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Abstract

In this paper we discuss an infinite class of AdS6 backgrounds in Type IIB supergravity dual to five di-
mensional SCFTs whose low energy description is in terms of linear quiver theories. The quantisation of 
the Page charges imposes that each solution is determined once a convex, piece-wise linear function is spec-
ified. In the dual field theory, we interpret this function as encoding the ranks of colour and flavour groups 
in the associated quiver. We check our proposal with several examples and provide general expressions for 
the holographic central charge and the Wilson loop VEV. Some solutions outside this general class, with 
less clear quiver interpretation, are also discussed.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

It is more than twenty years now, that the Maldacena conjecture [1] motivates the study of 
both gravity and field theory topics. One such lines of research is the study of supersymmetric 
and conformal field theories in diverse dimensions. In particular, efforts have been dedicated to 
the classification of Type II or M-theory backgrounds with AdSd+1 factors. These backgrounds 
are proposed as holographic duals, encoding semi-classically the highly quantum dynamics of 
SCFTs in d dimensions with different amounts of SUSY. For the case in which the solutions 
are half-maximal supersymmetric, important progress in classifying string backgrounds and the 
mapping to families of quantum field theories has been achieved. This is the framework in which 
this work should be read. Let us summarise the field theory-string background correspondences, 
climbing-up in dimensions.

In the case of one dimensional conformal quantum mechanical theories, backgrounds with 
AdS2 factors and the associated quantum mechanical systems have been discussed. Half-
maximal BPS backgrounds containing an AdS2 factor were studied in [2–4]. The recent works 
[5–11] made precise and concrete the correspondence, for different families of string back-
grounds containing an AdS2 factor and less supersymmetry.
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The case of half-maximal two dimensional SCFTs was well studied. From the perspective 
advertised above (backgrounds and dual field theories) we encounter the works [12]-[13].1 For 
three dimensional N = 4 SCFTs, the field theoretical aspects presented in [28] were discussed 
holographically in [29–32], among other works.

In the case of N = 2 SCFTs in four dimensions, the field theories studied in [33] have holo-
graphic duals first discussed in [34], and further elaborated (among other works) in [35–39]. Let 
us jump off the five-dimensional case (that will occupy the rest of this work), and state that an in-
finite family of six-dimensional N = (1, 0) SCFTs was discussed both from the field theoretical 
and holographic points of view in [40–45], among other papers.

The case of N = 1 five dimensional SCFTs (with eight Poincaré supercharges) was anal-
ysed from the field theoretical and holographic viewpoints in many papers. Indeed, starting 
with the foundational work of Seiberg [46], followed by [47–49], to the more recent works by 
D’Hoker, Gutperle, Uhlemann and Karch [50], a long list of papers testing the correspondence 
and analysing predictions derived for this case, have been presented [50–56]. The developments 
in five dimensional N = 1 SCFTs have a holographic side and a geometric engineering side, 
on which huge progress was also achieved, see for example [57–63]. In this paper, as explained 
above, we focus on linking AdS6 backgrounds in Type IIB supergravity with conformal field 
theories in five dimensions, along the lines of [50–56]. The backgrounds we find are slightly dif-
ferent from those in [50–56]. When field theoretical observables are computed in the regime in 
which a comparison with supergravity is meaningful, we find the same results as those obtained 
in the picture developed in [50–56]. A possible advantage of the formalism presented here is that 
some other calculations and the interpretation of the solutions may be easier to perform using 
our ‘electrostatic viewpoint’. For example, it is simple to add D7 branes in this language.

General idea of this paper. The present work follows closely these lines of research. In fact, 
the construction of the half-SUSY holographic duals in all different dimensions mostly proceeds 
following this ‘algorithm’:

• Write the most generic background dual to a d-dimensional SCFT. This contains an AdSd+1
and (given the amount of SUSY we consider) at least an SU(2)R isometry, to reflect the 
R-symmetry of the eight Poincaré supercharges SCFT. Ramond and NS fields must be com-
patible with these isometries. The background metric reads,

ds2 = f1(�y)AdSd+1 + f2(�y)d�2 + f3(�y)d�7−d(�y).

The functions fi can only depend on the coordinates of �7−d(�y). If the R-symmetry is bigger 
than SU(2), this is realised geometrically and taken from the (7 − d) �y-coordinates inside 
�7−d . If we work with eleven dimensional supergravity, the manifold � has dimension (8 −
d). The case that occupies us in this work has d = 5. The internal coordinates are denoted as 
�y = (σ, η).

• The BPS equations ensuring half-SUSY and Bianchi identity are imposed. These are a non-
linear system of first and second order PDE’s. Operating with these equations, sometimes one 
is able to write the fi and the fluxes in terms of a single function V (�y) and its derivatives 
where the function V solves a linear PDE. Some situations are known for which the V -
function solves a non-linear PDE [34,64,65].

1 See also [14–27] for less-supersymmetric backgrounds.
3
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• Reasonable boundary conditions need to be imposed. The quantisation of Page charges in 
the gravity background implies that one of these boundary conditions is written in terms of a 
‘Rank function’, a convex polygonal, linear by pieces function, with integer values at integer 
points.

• The Rank function is put in correspondence with a quiver field theory. The ranks of the gauge 
and flavour groups are encoded in this function. After the field theory-string background pair 
is identified, various tests and predictions of the correspondence follow.

Up-to technical subtleties dependent on the dimension d of the SCFT, this is how the construction 
of duals to half-maximal SCFTs in space-time dimension d proceeds. There are two exceptions, 
for d = 3 [29] and d = 5 [50,51]. In those cases, the authors solve the system in terms of holo-
morphic functions and their integrals, using the powerful machinery of complex analysis. In this 
paper, we follow the algorithm above to find duals to five dimensional N = 1 SCFTs.

Fortunately, the first two steps of the above ‘algorithm’ have been covered in the papers [66], 
[67]. We profit from these results and complete the other steps, proposing a precise relation 
between SCFTs and Type IIB AdS6 background. In this way we are giving an alternative de-
scription to the one very well developed in [50–56]. It is worth mentioning that Uhlemann gave 
the first steps in using the Rank function for the purpose of matrix model calculations [55], [56].

The main reason for tackling a problem that was already extensively discussed is to develop 
a different language with which one can readily identify the dual field theory. For example, in 
this language it is easy to consider the effect of D7 branes and find many physically meaningful 
solutions. Moreover, having two descriptions of a system might help to think about some new 
problems and it may provide an alternative view of known results, suggesting a connection with 
other constructions. Following the steps outlined above, we start from the material of the paper 
[67]. We need to solve a linear PDE for the potential function V (σ, η) with suitable boundary 
conditions. We discuss the correspondence between a five dimensional quiver field theory and a 
‘holographic electrostatic problem’ and present checks of this correspondence.

The contents of this work are organised as follows. In Section 2, we discuss the Type IIB 
configuration. We find the solution to the linear PDE written in terms of a Fourier series. The 
boundary conditions for the PDE are specified. Only for our choice, the Page charges of the 
background are quantised. Then, we analyse the behaviour of the solution at special points in the 
(σ, η)-plane. The presence of ‘colour-branes’ dissolved in fluxes and ‘flavour branes’ present in 
the background as a localised physical object (indicated by a violation of the Bianchi identities) is 
discussed. Hence our configuration is better thought in terms of a Type IIB solution plus branes, 
on which the global symmetries of the SCFT are realised.

