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Abstract
Introduction  Artificial intelligence (AI) integration in nephropathology has been growing rapidly in recent years, facing 
several challenges including the wide range of histological techniques used, the low occurrence of certain diseases, and the 
need for data sharing. This narrative review retraces the history of AI in nephropathology and provides insights into potential 
future developments.
Methods  Electronic searches in PubMed-MEDLINE and Embase were made to extract pertinent articles from the literature. 
Works about automated image analysis or the application of an AI algorithm on non-neoplastic kidney histological samples 
were included and analyzed to extract information such as publication year, AI task, and learning type. Prepublication serv-
ers and reviews were not included.
Results  Seventy-six (76) original research articles were selected. Most of the studies were conducted in the United States 
in the last 7 years. To date, research has been mainly conducted on relatively easy tasks, like single-stain glomerular seg-
mentation. However, there is a trend towards developing more complex tasks such as glomerular multi-stain classification.
Conclusion  Deep learning has been used to identify patterns in complex histopathology data and looks promising for the 
comprehensive assessment of renal biopsy, through the use of multiple stains and virtual staining techniques. Hybrid and 
collaborative learning approaches have also been explored to utilize large amounts of unlabeled data. A diverse team of 
experts, including nephropathologists, computer scientists, and clinicians, is crucial for the development of AI systems for 
nephropathology. Collaborative efforts among multidisciplinary experts result in clinically relevant and effective AI tools.
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Graphical abstract

Background
• In the past seven years, interest in

digital nephropathology has exploded.
• This field’s unique complexi�es make it

an excellent tes�ng ground for various
AI approaches.

Methods
• Systema�c review of literature in the

PubMed-MEDLINE and Embase
databases.

• Inclusion criteria: details of an
automated image analysis or the
applica�on of an AI algorithm on non-
neoplas�c kidney histological samples.

Conclusion Solu�ons learning from mul�ple 
histochemical stains and histological structures are being
developed with decreasing reliance on human teaching.
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applica�ons of Ar�ficial Intelligence tools and future direc�ons
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• Ver�cal increase in publica�ons with strong American trac�on
and marked tendency in tool-releasing.

• Progressive trend in experimen�ng AI on PAS and mul�ple
histochemical stains rather than H-E and trichrome.

• The introduc�on of ar�ficial intelligence has taken the stage
over other image analysis techniques with recent interest in
unsupervised approaches.

Results

Keywords  Machine learning · Artificial intelligence · Image analysis · Nephropathology · Classification · Segmentation

Introduction

In recent years, the growing digitalization of pathology 
departments has led to an exponential diffusion of scanners 
and increased use of whole slide images (WSIs) instead 
of or complementing traditional glass slides, with a broad 
improvement of teleconsultation, education, and image 
archiving [1]. Simultaneous progress in Machine Learn-
ing (ML) and hardware allowed the integration of artificial 
intelligence (AI) in pathology, leading to the development 
of computer-aided tools for tasks previously performed 
manually, and assisting pathologists in the time-consum-
ing work of image analysis [2, 3]. One of the most intrigu-
ing digital areas is nephropathology [4], a sub-specialty 
dealing with low-incidence disease. Nephropathology 
has a long history of integrative approaches which goes 
back to 1979, when grayscale tissue thresholding was per-
formed to capture a histological section of the kidney [5]. 
Since then, image analysis in nephropathology has been 
driven by multidisciplinary teams including nephrologists, 
biologists, pathologists, and computer scientists, leading 
to ongoing cross-disciplinary exchange and enrichment 
of the knowledge and skills of each professional involved 
[6, 7]. Renal pathology is a peculiar niche where a vari-
ety of histological techniques are performed routinely to 
reach the final diagnosis. In light microscopy, a variety 

