are

to be corrected either with a regularization procedure or by joining elastic

calculations with ab-initio calculations on dislocation cores [61].

1 Both the choice of the dislocation line direction ξ̂ and the direction in traveling around Burg-
ers circuit are arbitrary. In this Thesis work, the right-hand rule will be used, so that if ξ̂ is
into the paper, the loop is clockwise.
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2.2.2 Dislocations in bulk materials

Screw and edge dislocations can be characterized by their stress and strain

fields. These can be obtained in a variety of ways, e.g. by defining the dis-

placement field associated with the slip/atomic plane insertion or through

the eigenstrain formalism. The interested reader can find step-by-step calcu-

lations in Refs. [53, 49].

Once dislocation strain or stress fields are known, it is possible to calculate

the dislocation energy using equation B.37 or B.39. Given a general bulk

dislocation with angle α between the Burgers vector and the dislocation line,

by simple decomposition we have that

Emix

L
=
µb2[(1− ν) cos2 α+ sin2 α]

4π(1− ν)
log

R

r0
(2.5)

in theory we should take limits R → ∞ and r0 → 0. However the energy

integral diverges in both cases. For the r0 limit the reason is that we are

trying to use an elastic theory’s expression to calculate the energy near the

dislocation line. A true elastic continuum would indeed require infinite

energy to create such a core region, where stress and strain fields are singular.

The cutoff radius r0, therefore, indicates the distance at which elastic theory

breaks down and we should resort to atomistic models. In principle, an extra

term extracted by atomistic description should be added to expression 2.5.

An alternative approach is to employ a regularization procedure. A com-

mon practice is that of ”smearing” the Burgers vector in the core region, to

avoid singularities. In practice, instead of having a one-dimensional disloca-

tion line, the Burgers vector is now distributed according to a ”Burgers vec-

tor density” inside some tubular region. For calculations in this Thesis, we

resorted to the regularization procedure described in reference [62], which

allows for the removal of the ill-behaved regions if numerical methods are

used to calculate dislocation stress/strain fields.

We will not analyze the R→∞ divergence, as it arises for infinite systems

only and in the following we will be interested to dislocations near free

surfaces [53, 49].

2.2.3 Free surfaces effects and forces on dislocations

The result derived in the previous Section is only valid for infinite straight

dislocations in bulk. However real systems are never infinite. This is particu-

larly important to consider in the applications we are interested in, as dislo-

cations in epi-layers are significantly close to free surfaces. Stress and strain

must therefore be calculated considering suitable boundary conditions, see

Equation B.15. In particular, forces acting on free surfaces due to dislocations

should vanish (traction-free condition). Analytical, closed-form solutions are

available for flat surfaces and dislocations parallel to them. To simplify the

mathematical treatment, the surface y coordinate will be 0, the film will be

on y < 0, the vacuum on y > 0 and the dislocation core at y0.
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For screw dislocations the correction is straightforward. In analogy with

electrostatic problems [63], a simple image construction suffices. Stress fields

at the surface (y = 0) may easily be proven to vanish by direct calculation:

σyz =
[bµ

2π

x

x2 + (y− y0)2
+

(−b)µ

2π

x

x2 + (y+ y0)2

]∣

∣

∣

y=0
= 0 (2.6)

the equivalent result also holds for the only other non-vanishing component

σxz. Edge dislocations are more complicated. An analytical solution, which

is composed of an image construction and an additional correction, has how-

ever been found by Head [64].

We directly report the form for a mixed dislocation:

Esurf
mix

L
=
µb2[(1− ν) cos2 α+ sin2 α]

4π(1− ν)
log

2l

r0
(2.7)

being l =
√

|y0|2 − r
2
0 and α the angle between ~b and ξ̂ again.

If |y0| ≪ r0, we can identify l with the dislocation distance from the free

surface. In this limit, expression 2.7 can be used to calculate the force per unit

length that acts as an effect of the surface on the dislocation:

Fsurf
mix

L
=
∂

∂l

Esurf
mix

L
=
µb2[(1− ν) cos2φ+ sin2φ]

4π(1− ν)l
(2.8)

this force is directed towards the surface, since a perfect solid tends to expel

dislocations, as can be clearly seen with the energy of dislocation increasing

with l. If an additional stress field is present in the material, however (e.g.

due to lattice mismatch in a heteroepitaxial film), dislocations may have an

equilibrium position inside the body.

Equation 2.8 can be verified to be a special case of the so-called Peach-

Koehler force due to the dislocation self stress, i.e. the stress generated by

the dislocation itself at its core. This term is not present in bulk systems but

arises from the traction-free conditions for dislocations near free surfaces.

For generic stresses, the force per unit length acting on a dislocation reads:

F

L
= (σtot · ~b)× ξ̂ (2.9)

This formula is equivalent to the derivative of the total dislocation energy

with respect to dislocation configuration and in the simple, infinite, straight

line configuration considered so far, reduces to a function of the dislocation

core position only.

2.2.4 Periodic Boundary Conditions

Up to this point, we treated isolated dislocations in (semi)infinite materials.

In computer simulations, however, it is often computationally advantageous

to consider Periodic Boundary Conditions (PBCs). In terms of dislocation

configurations, this corresponds to periodic distributions of defects in a film

with a periodic profile. Indeed, this allows one to describe the behavior
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of an effectively infinite number of dislocations. Of course, such boundary

conditions should be treated with care, since dislocations in the neighboring

cells are not independent. This means that any observation of behaviors

whose wavelength is larger than the simulation cell is lost. Notice, however,

that in heteroepitaxial films is indeed possible to observe periodic patterns

of surface morphology and dislocations [65, 66], which justifies the choice of

PBCs to some level.

To avoid the energy divergence problem at cores, a regularization proce-

dure like in [62] will be used in the following. The corresponding stress

functions can be summed analytically to give a close expression for an in-

finite array’s fields. These results can be derived from Ref. [65] or can be

obtained as in [67] and are reported in Appendix C. These are important, as

they can be used as an eigenstrain term for dislocations near an arbitrary,

undulated surface.

2.2.5 Dislocations in SiGe system

As already noticed, Si and Ge both crystallize in the same structure. In

particular, they take the diamond structure, which can be described as an

FCC lattice with basis. In such crystals the 1
2〈110〉 (in lattice constant units)

translation vectors for the lattice are stable Burgers vector [49]. Indeed, these

are the shortest lattice vectors and the dislocation energy scales as b2.

Since stress and strain fields for dislocations whose line is parallel to the

z axis are already available, in simulations we will rotate the frame of refer-

ence accordingly by 45◦ around the y axis, which is aligned with the (001)

crystalline direction and points out of the free surface. If we only consider

Burgers vector relaxing the heteroepitaxial misfit, we have:

~b1 = b







1
2
1√
2

±1
2







~b2 = b







1
2

− 1√
2

±1
2







~b3 = b





1

0

0



 (2.10)

The stable nature of these defects is made manifest by the PK force caused

by the residual misfit stress being in the negative y direction, as can be

confirmed by direct calculations. These dislocations are usually classified

based on the angle between ~b and the dislocation line ξ. For this reason, ~b1
and ~b2 defects are referred as 60◦ dislocations, while ~b3 defects are called 90◦

dislocations

If we further restrict to the (x,y) plane, z component of ~b is no longer

relevant and we are left with three choices:

~b1 = b

(

1
2
1√
2

)

~b2 = b

(

1
2

− 1√
2

)

~b3 = b

(

1

0

)

(2.11)

2.2.6 Dislocation motion

Let us now briefly outline dislocation motion. When a dislocation travels

through the crystal lattice, we can decompose its movement in two com-
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Figure 13: Difference in glide and climb motion for an edge dislocation. The extra
plane is indicated by the letter B, while the glide plane is indicated by
the letter A. Starting from the original position (a), it is possible to see
that the glide motion (b) movers the extra plane and conserves the total
number of atoms, while climb motion (c) requires an extra row (painted
in white). Image adapted from [54].

ponents, the glide motion and the climb one. These are best seen for edge

dislocations.

Glide motion happens along the plane containing both the dislocation line

and the Burgers vector, i.e. the plane normal to ~ξ× ~b. This plane is called

the glide plane for the dislocation. As is depicted in figure 13, one can see that

glide motion is the easier one, since it requires the breaking and re-forming

of only one atomic bound at a time.

On the other hand, the climb motion is perpendicular to both the disloca-

tion line and the glide plane. This motion has a high activation energy since

it corresponds to the condensation (or emission) of vacancies around the dis-

location line. For this reason, climb motion is also called non-conservative,

while glide is conservative.

Following these arguments, one may expect that a dynamical descrip-

tion of dislocation motion should consider primarily glides. This is indeed

true [49, 54], and in Dislocation Dynamics simulations climbs are often dis-

regarded unless high temperature (hence high vacancies concentration and

available thermal energy) is achieved. Considering SiGe systems and dis-

location lines parallel to the substrate-film interface, the glide plane of 90◦

dislocations is also parallel to the SiGe/Si(001) interface. The stress field

generated by lattice mismatch, however, generates a PK force that is directed

downwards and normal to the glide plane, hence this class of dislocations

is usually considered sessile. In other words, should a 90◦ dislocation form,

it will be pinned. 60◦ dislocations, on the other hand, do not have this con-

straint.

From an experimental point of view, it is well established that dislocations

in SiGe films are mainly 60◦ dislocations [58, 57]. Notice, however, that ses-

sile defects may form as a result of dislocation reaction [53, 49]: if a ~b1 and a
~b2 dislocation encounter, they may combine. The resulting dislocation has

a new Burgers vector given by the sum ~b1 + ~b2, hence a 90◦ ~b3 dislocation

is obtained. As ~b1 and ~b2 dislocations can perform such combination, we

will call them complementary in the following. Naturally, not all dislocation

reactions are possible or energetically favorable. Within dislocation theory
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an energetic principle called Frank criterion [53, 49] is often invoked, estab-

lishing under which circumstances dislocation merging/splitting may hap-

pen. In this respect, ~b1 and ~b2 reaction is energetically convenient. Notice,

however, that this does consider other stress fields possibly present in the

material. Indeed 90◦ dislocation formation will always be observed: in Sec-

tion 2.5 we will show that for deviations from flat profiles, 60◦ dislocations

reactions may be hindered.

2.3 deep learning potentials

As already pointed out, analytical expressions for dislocation deformation

fields are available only for very simple configurations in epi-layers (e.g.

straight lines and flat free surfaces). While many interesting behaviors can

be analyzed under these assumptions [68, 69, 70, 71, 72], their limitations

are evident. In particular, the requirement of a flat free surface hinders the

study of dislocation thermodynamics and kinetics in many technologically

relevant configurations, such as nanostructures and corrugated films.

In recent years, the research group I worked with during my PhD tried to

overcome these limitations in several contexts. These studies retain as a sim-

plifying assumption parallel, straight dislocation lines but relax the constrain

of flat surfaces [73, 74, 75]. This allows one to study complex surface mor-

phologies while containing simulation costs, as the computational domain

is 2D. The main computational tool is the numerical solution of the elastic

mechanical equilibrium by Finite Element Method (FEM) calculations. This

approach is particularly well suited for dislocation problems, as the compu-

tational domain can be discretized with adaptive meshes, yielding a higher

accuracy to computational costs ratio. FEM meshes, indeed, can be eas-

ily refined near dislocation core regions, where stress/strain fields fluctuate

rapidly even if regularization approaches such as the one discussed in 2.2.2

is used. Dislocation fields are obtained using analytical solutions as eigen-

strains and allowing the solver to find displacements complying with the

free-surface boundary conditions. A more complete description of this ap-

proach can be found in Refs. [76, 75]. The FEM output of a typical calculation

is shown in Figure 14.

Despite the advantages of FEM mesh refinement, this approach is however

convenient only for configurations containing few dislocations or for one-

shot calculations of elastic energies. For more demanding scenarios such as

Monte Carlo searches, energy minimization, or simply calculations involv-

ing a high number of dislocations, the computational costs of FEM are still

a hard bottleneck. On the other hand, the number of degrees of freedom

required to fully characterize a dislocation configuration in a fixed film ge-

ometry is relatively limited. Indeed, a list of the Burgers vector components

{~bi} and the positions of dislocation cores {~ri} are sufficient to fully describe

the system state. Hence, there exists, at least in principle, a function E, such

that the elastic energy of the system E is

E = E({~ri}, {~bi}) (2.12)
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tions [80]. This assumption is not a new introduction into Deep Learning

potentials: indeed, classical, semi-empirical potentials make a similar as-

sumption [82]. In practice, for a system of N particles:

Etot =

N∑

i=1

Ei(~x
env
i ) (2.13)

where Ei represent said local contributions and ~xenv
i is some local environment

description of particle i surroundings. In principle, this can be as simple

as the list of coordinates for nuclei in some suitable neighborhood of the

particle.

The second main problem comes from the lack of symmetries in the learned

potential energy approximation. As briefly discussed in Section 1.9, symme-

tries play an essential role in regularizing machine learning models. NN

functions used to approximate interatomic potentials should encode, for ex-

ample, translational invariance, so that the generated (microcanonical ensem-

ble) dynamics obey momentum conservation. Another important symmetry

for potential energy functions in molecular dynamics is the exchange one:

if atoms i and j of the same chemical species are swapped, then the total

potential energy remains unchanged. Of course, this should hold also for

the local contributions of Equation 2.13. These sorts of symmetries are not

a-priori present in fully connected, feedforward Networks. For DL poten-

tials, physical symmetries are usually introduced via input transformations,

yielding so-called atomic environment descriptors [15, 83].

2.4 training nns for dislocations

2.4.1 Energy decomposition

As we have just seen in Section 2.3.1, writing the energy of dislocations as

a summation of individual contributions would allow for generalizations

beyond the number of defects in the training set.

Using basic linear elasticity results, it can be shown that the total energy

of a system of dislocations Etot in a strained film can be exactly decomposed

into self-energy and pair terms. In particular:

Etot =

N∑

i

Vi +

N∑

i

Hi +
1

2

N∑

i

N∑

j 6=i

Wij (2.14)

Indeed, from the linear theory of elasticity, the energy of a (traction-free)

deformed body Ω can be expressed as (see Appendix B and Refs [53, 49]):

Etot =
1

2

∫

Ω

σhet : εhetd~x +

N∑

i

∫

Ω

σhet : εid~x +
1

2

N∑

i

∫

Ω

σi : εid~x +

1

2

N∑

i

N∑

j6=i

∫

Ω

σi : εjd~x

(2.15)
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where ”het” subscript indicates fields generated by the heteroepitaxial mis-

match and i and j index dislocations.

Physical interpretation of terms in Eq. (2.15) is as follows. The first term

represents the elastic energy stored in a mismatched, fully-coherent film.

For a fixed surface morphology this is a constant and can therefore be ne-

glected for our goals. The second and third terms represent the dislocation-

heteroepitaxial film interaction and the dislocation self-energy, i.e. the dis-

tortion energy associated with an isolated dislocation. In the case of a flat

surface, this term amounts (per unit length) to Equation 2.7, if no PBCs are

used. Even in the case of undulated surfaces, the value of these terms only

depends on the position and Burgers vector of dislocation i. They are in

other words, one body terms. The last term is the dislocation-dislocation inter-

action energy, only depending on the positions and Burgers vectors of each

pair. Notice also that, by symmetries of the elastic tensor Wij = Wji, i.e.

dislocation-dislocation interactions are symmetric, as should be expected by

the action-reaction principle.

Comparison between Eq. (2.14) and Eq. (2.15) yields:

Hi =

∫

Ω

σhet : εid~x =Hi(~ri,~bi)

Vi =
1

2

∫

Ω

σi : εid~x =Vi(~ri,~bi)

Wij =

∫

Ω

σi : εjd~x =Hi(~ri, ~rj,~bi,~bj)

(2.16)

where explicit dependence from dislocation positions ~r and Burgers vectors
~b has been added. To approximate the total energy of a system containing

an arbitrary number of dislocation, it is therefore sufficient to build three NN

models, one for each term in 2.16.

2.4.2 Training set construction

Now that we have established a convenient way to calculate the energy of

a generic dislocation configuration in a strained epi-layer, we turn to the

practical construction of training sets for this task.

As we have already stated, we will consider 1+1D simulations, with the

film-Si(001) substrate interface is perpendicular to y direction and disloca-

tion lines exiting from the paper plane, as sketched in Figure 15. Periodic

Boundary Conditions are applied along the x direction. In this context, for-

mulae in Appendix C apply if the free surface is flat; otherwise, a numerical

FEM solution of the mechanical equilibrium equations is required to obtain

stress and strain fields.

We built a training set considering simple sinusoidal perturbations of am-

plitude A as a prototypical case. Keep in mind, however, that the same

procedure can in principle be applied to generic boundaries. As we have

to choose the computational domain size, we choose a simulation cell of

1200 nm, consistently with Ref. [66]. The perturbation wavelength has been

fixed to 600 nm (see Figure 15 again). As we will be interested in the inter-

play between surface morphology and dislocations, different A values have
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tion has been used. This set of parameters has proven to be effective, but

more efficient choices could in principle be found via a a more complete

(and expensive) hyperparameter search. Notice, however, that the number

of weights in each NN is very contained (≈ 1100 parameters for one body

terms and ≈ 4800 for pair terms) for ML standards.

2.4.4 The loss function

At this point, we could launch a naive training procedure for elastic energy

terms. As in MD, potential energy is not the whole story, however: while en-

ergetic considerations allow for the extraction of many important quantities,

forces are essential too. Indeed, in Deep Learning potentials for molecular dy-

namics, energy derivatives are also fitted during the training procedure. This

approach is sometimes called Sobolev training [84, 85], as it can be thought as

the minimization of the distance between NN approximation and the true

potential energy function in a suitable Sobolev space3.

Instead of taking a detour on how Sobolev spaces enter the definition of

the loss function, we will here take a more heuristic approach. Consider a

NN approximating some potential energy function E(~x) : ~x → E. In ab-intio

calculations, both energies Ei and forces ~Fi can be obtained. Since NN are

differentiable functions, and their derivatives may be obtained analytically

by automatic differentiation (this operation is at the core of all Deep Learn-

ing libraries), it can set an alternative minimization problem:

L(θ) =
1

NTS

∑

i∈TS

[Ei − Ê(~xi|θ)]
2 + λ[~Fi + ~∇~xÊ(~xi|θ)]

2 (2.17)

where Ê represent the NN approximation, θ is the set of NN parameters, TS

is the training set, NTS the number of training examples and λ is a hyper-

parameter balancing the importance of approximating energies and forces

during training. The main role of λ is to address the fact that function val-

ues and derivatives may span very different ranges, depending on the cho-

sen units. Without a normalization of the two contributions to make them

comparable in size, the NN training could ”collapse” and result in consid-

ering only forces or only energies. At a surface level, Equation 2.17 can be

interpreted as a regularized version of standard MSE Loss training. Notice,

however, that a major difference stems from the fact that predicted forces are

not independent outputs of the NN. Indeed, this is a strong advantage, as

there is consistency between energy and forces definitions for the NN model.

Since we would like to have NN potentials for dislocations which can

be used both for energy estimations and Dislocation Dynamics, a similar

approach should be considered also in our case. Cai’s regularization proce-

3 A Sobolev space is a (function) vector space equipped with a norm which is given by a
weighted sum of Lp norms of functions and their derivatives.
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dure [62], ensures that energy decomposition and Peach-Koehler forces are

consistent:





−~∇iVi = (σi · ~bi)× ξ̂i
−~∇iHi = (σhet · ~bi)× ξ̂i
−~∇iWij = (σj · ~bi)× ξ̂i

(2.18)

where we used the shorthand notation ~∇i to indicate derivatives with re-

spect to dislocation i coordinates. PK contributions can be extracted from

FEM calculations and are thus available for training.

