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Abstract: The recent outbreak of COVID-19 underlined the need for a fast and trustworthy method-
ology to identify the features of a pandemic, whose early identification is of help for designing
non-pharmaceutical interventions (including lockdown and social distancing) to limit the progression
of the disease. A common approach in this context is the parameter identification from deterministic
epidemic models, which, unfortunately, cannot take into account the inherent randomness of the
epidemic phenomenon, especially in the initial stage; on the other hand, the use of raw data within the
framework of a stochastic model is not straightforward. This note investigates the stochastic approach
applied to a basic SIR (Susceptible, Infected, Recovered) epidemic model to enhance information from
raw data generated in silico. The stochastic model consists of a Continuous-Time Markov Model,
describing the epidemic outbreak in terms of stochastic discrete infection and recovery events in a
given region, and where independent random paths are associated to different provinces of the same
region, which are assumed to share the same set of model parameters. The estimation procedure is
based on the building of a loss function that symmetrically weighs first-order and second-order mo-
ments, differently from the standard approach that considers a highly asymmetrical choice, exploiting
only first-order moments. Instead, we opt for an innovative symmetrical identification approach
which exploits both moments. The new approach is specifically proposed to enhance the statistical
information content of the raw epidemiological data.

Keywords: SIR models; parameter identification; stochastic approach

1. Introduction

Since the very beginning of COVID-19 diffusion in early 2020, effective countermea-
sures to limit the spread of the disease have been non-pharmaceutical interventions such
as lockdown, social distancing and limitation of economic activities, with an unavoidable
worsening of social life and wealth [1–3]. Most of such unpopular decisions have been taken
according to scientific committees striving to understand the real gravity of the diffusion
and to forecast how these decisions would impact with the spreading of the pandemic. To
this end, it has been soon clear that mathematical models could be of great help to identify
the features of the COVID-19 spread as well as to make predictions and to support deci-
sions [4–18]. Indeed, nowadays there can be found many models, ranging from the basic
SIR epidemic model that accounts for Susceptible, Infected and Recovered individuals, to
finer, multi-compartmental models accounting for the Exposed, Hospitalized, Vaccinated,
etc. [19–21]. However, most of the existing models share the feature of being deterministic;
therefore, they are not able to capture the inherent randomness of the phenomenon under
investigation and to properly characterize the uncertainty of future possible scenarios.

In [22], we presented a first investigation on an alternative identification approach
based on the Chemical Master Equation (CME) modeling framework, which was used
to describe the COVID-19 epidemics in Italy. In that paper, the model parameters of
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the resulting stochastic SIR model, i.e., the relative infectivity rate and the per capita
removal rate, were the target of the estimation approach. The proposed results exploited
second-order moments and showed the potential effectiveness of the proposed approach by
applying it to real data on the number of notified cases coming from the National Institute
of Health of Italy (Istituto Superiore di Sanità, ISS) [23]. The CME modeling framework
was originally introduced to describe the dynamics of chemical reaction networks (see
for instance [24]), but the method is frequently used in biological applications, especially
when the dynamics of the considered population is inherently stochastic, such as for
epidemics [25], cellular biochemical systems [26] and growing tumor populations [27].

Differently from [22], in this work, we aim at investigating the estimation approach
proposed in [22] on a theoretical ground, assuming to exploit in silico data provided by
the model simulations. This allows us to stress the effectiveness of the proposed research
with respect to different sets of pandemic parameters, not necessarily anchored to the ones
related to the COVID-19 disease. According to the idea carried out in [22], we assume a
given country affected by the pandemic divided in districts. Each district develops the pan-
demic according to the same model parameters, therefore providing independent random
paths sampled from the same stochastic process: to this end, a Continuous-Time Markov
Chain is exploited to deal with the discrete random events providing one more infected
or one more recovered [28]. Random paths are simulated according to the Stochastic Sam-
pling Algorithm (SSA) [29]. Different sets of model parameters provide different epidemic
scenarios where to test the proposed methodology. First- and second-order moments are
computed from in silico random paths, and they are compared to the theoretical first- and
second-order moments computed from the CTMC theory [30]. As a matter of fact, an
in silico model with known parameters allows one to evaluate more precisely the added
value of second-order moments in the estimation. This is not possible in the presence of
real data, because the real pandemic parameters would be unknown. For the moment
computation, due to the nonlinear fashion of the model propensities (infected are supposed
to occur at a rate proportional to both infected and susceptible individuals, as usual), we
resort to the linear approximation, which is usually suggested by the conjecture that the
pandemic shows very low infected individuals with respect to susceptibles. It is worth
noticing that according to standard deterministic epidemic models, data coming from
different sub-regions would be put together and therefore treated as averages.