of stainings traditionally including hematoxylin and eosin 
(H-E), periodic acid-Schiff (PAS), trichrome (TRIC) and 
silver staining are used to yield a range of recently clari-
fied descriptors [8] in the respective tissue compartments, 
a task that can be handed to ML systems [9]. However, the 
need for different tools for the digitization of congo-red 
or crystal birefringence, immunofluorescence and electron 
microscopy, makes full computational integration very 
challenging [10, 11]. Furthermore, in the field of trans-
plantation, histological evaluation of the donor kidney fre-
quently includes the use of immunohistochemistry (IHC), 
which is integrated into the scoring system to assess fea-
tures of rejection, adding an additional layer of complexity 
to the process [12]. So, several different tasks can be asked 
of a ML algorithm on kidney biopsy slides, ranging from 
simple tasks like counting glomeruli, quantifying IHC or 
segmenting areas of interstitial fibrosis to complex ones 
like classification of glomerular lesions, where the overlap 
of clinical and histological patterns requires higher com-
putational power, greater amount of data and an efficient 
and smarter workflow. In this review, a comprehensive 
outline is provided on the historical development of image 
analysis and the utilization of artificial intelligence in 
nephropathology. Emphasis is placed on the current state 
of the art, and how it is addressing the challenges posed by 
increasing task complexity and the demand for handling 
large amounts of data.
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Materials and methods

Our study followed the Meta-analysis of Observational Stud-
ies in Epidemiology (MOOSE) guidelines for conducting a 
systematic retrieval of literature [13]. The study was regis-
tered on the Open Science Framework (OSF) database with 
the following https://​doi.​org/​10.​17605/​OSF.​IO/​YXUW4.

Search strategy and inclusion/exclusion criteria

We systematically searched for relevant studies in the Pub-
Med-MEDLINE and Embase databases using a compre-
hensive search strategy and applying specific inclusion and 
exclusion criteria (Table 1). Briefly, inclusion criteria were 
availability of the details of an automated image analysis or 
the application of an AI algorithm on non-neoplastic kidney 
histological samples. Publications with abstracts alone were 
excluded, as were reviews and published letters to the edi-
tor with no original data and image analysis methods. The 
search was conducted up to August 15th, 2022.

No study type filters nor language restrictions were 
applied. References listed in all identified studies were also 

hand-searched to retrieve potential additional studies. Initial 
screening of articles by title/abstract was performed with the 
aid of the online systematic review web-app QRCI [14]. Two 
independent reviewers (GC and MR) determined the eligi-
bility of published studies, with any disagreements resolved 
through consensus. The two authors independently extracted 
data from the included studies using a standardized form.

Data extraction

Extracted data included: authors’ names, publication year, 
country of study, area of specialization of the first author 
(pathologist, nephrologist, computer scientist or other), if 
the study was conducted on native or transplanted kidneys, 
technique used in the study (light microscopy, immuno-
fluorescence, electron microscopy or other), staining of the 
slides (H-E, PAS, TRIC or multi-stain), histological region 
of interest (glomerulus, tubulo-interstitium, vascular com-
partment or whole slide), image analysis tasks or AI algo-
rithms (quantification, detection, segmentation or classifica-
tion), type of learning (supervised, unsupervised or other), 
if a paper-related free-to-use tool was released after pub-
lication. The term “quantification” was reserved for those 
cases in which an automated image analysis was performed 
without integration of AI (i.e. pixel-counting or rules-based 
approach). Statistics were extracted with Excel 2016 (Micro-
soft, Redmond, WA, USA) in order to analyze the trend of 
the various parameters and create plots and charts. Column 
charts were created listing publications after 2015 for easier 
and more informative visualization given the low number of 
studies done in previous years.

Results

Of the 3151 abstracts screened, 26 duplicates and 3034 
articles lacking relevance to the topic were excluded; the 
full text was available for each remaining article. Based on 
the full-text screening, additional restrictions were applied 
(Fig. 1) until obtaining a final set of 76 original research 
articles. The majority were produced in the previous 7 years, 
and nearly half of them in the last 2 years Fig. 2a. Thirty-two 
articles were produced in the United States, 6 in Germany, 5 
in France and China, 4 in Italy, 3 each in Brazil, Netherlands 
and Spain, 2 each in Switzerland, Japan and South Korea 
and 1 each in the UK, Taiwan, Australia, India, Finland, 
Romania, Iran, South Africa and Austria. The geographic 
distribution of the literary production is shown in Fig. 2b.