The training can therefore be performed using the Sobolev loss function:

LS(θ) =
1

NTS

∑

i∈TS

{

[Ei − Ê(~xi|θ)]
2 +

∑

l

gl[Fl, i+ ∂lÊ(~xi|θ)]
2
}

(2.19)

where E stands for the different energy terms and l runs on Cartesian com-

ponents. Hyperparameter λ has been here divided into two different gl co-

efficients. This comes from the same range considerations discussed above.

Consider for example the limit example of dislocation-film interaction Hi in

a flat film. In this case, the x component of the PK force vanishes. If a small

perturbation is added to the flat configuration, the latter statement will no

longer be true but the x contribution will be significantly smaller than the y

component. To balance things out, gl values have been chosen as the ratio

between the range of Fl values in the training set and E values.

Figure 17 reports validation loss functions for both the standard MSE

approach (referred to as ”Value training”) and Sobolev training as a func-

tion of the number of training epochs. The specific case chosen here is the

dislocation-film interaction term Hi in the case of A = 60nm. The train-

ing was performed using Adam optimizer [40] with a learning rate of 10−5

and was stopped when the relative reduction in validation loss was smaller

than 10−6 in 1000 epochs. As can be observed, loss 2.19 leads to a lower

loss model. In both cases, there is no sign of overfitting, as validation loss

decreases during the whole training (up to oscillations related to stochastic

minimization and momentum). This is to be expected, as we are in a regime

in which the number of parameters is much smaller than the number of

examples.

L values comparison may be misleading, as possible trends and biases in

the learned NN cannot be fully captured by a single number. For this rea-

son, during training of scalar functions (or small dimensional vector-valued

functions), it is customary to inspect the so-called regression plot. This is ob-

tained by plotting the quantity predicted by the NN for validation (or test)

examples versus the actual quantities. Deviations from the bisector line (here

reported in orange), allow for a visual assessment of the generalization capa-

bilities of the NN. Root Mean Squared Error(RMSE) values are also reported

as a second figure of merit as insets in the regression plots of figure 18(a,b).

It is clear that Sobolev training not only leads to a much more accurate pre-

diction of forces (which is to be expected, as they are explicitly passed to

the NN during training) but also has beneficial effects on the accuracy of
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Before launching configuration searches, we have yet to define dislocation

behavior in terms of their Burgers vector. As discussed in Section 2.2.5, three

different Burgers vector choices are possible in the system, corresponding to

90◦ sessile dislocations and the two families of 60◦ mobile dislocations. In

the training set, however, only the latter are explicitly present. This can be

addressed with a straightforward procedure: when complementary disloca-

tions get closer than 5 nm, they undergo a reaction and form the correspond-

ing 90◦ defect. Notice that the self-energy of a 90◦ dislocation is not merely

the sum of the self-energies of 60◦ dislocation. This extra contribution can

however be accounted for by the Wij term, calculated with the two dislo-

cations at the same point. Interactions between 90◦ and other dislocations,

instead, can be calculated directly by superposition.

Notice that the Monte Carlo algorithm described does not comply with

the glide motion one would expect from dislocations in epi-layers, especially

at low temperatures. This is done on purpose, as the main goal here is to

search minimum energy configurations and not to reproduce real Disloca-

tion Dynamics. In this spirit, the sessile character of 90◦ dislocations is also

removed. For the same reason, it is possible for 90◦ dislocations to actually

decompose in the two complementary 60◦ dislocations.

Figure 19(a,b) reports minimum energy configurations found for flat mor-

phology containing 8 dislocations. To observe differences, we both placed

identical 60◦ dislocations (panel a) and alternating Burgers vectors (panel b).

As can be observed, in both situations dislocations place at the SiGe/Si(001)

interface, as expected from analytical theory (see [72] for a direct compari-

son) and some experimental observations (see [86, 95], where an ad-hoc an-

nealing procedure was used to promote 90◦ dislocation formation through

reactions).

The same analysis has been performed on non-flat surfaces, where no an-

alytical solutions are available. Results are reported in Figure 19(c) for the

A = 60 nm case. Here reactions are clearly inhibited and dislocations are

placed underneath valleys in the free surface profile, aligning their stress

field to the over-compression caused by the non-flat morphology. The side

on which they place depends therefore directly on the Burgers vector. Re-

sults are consistent with previous studies for islands, such as those reported

in References [96, 97, 88]. As a further check of the quality of NN approxi-

mation, FEM one-shot calculations on such minimum energy configurations

have been performed. The relative deviation in energy amounts to approxi-

mately 2‰.

Given that the results are physically sound and the low cost of this kind

of Monte Carlo search, an extensive study of the interplay between disloca-

tion positioning and surface morphology has been performed. A total of 500

searches for each non-flat profile were performed and dislocation densities

as a function of x have been calculated. In order to obtain a continuous

function, dislocation positions have been smeared using Gaussian kernels.

Figure 20 reported dislocation densities in red and blue for 60◦ dislocations,

depending on the y component of the Burgers vector, and in green for 90◦

dislocations. The trend is clear: if the amplitude of the free surface per-

turbation is high, dislocations are more and more localized at the sides of

sinusoid minima, testifying that the configuration shown in Fig. 19(c) is rep-



2.5 fem without fem 53

1200 nm

(a)

(b)

(c)

0 0.01-0.01

Figure 19: Minimum energy configuration results. In the case of flat surface, both
when the system is initialized with identical dislocations (a) or with com-
plementary 60◦ defects (b), minimum energy configuration yields an eq-
uispaced array. In the latter case, dislocation reaction is present and
90◦ dislocation form. This is no longer true in the case of large profile
undulations (c).

resentative. On the other hand, for moderate perturbations (A = 15 nm and

A = 7.5 nm), dislocation confinement is weaker and there is no longer total

elimination of reactions. As expected, when the free surface profile is flat,

dislocations are spread out in the simulation cell. Local minima in which

no total reaction has been achieved contribute to the small density of 60◦

dislocations.

2.5.2 Beyond the training set: large systems simulations

Simulations performed in the previous section were conducted on a com-

putational domain with the same size as the training one. The trained NN

functions, however, can be used to evaluate energies of dislocation config-

urations on possibly much larger domains, provided that surface profiles

have the same shape and periodicity. We will now discuss under which

conditions such simulations can be performed and provide an analysis of

dislocation low energy configurations in a computational domain that is 4

times larger than the training set one.

Dislocation-film interaction terms Hi and dislocation self terms Vi are

invariant under translation of periodicity vector of simulation cells ~R =

[1200nm, 0]T . The energy of an isolated dislocation in an extended cell can

therefore be obtained by NN approximation by simply re-mapping its x co-

ordinate in the original training set cell. This does not introduce additional

errors with respect to NN approximation ones.
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Figure 20: Dislocation densities evaluated by extensive minimum energy configu-
ration searches. Dislocation reaction is favored for the flat configuration,
while unreacted dislocations provide a better strain relaxation for strong
perturbations.

The dislocation-dislocationWij term should be treated with more care. As

there are no dislocations more than 600 nm apart along x in the training set,

the NN approximation would yield extrapolation errors if energy evaluation

is attempted. A simple solution would be to disregard such interactions. Dis-

location stress fields (hence interaction energy terms), however, are slowly

decaying [98, 67]. It is therefore crucial to have an estimation of the addi-

tional approximation error that would be introduced. In the non-flat surface

case, this is computationally expensive to do, as FEM calculation costs in-

crease with computational domain size. For flat films, however, analytical

expressions in Appendix C are available. It turns out that for a periodic-

ity of 1200 nm, the error introduced amounts to approximately 1% of the

interaction energy (see Supplemental material of Ref. [55]).

Having justified the cutoff scheme, low-energy configuration searches can

be performed using the same Monte Carlo approach of the previous Sec-

tion. The minimum energy configuration found in 300 independent runs is

shown in Figure 21(a). As expected, dislocations place below valleys in the

free surface, as in the 1200 nm case. The relative difference with a one-shot

FEM calculation of the elastic energy amounts to approximately 3‰. The

elastic energy of the system is plotted as a function of the variance of the

number of dislocations beneath each valley in the sinusoidal profile func-

tion in Figure 21(b) (error bars represent the error with FEM calculation of

configuration in panel(a)). This shows the presence of inverse proportional-

ity between the elastic energy of the system and how evenly distributed are

dislocations, as expected from symmetry considerations.
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1200 nm

(a)

(b)

0 0.01-0.01

Figure 22: Simple 2D dislocation dynamics simulation performed using the trained
potentials. Depending on the different orientations of the glide planes
(highlighted as dashed lines) dislocation reaction may be forced or pre-
vented.

behavior in nanostructures, where a high level of precision on dislocation

individual positions is required.

Of course, there are still a lot of pieces missing. Maybe the most limit-

ing factor is that the current approach only works in 2D. While this allows

one to understand many critical behaviors, real heterostructures cannot be

realistically approximated as infinite in one direction except for specific ge-

ometries. In principle, extension to a full 3D description is straightforward:

energy decomposition stems from linear elasticity and can be readily ap-

plied, for example. Still, the computational costs of 3D systems make it

much more expensive to build datasets. Additionally, dislocation lines are

generally not straight, making it complex to fully describe a dislocation con-

figuration. Some ideas may come from learning dislocation segments energies

and interactions (see [49] for analytical expressions in bulk, for example) or

describing dislocation arcs in terms of some basis set (e.g. Fourier compo-

nents of a parametric curve). To our knowledge, an elegant and efficient

solution to this problem is still missing.

Another main downside of the approach as was presented in this Chapter

is that we need different models for H, V , and W for each amplitude of the

free surface perturbation A. An actual breakthrough would be to suitably

include the actual surface morphology within the NN inputs. This would al-

low for fast simulations for arbitrary profiles, providing true general-purpose

dislocation potentials. Even better, such an approach could be merged with

the one presented in Chapter 3, where surface morphology evolution itself is

discussed. This would enable a unified framework that tackles morphology

evolution in the presence of dislocations.

Implementation of full anisotropic elasticity and elastic constant depen-

dence on Ge concentration, on the other hand, are straightforward additions

and just amount to the construction of dedicated training sets.
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C O N V O L U T I O N A L N N

In the previous Chapter, we analyzed how NN approaches can significantly

speed up simulations involving dislocations in a strained film. The free sur-

face shape, however, was considered fixed. In real materials, of course, this

is not the case. In the present Chapter, we will therefore turn to the comple-

mentary problem of dislocation-free strained film morphological evolution.

In partial continuity with the previous Chapter, applications will be shown

in the case of pure Ge on top of a Si(001) film. As it will be described in

detail, the main bottleneck for this class of simulations is again related to

the necessity of solving the elastic equilibrium problem. The presented ap-

proach, however, is general and may be applied in the future to a broad class

of systems.

The Chapter is organized as follows. Section 3.1 presents a review of

Mullins’ model [99] describing the mathematical framework in which free

surface evolution will be discussed in this Chapter.

Section 3.2 outlines the main features of Convolutional Neural Networks.

In particular, we will show how this architecture is not a mere application of

a popular DL framework, but symmetry and physical considerations call for

this specialized NN architecture in the application to the problem at hand.

The following two Sections report the results of applying Convolutional

Neural Network to predict the elastic contribution to the chemical potential,

bypassing explicit numerical solutions. Section 3.3 applies CNN to approx-

imate the chemical potential obtained with a computationally cheap, small-

slope approximation. This simplification allows for the generation of a very

large dataset, which in turn makes an in-depth analysis of the model accu-

racy possible. Once the NN approach is confirmed to be reliable, morpho-

logical evolution simulations are conducted. Section 3.4 transfers the same

procedure to FEM data, yielding dramatic computation speedups.

Conclusions and perspectives are discussed in Section 3.5.

Results of this Chapter, together with more in-depth analyses, are col-

lected in a paper in preparation at the time of writing. The datasets and

additional simulations can be already found at [100].

3.1 morphological evolution and sharp interface

models

Modeling surface morphology and its evolution is a classical topic in Materi-

als Science simulations [99, 101, 102, 103]. Depending on the time and spatial

scales involved, there are plenty of different approaches that can describe

processes at surfaces and interfaces. Limiting factors and advantages are the

same as discussed in dislocation modeling: while atomistic approaches can

provide details on phenomena regarding electronic structure (ab-initio DFT

57
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dicated by the dependence on n̂, the free surface normal. In this Thesis, we

will work on the assumption of isotropic surface energies, such as those of

poly-crystals and we will therefore drop the explicit dependence on n̂. This

simplifying assumption is mainly motivated by mathematical and numerical

convenience: anisotropic simulations require more care and, in general, lead

to more expensive datasets. Extensions in this direction are one of the future

perspectives for future works. As we are concerned with a 1+1D picture, the

surface integral may be reduced to a line one:

Fγ =

∫

γdl =

∫

γ

√

1+ h ′(x)2dx (3.2)

The generalized thermodynamic potential conjugated to a thermodynamic

quantity X can be defined as δF/δX. Using this definition and standard ther-

modynamics we can derive the generalized chemical potential associated

with the presence of the free surface as the functional derivative δFγ/δh. By

direct application of Euler-Lagrange equations [110]:

µh(x) =
δFγ

δh
= −

d

dx

∂

∂h ′γ
√

1+ h ′(x)2 = −γ
h ′′(x)

(1+ h ′(x)2)
3
2

(3.3)

The physical meaning of this term can be easily understood considering

the surface curvature κ. Given a generic profile function, this quantity in-

volves regular derivatives of h(x) and can be simply derived from standard

calculus:

κ(x) = −
h ′′(x)

(1+ h ′(x)2)
3
2

(3.4)

With this convention, points with positive curvature are locally convex, and

points with negative curvature are locally concave. The direct proportion-

ality between surface curvature and chemical potential is consistent with

traditional results, such as the Gibbs-Thompson relation [111].

As long as no other energy contributions are present, the equilibrium con-

figurations of the free surface of an isotropic body, being the total volume

occupied V fixed, may be easily obtained considering the constrained min-

imization of the free energy Fγ. We can therefore consider the functional

A(h,h ′):

A(h,h ′) = Fγ + λV =

∫

γ

√

1+ h ′(x)2dx+ λ

∫

h(x)dx (3.5)

where λ is a Lagrange multiplier. The second integral in the above equation

represents the total volume occupied by the material in the 1+1D picture2.

Using Euler-Lagrange equations again, we have

δA

δh
= κγ+ λ = 0 =⇒ κ = −

λ

γ
(3.6)

2 The same expression, however, may be obtained considering the total free energy as the sum
of the surface contribution and the bulk free energy. In that case, the role of λ is that of a
bulk energy density.
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In other words, the curvature of the solid free surface should be constant, i.e.

the material should have a circular perimeter in 2D. This is consistent with

the intuitive idea that a 3D isotropic solid should have a spherical shape, as

the sphere is the solid that minimizes the surface-volume ratio. This is not,

however, the only possible shape encompassed by condition 3.6. Setting λ to

zero, we obtain that a zero-curvature surface is also an equilibrium config-

uration. A flat free surface is not a pathological case: if we consider PBCs,

which is very convenient from a computational point of view, and only con-

sider simple profile functions h(x), this is the only equilibrium configuration

which can be obtained3.

Naturally, this discussion is valid only if free surface energy is the only

contribution. In general, other terms in F will be present. One example is

the elastic energy stored in strained films which will be discussed in Sec-

tion 3.1.3.

3.1.2 Evolution by surface diffusion

The generalized chemical potential in Equation 3.3 can be used to derive

the driving force for different non-equilibrium processes. In his original

work, Mullins defines two main regimes, in which surface evolution is lim-

ited either by attachment-detachment of atoms or by surface diffusion [99].

In this Thesis, we will mainly deal with the latter case and refer the inter-

ested reader to Appendix D for a discussion of the first case. Of course,

these represent limiting cases and more general situations may be derived

as combinations of these regimes or by addition of suitable terms.

The assumptions for the model are that atoms on the surface diffuse, there

are no attachment-detachment processes and bulk diffusion is negligible.

The chemical potential for a particle on the surface may be obtained from

µh as

µ = µhVa = κγVa (3.7)

where Va is the atomic volume, acting as a conversion factor between gen-

eralized chemical potential and the proper δF/δn, being n the number of

particles.

Using Onsager linear laws [112], we may derive the atomic diffusion flux
~J on the surface, which is proportional to minus the gradient of the chemical

potential, i.e. atoms diffuse from regions of high to regions of low chemical

potential, consistently with µ physical meaning:

~J = −Ds
~∇sµ = −DVa

~∇sµh (3.8)

where Ds is a diffusion constant and the subscript s for the gradient operator

indicates that derivatives should be taken along the free surface manifold.

In principle, Ds may not be a simple scalar but depends on orientation for

3 This simple analysis may be generalized to closed, possibly non-convex bodies using para-
metric surfaces, yielding the circular solution. Generalizing to full 2D parametric surfaces
yields indeed a sphere.
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anisotropic materials. In the following, however, we will assume atoms on

the surface have isotropic mobility.

The free surface normal movement should be proportional to the accu-

mulation or depletion of diffusing particles. In mathematical terms, this

quantity may be expressed as the surface divergence of ~J, hence the normal

velocity of the free surface will be:

vn̂ = −Ds∇2
sµ (3.9)

where ∇2
s represents the Laplacian on the free surface and we absorbed

all constants (e.g. Va) in Ds. Turning to the 1+1D picture, we have that

divergence turns to second order spatial derivative along the line described

by h, ∇2
s → ∂/∂l. Noticing that

∂

∂l
=

1√
1+ h ′2

∂

∂x

vn̂ =
1

√

1+ h ′(x)2
∂h

∂t

(3.10)

we obtain the non-linear PDE for h(x, t):

∂h

∂t
= −Dsγ

∂

∂x

[

1√
1+ h ′2

∂

∂x

(

h ′′

(1+ h ′2)
3
2

)]

(3.11)

The equation conserves the average value of h(x), as it should be expected

from diffusive dynamics 4.

This can be reduced to a linear PDE in the small slope limit h ′ → 0:

∂h

∂t
= −Dsγh

′′′′ (3.12)

3.1.3 Elastic contributions

In the case of a strained film, the driving force for morphological evolution

will no longer be the simple expression 3.3. In principle, adding elastic

contributions is as easy as operating the substitution

µγ → µtot = µγ + µε (3.13)

in Equations 3.9, where µγ is the κγ curvature term and µε is the elastic

chemical potential.

Deriving an expression for µε in the 1+1D model is straightforward. From

linear elasticity theory, the deformation-free energy density of a strained

4 A simple proof is the following: consider that the Fourier transform of ∂h/∂t vanishes at the
origin for all times, as ∂/∂x → −iq upon transformation. Remembering that the value of
the Fourier transform at the origin yields the mean value of the original function, this means
that the mean value of h is constant, as should be expected for a conserved quantity.



62 morphological evolution by convolutional nn

body may be calculated if the stress and strain films are known. The free

energy associated with elastic terms is therefore

Fε =

∫ ∫h(x)

−∞

1

2
σ(x,y) : ε(x,y)dydx (3.14)

where the : symbol indicates tensor product as in Appendix B. using Euler-

Lagrange equations, this simply yields

δFε

δh
=
1

2
σ(x,h(x)) : ε(x,h(x)) (3.15)

The total chemical potential, if only curvature and strain effects are present,

then reads:

µtot = µγ + µε = Va

(

κγ+
1

2
σ : ε

)

(3.16)

where stress and strain fields are calculated at the material surface and Va

has the usual meaning of atomic volume. Evolution equations for strained

films may therefore be obtained both in attachment-detachment and sur-

face diffusion regime by simple insertion of Equation 3.16 in Equations D.5

and 3.9 respectively.