In Section 3 we discuss some aspects of the QFT in five dimensions and the SCFTs they 
flow to in the UV. We draw a precise correspondence between the SCFT, the Rank function used 
as boundary condition and the string background. We discuss some illustrative examples giving 
detailed expressions for the Rank function, the potential function V (σ, η) and some observables 
such as the holographic central charge and the VEV of Wilson loops. These observables, that 
have been calculated using localisation in the IR QFT description, are exact result and hence 
provide a check of the correspondence proposed. We also derive generic expressions for the 
potential function and of these observables.

In Section 4, we discuss special backgrounds that do not strictly follow from the above men-
tioned algorithm. In particular, the reasonable boundary conditions are not satisfied. We explain 
that this afflicts the background with singularities and propose a field theoretical mechanism to 
cure the singular behaviour.
4
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In Section 5 we summarise the results of this work, present some conclusions and propose 
some follow up themes of investigation. Generous appendices are written for the benefit of the 
reader wishing to work on these topics, comparing with the results of the papers [50–56], present-
ing explicit derivations of the expressions along the paper and providing more explicit examples.

2. Supergravity background

We first discuss geometrical aspects of the supergravity solutions. We summarise the back-
ground preserving N = 1 SUSY if a linear PDE is satisfied. We solve the PDE, carefully analyse 
the singularity structure and quantised charges.

2.1. The Type IIB background

In this section we present a Type IIB background with an AdS6 factor, preserving eight 
Poincaré supersymmetries. The solution contains a two sphere parameterized by some coor-
dinate (θ, ϕ) and realising the SU(2)R symmetry of the dual SCFT; since the R-symmetry is 
preserved, all the fields and fluxes can depend on the S2 just via its volume form Vol(S2). It was 
originally found in the paper [67]. We work with a background related to that in [67] by an S-
duality as explained in Appendix A. The full configuration consists of a metric, dilaton, B2-field 
in the NS sector and C2 and C0 in the Ramond sector. The configuration is written in terms of 
a potential function V (σ, η) that solves a linear partial differential equation written below. The 
type IIB background in string frame is,

ds2
10,st = f1(σ, η)

[
ds2(AdS6) + f2(σ, η)ds2(S2) + f3(σ, η)(dσ 2 + dη2)

]
,

e−2� = f6(σ, η),

B2 = f4(σ, η)Vol(S2), C2 = f5(σ, η)Vol(S2), C0 = f7(σ, η), (2.1)

f1 = 2

3

√
σ 2 + 3σ∂σ V

∂2
ηV

, f2 = ∂σ V ∂2
ηV

3

, f3 = ∂2

ηV

3σ∂σ V
,


 = σ(∂σ ∂ηV )2 + (∂σ V − σ∂2
σ V )∂2

ηV,

f4 = 2

9

(
η − (σ∂σ V )(∂σ ∂ηV )




)
,

f5 = 4

(
V − σ∂σ V



(∂ηV (∂σ ∂ηV ) − 3(∂2

ηV )(∂σ V ))

)
,

f6 = 182 3σ 2∂σ V ∂2
ηV

(3∂σ V + σ∂2
ηV )2 
, f7 = 18

(
∂ηV + (3σ∂σ V )(∂σ ∂ηV )

3∂σ V + σ∂2
ηV

)
.

The function V (σ, η) solves

∂σ

(
σ 2∂σ V

)
+ σ 2∂2

ηV = 0. (2.2)

In what follows we study this PDE, proposing boundary conditions that lead to a nice interpreta-
tion of the solutions. In Section 2.4, we impose quantisation of the Page charges associated with 
the infinite family of solutions in eq. (2.1) and avoid badly-singular behaviours.
5
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σ

η

0 P

R(η)

Fig. 1. Depiction of the electrostatic problem for V̂ . The two conducting planes at η = 0, P have zero potential, while at 
σ = 0 we have a charge distribution equal to R(η).

2.2. Resolution of the PDE

Let us discuss solutions to the differential equation (2.2). It helps our intuition to make the 
change

V (σ,η) = V̂ (σ, η)

σ
, (2.3)

which implies that the PDE in (2.2) reads like a Laplace equation in flat space,

∂2
σ V̂ + ∂2

η V̂ = 0. (2.4)

We choose the variable η to be bounded in the interval [0, P ] and σ to range over the real axis 
−∞ < σ < ∞. We impose the boundary conditions,

V̂ (σ → ±∞, η) = 0, V̂ (σ, η = 0) = V̂ (σ, η = P) = 0.

lim
ε→0

(
∂σ V̂ (σ = +ε, η) − ∂σ V̂ (σ = −ε, η)

)= R(η). (2.5)

These can be interpreted as the boundary conditions for the electrostatic problem of two con-
ducting planes (at zero electrostatic potential) as depicted in Fig. 1. The conducting planes extend 
over the σ -direction and are placed at η = 0 and η = P . We also have a charge density R(η) at 
σ = 0, extended along 0 ≤ η ≤ P , as indicated by the difference of the normal components of the 
electric field. The function R(η) begins and ends the η-direction, making it an interval, according 
to

R(η = 0) = R(η = P) = 0.

In Section 2.4 we discuss the conditions on R(η), as imposed by the quantisation of the Page 
charges. We find a solution separating variables,

V̂ (σ, η) = �(σ)E(η), Ë(η) + λ2E(η) = 0, �′′(σ ) − λ2�(σ) = 0. (2.6)

We solve in detail for the case λ2 > 0. The cases λ2 < 0, λ = 0 do not satisfy the boundary 
conditions in eq. (2.5). The solutions are

E(η) = A sin(λη) + B cos(λη), �(σ) = Ce−λσ + Deλσ .

Imposing the boundary conditions written in eq. (2.5) we find,
6
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V̂ (σ, η) =
∞∑

k=1

ak sin

(
kπ

P
η

)
e− kπ

P
|σ |, ak = 1

πk

P∫
0

R(η) sin

(
kπ

P
η

)
dη. (2.7)

We have used that R can be expanded on a Fourier basis

R(η) =
∞∑

k=1

ck sin

(
kπ

P
η

)
, 2πkak = −Pck. (2.8)

Notice that we can introduce a complex variable

z = σ − iη,

and write the potential V̂ = σV as a harmonic function for both σ > 0 and σ < 0

V̂ (σ, η) =

⎧⎪⎨⎪⎩
∑∞

k=1
ak

2i

(
e− kπ

P
z − e− kπ

P
z̄
)

σ ≥ 0,∑∞
k=1

iak

2

(
e

kπ
P

z − e
kπ
P

z̄
)

σ < 0.

(2.9)

V̂ can therefore be expressed as the real part of a holomorphic function, and regularity is broken 
at σ = 0 due to the charge density in the electrostatic problem; see appendix B for a more detailed 
discussion about how to translate our formalism in the holomorphic one in [50,51].

The reader can check that the potentials in eq. (2.9) solve the equations (2.2), (2.4) subject to 
the conditions in eq. (2.5). We now move to analyse the behaviour of this class of solutions at 
special points.

2.3. Behaviour at special points

In this section we analyse the behaviour of the metric and the dilaton, as we approach special 
points. In particular we will focus on the points η = 0, η = P and σ → ±∞.