Professional profiles and integration of tools

Computer scientists were the main contributors to the output 
in this area (31 papers, 40.8%), followed by pathologists (26 

Table 1   Search strategies

Pubmed
#1 "image"[Title/Abstract] AND "analysis"[Title/Abstract]
#2 "artificial"[Title/Abstract] AND "intelligence"[Title/Abstract]
#3 "morphometry"[Title/Abstract] OR "morphometric"[Title/

Abstract] OR "histomorphometric"[Title/Abstract] OR 
"AI"[Title/Abstract] OR "algorithm*"[Title/Abstract] OR 
"neural network"[Title/Abstract] OR "neural networks"[Title/
Abstract] OR "convolutional"[Title/Abstract] OR "deep-
learning"[Title/Abstract] OR "deep-learning"[Title/Abstract] OR 
"computational"[Title/Abstract] OR "computerized"[Title/Abstract] 
OR "automated"[Title/Abstract] OR "machine-learning"[Title/
Abstract] OR "machine-learning"[Title/Abstract]

#4 #1 OR #2 OR #3
#5 "kidney"[Title/Abstract] OR "renal"[Title/Abstract]
#6 "transplant*"[Title/Abstract] OR "graft*"[Title/Abstract] OR 

"allograft*"[Title/Abstract]
#7 #4 AND #5 AND #6
#8 "Artificial Intelligence"[Mesh]) AND ("Kidney 

Transplantation"[Mesh]
#9 #7 OR #8
Embase
#1 image AND analysis
#2 artificial AND intelligence
#3 morphometry OR morphometric OR histomorphometric OR AI 

OR algorithm* OR “neural network” OR “neural networks” OR 
convolutional OR “deep learning” OR deep-learning OR computa-
tional OR computerized OR automated OR “machine learning” OR 
machine-learning

#4 #1 OR #2 OR #3
#5 kidney OR renal
#6transplant* OR graft* OR allograft*
#7 #4 AND #5 AND #6

https://doi.org/10.17605/OSF.IO/YXUW4
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papers, 34.2%) and nephrologists (13 papers, 17.1%), while 
other professionals carried out the research only occasion-
ally (6 papers, 7.9%). Figure 2c shows the chronological 
trend of the professional figures most involved in scientific 
production in the field of digital nephropathology. Some of 
the works (27 papers, 36%) were followed by the release of 
free-to-use tools, available either in the form of download-
able software, codes or pre-trained models. This practice 
is spreading more and more; over the last few years more 
than half of the works published led to the release of a tool 
(Fig. 2d).

Technical setting

Only 7 works (9%) used techniques other than light micros-
copy (69, 91%). In particular, four works are on immuno-
fluorescence, one on electron microscopy, one on lightsheet 
microscopy and one on the 3D reconstruction of glomeru-
lus. The stains used in light microscopy were subdivided 
fairly evenly, with many experiments being performed on 
H-E (9 papers, 13%), PAS (23 papers, 33%), trichrome (7 
papers, 10%), IHC (18 papers, 26%), combined approaches 

(10 papers, 15%) and 1 (1.5%) experiment each for Congo-
Red and Toluidine Blue. There has been increased interest 
for PAS in recent years, as shown in (Fig. 3a).

Field of application: native vs transplant

Research has mostly focused on native kidneys (62 papers, 
82%), with considerable analyses being performed on trans-
planted kidneys (14 papers, 18%); some works focused on a 
single pathology (8, 6%). More precisely, four works are on 
IgA nephropathy, two on lupus nephritis and two on diabetic 
nephropathy, while the majority cross-sectionally explored 
renal pathology and glomerular diseases.

Structures of the kidney and AI tasks

Most of the studies focused on the glomerulus (41 papers, 
54%), fewer on tubulointerstitium (9 papers, 12%), vascular 
compartment (1 paper, 1%) and immune cells (1 paper, 1%), 
while 20 works (26%) focused on more than 1 structure (glo-
merulus and tubulointerstitium) or on the entire WSI. The 
latter recorded a notable increase in interest at the expense 

Fig. 1   Review flowchart
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of the tubulointerstitial compartment, while interest in the 
glomerulus remained stable (Fig. 3b).

Of the 76 manuscripts analyzed, one focused on stain 
transformation in nephropathology, one on 3D reconstruc-
tion of the glomerulus and one on quality control of kidney 
sample slides. Some of the typical experiments carried out 
in nephropathology included quantification without the use 
of AI (14 papers, 18%), mainly in the early years of image 
analysis, and others with the use of AI, such as detection (8 
papers, 11%), segmentation (31 papers, 41%), and classifica-
tion (20 papers, 26%). The trend recorded in recent years is 
shown in (Fig. 3c).