This, however, is easier said than done. In general, assuming that elastic

processes happen on timescales much shorter than atomic diffusion and con-

densation/evaporation, elastic fields can be obtained by solving the mechani-

cal equilibrium problem, which is equivalent to setting the elastic relaxation

instantaneous. This in turn calls for a numerical solution of stress/strain

fields, if the system configuration is not the trivial flat surface. As we are

interested in the case of strain originating from lattice mismatch, the elastic

energy term may be obtained numerically by FEM using the same eigen-

strain approach used in Chapter 2. This introduces the main computational

bottleneck in this class of simulations, even in the dislocation-free case we

are considering: while the requirement of a high density of elements near

dislocation cores is no longer required, time integration procedures require

elastic energy calculations for thousands (if not millions) of iterations when

tackling real materials behavior.

3.1.4 Small slope approximations

As is common in physics, analytical expressions may be obtained in some

linear regimes. In particular, in small slope regimes strain fields for a biaxi-

ally strained, coherent film can be obtained using elastic Green functions for

a half space [48, 113]. Calculations are rather lengthy and we will not derive

them here. However, we will exploit the final expression in the following

to construct a training set, hence we report it here for completeness. Under

normal solid assumptions (i.e. homogeneous and isotropic, Appendix B),

the xx component of the strain field reads:

εxx(x) = −
Yε∗

1− ν2

∫

gxx(x− x
′)h(x)dx ′ = −2ε∗

∫
h(x)

(x− x ′)2
dx ′ (3.17)
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where gxx is the Green function relating a force density to the strain field

directly and ε∗ is the eigenstrain term as in Appendix B and defined through

lattice mismatch as in the previous Chapter. The only other non-vanishing

strain component is εyy(x) = (ε∗ −νεxx)/(1−ν), fully determining the elas-

tic chemical potential term:

µε(x) = Va
Y

2(1− ν2)
(εxx(x) − ε

∗)2 . (3.18)

While small slope limits have only limited predictive power, an important

behavior may be derived. Consider a free surface which is constituted by a

flat profile perturbed by a sinusoidal term with wave number q = 2π/λ. If

the perturbation is small, linearization of the governing equations is justified.

The amplitude A(t) of such profile can be obtained through linear stability

analysis and grows exponentially as [113]

{
A(t) = A(0) exp [−KγVaq(q− qc)t]

A(t) = A(0) exp
[

−DsγVaq
3(q− qc)t

] (3.19)

The two equations are for attachment-detachment and surface diffusion-

driven dynamics respectively. The quantity qc = 2Y
1−ν2 (ε

∗)2 is the critical

wavenumber. The prefactor of time in the exponential is the amplification

factor a:

{
a(q) = −KγVaq(q− qc)

a(q) = −DsγVaq
3(q− qc)

(3.20)

for the attachment-detachment and the surface diffusion limited cases re-

spectively.

The physical content of Equation 3.19 may be expressed compactly as fol-

lows: whenever a strained film undergoes evolution (either by attachment-

detachment or surface diffusion dynamics), it is actually energetically favor-

able to corrugate its morphology. While this increases the exposed surface,

yielding a higher cost in terms of κγ term, the same free surface allows the

strained film to laterally expand, a process called elastic relaxation of the film.

Of course, not all corrugations are created equal. Short wavelength pertur-

bations with q > qc decay exponentially fast in time, while long wavelength

terms with q < qc grow in time. Of course, this analysis is valid only as long

as the amplitude of the perturbation is small. This is in striking contrast with

the non-strained case, in which all perturbations decay exponentially, as can

be easily proven by inserting h(x) = A cosqx in Equation D.7 and 3.12. As

a reference value, the critical wavelength for pure Ge on Si(001) in our simu-

lations will λc ≈ 17 nm (as can be obtained by inserting constants provided

in Table 2), which sets the typical size of features expected the system which

will be considered in this Chapter. This phenomenon is called Asaro-Tiller-

Grinfeld (ATG) instability from the name of their discoverers [114, 115, 116].
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3.1.5 Wetting and Ge strained films

In the following, we will deal again with the germanium-silicon system, al-

beit pure germanium will be considered instead of a SiGe alloy. In this con-

text, there is an additional important contribution to the chemical potential

which has to be considered, which is related to Ge tendency to form a layer

spreading on a Si substrate, called wetting layer. The physical motivation

for this phenomenon is related to the fact that Silicon has a higher surface

energy density than Germanium [117, 57]. Ge-Si interactions are therefore

favored with respect to Ge-Ge or Si-Si ones. As the film grows thicker, how-

ever, this effect will be less important, as Silicon dangling bonds become

progressively saturated. As elastic effects are present, at some point the

ATG instability (or some analogous mechanism) will lead to the formation

of separated, island-like features. This morphological evolution pathway is

referred to as Stanski-Krastanov growth [57].

This thickness-dependent behavior in surface energy may be inserted in

the model outlined in previous sections through a corresponding height-

dependent surface energy density γ = γ(h). The exponential interpolation

proposed in Ref. [117] between Si and Ge values, will be used in the present

work as an effective approximation:

γ(h) = γf + (γs − γf) exp(−h/d) (3.21)

where γf is the surface energy constant of the film and γs represents the

surface energy constant of the substrate. In the specific case at hand, γf =

γGe and γs = γSi. If this expression is inserted back in the surface free

energy expression 3.2 and Euler-Lagrange equations are used, we arrive at

the following expression for the total chemical potential:

µtot = µγ+µε+µw = Va

(

γ(h)κ+
1

2
σ : ε+

1√
1+ h ′2

γf − γs

d
e−

h
d

)

(3.22)

Notice that almost all quantities can be obtained by some simple finite differ-

ence scheme or through analytical definition even out of the non-small slope

limit. The only exception is the computationally heavy elastic energy term.

3.2 convolutional neural networks

As we discussed in Section 3.1, the main problem in tackling realistic strained

film behavior is the solution of mechanical equilibrium equations from lin-

ear elasticity, which yields one of the driving forces to material evolution.

From a ML perspective, this problem is in many aspects analogous to the

one presented in Chapter 2: we need to find a fast and reliable approxima-

tion to map the system configuration h(x) to a corresponding energy term

µε(x). As in all numerical methods, we can discretize x, yielding a set of C

collocation points. One may therefore be tempted to replicate the same pro-

cedure of dislocation potentials and define a feedforward fully-connected

NN µ̂ε : R
C → R

C. This naive approach, however, has many drawbacks.
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First, once the NN is trained, we are constrained on the number of colloca-

tion points we can handle: should we want to simulate a system that is twice

as large, there is no trivial way, at least for now, to exploit the trained µ̂ε to

obtain the corresponding map operating on the new domain R
2C → R

2C.

Indeed, this is the same problem we discussed in Section 2.3. There, the

solution turned out to be a decomposition of the total energy into local con-

tributions. Here, instead, we will show that a specialized NN architecture

may be used.

Second, a fully connected architecture is probably wasting a lot of parame-

ters. This can be easily seen considering that the mapping we are interested

in is equivariant under spatial translations [22]. A function f is said to be

equivariant to some symmetry operation T , if the application of T to its in-

puts translates to the the application of the same operation to the output.

Mathematically f(T(x)) = T(f(x)), i.e. the function and the symmetry op-

eration commute. Indeed, if we shift horizontally the profile function, we

expect that (at least in an infinite system or if PBCs are used) the corre-

sponding chemical potential should be identical up to the same translation

operation. This symmetry must therefore correspond to a constraint to pa-

rameter values.

This is not only an advantage from a computer memory and computa-

tional efficiency point of view, however. Symmetry compliance of NN archi-

tectures usually allows also for an increase in the generalization capabilities,

as discussed in Section 1.9. As it turns out, a specific NN architecture was

invented in the late 80s, which is by construction equivariant with respect to

spatial translations: Convolutional NN (in short CNN) [118, 119].

3.2.1 From fully-connected to convolutional Networks

Convolutions are usually directly introduced in ML courses for images, as

one of the main fields in which CNNs are used in modern machine learning

is in computer vision tasks. In this Section, however, we want to exploit

the simpler context of mapping vectors to vectors to draw a more deep con-

nection with standard fully connected structures. Indeed, if some specific

symmetry assumptions are imposed on a fully-connected NN, we will see

that convolutional structures emerge naturally. The reader who is familiar

with CNNs, however, is free to skip to section 3.3, where applications will

be discussed.

We will now analyze the problem from a more formal perspective. If

the profile function h(x) is discretized on a uniform grid of C collocation

points, then it can be represented as a vector h ∈ R
C. We will also consider

PBCs, as this is a natural context for materials simulations5. In this context,

horizontal translations by a ∈ Z units of δxmay be described by the function

Ta defined as

[Ta(x)]i = xi−a

5 The same analysis may be conducted considering other boundary conditions, but boundary
points have to be treated differently.
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Elements with negative indices are wrapped as a consequence of PBC when

reaching the end of the resulting vector. Essentially, Ta moves all elements

in the vector a positions down (or up, if a < 0), wrapping data from the

bottom to the top. In this framework, the following proposition holds:

Proposition 2. Consider x ∈ R
C and the affine transformation A(x) = Wx+ ~b,

W a square C×C matrix and ~b ∈ R
C. Then A commutes with Ta if and only if

~b is constant and W is a circulant matrix, i.e. if and only if it is a matrix whose

elements on a diagonal are identical and each row may be obtained from the previous

one by rotation one position to the right. As an example, a 4× 4 circulant matrix is

in the form:









a b c d

d a b c

c d a b

b c d a









Proof. Proof can be performed by direct calculation applying definitions (no-

tice that proofs for T1 and T−1 suffice, as can be generalized to Ta by induc-

tion, as Ta ◦ Tb = Ta+b).

For other properties of circulant matrices see Ref. [120]. Notice that Propo-

sition 2 implies that a linear equivariant model from R
C to R

C, must have

a weight matrix with this special structure. Notice also that circulant ma-

trices offer an important parameter saving, as the number of independent

weights in C dimensions is C (as opposed to general matrices, which have

C2 elements). Indeed, this class of matrices can actually be defined in terms

of a single row, i.e., they are fully characterized by a single vector in R
C. In

Deep Learning slang, the way to say that the same parameters are re-used

in many places in the NN structure is that these parameters are shared.

Another important result is the following:

Corollary 1. Consider a NN with N layers operating on x ∈ R
C, NN(x) : R

C →
R

C:

NN(x) =WN ◦ σ ◦WN−1 ◦ σ ◦ ... ◦W1

where σ is a non-linear, pointwise function, as in Chapter 1, Wi are affine trans-

formations and ◦ denotes function composition. Then NN(Ta(x)) = Ta(NN(x)) if

and only if all linear operators in Wi are represented by circulant matrices.

Proof. Suppose all matrices in Wi in a NN are circulant. Then

NN(Ta(·)) =WN ◦ σ ◦WN−1 ◦ σ ◦ ... ◦W1 ◦ Ta

By proposition 2, Wi ◦ Ta = Ta ◦Wi. Commutation σ ◦ Ta = Ta ◦ σ is trivial,

as σ operates components-wise. The translation operator may therefore be

pulled to the front, yielding the result.

On the other hand, suppose that the NN is fully connected and transla-

tional equivariant. We prove by induction that all Wi must be represented

using circulant matrices. The index N indicates the number of hidden layers,

thus NNN(Ta(·)) = Ta(NNN(·)). The linear model is the base N = 1 case,
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NN1 = W1: thesis follows directly by Proposition 2. Suppose (induction

step) that

WN ◦ σ ◦WN−1 ◦ ... ◦W1 ◦ Ta = Ta ◦WN ◦ σ ◦WN−1 ◦ ... ◦W1

holds, i.e. all matrices Wi, i 6 N are circulant. Then this implies that in the

case N+ 1:

WN+1 ◦ σ ◦WN ◦ ... ◦W1 ◦ Ta =WN+1 ◦ Ta ◦ σWN ◦ ... ◦W1 =

Ta ◦WN+1 ◦ σWN ◦ ... ◦W1

where the last equality holds by hypothesis. Then this means that WN+1

commutes with the translation operator and is therefore circulant by Propo-

sition 2 again.

This is very nice: if we insert circulant matrices in fully connected NN, we

obtain a specialized network with a reduced number of parameters which

satisfies translational equivariance of the input vector by construction. Addi-

tionally, together with the Theorem 2, we have that these special ”circulant

networks” have universal approximation capabilities for equivariant map-

pings.

A key property of circulant matrices is that they may be interpreted as

convolution operations. Convolutions are defined for periodic functions f

and g as:

(g ∗ f)(x) =
∫L

0

g(x− x ′) ∗ f(x ′)dx ′ (3.23)

being x ∈ [0,L]. If the usual uniform grid of C collocation points is used, this

can be approximated as

(g ∗ f)i =
∑

j

fi−jgiδx (3.24)

where we still consider that negative indices are wrapped. With this, we

can draw an important connection: if we extract the (unique up to transla-

tions) row vector of a circulant matrix, we may interpret the linear operation

it encodes as a discrete convolution operation. Indeed, a more straightfor-

ward interpretation of ”circulant layers”, which now on will be called by

their proper name, i.e. convolutional layers, is in terms of convolution with a

kernel [22, 23, 25].

In this picture, elements in the convolution kernel may be identified with

interaction terms. One of the main roles of convolution operations in physics

is in Green functions [121]. If we look back at Equation 3.23 and consider g

as the Green’s function of a linear differential operator, we may informally

interpret g(x − x ′) as the effect that a source at x ′ has at point x (see for

example the application to elasticity in Equation 3.17). Similarly, we can con-

sider convolution kernels as (discretizations of) interaction or information

mediating functions.

Convolution operations generalize straightforwardly to 2D and 3D cases:

the idea is the same, except that convolution kernels and functions are now
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represented as 2D and 3D arrays and sliding operation happens in two or

three dimensions respectively.

3.2.2 Locality assumption

While convolutions in the form described in Equation 3.24 solve the problem

of translational symmetries, we have not discussed how they may be bene-

ficial in lifting limitations related to domain size. Indeed, if we only con-

sider convolutions as an alternative interpretation of circulant matrices, we

are still building R
C → R

C mappings. Generalization to different domain

sizes, however, may be obtained if a locality assumption is also introduced.

Since kernels represent interaction or information mediating functions, this

is equivalent to assuming that the value of the convolution output at point x

only depends on neighboring points. In terms that are maybe more familiar,

this is effectively very similar to cutting off physical interactions (e.g. if x is

discretized in space), or a limit in causal relationships in Markov chains (e.g.

if x is a time series) [122]. In DL slang, such cutoff radius is a hyperparameter

and is referred to as receptive field, in analogy to biological structures [23, 25].

Normally, receptive fields are reported in terms of the number of collocation

points or pixels for image data.

In practice, only some values in the convolution kernel are different from

zero if such a locality assumption is made. This is not only a reduction in the

number of parameters, but also allows generalization to larger (or smaller)

vectors, as interaction terms for elements further apart than the cutoff ra-

dius are by definition zero. Remember that changing the dimensionality of

vectors, keeping spatial discretization fixed, is equivalent to changing the

domain size: if a Network is fully Convolutional, i.e. only contains this kind

of local convolutions and pointwise operations, then it can be applied to

domains of arbitrary size. Reverting to the circulant matrix formalism, this

means that, once the model is trained, the corresponding matrix operating

on a larger vector space can be constructed at evaluation time. The price

we have to pay is that only local interactions may be represented, reducing

the CNN representation capabilities. In practice, however, locality is still a

pretty general characteristic for real data applications.

In modern CNN, receptive fields are commonly small odd numbers (3,

5, or 7 are very common [25]). This allows for a further compression of

the number of parameters, ultimately leading to a computational advantage.

Computational cost reduction, however, is useless if CNNs have too narrow

receptive fields. This limitation is partially resolved by the multi-layer struc-

ture of NN. This can be understood intuitively with the example sketched in

Figure 24. Consider a 2-layer CNN in which convolutions have kernel size

3. This means that values in the first hidden layer at index i will depend

on values at i + 1, i and i − 1 in the input vector, in the 1D case. As the

second convolution also has kernel size 3, the output of the NN at index i

will depend on values at i+ 1, i and i− 1, of the hidden layer. This means

that the effective NN window is not 3, but 5 instead. This generalizes with

subsequent iterations: CNN effective receptive fields scale also with depth.
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Name Symbol Value

Young Modulus Y 130 GPa
Poisson ratio ν 0.27

Ge surface energy γGe 6 eV/nm2

Si surface energy γSi 8.7 eV/nm2

Wetting d parameter d 0.27 nm

Table 2: Materials constants used in Morphological evolution simulations.

3.3 predicting the chemical potential: proof of

concept

Now that the physical model has been described and CNNs have been intro-

duced, it is time to tackle the problem of approximating the elastic contribu-

tion to the chemical potential. The profile function h(x) is discretized on a

uniform grid of collocation points. Naturally, grid resolution affects the ac-

curacy of predictions based on finite difference schemes. In the specific case

at hand, however, a convenient spacing of 1 nm proved to already provide

convergent behavior.

Once the the approximate mapping between surface morphology and elas-

tic chemical potential is trained, we can in principle perform faster simula-

tions. The accuracy required from the NN, however, is strict: iterative nu-

merical schemes are required to calculate the free surface evolution from

Equation 3.11. For this reason, extrapolation effects must be investigated. In

the following, we will therefore start with the simplified task of approximat-

ing the Green semi-analytical expression 3.18 first. Once we checked that the

NN procedure is set, we will then turn to the full-fledged FEM calculation.

This is not the only reason, however. Actually performing millions of FEM

calculations may easily translate into days or months of calculations, which

does not allow for extensive comparison between CNN predictions and FEM.

We will therefore use the Green approximation as a proxy to understand the

level of accuracy that can be reached with this method.

We provide in Table 2 the value of materials constant used in simulations.

The actual value of Ds is irrelevant as it acts as a multiplier to the timescale,

hence we report the used value of D δt = 5× 10−3 a.u.

3.3.1 CNN architecture and additional symmetries

As we have discussed in Section 3.2, Convolutional NNs are a natural choice

for the task we are considering in this Chapter. Indeed, CNNs already en-

code equivariance under spatial translations, which is expected from physi-

cal considerations in this case.

Some additional adaptations are however required. First, particular care

with the locality assumption has to be addressed if we want to perform re-

gression on elasticity-related objects. Indeed, the equilibrium solution of

the mechanical problem is in principle a non-local feature (consider for ex-

ample dislocation stress/strain fields). Very small receptive fields in con-

volutions may therefore easily result in a CNN that is not capable of iden-

tifying longer-range contributions. As such, an architecture with a quite
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broad kernel size of 21 colocation points has been chosen. This quantity is

comparable with the critical wavelength for ATG in Ge strained films (see

Section 3.1.3), but remember that for deep CNN, the effective receptive field

is larger than individual convolutions. The overall architecture is built by 5

stacked convolution-tanh blocks, each convolution having 20 channels.

Other symmetries are present in the physical model we are considering

in this Chapter: mirror-reflection equivariance and vertical-shift invariance.

Since we are assuming an isotropic solid, both from an elastic and a sur-

face energy point of view, the chemical potential should obey the following

equality:

µε(R(h)) = R(µε(h)) (3.25)

where R represents a mirror reflection operation with respect to the origin9.

An equivalent result to Corollary 1 should be derived. In the case of mirror

symmetry, this leads to symmetric matrices, instead of circulant. In conjunc-

tion with the convolutional structure, this yields symmetric kernels. This can

be enforced by substituting the original kernel [k1,k2, ...,kn] with the sym-

metrized version 1/2[k1 + kn,k2 + kn−1, ...,kn + k1], n being the receptive

field size, at every forward pass.

Vertical shift invariance is instead related to the fact that the elastic chem-

ical potential does not explicitly depend on the film average value. This

is not true in general but holds for the Green function small slope limit of

Equation 3.18 and in the arbitrary slope case if the substrate and film elas-

tic constants are the same. To encode this symmetry, a simple solution can

be adopted and the mean value of h(x) can be subtracted before the NN

forward passage.