We start by considering the metric behaviour on the boundary at η = 0. The discussion is 
identical for η = P . In this limit, we have that f1 and f3 are finite. Explicitly we have

f 2
1 (σ,0) =4

9

∑∞
k=1

πk
P

ak

((
πkσ
P

)2 + 3|σ |πkσ
P

+ 3
)

e− πk|σ |
P∑∞

k=1 ak

(
πk
P

)3
e− πk|σ |

P

,

f3(σ,0) =1

3

∑∞
k=1 ak

(
πk
P

)3
e− πk|σ |

P∑∞
k=1 ak

((
πk
P

)2 |σ | + πk
P

)
e− πk|σ |

P

,

while f2 → η2f3(σ, 0). Using these expressions, we find that at these boundaries, the metric 
reads

η → 0 ds2
10 =f1(σ,0)

(
ds2(AdS6) + f3(σ,0)(η2ds2(S2) + dη2 + dσ 2)

)
,

η → P ds2
10 =f1(σ,P )

(
ds2(AdS6) + f3(σ,P )((η − P)2ds2(S2) + dη2 + dσ 2)

)
.

(2.10)

In these two limits the metric is regular since it is given by a warped product AdS6 × R4 with 
warpings which are in general non-singular. The regularity of the solution at the boundary is 
confirmed by the regularity of the dilaton, which is finite.
7
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Let us now consider the limit σ → ±∞. We find that the leading contribution to the potential 
V̂ = σV is given by the mode with k = 1—see eq. (2.7). The asymptotic behaviours are,

σV (σ,η) ∼ ∂2
η (σV ) ∼ sin

(π

P
η
)

e− π
P

|σ | , σ 2∂σ V ∼ |σ | sin
(π

P
η
)

e− π
P

|σ | ,


 ∼ σ−1e− 2π
P

|σ | . (2.11)

Using these relations and up-to constant factors we have

σ → ±∞ ds2 = |σ |ds2(AdS6) + sin2
(π

P
η
)

ds2(S2) + dη2 + dσ 2. (2.12)

A similar analysis for the dilaton leads to

σ → ∞ e−� ∼ e− π
P

|σ |
√|σ | . (2.13)

Performing the change of coordinates |σ | → − log r with r small and positive, the metric and 
the dilaton display the behaviour of a (p, q)-five-brane for σ → ±∞, as described in [50].

The behaviour of this family of AdS6 backgrounds at σ = 0 is characterized by some singu-
larities in the fluxes. These can be studied by looking at the conserved Page charges. As we are 
going to discuss, the quantization conditions will lead to certain constraints on the possible Rank 
functions R(η).

2.4. Page charges

In this section, we study the conserved and quantised charges associated with the background 
in eq. (2.1). We use the solutions described in Section 2.2. As we find below, imposing quan-
tisation on the charges restricts the function R(η) in eq. (2.4) to be a convex piece-wise linear 
function.

In our conventions, the volume element on the sphere is defined by Vol(S2) = sin θdθ ∧ dϕ

and we write the field strengths

H3 = dB2 = (∂σ f4dσ + ∂ηf4dη
)∧ Vol(S2), (2.14)

F̂1 = F1 = dC0 = ∂σ f7dσ + ∂ηf7dη,

F̂3 = F3 − B2 ∧ F1 = d (C2 − C0B2) = [∂σ (f5 − f7f4) + ∂η(f5 − f7f4)
]∧ Vol(S2).

We have defined the Page fluxes F̂ = F ∧ e−B2 . The associated charges and the flux of H3 must 
be quantised. Using units such that α′ = gs = 1 we have,

QDp,Page = 1

(2π)7−p

∫
�8−p

F̂8−p.

This implies,

QNS5 = 1

4π2

∫
M3

H3, QD7 =
∫
�1

F̂1, QD5 = 1

4π2

∫
�3

F̂3. (2.15)

The cycles M3, �1, �3 are defined as,

M3 = [η,S2],with σ = ±∞, �1 = [η],with σ = 0, �3 = [σ,S2],with η = fixed.
8
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We allow for a large gauge transformation of B2 → B2 +�d�2. This does not change the charge 
of NS or the D7 brane charge, but as we discuss below has an interesting effect on the charge of 
D5 branes. Let us study the three possible quantised charges.

NS-five branes. Calculating explicitly for the NS five branes charge,

πQNS5 = 1

4π

∫
M3

H3 =
∫

dη∂ηf4(σ = ±∞, η) = f4(±∞,P ) − f4(±∞,0). (2.16)

Using now the expressions developed in Appendix C, in particular eqs. (C.5)-(C.6), we find that 
the number of NS-five branes satisfies

QNS5 = 4

9π
P. (2.17)

Note that we have included both the contribution of the NS-five branes coming from σ = +∞
and those coming from σ = −∞. This result suggests that we have P NS-five branes. Now we 
study the D7 brane charge.

D7 branes. For the charge of D7 branes we find,

QD7 =
∫
�1

F̂1 =
P∫

0

dη∂ηf7(0, η) = f7(0,P ) − f7(0,0). (2.18)

We use the identities developed in Appendix C, in particular the identity in eq. (C.8). We have

QD7 = 9
(
R′(0) −R′(P )

)
. (2.19)

This implies that the function R must start and finish as a linear function. That is, in the first 
interval 0 ≤ η ≤ 1 we must have R = N1η and in the last interval P − 1 ≤ η ≤ P we must have 
R = NP (P − η), both with integer slopes. As a consequence of this, the number of D7 branes is

QD7 = 9(N1 + NP−1). (2.20)

D5 branes. For the charge of D5 branes we find, after the large gauge transformation of B2 →
B2 + �Vol(S2),

πQD5 = 1

4π

∫
�3

F3 − (B2 + �d�2) ∧ F1 =
∞∫

−∞
dσ∂σ [f5 − f7(f4 + �)] =

−ε∫
−∞

∂σ [f5 − f7(f4 + �)] +
∞∫

ε

∂σ [f5 − f7(f4 + �)] (2.21)

We need to evaluate the quantity f5 − f7(f4 + �) at σ → ±∞ and σ = ±ε and finally take 
ε → 0. These calculations are streamlined in Appendix C, see eqs. (C.9)-(C.10). We find that the 
combination f5 − f7(f4 + �) vanishes at σ → ±∞. This leaves us with

πQD5 = f5 − f7(f4 + �)
]−ε

(2.22)

ε

9
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evaluated at some fixed value of the η-coordinate. Using the expressions in eqs. (2.8), (C.8) and 
(C.10) we find

QD5 = 4

π

(
R(η) −R′(η)

(
η − 9�

4

))
. (2.23)

This suggests that in each interval the function R(η) must be linear, with integer slope and 
intercept. In fact, if we consider the interval [k, k + 1] and choose the large gauge transformation 
to be interval-dependent 9� = 4k, the rank function is

R(η) = Nk + (Nk+1 − Nk)(η − k), η ∈ [k, k + 1], (2.24)

we find that the combination in eq. (2.23) gives

QD5 = 4

π
Nk. (2.25)

We interpret this as indicating that at each interval, labelled by integer values [k, k + 1] of the 
η-coordinate, we have a gauge group SU(Nk). The role of the large gauge transformation is to 
count the D5 charge, without taking into account the charge of D5 induced on the D7 branes.