Learning approaches

With regard to image analysis in the nephropathological 
community, three approaches have been tested: an auto-
mated approach without the use of AI, a supervised ML 
approach, and a “hybrid” supervised/unsupervised or fully 
unsupervised ML approach. The automated approach, 
which involves manually adjusting settings to carry out an 

automated process, was tested in only 18% of papers (14 out 
of 52); the supervised ML approach was the most popular, 
involving 68% of papers (52 out of 76) focusing on this; 
the hybrid or unsupervised ML approach also gained some 
attention, with 9% of papers (7 out of 76 total) (Table 2), 
with a slight but significant increase in interest in recent 
years (Fig. 3d).

Discussion

Digital pathology solutions may be of particular interest 
in the field of renal disease diagnosis for routine purposes 
such as the creation of expert networks and for the research 
field with the application of AI. Its unique multidimensional 
nature makes it an ideal area for integration with image 
analysis from multiple perspectives. However, this variabil-
ity, along with a significant increase in research publica-
tions over the past 2 years, makes it challenging to monitor 
trends accurately. Therefore, it is crucial to trace a timeline 

Fig. 2   a Publications per year: bar chart showing the strong increase 
in publications in recent years; b World heat-map showing the strong 
American leadership in this field of research; c: professional profiles 
testing AI in nephropathology. Computer scientists have emerged in 

recent years as fundamental contributors in the field of digital nephro-
pathology; tool release per year; the increasing tendency to release 
useful and free-to-use tools was included in more than 50% of publi-
cations in 2022 (until August)
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Fig. 3   a Staining per year. Line chart showing linear functions of 
staining used over time. Notably, it can be seen that the most recently 
used stain is PAS and that there is growing interest in multi-stain 
approaches; b kidney structures per year. Exponential line chart of 
kidney structure focus over time showing the increasing interest in 
multi-structure approaches; c tasks per year. Exponential increase in 

interest for classification tasks and decrease in detection and quantifi-
cation algorithms; d learning approaches per year. Line chart showing 
linear function of image-analysis approach over time. Interest in auto-
mated image-analysis without the help of AI has rapidly decreased in 
favor of AI-based approaches. In recent years, hybrid and unsuper-
vised approaches have slowly started spreading in this field

Table 2   Evolution of Unsupervised and Hybrid Supervised-Unsupervised approach in nephropathology

PAS Periodic-acid-Schiff, IF immunofluorescence, HE hematoxylin–eosin, C classification, ST stain transformation, S segmentation

Author Year Country Journal Learning approach Stain Task Architecture

Yao [15] 2022 USA J Med Imaging Bellingham Self
Supervised

PAS C ResNet-50

Bouteldja [16] 2022 Germany J Pathol Inform Self
Supervised

PAS, IHC ST U-GAT-IT

Mascolini [17] 2022 Italy BMC Bioinform Self
Supervised

IF C NASNet

Murphy [18] 2022 USA Bioinformatics Self
Supervised

IHC C DenseNet-121

Lee [19] 2022 USA Sci Rep Unsupervised Trichrome S DeepLabV3 + & 
ResNet-18

Sato [20] 2021 Japan Kidney Int Rep Unsupervised HE C NASNet
Gadermayr [21] 2019 Austria IEEE Trans Med Imaging Unsupervised PAS S CycleGAN
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of research development to better comprehend the current 
state of the art and identify future directions [22].

Informatics tools in pathology have evolved to varying 
degrees around the world since the infancy of informatics 
in pathology in the 1950s [23]. The exponential growth 
of this field driven by AI in the last 5 years has, however, 
highlighted the need for a “new” type of pathologist with 
adequate training in computer science, as well as the sup-
port of pathology computer scientists who can translate new 
ideas into clinical practice [24]. Successfully implemented 
training programs in pathology residency already exist, 
but they are a prerogative of very few universities mostly 
located in the USA [7]. To fully leverage the capabilities 
of AI, nephropathologists need access to various AI tools 
for different diagnostic tasks. Both commercial and open-
source next-generation AI tools have become available in 
recent years. It is essential to acknowledge that, until now, 
no AI tools have obtained official approval from healthcare 
regulatory agencies for diagnostic purposes in nephropathol-
ogy. Consequently, the utilization of AI tools in this field is 
predominantly experimental and research-driven. Despite 
this, some applications could soon successfully be used in 
routine practice, such as the use of a deep learning-based 
transformation of H&E stained tissues into other special 
stains, with important effects on laboratory standardization 
and turnaround time (TAT). Moreover, the development of 
software solutions that can integrate multiple AI tools into 
a single platform or interface is a promising step towards 
making these tools more widely available and accessible to 
healthcare professionals in the future. Proposed solutions 
include creating software that integrates several functions 
into one kit (for instance, with the creation of a kit that inte-
grates the ability to detect, segment, and classify glomeruli) 
[15] and developing apps like "EMPAIA App Interface'' that 
can integrate AI tools into pathology workstations through 
widely-used web communication protocols and containeri-
zation [25].