3.3.2 Training, Validation and Testing

As we already discussed at the beginning of this Section, we will first deal

with approximating the cheap Green function approach of Equation 3.18. In

order to construct physically sound profiles, a freely available Perlin noise

generator [125, 126] has been used. Some additional modifications have been

implemented by other group members to generate profiles that also present

flat regions. Additional details will be provided in a future publication and

for brevity we will not report them here. A dataset composed of ≈ 180000
cases has been produced and split into a training and validation set [100].

This is composed of (h,µε) couples on a simulation cell of 100 nm in length

(PBCs apply) and with an amplitude ranging from 10−3 to 8 nm, where we

expect that the small slope approximation is no longer valid.

The training procedure has been performed using the same Adam opti-

mizer [40] discussed for the dislocation case in Section 2.4.3. Similarly, the

loss function used is the standard MSE Loss, as this is a regression task. As

expected, there is no overfitting, as can be readily observed in Figure 27.

Again, the value of the training loss can be misleading. For this reason, is

always a good idea to inspect performances on test cases. Figure 28 shows

9 Actually, the broader class of reflections centered at any point should be considered due to
combination with translational equivariance.



















4 C O N V O L U T I O N A L R E C U R R E N T N N

F O R P H A S E F I E L D M E T H O D S

In this Chapter, we will deal with the possibility of using NN to approximate

the time evolution of a system without explicitly needing to integrate numer-

ically a differential equation. This can be done with a specialized architec-

ture, Recurrent Neural Networks, and bypasses one of the main limitations

of the approach discussed in Chapter 3, i.e. the requirement to calculate time

derivatives of a quantity of interest. This approach will be applied to one of

the most flexible materials modeling tools, the Phase Field approach.

The Chapter is organized as follows. Section 4.1 introduces the main con-

cepts of Phase Field models. The traditional derivation of Cahn-Hilliard and

Allen-Cahn equations is summarized, together with a discussion on how

Phase Field models can be used as an alternative to Mullins-like approaches

for surface diffusion. As this is a broad subject we will only outline the main

results and leave the interested reader to explore more details in specialized

sources, such as Ref. [131].

Section 4.2 outlines how NN specialized to treat time series data can be

constructed yielding Recurrent Neural Networks (RNN). Additionally, con-

nections with already discussed architectures and integration with CNN are

discussed.

Sections 4.3 and 4.4 apply Recurrent Neural Networks to Phase Field mod-

eling of surface diffusion. Respectively, the first one discusses how Convo-

lutional Recurrent Neural Networks can be adapted to the physical model

at hand, while the latter introduces a method to provide a prediction uncer-

tainty estimation.

The last Section collects preliminary results concerning spinodal decompo-

sition, a spontaneous phase separation modeled by the Cahn-Hilliard equa-

tion. In particular, Section 4.5 shows how Convolutional Recurrent Neural

Networks can be improved to obtain a higher predictive capability and ex-

tend results to three-dimensional systems.

Results concerning surface diffusion models are also collected in a pub-

lication [132], while spinodal decomposition results are being prepared for

future publication.

4.1 phase field modeling

Phase Field (PF) approaches [131] are a class of theoretical and computa-

tional methods that constitute a flexible and powerful framework for the

description of morphological and microstructural evolution of materials at

the continuum level. The main object which specifies the system configura-

tion is a scalar Phase Field ϕ.

Depending on the application, ϕ may have different physical interpreta-

tions. As an intuitive example, consider a solid mixture of chemical species

81
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A and B, in which the coexistence of an A-rich phase and a B-rich phase is

possible. Then a reasonable choice for ϕ is the following:

ϕ(~x) =
1

2

cA(~x) − cB(~x)

cA(~x) + cB(~x)
+
1

2
(4.1)

where ci is the concentration of chemical species i. With this definition,

ϕ = 1 corresponds to pure A, ϕ = 0 corresponds to pure B and ϕ = 1/2 is

the value we should expect from an interfacial region in which the relative

abundance of A and B are equal. This is not the only possible choice, how-

ever. Indeed, an alternative formulation in which ϕ takes values between

1 and -1 is often used. In the following, however, we will be using the 0/1

coding as it has a straightforward translation in terms of computer vision

approaches.

4.1.1 Free energy revisited

Together with the scalar field ϕ, the other main ingredient of Phase Field

models is a functional definition of the Free energy F[ϕ]. This can be ex-

pressed in Ginzburg-Landau functional form [131, 133]:

F[ϕ] =

∫

Ω

g(ϕ) + k|~∇ϕ|2d~x (4.2)

where Ω is a suitable domain on which the physical process is defined.

The meaning of g(ϕ) is straightforward: it represents the free energy per

unit volume associated with the system if the value of ϕ is constant through-

out the domain Ω. In other words, the function g maps the Phase Field

value to the mean-field free energy of the corresponding uniform system.

As we will be interested in phase coexistence, a numerical convenient choice

is [131]

g(ϕ) = aϕ2(1−ϕ)2 (4.3)

with a > 0. This choice of g presents two degenerate minima for ϕ = 0 and

ϕ = 1, representing the coexistence of phases. A more rigorous treatment

through the theory of regular solutions would prove the existence of such a

double-well potential, albeit with a different functional form [133].

Naturally, the mean-field term cannot tell the whole story. Indeed, in a

closed system with an equal number of A and B atoms, it is impossible

to obtain uniform ϕ = 1 or ϕ = 0 values. It can be shown that in such

a system, below some critical temperature spontaneous phase segregation

happens [134]. Remember, however, that we are searching for a field vari-

able that should interpolate between the two phases continuously. For this

reason, an additional free energy term k|~∇ϕ|2, proportional to the gradient

of the Phase Field is introduced. k > 0 is for the moment just some con-

stant weighting of this ”gradient cost”. Notice that if this term is removed,

it would be possible to have a ϕ function which oscillates wildly from point

to point despite having a zero total free energy, whatever is the mean com-
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position of the system. As this term arises in transition regions from A-rich

and B-rich phases, it controls the interfacial energy.

This intuitive introduction to Phase Field free energy functionals already

highlights some of the advantages of this class of methods. First, they are

very flexible, as couplings with additional fields and physical models can

be done by adding other contributions to the free energy functional. For

example, if one phase is strained with respect to the other, then Equation 4.2

can be simply augmented with an additional elastic energy term (e.g. see

Ref. [135]). Second, PF models are very general, as the chemical species con-

centration case we discussed so far is only an example. In principle, any

order parameter can be chosen as ϕ: magnetization, density, local lattice pa-

rameters, etc. can be converted into suitable Phase Fields. In section 4.1.3 we

will discuss how ϕ can be used for an implicit representation of a material

domain.

Another favorable feature is the possibility of dealing with complex ge-

ometries. Indeed, a Phase Field may also be used to represent regions in a

computational domain and there is a specialized formalism in which such

auxiliary fields may be used to impose boundary conditions to other differ-

ential equations [103]. On a high-level perspective, one or more additional

Phase Fields may be used to constrain the free energy functional to subsets

of the computational domain Ω by ”tagging” such regions. This is particu-

larly well suited in cases in which the geometry of boundary conditions is

very complex and changes as a function of time or as an effect of the dif-

ferential equation solutions themselves (so-called moving boundary problems).

We will exploit this fact to perform surface diffusion-driven morphological

evolution simulations.

4.1.2 Chemical potential in Phase Field models

Now that the free energy functional has been introduced, we can derive the

driving force determining the time evolution of ϕ, allowing for the modeling

of non-equilibrium processes. The idea is fundamentally analogous to the

one we have seen in Section 3.1: the (generalized) chemical potential can be

obtained as the functional derivative of F with respect to the Phase Field

µ =
δF

δϕ
= g ′(ϕ) − 2k∇2ϕ (4.4)

which can be directly obtained by Euler-Lagrange equations [110].

Equation 4.4 allows us to have more insight into the physical meaning of

the k constant in the gradient energy term. If we consider the minimiza-

tion of free energy, this amounts to solving the non-linear, second-order

partial differential equation µ = 0. This can be solved analytically in one

dimension if expression 4.3 is used for g. Imposing boundary conditions for

limx→±∞ϕ(x) which represent pure A on the left and pure B phases on the

right, we obtain:

ϕ(x) =
1

2

[

1− tanh

(
√

a

4k
(x− x0)

)]

(4.5)
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eter (e.g. it represents local magnetization, order/disorder transitions, etc.

see [131]), we can consider simple dissipative dynamics: the rate at which ϕ

changes is inversely proportional to the local chemical potential

∂ϕ

∂t
= −Mµ (4.8)

where we introduced a kinetic constant M. Inserting only the terms con-

sidered in the previous Section in the free energy, we obtain the so-called

Allen-Cahn equation. Other physical contributions with respect to interface

energy may be inserted in F[ϕ] if their dependence on the Phase Field is

known.

The case of conserved order parameters (e.g. composition fields) has to

be treated with a bit more care. By definition, we should impose ϕ local

conservation. In differential form:

∂ϕ

∂t
= −~∇ ·~Jϕ (4.9)

where ~Jϕ is the flux associated with ϕ transport. This latter quantity may

be related to gradients in the chemical potential utilizing Onsager linear

laws [112]:

~Jϕ = −M~∇µ (4.10)

where the coefficient M represents now a diffusion constant. Assembling

this last relation with the conservation of mass, we obtain

∂ϕ

∂t
= ~∇ ·M~∇µ =M∇2µ (4.11)

Notice that the last equality is possible only if M does not depend on ϕ or

the position explicitly, e.g. in the case of isotropic and homogeneous dif-

fusion processes. If the functional form discussed in Section 4.1.1 is used,

Equation 4.11 becomes the well-known Cahn-Hilliard equation. One of its

most famous applications is to the study of the so-called spinodal decomposi-

tion phenomenon, which occurs in solid mixtures [134] (usually metals) and

polymeric materials [136]. Remember that the similarity of Equation 4.11

with the simple Fick diffusion law is only formal: µ itself contains second-

order derivatives and is non-linear in ϕ. Numerical solutions costs for Cahn-

Hilliard and Allen-Cahn models strongly depend on additional terms in the

definition of the system free energy: while standard formulations have been

heavily studied, couplings with more complex terms may be much more

expensive.

4.1.4 Phase Field models for surface diffusion

As a last case, we outline in this section how a specific modification of the

Cahn-Hilliard model can be turned into a PF representation for surface dif-

fusion. If ϕ is used to implicitly track a solid geometry, instead of some con-

centration field, then ϕ = 1 correspond to bulk points, ϕ = 0 to points out-
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side the material and the free surface should be identified with the ϕ = 1/2

isoline.

At this point, we should ask why this approach should be taken if the tra-

ditional Mullins approach is already successful in modeling morphological

evolution and growth of solids without the need to smear out the free sur-

face, as discussed in Chapter 3. When the solid free surface may be described

by a simple profile function h(x, z), sharp interface models are indeed very

convenient. This is not, however, always the case. For example, under some

conditions, a material domain may split or merge with a second object. At

this point, if a parametric curve/surface describes the surface, specialized

procedures have to be considered. In phase field models, on the other hand,

ϕ is defined everywhere in the computational domain, making the handling

of such topological changes automatic.

Staying on a very high-level perspective, if ϕ marks the presence of atoms

in a computational domain, we should confine their motion on the surface

of the solid itself and conserve their total number, if we want to recover a

surface diffusion model. This is reminiscent of a ”surface” version of the

Cahn-Hilliard equation. It is reasonable, at least in the case of an isotropic

solid, to consider the following expression for the evolution of the Phase

Field:

∂ϕ

∂t
= ~∇ ·M(ϕ)~∇µ (4.12)

where M(ϕ) is a ”localizing” function that has a maximum at ϕ = 1/2 and

vanishes for bulk points (ϕ = 1) and far outside the solid where ϕ = 0.

Due to its form, the equation is sometimes called the degenerate Cahn-Hilliard

model. A popular choice for the function M(ϕ) and for the free energy

functional is the following [103]:

M(ϕ) =Ms
36

η
ϕ2(1−ϕ)2

g(ϕ) =
18

η
ϕ2(1−ϕ)2

k =
η

2

(4.13)

where η is an interface thickness parameter and Ms is a surface mobility

constant. Notice that the isotropic surface energy γ has been here implicitly

set to unity.

The main idea is that, as η → 0, the evolution equation for the ϕ = 1/2

isoline converges to the corresponding sharp interface model. In this case,

for very small interface parameters Equation 3.11 should be recovered [103].

4.2 recurrent neural networks

It is necessary at this point to explain why we need machine learning at

all in dealing with Phase Field models for Materials Science. Indeed, time

integration of the Cahn-Hilliard or Allen-Cahn equation, per se, is not such

a computationally expensive task. In this respect, however, if more complex
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physics is inserted in the model, limitations similar to the solution of the

elastic equilibrium problem in Chapter 2 and Chapter 3 arise. On the other

hand, surface diffusion models can be computationally challenging on their

own: to have a close reproduction of surface-localized dynamics, small inter-

face thickness parameters η should be employed, which in turn asks for fine,

adaptive FEM meshes for accurate tracking of the evolution. This is particu-

larly critical when the more complex case of anisotropic surface energies is

considered, as dependence on the specific crystalline facet also increases the

degree of the PDE. All in all, the extensive study of realistic systems is once

again hindered by the computational speed of some approaches.

In this Chapter, we want to explore a new direction in which NN methods

can provide some help with this problem. While in Chapter 3 we used DL

techniques to provide a cheap approximation of driving force terms in the

equations of motion, here we want to attack the issue from a different an-

gle. Indeed, there are NN approaches that analyze and generate sequential

data directly. The idea is, therefore, to use these algorithms to bypass the re-

quirement of small time advancements to reconstruct the system dynamics:

as Deep Learning methods are inherently non-linear and universal approxi-

mators, they can in principle provide the mapping between the state of the

system at some time t and the state at t+ τ, with τ being potentially a huge

timestep if compared with traditional time integration schemes. Another

important consideration is that time relations in sequence elements are not

required to satisfy a differential equation at all for these NN methods to be

effective. In principle, the results we will discuss here should generalize to

experimental images directly. Of course, in that case, the main bottleneck

would be the collection of a large enough dataset.

We will now introduce Recurrent Neural Networks (RNN) to deal with time

sequences. We will do that by considering a simple problem in which a

sequence of scalar values xt, with integer t ∈ [0, 1, ..., T ] denoting a discrete

time index, is used as a dataset. T defines the total length of the system. In

principle, if we have no information on the kind of relationship between x

values, we might be tempted to use a feed-forward NN to approximate the

relationship:

x1 = NN[x0|ϑ] (4.14)

This is in some sense what we have done in the previous Chapter: we ex-

ploited a (Convolutional) NN to approximate the mapping between the state

of the system at time t and the state after an infinitesimal interval δt. Notice,

however, that we also used a lot of implicit assumptions on the nature of

the relationship. For instance, we know that xt+δt only depends on xt and

not on the state of the system at previous stages (as we were considering a

first-order differential equation). What if, instead, we are dealing with data

that don’t share this property? We need some specialized NN architecture

that is capable of handling a variable number of inputs:

xt = NN[xt−1, xt−2, ..., x0|ϑ] (4.15)

A similar problem arises if we consider a classification task for sequences.

The NN should be able to have a sequence of arbitrary length as an input,
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fully-connected structure could in principle be used for f without problems.

Second, the hidden state ht only depends on xt and ht−1:

ht = g(ht−1, xt−1|ϑg) (4.17)

for a suitable function g. It is at this point needless to say that g too will be

parametrized with a Neural Network.

The main advantage of this reformulation is that xt can be obtained by

repeating applications of f and g functions irrespective of the sequence length.

This iterative use of the same function is the reason why these structures

are called Recurrent NN. At the same time, passing through a hidden state

allows the propagation of information from possibly very remote sequence

elements up to the present. From a heuristic point of view, ht may be con-

sidered as a memory of previous states of the system. f no longer needs to

access states at previous times, as long as g has learned how to extract and

retain from them important information.

Tackling the problem from a probabilistic perspective allows for a more

systematic treatment. Let us turn back to probabilistic models (see Sec-

tion 1.3.1. Training a NN model that generates sequences involves the maxi-

mization (through MLE or MAP) of the probability of observing the training

set element:

P[x0, x1, ..., xT−1, xT ] = P[{xt; t ∈ [0, T ]}] (4.18)

in Chapter 2 and 3, we could assume that training set elements were ex-

tracted independently from the same distribution. This still holds for whole

sequences, but elements in the same time sequence are not independent. Using

basic probability theory [20], we can write

P[{xt; t ∈ [0, T ]}] = P[xt ′ |{xt; t ∈ [0, T ], t 6= t ′}]P[xt ′ ] (4.19)

for some chosen time index t. As future events do not influence the past (at

least in physical models we will consider), we also have:

P[xt ′ |{xt; t ∈ [0, T ], t 6= t ′}] = P[xt ′ |{xt; t < t ′}] (4.20)

At this point, we may start from x0 and iteratively unpack the probability

of observing a given sequence in the following form [22]:

P[x0, x1, ..., xT ] =
T∏

t ′=0

P[xt ′ |{xt; t < t ′}] (4.21)

notice that this holds for generic sequences. This is the formal version of

the ”different length input” problem that we introduced at the beginning

of the Section: in principle, we should have a different conditional proba-

bilistic model for each timestep! This is a big issue, especially if we want to

generalize to timesteps that are outside the training set range.

If the system is ”memory-less”, a possible solution to the problem is to

use the Markov property. Formally, it states that the conditional probability

of observing the state of the system at time t ′, only depends on some subset
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NN approaches, however, most of the time increases in depth proved to be

more efficient. It is thus possible to increase the number of hidden states by

stacking multiple RNNs on top of each other and using the hidden state of

one module as the input of the following one (see Figure 38).

4.2.2 Training RNNs

In order to train an RNN, we must build a loss function which is once again

defined in terms of MLE/MAP. In particular, if we are performing regression

on sequence values, the loss function reads:

L(ϑ) =

T∑

t=tstart

Lt(ϑ) (4.25)

where ϑ is the set containing both g parameters ϑg and f parameters ϑf.

Notice that the summation is performed only for values between the initial

time at which the RNN starts to generate a sequence tstart and the final

time available in training T . Notice that the initial time need not to be zero,

as it is in general possible that a Recurrent network takes a sub-sequence

before starting to generate subsequent elements. Still, the RNN needs some

input to begin with: at least the initial value for the hidden state (h−1 in our

notation, usually set to a zero vector) and the value of x0 should be provided

externally to the model to start the recurrence.

For sequence regression we can take Lt(ϑ) as:

Lt(ϑ) = (x̂t − xt)
2 = (f(ht|ϑf) − xt)

2

ht = g(ht−1, x̂t−1|ϑg)
(4.26)

where x̂ is the NN prediction, x represents the training set value. Notice

that the generated previous step has been used to calculate ht, in consistency

with evaluation time in which ground truth values are no longer available.

To arrive to the squared loss term we made the usual (although not unique)

choice of a probabilistic model in which xt is conditionally normally dis-

tributed:

P[xt|ht] = N(x̂t,σ) = N(f(ht|ϑf),σ) (4.27)

with unspecified standard deviation σ.

Optimization requires gradient calculations at different times. Notice,

however, that Lt requires x̂(t), which in turn can be calculated only if h

and x̂ at previous times are also computed. During the backward pass, it

is therefore possible to re-use gradients of Lt for previous times. For this

reason, the backpropagation algorithm for RNN is termed backpropagation

through time.

Another important point in the practical training of RNN for sequence

regression is related to the length of the input sequence. Sticking to the ap-

proximation of Phase Field models, it is clear that the number of input states

must be at least equal to the order of the underlying differential equation.