Numerical results show that if only infectious data are available, the use of the second-
order moment beyond the first-order one sensibly improves the parameter estimation,
obtaining finite estimation errors when separate estimates of the relative infection and
removal rate are attempted. Indeed, the first-order moment expression of the number of
infected patients only depends on the difference between the model parameters, definitely
making them not individually identifiable from the mean value of infected.

Conversely, when both infectious and removed data are available, the identification
of the SIR parameters is always meaningful and benefits from a possible larger number
of experimental samples, as happens when more provinces are considered. The removal
rate is better estimated by the second-order procedure, differently from the infection
rate, whose estimate worsens (on average). However, the model trajectories are scarcely
sensitive to this estimation error, since both first and second-order experimental data
are accurately reproduced by the second-order fitting. Furthermore, confidence intervals
of both parameters are also reduced in this case, which suggest higher reliability of the
second-order method in real scenarios.

2. A Stochastic SIR Model

In the present work, our investigation focuses on the early spread of the epidemics,
which is a relatively short time horizon where the system is open-loop (no restriction
measures have not been taken yet); in particular, we focus on an identification problem in a
situation of scarce data; for this reason, we decided to keep our modeling setting as simple
as possible, and we selected the classical SIR model [31] as the more appropriate framework
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for our study, by neglecting for example the exposition dynamics (see e.g., [32]) and the
presence of delayed transmission and lags/dead times in the effects of control actions (see
e.g., [33] for a comprehensive review on this topic, not limited to biological systems).

According to the standard SIR modeling choice, the whole population is divided
into Susceptibles (the ones prone to get infected), Infected (the ones actually infected and
responsible for further infections) and Recovered (the ones healed and no more infectious,
or death). The whole population (Susceptibles + Infected + Recovered) is not supposed
to vary for birth/death processes different from the ones provoked by the pandemics: its
constant amount is denoted by N. Due to the constraint on the whole population, the state
of the system evolves, thus, according to a pair of components. In this work, we consider
the currently infectious patients I and the removed individuals R, and their dynamics is
described by exploiting the formalism of Continuous-Time Markov Models (CTMC) [28].
After deriving the evolution of the pair I, R, the dynamical behavior of the number of
individuals susceptible to the infection S is straightforwardly obtained by the relation

S = N − I − R. (1)

Note that according to the chosen modeling setting, the state variables are actually
countable variables, which is a more appropriate representation than the unrealistic conti-
nuity assumption made by the classical deterministic SIR formulation.

Going into the mathematical details, the state variation of I and R, as well as of the
other derived variables, is due to a pair of discrete stochastic events, namely the infection,
E1, and recovery (by healing or death), E2, events:

E1 :

{
I → I + 1,

S→ S− 1,
w1 =

β

N
(N − I − R)I,

E2 :

{
I → I − 1,

R→ R + 1,
w2 = γI,

(2)

where w1 and w2 are the propensities of the modeled events (i.e., the time derivatives of
the transition probabilities, time−1), β is the relative infectivity (depending on the infection
probability of an infected-susceptible contact and on the contact frequency), and γ is the
per capita rate of removal (healing plus death) from the infection.

The dynamical equation of the first- and second-order moments cannot be directly written
in a closed form from the propensity expressions due to the nonlinear form of w1 [30]. In order
to obtain closed forms of higher-order moments, we consider the simplifying assumption

S ≈ N,

which is actually a realistic assumption when the epidemic is at the beginning of its outbreak
or when it is controlled, so that the total cases are sensibly lower than the whole population
number. This assumption simplifies the expression of w1 as

w1 ' βI,

that becomes actually linear with respect to the state variables. The simplified expression
of w1 allows one to write the first-order moment equations as

d〈I(t)〉
dt

= (β− γ)〈I(t)〉,
d〈R(t)〉

dt
= γ〈I(t)〉,

(3)



Symmetry 2022, 14, 2330 4 of 12

that provide the explicit solutions

〈I(t)〉 = 〈I(0)〉e(β−γ)t,

〈R(t)〉 = 〈R(0)〉+ γ

β− γ

(
e(β−γ)t − 1

)
〈I(0)〉.