The values of the Page charges calculated in eqs. (2.17), (2.25) fail to be integers. This can be 
remedied by a rescaling, detailed below.

Rescaling. We would like to write our solution in such a way that all the charges are properly 
quantised. This can be achieved with a redefinition of V and by rescaling the coordinates (σ, η). 
These redefinitions introduce overall factors in the fields of eq. (2.1). If we define V = νVold
and (σ, η) = μ(σ, η)old we have the background solving all the equations of motion and SUSY 
preservation is

ds2
st =μds2

old, e−2� = ν2

μ2 e−2�old , B2 = μB2 old , C0 = ν

μ
C0 old, C2 = νC2 old. (2.26)

Here, we choose ν = π
4 and μ = 9π

4 , the fully rescaled configuration is written in eq. (C.11). In 
this background we get

QNS5 = P (2.27)

QD7[k, k + 1] = R′′(k) = (2Nk − Nk+1 − Nk−1),

QD7,total = (N1 + NP−1) =
P∫

0

R′′(η)dη,

QD5[k, k + 1] = R(η) −R′(η)(η − �) = Nk , QD5,total =
P∫

0

R dη.

In summary, the quantisation of charges, forces us to choose the Rank function in the boundary 
condition of the PDE, R(η) of the form,

R(η) =

⎧⎪⎪⎨⎪⎪⎩
N1η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)(η − l) l ≤ η ≤ l + 1, l := 1, ....,P − 2

N (P − η) (P − 1) ≤ η ≤ P.
P−1

10
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The total number of branes in the system is given by eq. (2.27). Let us now discuss the associated 
quantum field theories.

The presence of branes in the configuration, in this case D7 sources, indicates that for our 
background to be trustable, we need to consider large values of P , being the D7 flavour branes 
separated enough.

3. Quantum field theory

Let us briefly discuss some general aspects of five-dimensional QFTs. These theories have 
symmetries that constrain enough the dynamics, allowing analytical treatment of various phe-
nomena. Some of the 5d N = 1 gauge field theories admit a UV fixed point. Conversely, the 
fix point is deformed by a relevant operator O ∼ ∫

d5x 1
g2 F 2

μν and in the IR we find a weakly 
coupled gauge theory description [46]. These fixed points are isolated and strongly coupled [68], 
[69]. The algebra of minimal 5d SUSY field theories contains eight supercharges and can be 
derived from the algebra of 6d N = (1, 0) theories; the five-dimensional SUSY algebra is also 
related to the algebra of N = 2 theories in four dimensions. This requires an SU(2)R global 
R-symmetry. The representations of the algebra include a hyper-multiplet, with four real scalars 
and a spinor; a vector multiplet consisting of a vector field, a real scalar and a spinor and a tensor 
multiplet containing a two form, a real scalar and a fermion (this multiplet is dual to a vector 
multiplet).

The theories have Coulomb branches, parametrised by the real scalar in the vector multiplet 
and Higgs branches described by VEVs for the scalars in the hyper-multiplet. There exists a 
beautiful construction of these branches, based on compactifications of M-theory on three-folds, 
see for example [70]. The geometric description is very general as it captures SCFTs that do not 
have a weakly-coupled description. Also, the description using compactifications of M-theory is 
powerful enough to determine the UV flavour symmetry, as this can enhance compared to the 
effective description as a gauge theory. See for example [71].

On the other hand, the Lagrangian-based description is useful as a description of the IR dy-
namics because some symmetry protected quantities can be calculated and compared against 
holographic calculations at the UV fix point. Examples of exact calculations include the dimen-
sion of ‘string-like’ operators [53] in short representations of the global symmetry group (hence 
protected under RG flow). Other examples include the value of the Partition function for the the-
ory on a five-sphere and Wilson loops. Thanks to the power of localisation–for a review relevant 
to the present QFTs see [75]–the calculation of these SUSY observables is reduced to finite di-
mensional integrals, see the papers [76], [77], [78], [56], [55]. Below, we perform holographic 
computations that can be put in correspondence with the results of these works. Other calcula-
tions, like the dimension of spin-2 operators in the CFT constitute genuine predictions of the 
holographic set-up [72].

To begin with, let us state clearly the correspondence between our Type IIB solutions in Sec-
tion 2 and the quiver low energy description of the UV SCFTs.

3.1. Correspondence between our backgrounds and SCFTs

Now, we put in correspondence our Type IIB backgrounds for particular solutions with five 
dimensional quiver field theories, that at high energies flow to super-conformal points (holo-
graphically described by the backgrounds). Our proposal is that for a given rank function R(η)
11
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R(η) =

⎧⎪⎪⎨⎪⎪⎩
N1η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)(η − l) l ≤ η ≤ l + 1, l := 1, ....,P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.

The background constructed following equations (2.1), (2.4)-(2.8) is the holographic dual of the 
strong coupling CFT to which a linear quiver theory flows. The gauge group of the linear quiver is 
�P−1

i=1 SU(Ni), the ranks given by the numbers Nk (the rank function evaluated at integer values 
of the η-coordinate) and each gauge nodes are connected by bifundamental hypermultiplets. 
There are also flavour groups SU(ci) for certain colour groups. This is indicated by the second 
derivative of the rank function. The rank of the kth flavour group is

ck = (2Nk − Nk+1 − Nk−1), (3.1)

as indicated by eq. (2.27).
Below, we develop an expression for the Holographic Central Charge, a quantity that measures 

a weighted version of the internal volume of the manifold in eq. (2.1). After that, we discuss some 
‘example case studies’. These examples encapsulate many of the subtleties we wish to discuss 
in this work. We display the rank function, the associated quiver, the Fourier coefficients and the 
Potential function V̂ . We compute the Holographic Central Charge for our case studies finding 
that the result is proportional to the Free Energy of the associated SCFTs, in the limit P → ∞, 
in which our backgrounds are trustable.

3.2. Holographic central charge

We will calculate the holographic central charge. For a definition appropriate to the type of 
backgrounds we deal with, we refer the reader to [81], [82]. Briefly summarised, for a holo-
graphic background with dilaton, dual to a d + 1 QFT,

ds2 = α(r, �θ)
(
dx2

1,d + β(r)dr2
)

+ gij (r, �θ)dθidθj , e−4�, (3.2)

the weighted internal volume and subsequent definition of the holographic central charge are,

Vint =
∫

d �θ
√

det[gij ]e−4�αd, H = V 2
int ,

chol = dd

GN

βd/2 H
2d+1

2

(H ′)d
(3.3)

We apply this formula to the background of eq. (2.1)

ds2 = f1

[
ds2(AdS6) + f2ds2(S2) + f3(dσ 2 + dη2)

]
, e−4� = f 2

6 . (3.4)

We set with d = 4 and use Poincaré coordinates for AdS6,

ds2(AdS6) = r2dx2
1,4 + dr2

r2 , α = f1(σ, η)r2, β = 1

r4 , (3.5)

Vint = N r4, N =
∫

dθ dϕ dσ dη sin θ f 4
1 f2f3f6,

which leads to the expression for the holographic central charge,

chol = 1 N , (3.6)

16GN

12
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where GN = 8π6. Computing N explicitly we find,

N = 28π

3

P∫
0

dη

∞∫
−∞

dσ σ 3∂σ V ∂2
ηV . (3.7)

Expanding the derivatives of V in terms of V̂ as in (C.2) and using the expressions in eq. (C.1), 
we are able to express N as an integral of a double series. Using the orthogonality of the Fourier 
basis and integrating in η reduces the double series to a single one. Performing the integral over 
σ and inserting the final result in eq. (3.6) gives,

chol = 1

2π4

∞∑
k=1

ka2
k . (3.8)

This quantity is proportional the Free Energy of the SCFT (calculated in the holographic limit of 
large P ), evaluated using matrix models methods in [55]. In particular, we find that the propor-
tionality factor relating F in [55] and chol in eq. (3.8) is,

F = −π6

4
chol . (3.9)

In what follows, we present three case study examples. For each of them we write the rank 
function R(η), calculate the Fourier coefficients and the Potential V̂ (σ, η) in eq. (2.7). We draw 
the associated 5d quiver field theory and evaluate the holographic central charge in eq. (3.8). 
After that, in Section 3.6 and in Appendix D we discuss a generic expression.