In our case, dynamics is first order, hence a single initial snapshot should
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be sufficient to predict the system evolution. We remark that this fact is not

equivalent, in principle, to a pure Markov property: a RNN which requires

a single initial state x0 can still use all intermediate stages (through the hid-

den states) to generate the state at time t. It is also clear from the Loss

function 4.25 that RNN performs a regression task which targets the whole

sequence at once instead of the individual state-to-state transition as would

happen under a full Markovian assumption.

Providing a RNN with a single (or the minimal) amount of snapshots,

however, may result in very slow training, especially if it is required to gen-

erate very long sequences. At the beginning of optimization, weights will

be mostly random and the loss function and the iterative generation of a se-

quence will be severely affected by accumulation of errors. One possibility to

circumvent this inconvenience is to provide the NN with the ”correct” time

sequence (from the training set) for all timesteps, so that error accumulation

is reduced. Loss function terms Lt(ϑ) are still calculated as in Equation 4.26,

but in this case the hidden state calculation is modified as

ht = g[ht−1, xt−1|ϑg] (4.28)

where the true previous state xt−1 has been used instead of the predicted

one x̂t−1. This procedure is called teacher forcing, in analogy with a stu-

dent (the network) being corrected at every question by a teacher (train-

ing data) to avoid the accumulation of previous mistakes during an exam.

This seemingly innocent substitution has a profound impact: we drastically

changed the information flow from past states to future ones, as ht is no

longer calculated on previously generated elements! This is critical, as once

the model is used to predict new sequences, ground truth examples will

no longer be available: small fluctuations in predicted outputs can quickly

accumulate and make the NN prediction unreliable. Indeed, there is a fun-

damental difference between Network inputs that come from the user (e.g.

training/validation set inputs) and those that have been generated by the

RNN itself and fed back into the Network. RNNs in which the latter type of

input-output connection is present are said to have output recurrence [22].

For once, it is possible to both reduce computational costs and end up

with a model trained on the same input-output connectivity which will be

used at evaluation time. This procedure is called curriculum learning and is

based on the idea that at the beginning of training, where the computational

speed up is more important, it is better to employ teacher forcing. In later

stages, however, full output recurrence is used, so that the final model is

fine-tuned to learn the correct information flow. In intermediate epochs, the

first part of the sequence may be passed in teacher forcing fashion and the

remaining part be generated in closed-loop mode. In some sense, during

the transition between the two regimes, the training task gets progressively

more complex, hence the name curriculum. The optimal transition schedule

is once again problem-dependent and can be considered as an additional

training hyperparameter.

Regression is not the only task that can be tackled using RNNs. The other

typical Machine Learning application is that of classification. In this respect,

Recurrent Networks represent a flexible framework to perform the classifi-
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cation of entire sequences of arbitrary length [22, 23, 25]. Here, we will only

outline the simple case in which the whole sequence is associated with a

single class, although more complex scenarios are possible. Once again, a

probabilistic model is required, hence the critical object is the conditional

probability:

P[class|{xt; t ∈ [0, T ]}] = P[class|hT ] (4.29)

where we simply recovered the same hidden state assumption and condition

on hT instead. In practice, sequence classification proceeds producing a

hidden state associated with the whole sequence hT . This is then fed into a

second network which converts it in class probabilities. This can be done in

teacher forcing without any problem, as the Network is never used in closed

loop.

4.2.3 Gated Recurrent Units

From the discussion in the previous Section, it seems that there is no fur-

ther complication to RNN other than using enough parameters for a flexible

enough network for g and f, while carefully handling conditional proba-

bilities and input-output relationships. However, when long-time depen-

dencies are present, this is easier said than done. Indeed, the recurrent

application of the same network calls for vanishing and exploding gradient

problems [22, 23, 25].

This phenomenon can be understood through a simple example. Con-

sider a situation in which some quantity y (e.g. a sequence element or

a hidden state) is obtained by recurrent application of some linear model,

parametrized with a linear transformation W. Then

yt =W
t
y0 (4.30)

It is a basic result in linear algebra that eigenvalues of W
t

are powers of

eigenvalues of W. Unless all of them have magnitude exactly one, a pretty

rare situation, an exponential dependence (either growing or shrinking) on

parameters in W is present. This makes the training process problematic,

with possibly infinitesimally small or diverging optimization steps.

In the case of RNNs, the same argument may be made, albeit the presence

of non-linear applications has to be considered. Indeed, during backpropa-

gation in time, the same matrix recurrent application problem arises, both

in terms of affine transforms and in terms of jacobians for non-linear appli-

cations [137, 22].

To solve this problem, specialized architectures have been proposed over

the years. One of the most successful strategies is the so-called Long Short

Term Memory (LSTM) Network developed by Hochreiter and Schmidhu-

ber [137]. A more modern version, which also has a slicker architecture is

the Gated Recurrent Unit (GRU) [138]. The core idea in both cases is the

careful use of non-linearities to implement a gating mechanism in past to

future mappings. This solves the vanishing and exploding gradient problem

and stabilizes training.
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We will now briefly discuss the mathematical form of the GRU, as it will

serve as the core implementation of RNN in the following applications2. To

calculate the next hidden state of the system ht, first the so-called reset gate

value is calculated:

rt = σ(Wrxt−1 +Urht−1) (4.31)

where Wr and Ur represent affine transformations, while σ is fixed to be the

logistic sigmoid of Equation 1.25. rt is a vector whose components are in

(0, 1) and with the same dimensionality of the hidden state. Once rt has

been calculated, the tentative new hidden state h̃t is defined as

h̃t = tanh (Wxt−1 +U(rt ⊙ ht−1)) (4.32)

where W and U represent other affine transformations. The symbol ⊙ indi-

cates instead Hadamard product (element-wise multiplication). This equa-

tion clarifies at least on a high level the role of rt: acting as a multiplicative

gate, it controls how much information should be used from the previous

hidden state to generate the next one: a reset gate value of 0 corresponds

to removing data ”stored” in the memory, while a value of 1 represents full

memory retention. Before obtaining the effective hidden state, however, a

similar but independent update gate is defined

zt = σ(Wzxt−1 +Uzht−1) (4.33)

The actual hidden state is then calculated by

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4.34)

In other words, the final hidden state is a weighted average of the previous

value ht−1 and the proposed new value h̃t. In this respect, the update gate

controls how much information has to be re-written inside the RNN ”mem-

ory”, closing the control of information flow from previous steps. Notice

that the GRU (as the LSTM) operates on array components: it is completely

possible that the reset gate has a value of 1 in a specific element and is 0 on

another, allowing for higher flexibility for the model and to have multiple

time-scales in the same architecture.

4.2.4 Convolutional Recurrent Neural Networks

As we stated at the beginning of this Chapter, our main goal is to apply

RNN to Phase Field modeling. It is clear, however, that the spatial structure

of this kind of data calls for some properties that we already discovered are

easily encoded by Convolutional Neural Networks. In other words, for 2D

PF simulations, we would like to implement a Recurrent NN which operates

on sequences of images. How can we choose between the two architectures?

2 Notice that time indexing may be inconsistent with other sources, as we are already special-
izing the algorithm for series generation, in which the distinction between the RNN output
at the previous time (usually indicated with yt−1) and the present input (usually denoted
with xt) is here immaterial. We therefore mix the two notations using xt−1 to denote the
state of the system at the previous step
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way to know the prediction error on a sample is to actually calculate the

ground truth and make a comparison. Clearly, this cannot be the solution:

in the end, we are using ML models to avoid making expensive traditional

calculations. Fortunately, there exist statistical methods that overcome, at

least to some extent, this limitation of the Maximum Likelihood criterion.

Among various possibilities, the use of ensemble methods [22] is one of

the most straightforward. The core concept is that, instead of training a

single NN, multiple copies of the same architectures are trained in parallel.

Once the ensemble has been trained, individual models should provide simi-

lar losses on training and validation/testing and predictions should be close

together. However, as training was performed independently, there is no

guarantee that this will happen. If predictions for new input data are spread

out, this is an indication that the uncertainty is high. There is however an

important caveat in this kind of procedure: the spread of the prediction can

only be an estimate of the prediction uncertainty.

4.4.1 Bootstrap, Bagging and Prediction uncertainty

There are different methods to obtain an ensemble of predictors. Some

of these leverage specialized NN layers, such as Dropout [144] to train a

stochastic network which effectively provides a different set of weights ev-

ery time the forward calculation is done. Here, however, we will implement

a more traditional approach based on a bootstrap procedure. Importantly, this

not only allows one to have an estimation of the prediction uncertainty [145]

but also makes for a more robust combined predictor [146].

As stated, the core concept in ensemble methods is to train independent

models with the same architecture. An easy way to ensure that the train-

ing procedure will converge to a different minimum in the Loss function

is to build a corresponding number of independent training sets. From a

statistical point of view, if we want to train M models, this amounts to

the extraction of N samples from the data probability distribution (in our

case the distribution of snapshots obtained by FEM integration of the Phase

Field model of surface diffusion) a total of M times. Unfortunately, if data

availability is scarce, this is unpractical and we have only one training set

available.

Bootstrap is a procedure based on the construction of multiple training sets

starting from the original one. From a practical point of view, this is done

by simply replacing the data distributions (the one containing all possible

PF evolutions for us) with the original training set itself. Extraction with

replacement of N elements M times allows to have at least an approximation

of the desired independent training sets. The new training sets generated in

this way are called bootstrap samples.

Bagging exploits the bootstrap procedure to build an aggregate, more ro-

bust predictor. The idea is that bootstrap samples can be used to train multi-

ple models. After training, the prediction on new data is taken as the average

between all the individual NN predictions. It is possible to prove that the

expected deviation from this average is smaller than the average deviation

of individual models. Formally, if the (x,y) is the input-output couple and
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Di indicates the bootstrap sample, it can be proven from straightforward

statistical arguments that

ED(y−ψi(x))
2
> (y−ψA(x))2 (4.37)

where ψi is the predictor trained on the i-th bootstrap sample and ψA(x)

is the aggregation 1
M

∑
iψi(x). The difference between the two values de-

pends on how much the training procedure is influenced by changes in the

bootstrap set used. This method is therefore expected to be particularly well

suited for Neural Networks, as proliferation of local minima in the Loss

function and a dependence from random weight initialization is expected.

What about the prediction uncertainty? This quantity can be simply es-

timated through the calculation of the standard deviation of the individual

model predictions, as we are dealing with a regression task. In practice, it is

possible to simply consider the quantity [145]

σD =

√

Ei(ψi(x) −ψA(x))2 (4.38)

Notice that for the Phase Field models we are considering in this The-

sis, the predicted quantity is a sequence of images. The standard deviation

between individual predictions can therefore be calculated as a function of

position and time: implementing this simple bootstrap procedure we can cal-

culate when and where the aggregate prediction is expected to be unreliable.

In the next section, we will show some applications for this method.

4.4.2 Aggregating models for Surface Diffusion

We now show some application of the bagging approach. Specifically, a total

of 15 bootstrap sets have been generated, so that the final aggregate model

also averages and calculates standard deviation over 15 different sequences.

A test for the prediction uncertainty estimation has been performed on

what, from a physical point of view should be a stationary state for the

system, i.e. donut-shape configurations. This can be understood consid-

ering the corresponding sharp interface model: as perimeter curvature is

constant everywhere, the gradients in chemical potential should be zero and

the profile should not evolve. The CRNN aggregate model shows however

something different and the central hole is filled with material, although it

takes several timesteps with respect to the length of sequences provided in

training to observe this phenomenon. The states predicted by the model

ensemble are reported in Figure 47. Remember that the models were not

exposed to non-evolving states in training, however. Despite the aggregate

evolution not being close to the true, stationary one after ≈ 500 timesteps,

the ensemble standard deviation readily identifies unreliable prediction re-

gions, i.e. errors due to extrapolation.

As a final test, which also exploits spatial domain generalization capabili-

ties, we report a large domain simulation in Figure 48. Clearly, the predictive

capabilities of the CRNN are very limited, as the local prediction uncertainty

indicator increases in the first evolution steps. This is expected, as the train-

ing set did not involve any interacting domains. Still, these evolutions are
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t = 1 t =  250 t = 500 t = 750 t = 1000

Figure 47: CRNN ensemble prediction for the ”evolution” of a donut-like stationary
state (top). The aggregate model fails to correctly predict that the system
configuration is stable. The prediction uncertainty estimation (bottom),
however, readily identifies the extrapolation regime.

t = 1 t = 25 t = 50 t = 75 t = 100

Predicted 

evolution

Aggregate 

model 

standard 

deviation

Figure 48: Large size system evolution containing multiple interacting materials do-
main as predicted by the CRNN ensemble and its prediction uncertainty
estimation.

interesting: on one hand, where σD is small the predicted evolution is in

agreement with the general trends that are expected in surface evolution

dynamics, i.e. the rounding of the free surfaces. Secondly, the uncertainty

estimation procedure readily identifies that regions in which the CRNN has

provided unreliable dynamics correspond to areas in which drastic topo-

logical changes (domain merging and splitting) take place. Again, this is

expected, as the training set did not contain information on the PF model

behavior in such regimes.

A more subtle additional source of error accumulation can be identified:

in the initial condition at t = 1 it can be observed that the spatial separation

between domains is in some cases smaller than individual pixels. Since

the CRNN is elaborating a coarse-grained version of the original PF model,

this type of initial condition has to be dealt with carefully. Indeed, some

modifications to the convolutional structure of the network (again, UNet-

like architectures [130], which allows for non-linear resolution compression)

may become critical in future development of this approach. An alternative

could be exploiting the Recurrent aspect of the CRNN: if longer excerpts of

sequences are passed as initial conditions, this could help the NN to resolve

ambiguities arising from spatial coarsening and direct it to a more accurate

prediction. These directions will be certainly considered in future works.
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4.5 towards 3d models

Some improvements to the CRNN framework have been developed recently

in the group. While results are being collected and are not yet submitted for

publication, we retain that they are very promising and therefore we discuss

some of these in the present Section. To our knowledge, this is the first

application of such CRNN schemes in 3D to Materials Science problems.

As 3D simulations are more challenging from a computational point of

view, we will deal with the simpler spinodal decomposition model described

by Cahn-Hilliard Equation 4.11, the main advantage being that accurate

tracking of the interfacial regions between the two phases is less critical.

This is because ϕ variations are no longer localized, as the scalar mobility

M implies bulk diffusion. Simulations have been performed using a simple

finite difference scheme and an explicit forward-Euler time integration. A

total of 550 sequences composed of 50 snapshots each have been produced,

with initial conditions initialized by the usual Perlin noise [125, 126], which

has been straightforwardly adapted to 3D. Domain resolution is 64× 64× 64
collocation points. Periodic boundary conditions have been employed, as

they can be readily implemented in CRNN via circular padding. Due to the

isotropic nature of the mobility constant, reflections and 90◦ rotations about

all axes also define symmetry operations available for data augmentation.

For completeness sake, we report parameters: k = 1.5, a = 6 and the inte-

gration step defined by Mδt = 1.25× 10−3. A snapshot was saved every 800

Euler integration steps, which will be the reported unit of time.

4.5.1 CRNN model improvements

The main modifications to the architecture as described in previous Sections

can be divided into two different contributions. The first one regards the

non-linear nature of recurrent structures in the gating mechanism in the

convolutional GRU. As stated in Section 1.7, it is often more effective to

increase the depth of a NN, i.e. the number of subsequent stacked layers,

than increasing the width of the hidden layer representation. For convolu-

tional NN, width corresponds to the number of convolution kernels to be

used and ultimately it is related to the number of channels in hidden states.

Recent tests on the spinodal decomposition dataset revealed that inserting

additional convolutional layers in GRU modules calculating the reset r, up-

date z and suggested next hidden state h̃ (see Section 4.2.3) allows for a

strong compression in the number of parameters of approximately a factor

of 10. This is mainly ascribed to a reduction in the number of channels.

Importantly, this increases prediction capabilities.

The second improvement is related to the ht → ϕ̂t mapping. One of

the main downsides in the implementation discussed for surface diffusion is

that the conservation of order parameter was enforced only in a soft way via

the additional loss term. This, however, does not ensure exact conservation.

A simple addition of a hand-crafted convolutional layer can however enforce

this condition by construction. As we will discuss, the specific values to be

inserted in the convolution kernels can be derived based on physical con-
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siderations, highlighting the important interplay between NN architectures

and the underlying physical models.

The conservation equation for a scalar quantity can be written in differen-

tial form as in Equation 4.9 which we report here for convenience:

∂ϕ

∂t
= −~∇ ·~Jϕ

i.e. the time derivative of the order parameter is equal to the divergence of

a vector field ~Jϕ representing a density flux. As we are representing Phase

Field values on a discrete grid, divergence ~∇· may be represented as a finite

difference operator. Critically, this is equivalent to the summation of the

result of convolution operations. For example, in 2D, the derivative with

respect to x can be written in two dimensions as a convolution with the

kernel:

∆x =
1

δx





0 0 0

−1 0 1

0 0 0



 (4.39)

where δx is the collocation point spacing in the x direction. Generalization

to three (or higher dimensions) is straightforward but more cumbersome in

notation. The main point is that the CRNN may be employed to predict a N-

channel map instead of the Phase Field value directly, where N is the spatial

dimensionality of the system. Every channel represents one component of

the predicted vector field ~̂Jt. The variation in the Phase Field value ∆tϕt may

therefore be computed via application of the finite difference convolutions

as

∆tϕ̂t = ∆xĴx,t +∆yĴy,t +∆zĴz,t (4.40)

where we directly provided the 3D form. Notice that, if circular padding (or

PBCs to use the physics community terminology) are employed, the linearity

in the convolution operator implies that the spatial sum of values in ∆tϕ

vanishes exactly3.

The predicted subsequent order parameter field is therefore obtained in a

forward-Euler fashion as

ϕ̂t = ϕ̂t−1 +∆tϕ̂t (4.41)

which conserves the spatial integral of ϕ̂ at all t by construction. Notice

that, despite the resemblance with a first-order explicit integration scheme,

this is more powerful, as the variation ∆tϕ̂(t) has been obtained through the

CRNN under non-Markovian assumptions. As a side note, we remark that

this structure may be regarded as a specialized Recurrent ResNet block [147]

(see also Section 5.2.2).

3 This is actually true for all convolutions whose kernels element sum is zero, as can be readily
proven by direct calculation. More general operators with desired conservation properties
can in principle be constructed using this fact.









5 G A N S : TA C K L I N G S TO C H A S T I C

DY N A M I C S

In this last Chapter, we will discuss possible applications of Deep Learning

approaches to stochastic systems. At variance with the rest of the Thesis, in

this case a fully probabilistic approach is necessary. One of the most suc-

cessful approaches developed in the last years will be employed, Generative

Adversarial Networks (GAN).

The approach and the results that will be presented in this Chapter have

been developed and obtained in collaboration with Professor Olivier Pierre-

Louis during my stay in ILM at the Université Claude-Bernard Lyon-I. We are

therefore hugely indebted to him as his experience in stochastic systems

proved to be essential for what follows.

The Chapter is organized as follows. Section 5.1 introduces theoretical

foundations for Generative Adversarial Networks. Section 5.2 shows how

the original GAN formulation has to be adapted to a simple one-dimensional

stochastic system. Specifically, motivations behind the noise injection proce-

dure which is expected to be necessary to stabilize training for all lattice

models are provided.

In Section 5.3 we briefly outline perspectives and applications to many

interacting particle systems. This is currently one of the main research objec-

tives we are pursuing.

Data on the single particle system are also published in Ref. [148].

5.1 generative adversarial networks

For once, we will start by introducing the Machine Learning method and

then turn to the physical model. To tackle the training of probability distri-

butions we will use Generative Adversarial Networks. The theory is very

general and is based on the pioneering work of Goodfellow et al. [149].