(4)

The ODE system (3), representing the first-order moments dynamics when S/N ≈ 1,
gives back the standard structure of the deterministic SIR formulation [31].

Indeed, these first-order Equations (3) and (4) are usually exploited to identify the
relative infectivity rate β and the per capita removal rate γ according to the measured
infected or cumulative cases available from local or national Institutes of Health. In [22], we
proposed a way to exploit the inherent randomness of the events and the straightforward
stochastic SIR model in order to gain information from the available data. The key point is
to gather more random paths from a given scenario. To this end, we assume to divide a
given country (affected by a pandemic) into m districts. Each district has its own population
(Ni, i = 1, . . . , m) and faces the same pandemic whose spreading depends on a unique set
of model parameters: in other words, each district shares the same pair (β, γ). By keeping
the approximation S ≈ Ni, i = 1, . . . , m, each district shares as well also the approximated
propensities. A further hypothesis is that any district is isolated with any other. This way,
the stream of data acquired from the districts is independent random paths, according to
which higher-order moments can be computed and exploited to increase the reliability of
the estimates.

Therefore, according to [30], due to the approximation Si ≈ Ni, we write the second-
order moments in closed forms as

d
〈

I2(t)
〉

dt
=
〈(

(I(t) + 1)2 − I2(t)
)
w1

〉
+
〈(

(I(t)− 1)2 − I2(t)
)
w2

〉
,

d〈I(t)R(t)〉
dt

=
〈(
(I(t) + 1)R(t)− I(t)R(t)

)
w1
〉

+
〈(
(I(t)− 1)(R(t) + 1)− I(t)R(t)

)
w2
〉
,

d
〈

R2(t)
〉

dt
=
〈(

(R(t) + 1)2 − R2(t)
)
w2

〉
,

(5)

that is, after computations:

d
〈

I2(t)
〉

dt
= 2(β− γ)

〈
I2(t)

〉
+ (β + γ)〈I(t)〉,

d〈I(t)R(t)〉
dt

= γ
〈

I2(t)
〉
+ (β− γ)〈I(t)R(t)〉 − γ〈I(t)〉,

d
〈

R2(t)
〉

dt
= 2γ〈I(t)R(t)〉+ γ〈I(t)〉,

(6)

that give the explicit solutions

〈
I2(t)

〉
= e(β−γ)t

(
e(β−γ)t〈I2(0)

〉
+ β+γ

β−γ

(
e(β−γ)t − 1

)
〈I(0)〉

)
,

〈I(t)R(t)〉 = e(β−γ)t
(
〈I(0)R(0)〉+ γ

β−γ

(
e(β−γ)t − 1

)〈
I2(0)

〉
+ γ

β−γ

(
β+γ
β−γ

(
e(β−γ)t − 1

)
− 2βt

)
〈I(0)〉

)
,〈

R2(t)
〉
=
〈

R2(0)
〉
+ 2γ

β−γ

(
e(β−γ)t − 1

)
〈I(0)R(0)〉

+ γ2

(β−γ)2

(
e2(β−γ)t − 2e(β−γ)t + 1

)〈
I2(0)

〉
+ γ

(β−γ)2

(
γ(β+γ)

β−γ e2(β−γ)t + (β + γ)e(β−γ)t − 4βγte(β−γ)t − β(β+γ)
β−γ

)
〈I(0)〉.

(7)
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Remark 1. The initial conditions 〈I(0)〉, 〈R(0)〉,
〈

I2(0)
〉
, 〈I(0)R(0)〉, and

〈
R2(0)

〉
have to be

considered as unknown to be identified as well as the pair (β, γ). However, in case of the very
beginning of the epidemic spread, the initial recovered could be thought of as a deterministic value
equal to 0, so that first- and second-order moment equations involving R(0) simplify as follows:

〈R(t)〉 = γ

β− γ

(
e(β−γ)t − 1

)
〈I(0)〉 (8)

〈I(t)R(t)〉 = e(β−γ)t
(

γ
β−γ

(
e(β−γ)t − 1

)〈
I2(0)

〉
+ γ

β−γ

(
β+γ
β−γ

(
e(β−γ)t − 1

)
− 2βt

)
〈I(0)〉

)
,

(9)

〈
R2(t)

〉
= γ2

(β−γ)2

(
e2(β−γ)t − 2e(β−γ)t + 1

)〈
I2(0)

〉
+ γ

(β−γ)2

(
γ(β+γ)

β−γ e2(β−γ)t + (β + γ)e(β−γ)t − 4βγte(β−γ)t − β(β+γ)
β−γ

)
〈I(0)〉.