3.3. Example 1

Let us consider a gauge theory, which we call T̃N,P . The gauge theory is described (in the IR) 
by the quiver

N 2N 3N . . . PN(P-1)N

The rank function associated to this case is,

R(η) =
{

Nη 0 ≤ η ≤ (P − 1)

N(P − 1)(P − η) (P − 1) ≤ η ≤ P.

The number of D7-branes can be read either from R′′ = NPδ(η− (P −1)), or from (2.27) which 
gives QD7 = PN . The number of D5 branes at the positions η = 1, 2, 3, etc, is the value of R(η)

at those points. This coincides with the ranks of the first, second, third node, etc. In total, we 
have 

∫ P

0 Rdη = NP(P−1)
2 D5 branes. We also have a total of P NS-five branes. Given the rank 

function above, the coefficient ak as defined in eq. (2.7) is,

ak = (−1)k+1 NP 3

k3π3 sin

(
kπ

P

)
. (3.10)

Using eq. (2.7) and the definition of trilogarithms,2 this leads to the potential V̂ = σV (σ, η)

2 In general, a polylogarithm of order s is defined as Lis (z) =∑∞
k=1

zk

s .

k

13
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V̂ = NP 3

2π3 Re
(

Li3(−e− π
P

(|σ |+i+iη)) − Li3(−e− π
P

(|σ |−i+iη))
)

, (3.11)

which in the large P limit and for N = 1 matches the one in B.3.1, which is obtained translating 
[56] in our formalism.

The holographic central charge for this theory is obtained using eq. (3.8)

chol = N2P 6

8π10

(
2ζ(5) − Li5(e

2πi
P ) − Li5(e

− 2πi
P )
)

.

This result should only be trusted for long quivers. Hence, we analyse this result for P → ∞. To 
leading order we find,

chol = N2P 4

2π8 ζ(3)

(
1 + O

(
logP

P 2

))
. (3.12)

Using eq. (3.9), we compare this result with that of the Free Energy calculated in Section B of 
[55]. Importantly, the scaling with the number of D5 and NS five branes is the same.

3.4. Example 2

We consider a second example, known as the +P,N theory. The rank function is defined as,

R(η) =

⎧⎪⎪⎨⎪⎪⎩
Nη 0 ≤ η ≤ 1

N 1 ≤ η ≤ (P − 1)

N(P − η) (P − 1) ≤ η ≤ P.

We have N D7-branes localised at η = 1 and N D7 branes at η = P − 1. This follows from 
R′′ = Nδ(η − 1) + Nδ(η − (P − 1)). There are a total of (P − 1)N D5-branes, as calculated by ∫ P

0 Rdη. The number comes from N D5 branes for each integer value of η between [1, P − 1]. 
This is equivalent to a linear quiver field theory,

N N . . . NN

P-1

Using eq. (2.7) we calculate

ak = NP 2

k3π3 sin

(
kπ

P

)(
1 + (−1)k+1

)
, (3.13)

which leads to the potential

V̂ =NP 2

2π3 Re
(
Li3(e

− π
P

(|σ |−iη+i)) − Li3(−e− π
P

(|σ |−iη+i))

+Li3(−e− π
P

(|σ |−iη−i)) − Li3(e
− π

P
(|σ |−iη−i))

)
. (3.14)

Notice that this potential in the large P limit, matches the one in Appendix B.3.2. The holo-
graphic central charge, using eq. (3.8) and the Fourier coefficient in eq. (3.13) is
14
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chol = N2P 4

32π10

(
31ζ(5) + 8Li5(−e

2πi
P ) + 8Li5(−e− 2πi

P ) − 8Li5(e
2πi
P ) − 8Li5(e

− 2πi
P )
)

.

Using that this result is only trustable for long quivers, we analyse it for P → ∞. To leading 
order we find,

chol = 7N2P 2

4π8 ζ(3) +
(

1 + O

(
logP

P 2

))
. (3.15)

Using eq. (3.9), we compare this result with that of the Free Energy calculated in Section A of 
[55]. Importantly the scaling with the number of D5 and NS five branes is the same.

3.5. Example 3

This example is inspired on the material in Section F of [55]. The rank function is,

R(η) =

⎧⎪⎪⎨⎪⎪⎩
[N − jK + (j − 1)]η 0 ≤ η ≤ 1

(N − jK) + (j − 1)η 1 ≤ η ≤ K

N − η K ≤ η ≤ N

We have two stacks of D7 branes. The first stack is located at η = 1 and contains (N − jK) D7 
branes. The second stack, located at η = K has j D7 branes. This is read from

R′′ = (N − jK)δ(η − 1) + jδ(η − K).

There are P NS-five branes and 1
2 [N(N − 1) + jK(K − 1)] D5 branes in the background.

The quiver associated with this rank function is,

N-jK N-jK+j-1 . . . N-K N-K-1 . . . 2 1

j

Note that the rank of the lth-gauge group is precisely the value of the rank function at η = l. The 
Fourier coefficient am computed with eq. (2.7) is

am = N2

m3π3

[
(N − jK) sin

(πm

N

)
+ j sin

(
πKm

N

)]
. (3.16)

Using eq. (2.7), this leads to the potential

V̂ = N2

4π3 Re
[
j
(
Li3(e

− π
N

(|σ |−iK+iη)) − Li3(e
− π

N
(|σ |+iK+iη))

)
+(N − jK)

(
Li3(e

− π
N

(|σ |−i+iη)) − Li3(e
− π

N
(|σ |+i+iη))

)]
. (3.17)

Below we will compare the Holographic Central Charge computed using the background with a 
field theoretical result for this SCFT.

The present example is more demanding than the previous ones. Applying equation (3.8) with 
the Fourier coefficients in eq. (3.16) gives a very involved result. Consider the case for which 
K = lN and N → ∞ keeping j finite. To leading order in N we find,
15
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chol = N4

2π8

[ j2

2π2

(
ζ(5) − Li5(e2iπl) + Li5(e−2iπl)

2

)
+ (j l − 1)2ζ(3) +

2j (1 − j l)

π

(
Li4(eilπ ) − Li4(e−ilπ )

2i

)]
. (3.18)

Using eq. (3.9), this result should be compared with equation (4.61) of [55].