Up to this point, we always assumed that Machine Learning model out-

puts had some probability distribution. Mainly, it was in the form of a con-

ditional Gaussian probability density, whose mean was then parametrized

utilizing a NN. This allowed us to introduce the Mean Squared Error Loss

and convert the training procedure into a minimization task. In the end,

however, the actual probabilistic nature of the learned model has never been

considered. For instance, the variance of the Gaussian has never been spec-

ified. After all, we were interested in modeling deterministic processes, hence

we can imagine that the probability distribution of the NN output is a de-

generate, δ-like object. If we want to tackle a stochastic dynamical system,

this is no longer an option.

The task of ”learning a probability distribution” can be informally consid-

ered as finding a way to extract or generate new samples that are consistent

with the training set. In many aspects, this approach surpasses the super-
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vised training paradigm we used throughout the rest of the Thesis: at least

for now, we will no longer consider a problem in which there are input and

output variables. Instead, the training set is composed of generic data points,

x which come from an unknown probability distribution.

Several, more traditional approaches allow for the learning of a proba-

bility distribution (or probability density). All of them, however, present

some problems, mostly related to the calculation of the partition function [22]

which leads to the requirement of performing Gibbs sampling to extract

new samples (see for example Restricted Boltzmann Machines [150]). Here

we will outline how Generative Adversarial Networks (GANs) represent a

convenient alternative.

5.1.1 The generator network

As Neural Networks possess universal approximation capabilities, it seems

there is no reason why they should not be able to approximate unknown,

potentially very complex and multimodal probability distributions. As NN

are differentiable models, we will discuss now on in terms of probability

densities. Naively, one could search for an approximation for the true prob-

ability density pdata(x) directly using a NN. As we discussed at the very

beginning of Chapter 1, the main idea is that a good approximation should

be ”as close as possible” to the true object in terms of some similarity index.

For probability distributions it is customary to consider the Kullback-Leibler

(KL) divergence [151]:

DKL(pdata(x)||p̂ϑ(x)) =

∫

pdata(x) log
pdata(x)

p̂ϑ(x)
dx (5.1)

where p̂ϑ(x) is the NN approximation defined by parameters ϑ. KL diver-

gence has various nice properties. First, it vanishes if and only if the two

probability (densities) are equal1 and is positive in all other situations. Fur-

thermore, it is strictly connected to information theory and information en-

tropy [151, 22]. Notice, however, that it does not satisfy the properties of a

distance (e.g. it is not symmetric), hence the name divergence.

Unfortunately, this approach has two main problems. First, even if opti-

mization of Equation 5.1 is performed, having the probability density does

not necessarily mean that sampling from the distribution is straightforward.

Indeed, for high dimensional probability densities this is commonly done by

some form of Gibbs sampling [21, 150], which is one of the problems we are

trying to avoid. Second, and more importantly,we have no direct access to the

true probability density, thus making it impossible to calculate exactly the

log term.

Let us therefore consider an alternative approach. Sampling a random

vector from high dimensional distributions is easy if its components are mu-

tually independent, as this reduces to simple one-dimensional sampling. For

example, extracting from a N dimensional Gaussian with a diagonal covari-

1 Technically, this holds on all Borel sets. For continuous probability distributions, their KL
divergence is zero if and only if they are equal almost everywhere, i.e. except on measure zero
sets.
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ance matrix amounts to sample N Gaussian random variables. At the same

time, NN universal approximation capabilities guarantee that it is possible,

at least in principle, to approximate the mapping between some random vec-

tor z and a sample x coming from the data probability distribution. Notice

that this is true as long as the vector space z is equal or larger in dimension-

ality with respect to the real data manifold, which in turn can be smaller

than the dimensionality of data points (recall the concept of manifold learn-

ing and non-linear projections discussed in Section 1.7). The reader familiar

with other ML approaches will recognize that this structure is very close to

that of a Variational Autoencoder (VAE; see e.g. Ref. [152]), albeit only the

decoder part of the Network is present, and normalizing flow models [153].

z is called a latent variable and the vector space where it is defined latent space,

in continuity with the nomenclature used in these other models.

If the z → x mapping is learned, it is then easy to sample from the data

distribution, as it only would amount to sampling from a known, simple

distribution, such as a multidimensional Gaussian or uniform, and a forward

pass through a NN. As the Network translating latent vectors into data space

defines a generative model, we will call it Generator network and will indicate

it with G.

We have still not described, however, an optimization procedure for the

mapping: high probability density regions of the latent space should be

mapped to corresponding regions in data space, without explicit knowledge

of the true probability distribution. While seemingly desperate, it turns out

that there is an elegant solution to this problem.

5.1.2 The adversarial approach

Goodfellow et al. [149] have proven that the problem can be solved, as

long as an additional auxiliary, antagonistic network is introduced, which

is called Discriminator network. Fundamentally, the Discriminator may be

considered as a classifier whose task is to identify whether the data it is pre-

sented comes from the true distribution pdata(x) or has been produced by

the Generator G(z), z being extracted from an arbitrarily chosen latent space

distribution. The learning task is then converted into an adversarial game be-

tween the two competing networks, hence the name Generative Adversarial

Network (GAN).

At least in the original formulation of Ref. [149], the Discriminator has

an output s ∈ (0, 1), which reflects the probability that data come from

the true distribution rather than from the Generator: s = 1 means that the

Discriminator is certain that its input comes from pdata, while s = 0 means

thatD is identifying data as coming from the Generator. The training of such

a classification network is normally done by minimization of a loss function

LD(ϑD) based on the binary cross entropy [149, 23, 25]:

LD(ϑD) = −
1

2

(

Ex∼pdata
[log(D(x|ϑD))]+Ez∼p(z)[log(1−D(G(z)|ϑG))]

)

(5.2)
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Inserting back the optimal discriminator in the Generator loss Equation 5.3,

we obtain:

LG[pG] =
1

2

∫

pdata(x) log

(

pdata(x)

pdata(x) + pG(x)

)

dx+

1

2

∫

pG(x) log

(

pG(x)

pdata(x) + pG(x)

)

dx

(5.6)

where we rephrased everything as a functional of the implicit generator den-

sity pG. Importantly, this quantity may be expressed in terms of the Jensen

Shannon Divergence (JSD):

JSD(p||q) = DKL

(

p
∣

∣

∣

∣

∣

∣

p+ q

2

)

+DKL

(

q
∣

∣

∣

∣

∣

∣

p+ q

2

)

(5.7)

which, as the name suggests, similarly to KL divergence measures a differ-

ence between probability densities and vanishes when p = q almost every-

where2. In particular, the Generator loss function is given by:

LG[pG] = JSD(pG||pdata) − log (2) (5.8)

which has a global minimum value when the Generator probability den-

sity is equal (almost everywhere) to the true data one. Critically, we do

not need at any time during training to actually access probability densi-

ties! This means that, at least in principle, if Discriminator training to op-

timality is alternated with a Generation loss minimization step, the overall

adversarial game converges to a Nash equilibrium in which the Generator

which samples from the data distribution, i.e. pG = pdata. In this situation

JSD(pG||pdata) = 0, LG = − log(2),LD = log(2) and D∗(x) = 1/2, i.e. all in-

put presented to the Discriminator are considered as equally likely to come

either from the data or the Generator distribution. The same results may

be derived minimizing Equation 5.6 with Euler-Lagrange equations with the

constraint that pG integrates to unity.

Unfortunately, GANs have proven particularly difficult to train in practice.

Already from their invention in Ref. [149], some tricks have been proposed.

First, training the Discriminator to optimality for every Generator minimiza-

tion step is clearly impractical (or even impossible). For this reason, this is

often substituted with a fixed number of LD updates. Sometimes a single

step is used. Indeed, this number of Discriminator iterations can be consid-

ered a hyperparameter in GAN training.

Another modification to the presented theory is that the Generator loss

function is often substituted with the so-called non-saturating variant:

LG(ϑG) = −E[log(D(G(z|ϑG)))] (5.9)

which can be verified to have the same equilibrium point and a minimum

loss of LG = log(2). The motivation for this substitution comes from stronger

gradients early in training [149]. Unfortunately, this is often not enough and

2 It turns out that we can proceed oppositely to what we have done here, defining a divergence
(or other difference measure) between probability distribution and derive the corresponding
adversarial game. See Ref. [154].
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the reasons why training do not converge are very rarely clear. Indeed, the

study of GAN training dynamics is at the moment a very active area of

research [155, 156, 157].

One of the most dramatic failure modes is related to the so-called mode

dropping phenomenon [158]. In brief, a Generative Adversarial Network is

said to have encountered mode dropping if it extracts samples only from

some modes of the data distribution, completely ignoring the others. Un-

fortunately, this kind of behavior is difficult to monitor and identify, to the

point that one of the most reliable methods is still having a human looking

at generated samples. These reasons make training Generative Adversarial

Networks close to a ”black art”, in which trial end error is in the end often

the only possibility to explore the effects of hyperparameters.

Despite these difficulties, GANs have many advantages. First, sampling

from them is fast, especially if compared with methods that require a Gibbs

sampling procedure, as it is sufficient to extract a new random z and per-

form a forward pass through the Generator Network. Second, they can

leverage the flexibility of Neural Network approaches. In a few months af-

ter their proposal, a proliferation of different architecture emerged in the

DL community [30, 159]. Importantly, convolutional GANs make it possible

the efficient generation of image data (e.g. see Ref. [160] for the genera-

tion of photo-realistic images). Another useful possibility is the integration

of context to the generated samples. If a class label token is added both in

the Generator and the Discriminator inputs, it is possible to obtain a GAN

that extracts conditional samples. This method is called conditional GAN

(cGAN) [30] and will be useful in the following.

5.2 gans for stochastic dynamics

Now that we have outlined the main aspects of GANs, we will turn to

how they can be applied to physical systems. Application of Generative

approaches to statistical mechanics problems is somewhat natural, as they

allow for accelerated or approximate sampling from complex distributions.

Indeed, some works already explored the possibility of using GANs as sam-

plers from configuration and compositional distribution [161, 162]. On the

other hand, applications to stochastic dynamics are present but scarcer [163,

164].

Our core assumption is that a generative model can provide the next state

of a stochastic system provided the current one. This does not require spe-

cialized Recurrent structures, as the Markov property 4.22 is assumed: if the

next state of a Markov chain only depends on the present state, we can in

principle use a GAN to model the individual state-to-state transition proba-

bilities. Notice, however, that in this context the task is complicated by the

fact that we are not assuming any prior knowledge of the shape of transi-

tion probabilities other than collected observations. One of the most critical

aspects is that, at variance with common applications in text/image gener-

ation, the margin of error for GAN models in this context is very small, if

ensemble properties are to be recovered. In the following, we will present

a simple physical model that will constitute our test case and explain how
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where Emax and Emin are the maximum and minimum energy respectively

and L is the domain length. In the following we will consider Emin =

−0.35 eV, Emax = −0.15 eV and L = 20. In Figure 53 diffusion barriers

are represented, as transition rates can be interpreted in terms of hopping

between energy minima in transition state theory.

Clearly, we cannot assess the model quality through a one-to-one compar-

ison between true and generated trajectories. We therefore need to resort

to average quantities. In this respect, the simplest object is the probability

distribution at thermodynamic equilibrium. Writing the master equation for

the system and solving for the stationary state yields Boltzmann distribution

at equilibrium [165]:

Peq,i =
1

Z
e−Ei/kBT (5.12)

where Z =
∑

i=1,L exp[−Ei/kBT ] is the partition function. For the present

application, the temperature will be fixed: T = 500K.

The goal of the GAN approach we are discussing here is not only to cal-

culate equilibrium properties. Indeed, if that was the only scope, it would

probably have been more effective to collect samples directly from the Boltz-

mann distribution and check that the obtained GAN statistics are consistent

with Equation 5.12. Fortunately, due to the system’s simplicity, it is also pos-

sible to calculate the average time required for a particle in one minimum

of the energy function x = 5 or x = 15 to reach the other. In the continuum

limit L≫ 1 [165],

τ =
Ld

2
e−β+I0[β−], (5.13)

where β± = (Emax ± Emin)/2kBT , d = 10 is the distance between the min-

ima of the potential, and I0 is the modified Bessel function of the first kind.

Trajectories from stochastic process defined by Equation 5.10 and the other

parameters provided can be simply sampled using simple Kinetic Monte

Carlo (KMC) simulations. This allows for fast construction of the training

set, which is composed of 6 × 105 couples (xt, xt+∆t) coming from 1200

independent trajectories. Here xt is the particle position at time t and xt+∆t

the position at time t+∆t.

The choice of a fixed time interval is very different from what is typically

observed in standard KMC methods: Kinetic Monte Carlo approaches typ-

ically simulate the (stochastic) next state of the system in the Markov chain,

irrespective of the physical time required to reach it. This is a double-edged

sword, however. On one side, this aspect allows one to skip long time inter-

vals if rates are all very small, de facto speeding up simulations with respect

to many alternative methods. On the other hand, when very high rates are

present, the Markov chain is bounded to pass through low residence time

configurations, possibly employing a huge number of steps before phenom-

ena of interest happen, in the so-called low-barrier problem [166]. Choosing a

fixed ∆t absorbs high-rate phenomena in transition probabilities.

The time interval was chosen to be ∆t = 103 in the units of exp[Eb/kBT ]/ν.

This is an intermediate value with respect to mean residence times: the

average time interval a particle stays in maximum energy lattice points is
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5.2.3 Generator and discriminator models

The Generator approximates the mapping of the present state xt to the next

state xt+∆t in a conditional GAN fashion, which complies with the marko-

vian nature of the model considered:

x̃t+∆t = G(xt, z) (5.15)

where z is the latent variable and xt is the previous state of the system. In

practice, this simply means that the xt is concatenated to the latent vector

z in G input layer. The choice of the dimensionality of the latent space can

again be regarded as a hyperparameter. As long as it is higher than that of

the real data manifold (not necessarily the whole data space), this number

should be unimportant. Once the generator has been trained, it is possible

to generate arbitrarily long stochastic series by iterative application of G, in

a recurrent fashion. For example:

x̃t+2∆t = G(x̃t+∆t, z ′) = G(G(x̃t, z), z ′) (5.16)

where the different notations z and z ′ make it explicit that a new random

latent variable is extracted at every forward run of the Generator. Notice

that, similar to what we have seen in output recurrence (see Section 4.2),

there is a critical difference between training and sequence generation: in

the first case, the input comes from the training set (no tilde on top of the x),

while in the latter G input has been itself generated from the Network.

The Discriminator is simpler: given the input (xt+∆t, xt) or (x̃t+∆t, xt), it

should output a number in (0, 1) representing the confidence level that pairs

come from the dataset and not from the Generator. As is standard for binary

classificator, this can be easily done by applying a logistic sigmoid to the

output layer of D.

A total of 7 ResNet modules have been used both for the Generator and

the Discriminator Network.

5.2.4 Training and Measures

In principle, we are now ready to train our first GAN. Figure 55 shows the

resulting training plot for the procedure proposed by the original GAN pa-

per [149] using the non-saturating variant of the Generator loss and Adam

optimizer with the same parameters suggested in the paper (remember that

in this case losses should converge to log(2) and not zero). Clearly, some-

thing is going wrong: loss functions exhibit wild oscillations before settling

to high values (for G) or vanishing (for D). The failure of the training pro-

cedure can also be identified by observing the comparison between a gener-

ated trajectory and a sample of a true trajectory on the right panel.

The reason behind the training non-convergence is somewhat subtle and

is related to implicit assumptions in Section 5.1.2. In particular, everything

we said was based on the tacit assumption that random variables are abso-

lutely continuous, i.e. they have non-degenerate probability densities. For the

simple particle diffusion on a one-dimensional lattice, however, this is not
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Figure 62: First passage times analysis for the multi-model GAN ensemble (blue
line), KMC simulations (dashed green) and a single model (dashed gray).
In inset, mean first passage times are reported for individual models and
the GAn ensemble. The dashed black line represents the analytical pre-
diction. The two bars correspond to left-to-right and right-to-left passage
times respectively.

and the number of ∆t intervals required to reach (or surpass) the other is

considered, it is possible to extract from trajectories the first passage time τ.

Using 105 independent runs, this quantity has been estimated using KMC,

the GAN multi-model approach and the individual models of Figure 59.

Figure 62 reports the probability distribution of τ obtained from 105 inde-

pendent trajectories for each of these methods. As can be seen, the ensemble

result is almost in one-to-one correspondence with the KMC curve, while

the individual model overestimates the probability of smaller τ values. A

further comparison can be done in terms of average first passage times. Us-

ing Equation 5.13, the KMC-estimated value presents negligible deviations

from the analytical prediction (95.2 vs 9.14 respectively, in units of ∆t). The

barplot in the inset to Figure 62 reports this quantity for the four models

of Figure 60 and the ensemble (analytical prediction is represented with the

dashed line). Left-to-right and right-to-left passage times are reported in-

dependently to highlight asymmetries. The multi-model GAN approach is

the only one that is capable of providing quantitatively accurate predictions,

with an average τ only 3% off the analytical value.

5.3 towards complex systems

Results in the previous Section are promising for possible applications of

GANs in computational statistical mechanics. While interesting from a method-

ological point of view, the simple 1D case is mostly a proof of concept: there

is no real computational advantage (actually KMC simulations are faster)

in applying this method to simple 1D problems. If applications to more

complex models are proven, this may change.
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netic properties respectively. At thermodynamic equilibrium, the stationary

state roughness is given in the continuum limit as:

W2
eq =

LkBT

12γ̃
(5.22)

where γ̃ is the surface stiffness. For the problem at hand, this quantity may

be related to the interaction term through [169]:

γ̃ =
kBT

2
√
a

sinh2
[

exp
( −J

4kBT

)]

(5.23)

where a is the lattice size.

For kinetic properties, things are more complex. For small times, it is a

well-known result [170] that in the edge diffusion case considered:

W2(t) =
1

π
Γ
(3

4

)(2γ̃Mt

kBT

) 1
4

(5.24)

where M is the mobility constant for diffusion and Γ is the Gamma function.

Notice that the result is irrespective of the domain size L, as should be ex-

pected for early stages in the dynamics. Intermediate behaviors can also be

analyzed, but the formalism is heavier and will be omitted here, especially

as GAN results are still preliminary.

5.3.2 GAN model adaptation and preliminary results

To construct a suitable training set for GAN training, a total of 300 indepen-

dent simulations on a 128× 128 grid with the same initial stripe configura-

tion have been performed and a total of 1000 snapshots equally spaced in

time representing the lattice configuration have been collected. The time in-

terval ∆t between subsequent states was set to 5×105 in terms of ν exp(−Eb/kBT).

Other fixed quantities are T = 290 K and J = −0.1 eV. Due to the similarity

with the Phase Field representations of Section 4.1.4, we will indicate the

binary grid defining the state of the system by ϕ.

While this 2D, many-particle system yields some similarities with the sim-

ple one-dimensional diffusion case, there are however important differences.

First and foremost, the spatial nature of input-output data suggests the use

of a convolutional structure. Second, the number of particles has to be con-

served during the evolution. Third, if we consider the state of the system

as a 1282D vector, it is easy to observe that we still encounter the null mea-

sure problem discussed in Section 5.2.4. The combination of these effects,

plus possibly some others that we have not identified yet, and the delicate

convergence properties of GANs clearly makes this training task much more

complex than the simple 1D example, to the point that a completely satisfac-

tory solution has been elusive to us up to this point. As a reference, we show

in Figure 64 the best loss plot produced so far for the parameters provided.

We will now discuss what are the actions we considered to adapt the

strategy for the 1D problem to this class of surface diffusion simulations.

Regarding the use of convolution operations, the solution is straightforward:

it is sufficient to substitute generic affine mappings with convolutions. This
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We hope that in the following months, solutions to these issues can be

found, as this would enable the use of GAN methods to tackle complex, high-

dimensional stochastic problems, effectively providing a new computational

tool for Materials Science.