(10)

3. The Identification Procedure

Let us assume that an epidemic is spreading throughout a given country and that the
stochastic modeling framework proposed above represents the main features of the disease.
Let us also consider the different regions belonging to the country, assuming that their
different geographical positions and local cultures may affect the value of the parameter
pair (β, γ). However, the epidemiological data coming from different sub-regions, the
aforementioned districts that we will call provinces or counties hereafter, for simplicity,
can be seen as different realizations of the regional CTMC. In other words, each province
initially shares the same pair (β, γ) of the region, and its data can be regarded as a random
path of the region where it belongs. Obviously, fluxes of people within provinces are
supposed to be neglected.

Differently from [22], where we assumed that the daily number of cumulative cases
was the only available data coming from the provinces, here, we assume two different
scenarios depending on the information level:

(a) We assume knowledge of periodic measurements of currently infectious individuals;
(b) We assume knowledge of periodic measurements of currently infectious and removed

individuals.

More formally, in this paper, we focus the attention on a single region with m ∈ N
provinces, which are tracked for consecutive K samples, and for which the data set of
currently infectious individuals {il,k}K−1

k=0 , l = 1, . . . , m, is always available and the data
set of removed individuals {rl,k}K−1

k=0 , l = 1, . . . , m, is available only in the scenario (b)
defined above; those data sets denote the measurements of infectious and removed for
province l at discrete time t = k∆, k = 0, ..., K− 1, where ∆ is usually a 1-day interval. We
assume il,0 ≥ 1 for any province l, i.e., there is already one infectious in each province at
the initial time. This is necessary to obtain meaningful random paths, since the condition
I = 0 characterizes the absorbing states of the CTMC, preventing the occurrence of both
infections and removal events (since I = 0 implies w1 = w2 = 0). We also assume rl,0 = 0
for any province l, which is compatible with the early spreading of the epidemic.

Statistical moments (up to the second order) at each time are readily computed from
data as

Ik =
1
m

m

∑
l=1

il,k, Rk =
1
m

m

∑
l=1

rl,k, (11)

I2
k =

1
m

m

∑
l=1

i2l,k, IRk =
1
m

m

∑
l=1

il,krl,k, R2
k =

1
m

m

∑
l=1

r2
l,k. (12)
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For the following developments, we also define the quantities Ik := 〈I(k)〉, Rk := 〈R(k)〉,
I2
k :=

〈
I2(k)

〉
, IRk := 〈I(k)R(k)〉, R2

k :=
〈

R2(k)
〉
, which are the explicit moment Expres-

sions (4) and (7) computed at general time t = k∆ and starting from the initial conditions
I0, R0, I2

0 , IR0, R2
0, where we set R0 = IR0 = R2

0 = 0, to make the theoretical moment
Expressions (4) and (7) consistent with the data assumption rl,0 = 0, ∀l.

3.1. Scenario (a): Parameter Estimation from Infectious Data

In this scenario, we assume that only the expressions of Ik and I2
k from (11) and (12) are

known. We can define the following running costs, accounting for the Euclidean distance
between statistical and theoretical first- and second-order moments of the infectious at each
time k = 0, ..., K −1:

J1
k (β, γ, I0) =

(
Ik − Ik

)2

Ik
2 , J2

k (β, γ, I0, I2
0 ) =

(
I2
k − I2

k

)2

I2
k

2 , (13)

where we highlighted the dependence of J1
k and J2

k on the parameters and on the initial
conditions to estimate, i.e., I0 and I2

0 .