3.6. General case

After these examples, we discuss the general case. Since the procedure is identical to the one 
in the previous section, we relegate all the details about this section to Appendix D. The most 
general rank function is given by

R(η) =

⎧⎪⎪⎨⎪⎪⎩
N1η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)(η − l) l ≤ η ≤ l + 1, l := 1, ....,P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P,

which correspond to the following quiver theory

N1 N2 . . . NP−1NP−2

c1 c2

. . .

cP−1cP−2

where ci are defined in (3.1). By convention N0 = NP = 0. The Fourier coefficients ak are given 
by

ak = P 2

π3k3

P−1∑
s=1

cs sin

(
kπs

P

)
(3.19)

and define the following potential

V̂ = P 2

2π3

P−1∑
s=1

csRe
(

Li3(e
− π(|σ |+iη−is)

P ) − Li3(e
− π(|σ |+iη+is)

P )
)

. (3.20)

Interestingly, the holographic central charge can still be computed analytically in the generic 
case, and leads to the following result:

chol = − P 4

4π10

P−1∑
l=1

P−1∑
s=1

clcsRe
(

Li5(e
i

π(l+s)
P ) − Li5(e

i
π(l−s)

P )
)

. (3.21)

The details about this computation and the comparison of the general result with the previous 
three example, can all be found in appendix D. The trustability of these generic backgrounds is 
also subject to the P → ∞ and well-separated flavour groups condition. Since the rank function 
starts and ends in zero, this result matches exactly the general SCFT free energy (3.17) in [55].

We now discuss another observable that can be used as a check of the correspondence pro-
posed here.
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3.7. Wilson loops

In this section we discuss Wilson loops, focusing on those in antisymmetric representations. 
We follow the lead of [56]. As discussed there the relevant object to compute these Wilson loops 
is a probe D3 brane extended over AdS2 (inside AdS6) and the two sphere. We also need to 
switch electric and magnetic fluxes f̂2 on the brane. Writing

ds2(AdS6) = − cosh2 ρ ds2(AdS2) + dρ2 + sinh2 ρ ds2(S3),

f̂2 = FeVol(AdS2) +FmVol(S2)

where the D3-brane sits at ρ = 0. The metric-flux induced on the brane and the D3-brane action 
SD3 = SBI + SWZ are

ds2
ind = f1ds2(AdS2) + f1f2ds2(S2),

F = B2 + f̂2 = FeVol(AdS2) + (f4 +Fm)Vol(S2) ,

SBI =
∫ √

e−2� det[g +F] = 4πTD3vol(AdS2)

√
f6(f

2
1 +F2

e )
(
f 2

1 f 2
2 + (f4 +Fm)2

)
,

SWZ = −TD3

∫
Cp ∧ e−F = −4πTD3vol(AdS2) (f5 − f7(f4 +Fm)) , (3.22)

where vol(AdS2) = −2π is the (renormalized) AdS2 volume. We follow [56] for the particular 
values of Fe, Fm needed to implement SUSY on the D3 probe while the position of the D3 
in (η, σ) is not fixed by any condition, which means that we have a two-parameters family of 
solutions. Calculating the Legendre transform of the D3 action, we find for the VEV of the 
Wilson loop

log〈W 〉 = SD3 − δSD3

δFe

∼ σ 2∂σ V = (σ∂σ V̂ − V̂ ) (3.23)

In what follows, we work up to a proportionality factor. Using the expressions in the appendices, 
in particular eqs. (C.1), (D.2), (D.3), we have

− log〈W 〉 ∼ V̂ − σ∂σ V̂ =
∞∑

k=1

ak sin

(
kπη

P

)
e− kπ |σ |

P

(
1 + kπ |σ |

P

)
(3.24)

= P 2

4π3

P−1∑
s=1

cs

∞∑
k=1

(
1

k3 + π |σ |
Pk2

)
Re
[
e− kπ

P
(|σ |+i(η+s)) − e− kπ

P
(|σ |+i(η−s))

]
which is

log〈W 〉 ∼ − P 2

4π3

P−1∑
s=1

csRe
[
Li3(e

− π
P

(|σ |−i(η+s))) − Li3(e
− π

P
(|σ |−i(η−s)))

+π |σ |
P

(
Li2(e

− π
P

(|σ |−i(η+s))) − Li2(e
− π

P
(|σ |−i(η−s)))

)]
. (3.25)

As in the previous sections, this expression should be compared with results on the SCFT side, 
derived with matrix model methods. Such comparison is meaningful only for large values of P .

Notice that, for the small s and P − s, the large P limit changes the contribution on the 
summation
17
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s
P

→ 0 − P 2

4π3 cssP Im

[
π |σ |
P

log(1 − e− π
P

(|σ |+iη)) − Li2(e
− π

P
(|σ |+iη))

]
,

s
P

→ 1
P 2

4π3 cs(P − s)P Im

[
π |σ |
P

log(1 + e− π
P

(|σ |+iη)) − Li2(−e− π
P

(|σ |+iη))

]
.

While if s/P is finite, no simplification occurs. Let us see these formulas working explicitly in 
our examples of Sections 3.3, 3.4, 3.5.

Example 1. In this case cs = NPδs,P−1. It is convenient to introduce the notation

z = −ξe
iπ
P , w = −ξe− iπ

P , ξ = e−π
(|σ |+iη)

P , |σ | = −P

π
log |ξ |. (3.26)

Evaluating explicitly eq. (3.25), we find

− log〈W 〉 ∼ −NP 3

4π3 Re
[
Li3(z) − Li3(w) + log |ξ |(Li2(z) − Li2(w))

]
. (3.27)

Now we expand the expression above for P → ∞. In this expansion it is important to keep in 
mind that |σ |

P
, η

P
are taken to be fixed, hence the expansion acts on the e

iπ
P factors. This leads to,

log〈W 〉 ∼ −NP 2

π2

[
Im(Li2(−ξ)) + log |ξ |Arg(1 + ξ)

]
. (3.28)

This result is to be compared (for N = 1) with that in eq. (4.36) of the paper [56].

Example 2. In this case we have cs = N(δs,1 + δs,P−1). The calculation proceeds similarly as 
that described above, in particular, similar definitions as those of eq. (3.26) are used and eq. (3.25)
gives,

− log〈W 〉 ∼ −NP 2

4π3 Re
[
Li3(ξe− iπ

P ) − Li3(ξe
iπ
P ) + Li3(−ξe

iπ
P ) − Li3(−ξe− iπ

P )
]

+NP 3

4π3 log |ξ |Re
[
Li2(ξe− iπ

P ) − Li2(ξe
iπ
P ) + Li2(−ξe

iπ
P ) − Li2(−ξe− iπ

P )
]
.

As in all previous holographic calculations, they should be trusted only for P → ∞, keeping 
fixed |σ |

P
, η

P
. This gives

− log〈W 〉 ∼ NP

4π2 Im [Li2(−ξ) − Li2(ξ)] − NP

π2 log |ξ | [Arg(1 − ξ) − Arg(1 + ξ)
]
.

(3.29)

Example 3. We describe briefly this example as it is a combination of the two examples above, 
with the interesting subtlety of the scaling K = lN , as we did in Section 3.5). After some algebra 
we find the expression for P → ∞,

− log〈W 〉 ∼ N2

π2 (j l − 1)
[
ImLi2(ξ) − log |ξ |Arg(1 − ξ)

]
(3.30)

−N2j

2π3

[
log |ξ |Re(Li2(ξe−ilπ ) − Li2(ξ̄ e−ilπ )) + Re(Li3(ξe−ilπ ) − Li3(ξ̄ e−ilπ ))

]
.