C O N C L U S I O N S

In this Thesis the possibility of applying some of the modern Machine Learn-

ing tools to computational Materials Science has been explored. This re-

quired the synergy between statistical methods, computer science, mathe-

matics, and physical considerations. We showed some applications, pro-

ceeding from the simpler to the more sophisticated ones. Sometimes, direct

application of ML methods as they were originally developed in ”pure” big

data context was more or less straightforward, as in the case of dislocation

interaction approximation (Chapter 2). In other cases, the analysis of the

problem at hand also showed how some specialized structures emerge nat-

urally, as in the case of Convolutional (Chapter 3) and Recurrent Neural

Networks (Chapter 4). Other times, the interplay was more subtle and re-

quired careful examination of the underlying models, as in the GAN case of

Chapter 5.

In most of this Thesis, we focused on prototypical cases, searching for

trends and strategies that could be applied to more general situations. In

the future, more complex physical problems will be tackled. All of the meth-

ods presented in this Thesis are open to extensions: due to the flexibility,

approximation capabilities, and modularity of NN architectures, they can

be generalized in several ways. Since we already discussed some of these

possibilities in the main text at length, we only report here what are in our

opinion the most promising directions.

The construction of a unified framework, possibly in three dimensions,

between results in Chapter 2 and 3 is certainly intriguing: leveraging the

NN architecture described in this Thesis, it could be possible to fully tackle

the evolution of strained films involving both elastic and plastic relaxation

mechanisms on ”human” scales. This has important real-world applications,

since dislocation and morphology control are essential for many technolog-

ical steps in the semiconductor [58, 59] industry for example, and trial and

error experimental searches are often too expensive. One of the main prob-

lems to be solved remains the description of three-dimensional dislocation

configurations.

Convolutional Recurrent Neural Networks presented in Chapter 4 are

probably the most straightforward approach to generalize to other phenom-

ena. If multiple input channels are provided, applications to multi-physics

simulations are possible. In this respect, our research group has already

started to study the possibility of integrating elastic terms in the microstruc-

tural evolution of materials. Another feature that was not exploited in this

Thesis is the possibility of using CRNN for sequence classification: spa-

tiotemporal sequences can be in principle used as the input for a Network

that learns how to extract additional, unknown parameters, such as the tem-

perature or the load conditions driving a given morphological evolution.

Another opportunity that we mentioned at the beginning of the Thesis is

also the application of the same methods to experimental data directly: as
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NNs are agnostic on the origin of training examples, there is no reason why

CRNN should not work on sequences of experimental micrographs, for ex-

ample. The main limitation here is the construction of a suitable training

set.

The most ambitious extension is probably the one regarding the applica-

tion of GANs to stochastic dynamics. As discussed at the end of Chapter 5,

many difficulties must be solved. Preliminary results, however, are promis-

ing. If training difficulties are surpassed, this could allow a new computa-

tional approach encoding traditional KMC lattice models but alleviate the

low-barrier problem.

ML methods are flexible, but the precision requirements for Materials Sci-

ence applications are high when compared to other big data approaches. If

this class of objects is to be a new tool for computational material scientists,

their in-depth understanding will be necessary.
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A A DA M O P T I M I Z AT I O N

We report the Adam optimization algorithm [40] for completeness. The val-

ues β1 and β2, controlling momentum and gradient rescaling respectively

are to be considered as hyperparameters.

lr← learning rate ;
β1,β2 ← set beta parameters ;
m0 ← initialize momentum ;
v0 ← initialize second moment ;
Nsteps ← number of iterations ;
ε← division stability parameter ;
L← loss function ;
for t = 1:Nsteps do

gt ← −~∇ϑL(ϑt−1) ;
mt ← β1mt−1 + (1−β1)gt ;
vt ← β2vt−1 + (1−β2)

2g2t ;
m̂t ← mt/(1−β

t
1) ;

v̂t ← vt/(1−β
t
2) ;

ϑt ← ϑt−1 − lrm̂t/(
√
v̂t − ε) ;

end
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B L I N E A R E L A S T I C I T Y

F U N DA M E N TA L S

A big part of this Thesis work is dedicated to mesoscale behaviors. The de-

scription of phenomena like morphological evolution, spinodal decomposi-

tion, and dislocation motion requires the description of material domains of

several nm up to µm in length. The spatial scales involved are therefore of-

ten so large that atomistic approaches are not computationally feasible. This

is true both for so-called ab initio methods, in which electrons are considered

and the Schroedinger equation is solved (usually under some approxima-

tion, such as density functional theory, DFT), and for classical interatomic

potentials, which parametrize the interaction energy between nuclei with

some analytical expression. For this reason, we must resort to a continuum

description of elastic and plastic deformations in materials. This can be done

efficiently in the context of the classical field of linear elasticity. The main ac-

tor in linear elasticity theory is the displacement field, a vector field describing

how material elements are displaced inside a continuum, deformed body.

From that, two tensors can be derived, the strain field and the stress field,

which describe the local deformation and body forces respectively. These

two ingredients can be combined to describe the elastic energy stored in a

deformed body.

b.1 the strain tensor

We start this quick revision of the theory of elasticity in a bottom-up ap-

proach. Consider a solid body made up by individual ”bits”, like atoms,

molecules, etc. If the body is deformed by an external action, we can as-

sociate every fundamental bit with a displacement vector that points from

the original, undeformed position to the new one. This sort-of-atomistic de-

scription may be converted to a continuum approach by ”zooming out” and

considering that every point in space is associated with a vector ~u obtained

by averaging the displacement vectors of the objects inside a small volume

(on the continuum scale) that contains many fundamental bits. Therefore,

we can describe the deformation state of a solid through such displacement

vector field.

In the linear theory of elasticity, the assumption that deformations are

small is made. This is equivalent to a first-order approximation: during a

deformation, the displacement of a volume element from the initial position

~x to the final position ~x ′ can be written as:

x ′i = xi + ui(~x) = xi +
dui

dxj
xj + o(x

2
j ) (B.1)

repeated indices imply summation over those indices, as is standard in Ein-

stein notation. i and j index Cartesian directions. Since we are interested in
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small deformations, we can suppress second and greater-order terms (hence

the term linear in linear elasticity theory), yielding:

∆x = x ′i − xi =
∂ui

∂xj
xj (B.2)

which in vector form reads

~∆x = J ~x (B.3)

J is the Jacobian matrix of the transformation of the coordinate system

from the undeformed state to the deformed one, and its components may be

written as

Jij =
∂ui

∂xj
(B.4)

Its interpretation is the following: given the coordinate vector of a volume

element before the deformation, the vector ~∆x, obtained through J as in

equation B.3, will be its displacement. Knowing the value of J at every point

will therefore fully characterize the deformation of the solid in such a linear

framework.

It is straightforward to derive some properties of the Jacobian matrix. First,

being the gradient of a vector field, it transforms accordingly, thus behaving

as a second-order tensor.

Another important property is the symmetry. J can be decomposed in the

following way:

Jij =
∂ui

∂uj
=
1

2

(∂ui

∂xj
+
∂uj

∂xi

)

+
1

2

(∂ui

∂xj
−
∂uj

∂xi

)

= εij +Ωij (B.5)

This is a standard result in tensor analysis: any second-rank tensor may be

simply expressed as the sum of an explicitly symmetric and an explicitly

anti-symmetric tensor. Indeed,






εij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

= εji

Ωij =
1
2

(

∂ui

∂xj
−

∂uj

∂xi

)

= −Ωji

(B.6)

The important point is the physical meaning of these two tensors. The

second oneΩ is called the local rotations tensor and represents rotations inside

the material. Notice, however, that in the context of linear elasticity, we are

interested in deformations. Ω can therefore be neglected1 and we can deal

only with ε. ε is one of the main ingredients in linear elasticity and is called

strain tensor.

The fact that the strain tensor is symmetric allows us to make some sim-

plifications. The most important one is that the strain state of a system can

be specified by knowing only 6 independent components of the tensor, for

example, the diagonal elements and the upper off-diagonal ones. This is

1 See e.g. Reference [48, 50] for theoretical justifications.
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Figure 66: Simple expansion of a bar

commonly exploited in the so-called Voigt notation, in which a second-rank

symmetric tensor may be formally written as a 6D vector:

ε =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



→



















εxx
εyy
εzz
εyz
εxz
εxy



















=



















ε1
ε2
ε3
ε4
ε5
ε6



















(B.7)

where in the right equality Cartesian indices have been replaced by the con-

ventional numeration.

The physical meaning of components of the strain tensor can be under-

stood by looking at simple deformation conditions. Consider for example

elongation in one direction, e.g. along the x̂ direction, of a solid bar (the

same logic applies for compression). Let us also fix the frame of reference

so that the origin is at the beginning of the bar, as reported in Figure 66.

After the deformation, the final point will be displaced by ∆l from the point

l where the bar initially ended. If the material is homogeneous and the de-

formation is evenly distributed along the bar, the displacement field will be:

~u =





∆l
l x

0

0



 (B.8)

In this way the point initially at the origin (x = 0) will still be there, and the

point at the end of the bar will move by ∆l
l l = ∆l, as expected, the middle

point at x = l/2 will have ”absorbed” half of the deformation and so on.

The strain tensor may now be obtained directly by the definition in equa-

tion B.6:

ε =





∆l
l 0 0

0 0 0

0 0 0



 (B.9)

This straightforward example shows that the diagonal components of the

strain tensor represent the relative compression/elongation of the solid. No-
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Figure 67: Simple shear deformation

tice that, by the convention used here, positive diagonal stress components

mean that the body has been elongated, while negative diagonal stress com-

ponents mean the body has been compressed.

To understand the meaning of off-diagonal strain components, let us con-

sider a pure shear deformation. We position the origin of the frame of refer-

ence on the left plane and let the right plane slide in the positive y direction,

keeping the inter-planar distance fixed (see figure 67). Indicating with s the

distance traveled by the right plane, the displacement field is simply

~u =





0
s
lx

0



 (B.10)

Using equation B.6, the strain field will be

ε =





0 s
2l 0

s
2l 0 0

0 0 0



 (B.11)

Off-diagonal elements of the strain tensor represent therefore half the shear

angle, since s
l = tan θ ∼= θ (using small angle approximation, consistent with

small deformation assumption).

b.2 the stress tensor

We move now to the second fundamental object in the theory of elasticity,

the stress tensor. When a body is deformed, its atoms and molecules will

be displaced from their equilibrium positions, hence non-vanishing internal

forces will be present. These forces are directed so to restore the undeformed

configuration of the solid. By averaging the restoring forces in an infinites-

imal volume element, we can obtain a force density ~f vector field. We can
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obtain the total force in the i-th direction Fi acting on a portion of the solid

of volume V as

Fi =

∫

V

fi(~x)d
3
~x

In principle, integration should be with respect to spatial variables in the

deformed state. If the strain field is small (i.e. if the body is not severely

deformed, which is the base assumption of linear elasticity), the difference

in the two integrals vanishes.

Using Gauss’ theorem to convert the volume integral into a surface inte-

gral on the boundary of V :

Fi =

∫

V

fi(~x)d
3
~x =

∫

∂V

~τi(~x) · n̂dS (B.12)

where ~τi is a vector field whose divergence is fi (~∇ · ~τi = fi) and n̂ is the

surface’s normal vector.

Re-framing everything in vector form:

~F =

∫

V

~f(~x)d3~x =

∫

∂V

σ · n̂dS (B.13)

σ is a second-rank tensor whose rows are given by ~τi, called the stress ten-

sor. Its meaning may be understood by inspecting the meaning of the right

integrand in equation B.13: σn̂ is the force per unit area acting on a surface

whose normal is in the n̂ direction. Suppose that n̂ = x̂ (other components

may be obtained by indices’ permutation). Then

σx̂ =





σxx σxy σxz
σyx σyy σyz
σzx σzy σzz









1

0

0



 =





σxx
σyx
σzx



 (B.14)

which means that σij is the force per unit area in the i-th direction acting

on the surface normal to the j-th direction of a volume element. Diagonal

elements are called hydrostatic terms, while off-diagonal terms are shear

ones. The meaning of these names will be clear once the connection between

the stress and the strain field is introduced. Notice that, by definition, a

positive diagonal term means that the volume element is pulled outward,

meaning that positive diagonal stress components are expansion ones (same

as for strains).

Suppose that we are interested in a general elastic problem involving free

surfaces. From the straightforward interpretation of the stress tensor, if no

forces act on surfaces it must hold that:

σn̂ = ~0 (B.15)

where n̂ is the unit vector out of the free surface. This condition translates

to a Neumann boundary condition when equations of elasticity are solved,

both analytically and numerically.
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b.2.1 Stress symmetries

As we did for strain, it’s possible to find symmetries in the stress tensor.

Suppose we want to calculate the total torque ~T acting on a volume V of the

body. For simplicity, let’s consider the x component (again, by permutation

of indices it is possible to obtain results relating to other components). Then

Tx =

∫

V

yfz − zfyd
3
~x =

∫

V

y
(∂σzi

∂xi

)

− z
(∂σyi

∂xi

)

(B.16)

where summation on the partial derivatives is implied by Einstein’s notation.

We can now use the chain rule to obtain

Tx =

∫

V

∂

∂xi
(yσzi − zσyi)d

3
~x−

∫

V

σzi
∂y

∂xi
− σyi

∂z

∂xi
d3~x (B.17)

Applying the divergence theorem to transform the first integral in a surface

one we obtain:

Tx =

∫

∂V

(yσzi − zσyi)nidS−

∫

V

σzy − σyzd
3
~x (B.18)

Here ni is the i-th component of the normal vector of the volume’s boundary.

Let’s inspect the physical meaning of the terms in equation B.18. The first

one is a surface term, meaning that it represents, by Newton’s third law,

the (equal and opposite) reaction to the external torque. The second one is

the torque contribution due to the internal stresses of the body. However,

Newton’s third law of motion implies that this contribution must be zero2.

This means that

σij = σji (B.19)

hence the stress tensor is symmetric too and can be described by a 6D ”vector”

using Voigt notation.

b.2.2 Hooke law

Up to this point, we have defined stress and strain tensors which describe

how a body deforms and which forces are acting on volume elements. What

is missing is some function relating one to the other. This is called the consti-

tutive relation. Since strain should be small, the most common approximation

(which is also very convenient from an analytical point of view) is that of lin-

earity:

σij = Cijklεkl (B.20)

Since the elastic constant tensor (or elastic tensor) C is relating to rank-two

tensors, it must be a rank-four tensor itself. The relationship between the

2 This is due to the assumption that the internal stresses are assumed to be fully characterized
by contact forces between volume elements of the solids. See [48], §2.
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strain and stress can also be expressed by the inverse elastic constant tensor,

called the compliance tensor S.

As an effect of the symmetric nature of the stress and strain tensors, we

can already say that

{
Cijkl = Cjikl

Cijkl = Cijlk

(B.21)

This means that the elastic tensor has only 36 independent components

and using Voigt notation, it may be represented as a 6× 6 matrix relating

the 6D strain and stress ”vector”. The number of independent constants,

however, may be further reduced once we define the elastic energy of a

deformed body.

b.2.3 Elastic equilibrium

Now that we have both defined the meaning of the stress field and drawn

a connection with the strain field (hence with the displacement ~u), it is pos-

sible to derive the differential equations for the mechanical equilibrium in a

deformed body. By definition (Equation B.12), the divergence of the stress

field gives volume forces present in the solid. Writing Newton’s equations

of motion is therefore straightforward:

ρ∂2t~u = ~∇ · σ+ ~f (B.22)

where ρ is the material density, ∂t represents time derivative, ~∇· is the di-

vergence operator acting on the stress tensor, and ~f is any additional body

force (e.g. due to gravity).

Equation B.22 can be made explicit in ~u utilizing the elastic tensor and

definition B.6. Switching to Einstein’s notation:

ρ∂2tui =
∂

∂xj
σij = Cijkl

∂

∂xj
εkl =

1

2
Cijkl

∂

∂xj
(uk + ul) (B.23)

Of course, the solution of Eq. B.23 requires boundary conditions. Along

with standard Dirichlet boundaries on ~u, relationship B.15 defines Neumann

boundary conditions.

Stress/strain fields at mechanical equilibrium can be found by enforcing

Newton’s first law:





~∇ · σ = −~f

σ · n̂ = −~T on ∂ΩN

~u = ~u0 on ∂ΩD

(B.24)

where ~T are external tractions, ∂ΩN represent Neumann boundary points,

~u0 is the displacement field at Dirichlet boundary points ∂ΩD. As in the
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whole thesis, surface tractions, additional body forces and displacement at

boundaries will vanish, we will use:






~∇ · σ = ~0

σ · n̂ = ~0 on ∂ΩN

~u = ~0 on ∂ΩD

(B.25)

b.3 elastic energy

Once the constitutive relation is defined, it is possible to describe the elastic

energy of a linear solid. Consider the work density dw done by unit volume

during an infinitesimal deformation process:

δw = fiδui =
∂σij

∂xj
δui =

∂

∂xj
(σijδui) − σijδ

∂ui

∂xj
(B.26)

The contribution of the first term may be evaluated using the divergence

theorem and transformed into a surface contribution:
∫

V

∂

∂xj
(σijδui)d

3
~x =

∫

∂V

σijδuidS (B.27)

If we consider an unbounded solid that has no deformation at infinity, the

integral vanishes. On the other hand, if the solid is finite and no external

force is acting on it, surface stresses will be zero, and the term contribution

may be neglected. These are the only situations that will be considered in

this Thesis.

Using the symmetries of the stress tensor, the second term in equation

B.26 may instead be rewritten as

σijδ
∂ui

∂xj
=
1

2
σijδ

(∂ui

∂xj
+
∂uj

∂xi

)

= σijδεij (B.28)

By equations B.20 and B.28 the variation in the free energy F of the body

during a deformation will be

dF = σijδεij = Cijklεklδεij (B.29)

which leads, through integration, to the elastic energy U(ε)

U(ε) =
1

2
Cijklεklεij (B.30)

which in tensor form reads

U(ε) =
1

2
Cε : ε =

1

2
σ : ε (B.31)

where the : operator indicates the sum of element-wise products. Notice that

if term B.27 is retained (e.g. no vanishing tractions at the surface), a surface

term is missing in the expression for the total energy, which amounts to the

work done by the external traction in deforming the body surface.
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Result B.31 is reminiscent of the simple harmonic oscillator energy 1
2kx

2

and can be used to calculate the dislocation energy of the system (see Chap-

ter 2) or the elastic contribution to chemical potentials (see Chap. 3).

The so-called great symmetry in the elastic constants tensor can be easily

obtained considering the elastic energy density. It is straightforward to see

that

Cijkl =
∂2F

∂εijεkl
(B.32)

however, as the energy function is continuous, the order of differentiation

doesn’t matter for the result:

Cijkl = Cklij (B.33)

The number of independent elastic constants is therefore reduced to 21

and C will be represented by a symmetric matrix in Voigt notation.

b.3.1 Interaction energy between strain sources

In general, the elastic energy stored in the body is easily calculated directly

using equation B.31. In specific situations, however, the linearity underlying

elastic theory can be exploited to decompose the total energy in different con-

tributions. Suppose that in an elastic solid there are multiple strain sources.

The term ”source” is vague on purpose: strain sources can be inclusions,

surface tractions, dislocations, body forces, etc. The only requirement is that

strain sources have a strain (or stress) field associated with them.