3.2. Scenario (b): Parameter Estimation from Infectious and Removed Data

In this scenario, all the statistical moment expressions in (11) and (12) are known, so
the running costs at all times k will also account for the first- and second-order moments of
the removed and for the joint second-order moment of infectious and removed:

J1
k (β, γ, I0) =

(
Ik − Ik

)2

Ik
2 +

(
Rk − Rk

)2

Rk
2 , (14)

J2
k (β, γ, I0, I2

0 ) =

(
I2
k − I2

k

)2

I2
k

2 +

(
IRk − IRk

)2

IRk
2 +

(
R2

k − R2
k

)2

R2
k

2 . (15)

Note that in spite of the different information set with respect to the scenario (a), the
Expressions (14) and (15) of the running costs in the scenario (b) depend on the same pa-
rameters, since only the non-zero moment initial conditions I0 and I2

0 need to be estimated.

3.3. The Optimization Problem

The goal of the identification step is to minimize the following cost, which is a weighted
normalized version of the root mean square error:

Jα(β, γ, I0, I2
0 ) =

√√√√ 1
K

K−1

∑
k=0

αJ1
k (β, γ, I0) + (1− α)J2

k (β, γ, I0, I2
0 ), (16)

where α ∈ [0, 1] weighs the relative importance of tracking effectively first-order with
respect to second-order moments, and the running costs are defined according to the
chosen scenario, i.e., Equation (13) for scenario (a) and Equations (14) and (15) for scenario
(b). Looking at the family of functions defined by (16), the standard approach consists of
considering a highly asymmetrical choice, exploiting only first-order moments (α = 1).
Instead, we opt for an innovative symmetrical identification approach which exploits both
moments (first and second order), choosing α = 0.5 that symmetrically poses in between
with respect to the use of them. In other words, the proposed estimation procedure is based
on a loss function that symmetrically balances the information content provided by first-
and second-order moments.
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For a fixed α, the optimization problem returns the fitted parameters β̂ and γ̂ and the
initial conditions Î0 and Î2

0 achieving the minimum cost Ĵα = Jα(β̂, γ̂, Î0, Î2
0 ), i.e., satisfying

(β̂, γ̂, Î0, Î2
0 ) = arg min

(β,γ,I0,I2
0 )∈R4

+
subject to Equations (4),(7)

Jα(β, γ, I0, I2
0 ), (17)

where Jα is defined in (16) and where we included obvious positivity constraints on the
parameters and on the initial conditions, which are required to belong to the positive
orthant R4

+ of the f our-dimensional Euclidean space.

4. Results and Discussion

The identification method described in the previous section has been applied to an
ideal setting, where data have been generated according to the stochastic CTMC model (2).
This is a substantial difference with the work [22], where methods have been applied to the
real data of the COVID-19 pandemic in Italy, because the goal of the present work is a more
rigorous validation of the identification method in a general epidemic scenario.

In the following simulations, we consider a region with a possibly variable number of
provinces of random sizes (Ni, i = 1, . . . , m), which are independently sampled according
to a discrete uniform distribution in the interval [25 . . . 104; 75 . . . 104], where we denoted
by [a; b] := [a, b] ∩N an interval on the line of natural numbers. This results in random
sizes which are comparable to many Italian provinces. Similarly, the initial infectious
are independently sampled according to a discrete uniform distribution in the interval
[1; I0,max], where we set I0,max = 10. Each random path associated to a province of the
simulated region is built according to the Stochastic Sampling Algorithm (SSA) [29].

We choose an observation interval of K = 14 days, which is a period compatible with
the assumption of early-stage epidemics (see also [8]), inducing an approximate exponential
increase of the number of infectious, by virtue of the simplifying assumption S ≈ N.

For each of the two scenarios described in the previous section, we will consider
two cases:

(1) Best fitting limited to the first-order moments, corresponding to the case α = 1 in the
index Jα(β, γ, I0, I2

0 ) in (16); this case (optimization of J1(β, γ, I0, I2
0 )) will be shortly

referred to as best first-order fit.
(2) Best fitting of a balanced combination of first- and second-order moments correspond-

ing to the case α = 0.5 in the index Jα(β, γ, I0, I2
0 ) in (16); this case (optimization of

J0.5(β, γ, I0, I2
0 )) will be shortly referred to as best second-order fit, in the sense that it

exploits (in a balanced way) the moments up to the second order.

All the simulations have been performed in the MATLAB® environment, exploiting
the function lsqcurvefit” (Optimization Toolbox).