These examples show that our calculations (valid for the SCFT) are capturing the same Physics 
as the matrix models do, for the IR-QFT description of the system [56], [55], [78].
18
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Let us now change direction and discuss some solutions of the PDE (2.2), (2.4) that do not 
satisfy the boundary conditions in eq. (2.5). In some cases of interest, we provide a physical 
understanding of these backgrounds.

4. Some special solutions

So far we have discussed the solutions obtained in Section 2.2 where the potential V was 
expanded in terms of its Fourier modes as in equation (2.7). In this section we expand V in 
Taylor series and we keep only some terms in the expansion (the purpose of this will become 
clear below). In fact, consider the case σ ≥ 0 for simplicity, we can write

V (σ,η) =
∞∑

k=1

ak

e− kπσ
P

σ
sin

(
kπη

P

)

=
∞∑

k=1

∞∑
n=0

∞∑
l=0

(−1)l+nak

l!(2n + 1)!
(

kπ

P

)2n+l+1

σ l−1η2n+1. (4.1)

Each term in the sum, weighted by a power of 
(

kπ
P

)
, is a solution to eq. (2.2) even if it does not 

satisfy the boundary conditions in (2.5). We refer to them as a ‘partial polynomial solution’.
This potential can actually be generalised considering the most general solution to equations 

(2.2), (2.4) without imposing the boundary conditions in eq. (2.5). In fact, consider partial poly-
nomials of the form

V =
∞∑

n=1

� n−1
2 �∑

k=0

(−1)kσ n−2k−2η2k

[
an

(
n

2k + 1

)
η + bn

(
n − 1

2k

)]
. (4.2)

These solutions are obtained by taking the generic potential V̂ (σ, η) that according to eq. (2.4)
is a harmonic function. The most general power series solution can be written as the real or 
imaginary part of a polynomial in the complex variable z = σ + iη. The expression in eq. (4.2)
is the most general potential V , where the coefficients bn are given by the real part of zn−1 while 
the an are the imaginary part of zn. Indeed, notice that the potential in eq. (4.1) is a particular case 
of that in eq. (4.2) with bn = 0, as one can check after exchanging n → k and 2n + l + 1 → n.

These backgrounds do not have a good interpretation in terms of a long linear quiver, however 
some truncations contained in eq. (4.2) reproduce previously know solutions. In particular, we 
find below the Abelian and non-Abelian T-dual of the unique SUSY AdS6 solution in massive 
type IIA [47].

4.1. Type IIA Abelian T-dual

The Abelian T-dual of the D4/D8 system in type IIA can be obtained by setting an = 0 in 
eq. (4.2) and truncating the series to n = 4. The b2 term is a constant and is set to zero. We have 
to set b3 = 0 for the background obtained in Type IIB to have the U(1) symmetry necessary to 
T-dualise back to massive IIA. Summarising, the solution is defined by the potential

VAT D = b1

σ
+ b4

(
3η2 − σ 2

)
. (4.3)

In order to match the conventions of [54] with L = 1, we set
19
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b1 = 81

512
, b4 = − m

486
. (4.4)

We also perform the change of coordinates

σ = 27

8
W 2 cosα , η = 9

2
ψ , W = (m cosα)−

1
6 . (4.5)

After these redefinitions we find the fluxes and dilaton,

F1 = −mdψ , H3 = dψ ∧ Vol(S2) ,

F3 = − 5

8W 2 sin3 ψdψ ∧ Vol(S2), e−� = 3 sinα

4W 4 (4.6)

while the metric is

ds2 = W 2

4

[
9ds2(AdS6) + sin2 αds2(S2)

]
+ 4

W 2 sin2 α

(
dψ2 + W 4

4
sin2 αdα2

)
. (4.7)

4.2. Type IIA non-Abelian T-dual

Another solution of interest is the non-Abelian T-dual of the type IIA D4/D8 system. This was 
well studied in [48], [80], [54]. This background can be obtained from eq. (4.2) truncating the 
expansion to n = 4, with bn = 0. Conversely, by considering the partial polynomials in eq. (4.1)
and truncating to k = 4. We can set a2 = 0 without loosing generality. The solution of [48], [80], 
[54] is recovered imposing a3 = 0. The potential for this case reads

VNAT D = a1η

σ
+ a4

(
4ησ 2 − 4η3

)
. (4.8)

Comparing with eq. (4.3), we notice that d
dη

VNAT D ∼ VAT D . In order to match the conventions 
of [54], we set

a1 = 1

128
, a4 = m

432
. (4.9)

We also perform the change of coordinates

η = r , σ = 3

4
W 2 cosα , (4.10)

where W is defined in eq. (4.5). The fluxes and dilaton are given by

F1 = −mrdr − 5

8W 2 sin3 αdα , B = 2r3

9�
Vol(S2) , e−� = 3 sinα

4W 4

√
�

F3 = 2

9

r2 sin3 α

16�W 2 cosα
(sinαdr − 10r cosαdα) ∧ Vol(S2), � = r2 +

(
W sinα

2

)4

(4.11)

whilst the metric reads3:

ds2 = W 2

18

[
9ds2(AdS6) + r2

�
sin2 αds2(S2)

]
+ 8

9W 2 sin2 α

(
dr2 + W 4

4
sin2 αdα2

)
.

(4.12)

3 Notice that in this case, in order to better match the conventions of [54], it is necessary to perform a rescaling of the 
background as in (A.1) with a2 = 9 .
2
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4.3. What do we learn: SCFTs resolving gravity singularities

The SUSY AdS6 background in massive IIA [47] is the holographic dual to the five dimen-
sional USp(2N) theory with one anti-symmetric multiplet and Nf < 8 hypermultiplets. The 
T-dual version of that solution, discussed in Section 4.1, is holographically dual to the same 
CFT, in virtue of T-duality producing an exactly equivalent background from the perspective of 
a string.

The same reasoning cannot be applied to non-Abelian T-duality, that should be thought of as a 
solution generating technique (in contrast to a symmetry of the string theory). A natural question 
is then how to interpret holographically the solution generated by non-Abelian T-duality. This 
problem was tackled in a variety of examples in diverse dimensions. See for example [37], [32], 
[84], [83]. The idea in those papers is that given a background dual to a well defined CFT, a 
particular zoom-in (or a Penrose-like scaling) reveals the presence of a solution obtained via 
non-Abelian T-duality. In our case we find analogous behaviour.

In fact, the analysis of the background in eqs. (4.11)-(4.12) reveals that it is highly singular. 
The solution is not trustable and a holographic interpretation is difficult to propose. For example, 
given the potential in eq. (4.8), we can calculate the associated Rank function, that in this case is

R(η) = ∂σ V̂ |σ=0 = ∂σ (σV ) |σ=0 = − m

108
η3. (4.13)

With such rank function we would have various problems, for example in defining gauge groups. 
Also, there is no bound for the η-coordinate, which would suggest an infinite number of gauge 
groups. This together with the various singularities of the background in eqs. (4.11)-(4.12) make 
a holographic interpretation quite hard to propose.