Due to linearity, if N strain sources are present in the solid, the total strain

field will be

εtot =

N∑

i=1

εi (B.34)

where εi is the strain field associated with source i. Since in linear elasticity

the principle of superposition applies, we may write the total elastic energy

stored in the body:

U(ε) =
1

2
σtot : εtot =

1

2

N∑

i=1

σi :

N∑

j=1

εj =
1

2

N∑

i=1

N∑

j=1

σi : εj (B.35)

Diagonal terms σi : εi in expression B.31 correspond to the energy den-

sity that source i would have if it is the only present in the body and are

usually referred as self-energy terms, in analogy with electrostatics. This is

not the whole story, however: non-diagonal terms σi : εj are also present,

which amount to interaction energy terms. Notice that the decomposition is

not unique, as multiple strain sources can be merged into a single, compre-

hensive source. It is therefore possible to adapt this procedure to the task at

hand. Result B.35 will come in handy in Chapter 2.
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b.4 normal sol ids and crystal symmetries

At no point in our previous discussion we considered possible symmetries

in the molecular/atomic ordering of a solid. It is possible to prove that for

cubic lattices there are at most 3 independent elastic constants, while for

hexagonal lattices there are 5. The smaller number of independent compo-

nents that can be considered is for homogeneous and isotropic materials, which

are characterized by only 2 elastic constants. In the theory of linear elasticity,

a solid with these two properties is called a normal solid.

While mono-crystalline materials are not isotropic, the normal solid ap-

proximation is mathematically convenient and is often enough to capture

most of the relevant physics in simulations [171]. In this Thesis, we will

assume that materials are isotropic.

More rigorously, a normal solid is a system that has the properties of lin-

earity, isotropy and homogeneity, hence the elastic constants are the same at

every point in the material and there is full rotational symmetry. Depending

on the problem at hand, there are different ways to choose the two inde-

pendent elastic constants. One of the most common choices is using Lamè

constants λ (first Lamè constant) and µ (shear modulus). In Voigt notation:
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(B.36)

Since the elastic energy is the quadratic form in the strains and the elastic

constants, it can be proved directly that

U(ε) =
1

2
(λ+ 2µ)(εxx + εyy + εzz)

2+

2µ(ε2xy + ε2xz + ε
2
yz − εxxεyy − εxxεzz − εyyεzz)

(B.37)

Another common choice is the Poisson ratio ν and the Young modulus

E. The first one is defined as (minus) the ratio between the elongation per-

pendicular to uni-axial stress and the compression along the stress (e.g.
εyy

εxx
,

supposing σxx is the only stress). The second is given by the ratio between

the uni-axial stress and the corresponding deformation (e.g. σxx

εxx
). The rela-

tionship between Young-Poisson and Lamè variables is the following:

{
E =

µ(3λ+2µ)
λ+µ

ν = λ
2(λ+µ)

(B.38)

Naturally, other sets of constants or even mixed descriptions are possible.



b.5 the eigenstrain formalism 147

Using E and ν, the elastic energy can be written compactly in terms of the

stress:

U(σ) =
1

2E
(σxx + σyy + σzz)

2+

1+ ν

E
(σ2xy + σ2xz + σ

2
yz − σxxσyy − σxxσzz − σyyσzz)

(B.39)

b.5 the eigenstrain formalism

We close this Appendix with a discussion on the eigenstrain formalism. The

main idea traces back to Eshelby [172] and, in particular, provides a flexible

and general framework to obtain stress/strain fields associated with defects

in a solid. Most importantly, the eigenstrain formalism allows us to tackle

the problem of strained films of generic shapes and dislocations when diffi-

cult boundary conditions are present. We will not delve too deep into the

eigenstrain theory, but we outline here the key concepts, as they will be used

multiple times in the Thesis.

The key ingredient is a simple yet powerful decomposition of strains in

a solid. Strains are divided into two different classes: elastic strains, which

will be indicated with e following [51], and non-elastic strains or eigenstrains,

which will be indicated by ε∗. Eigenstrains are referred to as ”stress-free

strains”. In other words, are strains that originate in the solid without an

associated stress source. Importantly, ε∗ can be used to describe plastic

deformations inside a body. Defects (e.g. dislocations in Chap. 2), lattice

mismatches in epitaxial systems (see Chap. 2 and Chap. 3), material defor-

mations associated with phase transitions and thermal strains are some ex-

amples of eigenstrains.

ε∗ need not to be homogeneous. When their support is compact, i.e. they

are non-zero only in some closed and bounded regions of the solid, that re-

gion is referred to as an inclusion. Additionally, eigenstrains can be coupled

with other fields present in the material. For example, the thermal strain

will be a function of temperature, strains related to the mixing of chemical

species will be coupled with a concentration field, and so on.

As eigenstrains do not carry an associated stress field, the constitutive

relation for a solid will be modified accordingly:

σ = Ce = C(ε− ε∗) (B.40)

where ε is now the total strain in the material, which accounts for both elastic

and non-elastic contribution. Still, definition B.6 applies to the total strain.

This is because the displacement field describes atomic motion in the body

irrespective of the motion origin. Notice that if the total strain is equal

to the eigenstrain, the stress field vanishes. This serves as an additional

interpretation of ε∗: it is the strain field that, if applied to the body, would

eliminate all residual stress present, e.g., due to the presence of thermal

effects or defects.
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The elastic energy stored in the body will also be modified accordingly:

U(ε) =
1

2
σ : e =

1

2
σ : (ε− ε∗) =

1

2
C(ε− ε∗) : (ε− ε∗) (B.41)

Once eigenstrains are prescribed to the solid, material response in terms of

the stress field can be calculated considering the modified elastic equilibrium

equations:






~∇ ·C(ε− ε∗) = ~0

σ · n̂ = ~0 on ∂ΩN

~u = ~0 on ∂ΩD

(B.42)

where we have assumed no traction and no displacement conditions at

boundaries. Reordering the first equation and introducing the vector field
~β = ~∇ ·Cε∗:

~∇ ·Cε = ~β (B.43)

If we compare Equation B.43 with the first expression in the elastic equilib-

rium equations B.24, we can recognize that ~β, which in turn originates from

the eigenstrain, is equivalent to a body force field. If ε∗ are known, then, it is

possible to solve equations B.42 using standard methods in linear elasticity,

such as Green function spectral methods or Finite Element Method solvers

and obtain the total displacement field. From there, a simple application

of Equation B.42 yields the elastic energy stored in the body. Notice that,

if multiple sources of eigenstrain are present (for example, multiple defects

are present in the solid), then decomposition B.35 can be used.



C D I S LO C AT I O N A R R AY S T R E S S

F I E L D S

In this appendix, non-singular periodic stress fields for dislocation arrays

with Burgers vector ~b = [bx,by,bz] are reported. L is the periodicity of the

array and the dislocation line is along ẑ. Results have been taken from Refs.

[65, 62, 67].

We define

Yt =

√

y2 + t2

L2

where t is a normalisation parameter representing a typical core radius

(order of Å) introduced by Cai. In all simulations in this thesis work we

used t = 0.1218 nm.

σxx =
−µbx

2L

[3yπ

LYt

sinh 2πYt
cosh 2πYt − cos 2πx

L

−
2y3

4L3Y3t

−4πYt + 2 cos 2πx
L [2πYt cosh 2πYt − sinh 2πYt] + sinh 4πYt

[cosh 2πYt − cos 2πx
L ]

2

]

+
µby

2(1− ν)L
sin 2π

x

L

[cosh 2πYt − cos 2πx
L + 2πy2

L2Yt
sinh 2πYt

[cosh 2πYt − cos 2πx
L ]

2

]

σyy =−
µbxπy

(1− ν)L2
cosh 2πYt cos 2πx

L − 1

[cosh 2πYt − cos 2πx
L ]

2

+
µby

2(1− ν)L
sin 2π

x

L

[cosh 2πYt − cos 2πx
L + 2πYt sinh 2πYt

[cosh 2πYt − cos 2πx
L ]

2

]

σxy =
µbx

2L3(1− ν)
sin 2π

x

L

[ 2πt2 sinh 2πYt
Yt[cosh 2πYt − cos 2πx

L ]
2

+
L2[cos 2πYt − cos 2πx

L − 2πYt sinh 2πYt]

[cosh 2πYt − cos 2πx
L ]

2

]

−
µbyπy

2(1− ν)L2
cosh 2πYt cos 2πx

L − 1

[cosh 2πYt − cos 2πx
L ]

2

σxz =−
µbz

2L

[ y

LYt

sinh 2πYt
[cosh 2πYt − cos 2πx

L ]

+
yt2

4L3Y3t

−4πYt + 2 cos 2πx
L [2πYt cosh 2πYt − sinh 2πYt] + sinh 4πYt

[cosh 2πYt − cos 2πx
L ]

2

]

σyz =
µbz

2L
sin 2π

x

L

[cosh 2πYt − cos 2πx
L + πt2

L2Yt
sinh 2πYt

[cosh 2πYt − cos 2πx
L ]

2

]
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D AT TA C H M E N T- D E TA C H M E N T

S U R FA C E E V O L U T I O N

We describe here how equations for profiles evolving due to attachment

and detachment of atoms from the solid surroundings (in a non-diffusion-

limited regime) can be obtained, while in Section 3.1.2 we described surface

diffusion-limited dynamics. We will closely follow the original treatment

from Mullins [99].

Let us consider a solid, non-flat free surface in contact with a gas phase.

From basic thermodynamics, the chemical potential (per particle) of an ideal

gas may be written as:

µgas = kBT log
p

p0
(D.1)

where kB is Boltzmann constant, T is temperature, p is the system pressure

and p0 is the reference pressure value when the free surface is flat. If lo-

cal equilibrium is imposed at all points at the solid surface, the chemical

potentials in the two phases should be equal:

µgas = µsolid =⇒ kBT log
p

p0
= κγVa (D.2)

where Va is the conversion factor from free energy per unit length to energy

per unit particle. Notice that dimensional analysis implies that Va is mea-

sured in volume per particle, hence may be regarded as the atomic volume.

If we suppose that the pressure induced by surface curvature is small,

p ≈ p0 we may expand the logarithm to first order. By doing that and

rearranging the previous equation we obtain

∆p =
κγVa

kBT
(D.3)

where ∆p = p− p0. By kinetic theory, the pressure due to an ideal gas on

a wall is a linear function of the flux of particles impinging per unit area

and unit time θ. The extra amount of particles impinging on the surface is

therefore:

∆θ =
∆p√

2πmkBT
=

κγVa√
2πm(kBT)

3
2

(D.4)

where m is the gas particles mass and ∆θ is the excess number of emitted

particles from the surface with respect to the equilibrium, reference condi-

tion of the flat free surface. The dynamics of the system may be understood

considering the sign of this term: if the free surface is convex, then κ > 0,

and particles detach from the surface, leading to a receding boundary; if, on

the contrary, the free surface is concave, κ < 0, particles attach to the sur-

face and the boundary front advances. Assuming that the normal velocity

vn̂ for the moving surface is linearly dependent on ∆ϑ. Merging all quanti-
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152 attachment-detachment surface evolution

ties which are independent of surface shape and surface energy in a single

kinetic constant K:

vn̂ = −Kκγ (D.5)

At this point, we may consider the time dependence on the profile func-

tion: h(x) → h(x, t). The normal velocity and the time derivative of h are

simply related by projection:

vn̂ =
1

√

1+ h ′(x)2
dh

dt
(D.6)

which leads to the non-linear partial differential equation for h(x, t):

∂h

∂t
= −K

√

1+ h ′(x)2κγ = −Kγ
h ′′

|1+ h ′2|

The non-linearity may be lifted if a small slope limit h ′ → 0 is considered.

In that case, the equation reduces to a heat equation, describing the profile

smoothing:

∂h

∂t
= Kγh ′′ (D.7)

Notice that in the derivation, atomic diffusion on the free surface and in

the gas phase is not considered. In other words, it is assumed that as soon as

one atom attaches/detaches from the solid surface, the (local) equilibrium

condition in the gas phase is instantaneously restored.



E G A N T R A I N I N G P S E U D O C O D E

For completeness, we report a pseudocode defining training a GAN with

noise injection using the procedure described by Arjovsky and Bottou [155].

125 indicates the identity in 25D, which is used as covariance matrix in the

extraction of z.

tot epochs← set number of epochs ;
σ← set additive noise standard deviation ;
G← initialize Generator ;
D← initialize Discriminator ;
for epoch in tot epochs do

for (xt, xt+∆t) in dataset do

(ε1, ε2)← samples from N(0,σ) ;
xt ← xt + ε1 ;
xt+∆t ← xt+∆t + ε2 ;
for 20 iterations do

z← sample from N(0, 125) ;
ε3 ← sample from N(0,σ);
x̃t+∆t ← G(xt, z) ;
x̃t+∆t ← x̃t+∆t + ε3 ;
s̃← D(x̃t+∆t, xt) ;
s← D(xt+∆t,xt

) ;

LD ← −1
2 [log(s) + log(1− s̃)] ;

Adam update for θD ;

end

s̃← D(x̃t+∆t, xt) ;
LG ← −log(s̃) ;
Adam update for θG;

end

Save G and D
end
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F N O I S E I N J E C T I O N I N G A N S AT

R U N N I N G T I M E

As we have discussed in the main text, the noise injection procedure for both

Generator and Discriminator is critical to yield converging GANs. It is still

not clear however what is the noise role at iterative generation time. The

solution is that new ε noise should be added to the inputs of G every time a

new state of the system is sampled:

x̃t+∆t = G(x̃t + ε, z) (F.1)

The reason why noise should be added to G input is based on consistency:

in training, all inputs of G are convolved with the Gaussian distribution,

therefore it has been trained to specifically deal with this kind of data.

A slightly more formal argument can be made considering the Generator

architecture. Both z and ε are extracted from Gaussian distributions, albeit

the first in a 25D space and the second one in 1D. Let us now consider the

first hidden layer of G which involves an affine transformation of the input

vector:

W

[

xt + ε

z

]

(F.2)

where W represent an affine transformation and [xt + ε, z]
T is obtained as a

simple concatenation of the previous state of the system (with the additional

Gaussian noise) and the latent vector z. However, this operation can be

simply rephrased as

W

[

xt + ε

z

]

=W

[

1 1 0

0 0 1

]





xt
ε

z



 =W ′
[

xt
z̃

]

(F.3)

where 1 is the identity matrix for the latent space. In the second equality,

we absorbed affine transformations into a single map W ′ and [ε, z] into a

single vector z̃. From this reformulation, it is clear that the addition of ran-

dom noise ε is in some sense equivalent to considering a Generator with a

specific first layer structure. On the other hand, not adding Gaussian noise

to the input, i.e. setting ε = 0, should have a similar impact to making

one component of the latent space deterministic. Indeed, in our testing, we

verified that deviations of kinetic and stationary properties obtained by not

adding Gaussian noise at sequence generation time and zeroing out one of

the components of z are comparable and that the injection of ε in G inputs

is always beneficial.

On the other hand, the addition of random noise to G output is required

during training as a sort of regularization procedure for the Discriminator [173].

It is therefore not necessary to add an independent random variable ε to

the generated x̃t+∆t. Even though the particle position has always been
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”smoothed out” in training, the unperturbed output of G is sharply peaked

near discrete positions, as can be observed in Ref. [148]. This is to be ex-

pected, as the original GAN theory [149] now applies to the data and the

Generator probability distributions convolved with the random noise Gaus-

sian [155]. At convergence, we should therefore have that

pG ∗N(0,σ) ≈ pdata ∗N(0,σ) (F.4)

∗ being the convolution product. If σ is small enough, this implies pG ≈ pdata.
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L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the phys-

ical sciences,” Rev. Mod. Phys., vol. 91, no. 4, p. 045002, 2019.
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[77] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian ap-
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dermann, P. Gröning, F. Montalenti, and H. von Känel, “Highly Mis-

matched, Dislocation-Free SiGe/Si Heterostructures,” Advanced Mate-

rials, vol. 28, no. 5, pp. 884–888, 2016.



164 bibliography

[93] F. Rovaris, F. Isa, R. Gatti, A. Jung, G. Isella, F. Montalenti, and H. von

Känel, “Three-dimensional SiGe/Si heterostructures: Switching the

dislocation sign by substrate under-etching,” Physical Review Materials,

vol. 1, p. 073602, dec 2017.

[94] G. Rossi and R. Ferrando, “Searching for low-energy structures of

nanoparticles: A comparison of different methods and algorithms,”

Journal of Physics Condensed Matter, vol. 21, no. 8, 2009.

[95] N. Taoka, A. Sakai, T. Egawa, O. Nakatsuka, S. Zaima, and Y. Yasuda,

“Growth and characterization of strain-relaxed SiGe buffer layers on

Si(001) substrates with pure-edge misfit dislocations,” Materials Science

in Semiconductor Processing, vol. 8, pp. 131–135, feb 2005.

[96] B. J. Spencer and J. Tersoff, “Stresses and first-order dislocation ener-

getics in equilibrium stranski-krastanow islands,” Phys. Rev. B, vol. 63,

p. 205424, May 2001.

[97] F. Boioli, V. A. Zinovyev, R. Gatti, A. Marzegalli, F. Montalenti, M. Stof-

fel, T. Merdzhanova, L. Wang, F. Pezzoli, A. Rastelli, O. G. Schmidt,

and L. Miglio, “Self-Ordering of Misfit Dislocation Segments in Epi-

taxial SiGe Islands on Si(001),” Journal of Applied Physics, vol. 110, no. 4,

p. 044310, 2011.

[98] W. P. Kuykendall and W. Cai, “Conditional convergence in two-

dimensional dislocation dynamics,” Modelling and Simulation in Materi-

als Science and Engineering, vol. 21, no. 5, 2013.

[99] W. W. Mullins, “Theory of Thermal Grooving,” Journal of Applied

Physics, vol. 28, no. 3, p. 333, 1957.

[100] L. Martı́n-Encinar, D. Lanzoni, A. Fantasia, F. Rovaris, R. Bergamas-

chini, and F. Montalenti, “Deep learning of surface elastic chemical

potential in strained films: from statics to dynamics,” 2024. Materials

Cloud Archive 2024.X.

[101] V. A. Shchukin and D. Bimberg, “Spontaneous ordering of nanostruc-

tures on crystal surfaces,” Reviews of Modern Physics, vol. 71, no. 4,

p. 1125, 1999.

[102] J. Evans, P. Thiel, and M. C. Bartelt, “Morphological evolution during

epitaxial thin film growth: Formation of 2d islands and 3d mounds,”

Surface science reports, vol. 61, no. 1-2, pp. 1–128, 2006.

[103] B. Li, J. Lowengrub, A. Rätz, and A. Voigt, “Review article: Geomet-

ric evolution laws for thin crystalline films: modeling and numerics,”

Commun. Comput. Phys., vol. 6, no. 3, pp. 433–482, 2009.

[104] K. D. Brommer, M. Needels, B. Larson, and J. Joannopoulos, “Ab initio

theory of the si (111)-(7× 7) surface reconstruction: A challenge for

massively parallel computation,” Physical review letters, vol. 68, no. 9,

p. 1355, 1992.



bibliography 165

[105] D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. van den

Broek, M. Fanciulli, M. Houssa, and A. Molle, “Two-dimensional si

nanosheets with local hexagonal structure on a mos2 surface,” Ad-

vanced Materials, vol. 26, no. 13, pp. 2096–2101, 2014.

[106] F. Baletto, C. Mottet, and R. Ferrando, “Molecular dynamics simula-

tions of surface diffusion and growth on silver and gold clusters,” Sur-

face Science, vol. 446, no. 1-2, pp. 31–45, 2000.

[107] J. Sprague, F. Montalenti, B. Uberuaga, J. Kress, and A. Voter, “Simu-

lation of growth of cu on ag (001) at experimental deposition rates,”

Physical Review B, vol. 66, no. 20, p. 205415, 2002.

[108] R. Bergamaschini, F. Montalenti, and L. Miglio, “Optimal growth con-

ditions for selective ge islands positioning on pit-patterned si (001),”

Nanoscale research letters, vol. 5, pp. 1873–1877, 2010.

[109] J.-N. Aqua, I. Berbezier, L. Favre, T. Frisch, and A. Ronda, “Growth

and self-organization of sige nanostructures,” Physics Reports, vol. 522,

no. 2, pp. 59–189, 2013.
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