4.1. Scenario (a): Parameter Estimation from Infectious Data

In scenario (a) of parameter estimation from infectious data, we consider
M = 100 simulations of a region with m = 5 provinces, with each simulation associ-
ated to a point of the grid (β, γ) ∈ {(0.05k, 0.005j) : k, j ∈ [1; 10])}.

The simulation results show that in this scenario, the estimation of (β, γ) obtained
by the best second-order fitting procedure (J0.5 minimization) outperforms the analogous
estimation achieved by the best first-order fitting procedure (J1 minimization). In particular,
if reasonable upper bounds of the parameters are not provided to the numerical optimizer,
the best first-order procedure returns estimated values that can be arbitrarily large in
general. Instead, the estimation of the difference (β− γ) is quite accurate in both cases.
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The described behavior can be readily justified by looking at the expression of 〈I(t)〉
and

〈
I2(t)

〉
from (4) and (7), respectively:

〈I(t)〉 = 〈I(0)〉e(β−γ)t, (18)〈
I2(t)

〉
= e(β−γ)t

(
e(β−γ)t

〈
I2(0)

〉
+

β + γ

β− γ

(
e(β−γ)t − 1

)
〈I(0)〉

)
. (19)

As a matter of fact, the first-order moment expression (18) only depends on the differ-
ence (β− γ), which makes the two parameters not individually identifiable by using only
this equation. On the other hand, although the second-order moment expression in (19)
formally depends on both (β− γ) and (β + γ), the actual value of

〈
I2(t)

〉
is scarcely af-

fected by the sum (β + γ), multiplying the value 〈I(0)〉, while it is much more sensitive to
the difference (β− γ), which affects the growth rate of the exponential terms. This leads to
a rather large relative error (more than 30%, on average, in our simulations), even in the
best second-order fit of parameter γ.

As an example, the fitting results for the realization related to the “true values”
(β, γ) = (0.3, 0.03) are shown in Figure 1. The figure shows the comparison between
the sample moments (blue circles), which are obtained by applying Equations (11) and (12)
to the raw data, and the model predictions (lines), obtained from Equations (4) and (7),
using the parameter values estimated with α = 1 (red dashed line) or α = 0.5 (yellow solid
line). As expected, only the best second-order fit (yellow solid line) is able to track both
the sequence of first- and second-order data, Ik and I2

k , respectively. In this simulation, the
estimates of the parameter pair are (β̂1, γ̂1) = (1.695, 1.402) for the best first-order fit and
(β̂2, γ̂2) = (0.262, 0.022) for the best second-order fit.
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Figure 1. Scenario (a): estimation from infectious data. Fitting of the first-order moment (top panel)
and of the second-order moment (bottom panel) of the infectious individuals from a region including
m = 5 provinces, in the case (β, γ) = (0.3, 0.03): CTMC data (blue circles), best first-order fit (red
dashed line), best second-order fit (yellow solid line).
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4.2. Scenario (b): Parameter Estimation from Infectious and Removed Data

In scenario (b) of parameter estimation from infectious and removed data, we consider
a more extensive simulation setup, namely M = 100 simulations in two distinct cases of a
region with m = 5 and m = 10 provinces, and the same grid of scenario (a). The results
are summarized in Table 1, evaluated by means of the mean square error (MSE) of the best
first- and second-order fit and by the length of the corresponding estimated 95% confidence
intervals (ci). Confidence intervals have been estimated by means of the Matlab function
nlparci”, exploiting the Jacobian matrix computed numerically by function lsqcurvefit” and
evaluated at the estimation point.

Table 1. Scenario (b). Estimation results evaluated in terms of mean square error (MSE) of the best
first-order fit and second-order fit and by the length of the corresponding estimated 95% Confidence
Intervals (CI), with m = 5, 10 provinces.

m
β MSE

(1st order)
β MSE

(2nd order)
β CI

(1st order)
β CI

(2nd order)

5 9.99 18.08 0.17 0.13
10 4.91 8.37 0.08 0.03

m
γ MSE

(1st order)
γ MSE

(2nd order)
γ CI

(1st order)
γ CI

(2nd order)

5 23.01 17.62 0.014 0.013
10 11.14 5.30 0.012 0.008

Overall, the first remark is that the two parameters β and γ are now individually
identifiable, since the complete sets of theoretical moments (4), (7) and statistical moments
(11) and (12) are now exploited. The two sub-cases do not exhibit particular qualitative
differences in the estimation when varying the number of provinces m, while from the
quantitative viewpoint, there is a net reduction of the MSE in the case m = 10 with respect
to the case m = 5, which is probably due to the double number of samples in the case
m = 10.