Renal biopsies require special stains beyond H-E, lead-
ing to heterogeneity in datasets [26]. Deep learning, using 
deep convolutional neural networks is capable of identifying 
patterns in complex and heterogeneous histopathology data 
[27]. Image analysis quantification was initially performed 
on images with higher color contrast such as hematoxylin-
DAB, for the detection of cells, or trichrome stain, for the 
detection of interstitial fibrosis. Most studies obtained good 
results on homogeneous datasets with a single staining, 
particularly in image segmentation [28–30]. The increase 
in computational capabilities and the interest in a compre-
hensive assessment of renal biopsy have led to an explosion 
of research on approaches that rely on two or more stains. 
Four-stain analysis showed that PAS stain achieved the best 
results, mainly due to less inter-laboratory variability and 
superior definition of boundary by highlighting basement 

membranes, which in turn provides superior definition of 
the boundary and easier segmentation tasks [31]. However, 
some convolutional neural networks performed better when 
different stains were used simultaneously for training instead 
of using a single stain: the authors attributed these results 
to the fact that many kidney pathologies are focal, and only 
observed in a specific section [32]. Innovative approaches 
to slide staining in nephropathology include virtual stain-
ing using hyperspectral imaging [33], quantitative phase 
imaging [34], and autofluorescence [35, 36], enabling the 
possibility of multiple stains upon a single slide and the 
computational transformation of an already stained WSI 
into another stain [37].

Since the Banff conference in Pittsburgh in 2019, where 
the potential use of AI and ML algorithms in solid organ 
transplantation was discussed, digitization and standardiza-
tion have become increasingly pressing concerns in this field 
[38, 39]. To address this, a working group called the Digital 
Pathology Banff was formed to define standards to ensure 
a smooth and effective transition [32, 40, 41], while some 
tools providing reproducible, quantitative specific param-
eters, like tubulo-interstitial injury (ci, ct, ti, i,t, i-IFTA and 
t-IFTA parameters) [42, 43] or automatic detection for C4d 
(C4d parameter) [44] were developed. Other research has 
focused on using classification algorithms to categorize 
transplant biopsies into one of three categories: normal, 
rejection, or other diseases [32], while a smaller number of 
studies aimed at evaluating the pre-transplant kidney rather 
than evaluating rejection [12]. In this context, converting 
frozen tissue sections to be similar to formalin-fixed and 
paraffin-embedded ones can rectify cryosection artifacts 
while preserving clinically relevant features, resulting in 
significant improvements, as is done in other settings [45].

In most of the publications before 2017, the year when 
ML made its way into nephropathology, automated image 
analysis consisted mainly in thresholding and color image 
segmentation algorithms, aimed at detecting and quantify-
ing pixels and areas with specific staining features [46]. 
Indeed, these experiments focused on slides in which the 
stains proposed a large image contrast such as trichrome 
(mostly for assessment of tubulo-interstitial fibrosis) and 
IHC [47–49]. No article reported the use of ML on kidney 
histological samples before that year, but it must be empha-
sized that in 1999 a simple single-layer perceptron network 
was designed and trained with features extracted from about 
100 kidney transplant biopsies to predict the final diagno-
sis [50]. Initially, the main efforts were made to perform 
structure recognition through semantic segmentation, that is 
labeling each pixel in an image to outline object boundaries 
[51]. Although segmentation alone may be of limited use in 
routine practice, it lays the groundwork for performing more 
sophisticated tasks [46]. Finally, a multiclass segmentation 
model made its first appearance in 2019 as a single-stain 
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model and was later followed by a multi-stain one [31, 52]. 
The glomerulus has been the primary target also for classifi-
cation, which refers to a predictive modeling problem where 
a class label is assigned to an object: classifying glomerular 
lesions is a fundamental step toward the diagnosis of many 
kidney diseases, and AI has the potential to be a support 
tool for pathologists, thereby decreasing interobserver vari-
ability [53]. The first efforts focused on the application of 
well-known approaches such as k-nearest-neighborhood or 
convolutional neural networks, but since 2020 most works 
have integrated an automated computational pipeline by 
WSI. Gradually, improvements in detection, segmentation 
and feature extraction better prepared the field for the final 
classification task, which involves integrating two or more 
ML models into a fully-automated workflow (i.e., one for 
features extraction and one for classification) [30, 32, 54].