By keeping fixed the number of provinces, the parameter γ is fitted better (lower MSE)
by the second-order procedure (J0.5 minimization) with respect to the first-order one (J1
minimization). A possible explanation for such behavior is that the second-order moment
equation in (6) introduces another dynamics

〈
R2(t)

〉
(in addition to 〈R(t)〉) depending on

γ only, which is probably useful for an improved estimation of this parameter.
Initially, the parameter β is fitted better, on average, by the first-order procedure. This

drawback of the second-order procedure is compensated by a higher robustness of the
estimation of both β and γ, expressed in terms of the 95% confidence intervals, whose
length is substantially reduced, with a larger reduction in the case of larger m. Notice
that a higher confidence level of the estimated parameters is crucial when applying the
identification procedure to real settings, where the true parameter values are unknown.

As an example, the fitting results for the realization (β, γ) = (0.5, 0.03) are shown in
Figures 2 and 3. As expected and symmetrically to the analogous simulations related to
the scenario (a), only the best second-order fit (yellow solid line) is able to track accurately
both the sequence of first- and second-order data.
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Figure 2. Scenario (b): estimation from infectious and removed data. Fitting of the first-order
moments of the infectious individuals (top panel) and of the removed individuals (bottom panel)
from a region including m = 5 provinces, in the case (β, γ) = (0.5, 0.03): CTMC data (blue circles),
best first-order fit (red dashed line), best second-order fit (yellow solid line).

0

1

2

3

I2
 (

#
)

10
7

0 2 4 6 8 10 12 14

Time (days)

Square Infectious (CTMC data)

Square Infectious (Best 1st-order ODE fit)

Square Infectious (Best 2nd-order ODE fit)

0

0.5

1

1.5

2

IR
 (

#
)

10
6

0 2 4 6 8 10 12 14

Time (days)

Infectious*Removed (CTMC data)

Infectious*Removed (Best 1st-order ODE fit)

Infectious*Removed (Best 2nd-order ODE fit)

0

5

10

R
2
 (

#
)

10
4

0 2 4 6 8 10 12 14

Time (days)

Square Removed (CTMC data)

Square Removed (Best 1st-order ODE fit)

Square Removed (Best 2nd-order ODE fit)
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including m = 5 provinces, in the case (β, γ) = (0.5, 0.03): CTMC data (blue circles), best first-order
fit (red dashed line), best second-order fit (yellow solid line).
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5. Conclusions

This paper proposes a stochastic approach for the SIR modeling and identification,
which is aimed at increasing the information content carried out by raw epidemiological
data. The identification method is based on a modeling framework describing new infec-
tions and removals as discrete stochastic events and it assumes the epidemiological data
related to the provinces of a given region as independent random paths drawn from the
same Continuous-Time Markov Chain describing the epidemics spread in a given region.
The estimation procedure is based on the building of a loss function that symmetrically
weighs first-order and second-order moments, differently from the highly asymmetrical
choice of standard approaches that exploit only first-order moments.

The numerical results show that when the infectious data are the only data available,
adding the information content of the second-order moment to the first-order one is crucial
to sensibly improve the parameter estimation, allowing one to obtain finite estimation
errors attempting to separately estimate the relative infection and removal rates. Indeed,
the first-order moment expression of the number of infected patients only depends on
the difference between the model parameters, definitely making them not individually
identifiable from the mean value of infected.

In the scenario where more information is available, namely both data of infectious
and removed, the identification of the single parameters is always meaningful and benefits
from a possible larger number of experimental samples, as happens when more provinces
are considered. The removal rate is better estimated by the second-order procedure,
differently from the infection rate, whose estimate becomes worse (on average). However,
the model trajectories seem to be scarcely sensitive to this estimation error, since both first
and second-order experimental data are accurately reproduced by the second-order fitting.
Furthermore, confidence intervals of both parameters are also reduced in this case, which
suggest higher reliability of the second-order method in real scenarios.

In conclusion, in view of the preliminary results shown in this paper and highlighting
the potential of the approach, further investigation will be devoted to the topic of parameter
estimation from real data exploiting information deriving from higher-order moment
equations. This will be the object of future work.
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