The main type of learning tested on kidney tissue is the 
supervised kind, where models are fit on training data con-
sisting of inputs and usually expert-labeled outputs. This 
approach relies on large sets of labeled image data, and 
is feasible when data sets come from institutions where 
pathologists manually annotate a certain number of slides 
for algorithm training. However, it becomes time-consum-
ing, subject to occasional disagreement between patholo-
gists, and difficult to apply when large amounts of data are 
required (e.g. for more complex tasks like the classification 

of overlapping features in glomerular lesions). For this rea-
son, hybrid AI approaches in nephropathology, which adopt 
a large number of unlabeled images, have been tested [55, 
56]. Despite being a largely unexplored field in pathology, 
our analysis shows an increase in interest in the application 
in the last 2 years. Recent approaches include self-super-
vised learning, where a model is trained on an auxiliary task 
for which ground-truth is available for free and web image 
mining, where large-scale unannotated images are achieved 
through online resources [15]. To overcome the difficulties 
of accessing and transmitting large amounts of data, a fed-
erated-learning model has been proposed for decentralized 
training [57, 58] (Fig. 4).

The rapidly increasing trend in digital nephropathol-
ogy is poised to create new challenges and opportunities 
that will shape its future. With regard to computer vision 
and its application as machine learning in pathology, the 
development of standardized datasets will be critical for 
advancing research in nephropathology [59]. These data-
sets should be diverse and include a range of rare diseases 
to increase sample size and improve the accuracy of clas-
sifiers. While supervised training methods may be costly 
and time-consuming, semi-supervised or unsupervised 
methods may offer a more efficient approach by allowing 
architectures to find tissue representations better suited for 
the task at hand [60]. Incorporating clinical data into these 

Fig. 4   Federated learning in nephropathology. Each institution (node) 
trains the model using local data, and sends back model weights to 
the central server or to other institutions (peer-to-peer) without the 
transfer of slides. This will allow for pooling of greater amounts of 

data, therefore pushing towards a faster transition to increasingly 
complex multi-stain and multitask algorithms with hybrid or unsuper-
vised approaches
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datasets will also enhance the accuracy of classifiers. Fur-
thermore, combining AI with other technologies such as 
biomarker discovery and "omics" will likely uncover new 
insights and improve diagnosis and treatment for patients 
with kidney disease, especially in an “in situ” approach 
[61]. A multi-dimensional view of tissue samples and 
precise extraction of molecular features are enhanced by 
WSI, especially in techniques such as matrix-assisted laser 
desorption/ionization, multiplex immunohistochemistry 
and digital spatial profiling, the former showing prom-
ising results in the non-neoplastic kidney like amyloid 
characterization or biomarker discovery in membranous 
nephropathy [62, 63].

Conclusions

In the past 7 years, interest in nephropathology has exploded. 
This trend is expected to continue, and may revolutionize 
how nephrologists and pathologists approach kidney biopsy 
(Fig. 5). The unique complexities of nephropathology make 
it an excellent testing ground for various AI approaches that 
can create generalizable models for other research fields. 
With increasing computational capabilities and resources, 
solutions that integrate learning from multiple histochemi-
cal stains and histological structures, and consolidate differ-
ent tasks, are being developed with decreasing reliance on 
human teaching.

Fig. 5   Application of digital pathology in nephropathology. In donor 
histological evaluation, where time plays a key role, digital pathology 
is used to connect centers and professionals in real time, and machine 
learning algorithms have been proposed to enhance images obtained 
from frozen sections [64] or interpret biopsy adequacy characteristics. 
In the field of transplant biopsy evaluation, AI “triage” classifica-
tion of slides has been tested [32], as have automatic quantification 
of histological parameters of rejection and integration of histology 

into clinical and comprehensive algorithms [65]. Case storage and 
telepathology are two of the most widespread applications of digital 
pathology in nephropathology, a sub-specialty where the latter allows 
to overcome static ElectronMicroscopy (EM)   images and IF decay. 
The integration of AI in nephropathology opens the field to numerous 
applications ranging from, stain transformation, slide quality control 
and application of AI algorithms of image analysis
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