Nevertheless, there is a cure for these problems. Indeed, consider a 5d SCFT described by a 
rank function and potential function V (σ, η) in eqs. (2.7) and (4.1). This potential (and a suitable 
Rank function) describe holographically a well defined SCFT. Scaling this potential, keeping 
terms below order O( 1

P 5 ), and restricting to the case in which a3 = 0, we find the potential 
function V (σ, η) in eq. (4.8), characterising the non-Abelian T-dual of the SUSY AdS6 back-
ground of massive IIA. This suggests the idea that the backgrounds obtained using non-Abelian 
T-duality, should be thought of as ‘slices’ (or a zoom-in) of a more general solution. The infinite 
family of solutions in eqs. (2.7), (4.1) have a nice holographic dual, but each ‘slice’ does not, 
hence requiring a completion. This completion is what the full solutions in eqs. (2.7) and (4.1)
provide for the solution in eq. (4.8). For the case at hand, this was proposed in [54]. In Section 4.2
we reproduce this, easily expressing it within our formalism.

5. Conclusions

Let us start with a brief summary of the contents of this work.
Building on the work of [67], in Section 2, we run the algorithm described in the introductory 

section and wrote a family of Type IIB configurations. This infinite family of backgrounds is 
fully described in terms of a potential function V (σ, η) solving a linear PDE with appropriate 
boundary conditions. Our choice of boundary conditions is motivated by the quantisation of 
the Page charges and allows for a clean identification with a quiver field theory. This quiver is 
UV completed by a SCFT, dual to our Type IIB background. We analyse the behaviour of the 
solutions at special points in the (σ, η)-plane, revealing the presence of ‘colour-branes’ dissolved 
in fluxes and ‘flavour branes’ present in the background as a localised physical object.
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In Section 3 we write a precise correspondence between the SCFT, the Rank function used as 
boundary condition and the string background. Pedagogical examples are discussed giving de-
tailed expressions for the Rank function, the potential function V (σ, η) and various observables. 
These protected observables act as tests of the correspondence we proposed. General expressions 
for the potential function, the central charge and the Wilson loops VEVs, are provided for the 
reader wishing to attempt their own example as a particular case.

In Section 4, special backgrounds that do not strictly satisfy the healthy boundary conditions 
are discussed. In particular the singular background obtained by non-Abelian T-duality of the 
Brandhuber-Oz solution in massive IIA. We gave a field theoretical mechanism to cure the sin-
gular behaviour, by embedding it into healthy solutions as those discussed in the other sections.

This paper suggests various lines for future development. First of all, we have so far consid-
ered the holographic dual of balanced quivers only. However, it seems possible to generalized our 
formalism to larger class of SCFT by changing the electrostatic problem considered in Fig. 1. 
In particular, it looks like there is a close correspondence between the electrostatic problem for 
∂2
η (σV )4 and the one considered in [55] on the CFT side.

Moreover, it would be good to match various other results obtained for different observables 
as the ones in [53], [79], [73]. It might be the case that some calculations are easier to perform 
using the language developed in this work. Also, finding string duals to theories that can be 
geometrically engineered, but do not have a nice expression in terms of an IR quiver field theory, 
appears as a very interesting goal. More generally, in the five-dimensional case we encounter at 
least two descriptions of the same system. Perhaps, it would be useful to develop an alternative 
language for the case of 3d N = 4 SCFTs along the lines of this work. Conversely, an alternative 
formulation in the case of half-maximal SCFTs in dimensions 1,2,4 along the lines of [30], 
[50] might illuminate some aspects of them. It should be interesting to profit from these higher 
dimensional SCFTs for the construction of duals to more phenomenological QFTs, by adding 
a deformation in the string dual that induces interesting low energy dynamics. Or similarly, to 
define new lower dimensional SCFTs by compactification, following for example [85]. We hope 
to report on these issues in the near future.
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Appendix A. General comments on the backgrounds

The AdS6 background (2.1) is equivalent, up to an S-duality transformation, to the one pre-
sented in [67] (see also [66]). Differently to previous classifications of AdS6 vacua (see [74,50]) 
the starting point of [67,66] is a four-dimensional flat-space class with a round sphere on the 
internal space. The round sphere geometrically realises the SU(2) R-symmetry which is required 
by AdSd solutions with N = 2 and d > 4, while the AdS6 external space can be obtained by 
imposing Poincaré coordinates on the metric and that all the fluxes and warping function pre-
serve the external-space isometries. With these assumptions, all the Bianchi identities and the 
BPS equations reduces to a single partial differential equation, which is exactly (2.2).

In this section we show how to derive (2.1) from the AdS6 solution presented in [67], let’s 
summarize that solution here. First of all, the supergravity equations of motion are invariant 
under the following rescaling of the metric and the fluxes:

ds2
10 → a2ds2

10 , B2 + iC2 → a2(B2 + iC2) , (A.1)

and in particular we rescale the solution in [67] with a2 = 3. This is a convenient choice since it 
corresponds to c6 = 1 in [50], as we will see in the next section. The background therefore reads:

ds2
10 = e

�
2 f1(σ, η)

[
ds2(AdS6) + f2(σ, η)ds2(S2) + f3(σ, η)(dσ 2 + dη2)

]
(A.2)

with

f1 = 2
√

2σ

(
3
∂σ V

∂2
ηV

)1/4

, f2 = ∂σ V ∂2
ηV

3

, f3 = ∂2

ηV

3σ∂σ V
, (A.3)

while the fluxes are

B2 = 4

⎛⎝σ∂σ V
(
∂ηV ∂2

σηV − 3∂2
ηV ∂σ V

)



− V

⎞⎠Vol(S2),

C2 = 2

9

(
η − σ∂σ V ∂2

σηV




)
Vol(S2),

C0 = −
3∂σ V

(
∂ηV + σ∂2

ησ V
)

+ σ∂ηV ∂2
ηV

18

(
3∂σ V

(
σ 2(∂2

ηV )2 +
(
∂ηV + σ∂2

ησ V
)2
)

+ σ∂2
ηV (∂ηV )2

) , (A.4)

e2� =
108

(
3∂σ V

(
σ 2(∂2

ηV )2 +
(
∂ηV + σ∂2

ησ V
)2
)

+ σ∂2
ηV (∂ηV )2

)2

σ 2∂σ V ∂2
ηV 


.

Now, in order to get (2.1), we need to perform an Sl(2, R) transformation, which is parame-
terized by the matrix

S =
[
p q

r s

]
, ps − rq = 1.

The action of this duality keeps invariant the Einstein frame metric ds2
10,E = e− �

2 ds2
10 and F5, 

while it maps the other fields as following:
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τ = C0 + ie−� −→ pτ + q

rτ + s
, (A.5)(

C2
B2

)
−→ S

(
C2
B2

)
.

It is immediate to notice that the Sl(2, R) transformation we are looking for is a S-duality

S =
[

0 −1
1 0

]
,

indeed, in terms of the old fields, the one in (2.1) are given by

B2,new = C2,old , C2,new = −B2,old , (A.6)

C0,new = − C0,old

C2
0,old + e−2�old

, e−�new = e−�old

C2
0,old + e−2�old

.

Appendix B. Map to DGKU

In this section we will show how it is possible to map the background in (2.1) to the DGKU 
solution [50]. Let’s start by reviewing it.

B.1. The DGKU solution

The DGKU solution parameterizes the Riemann surface in the internal space with a complex 
coordinate w, and it is entirely specified once two holomorphic functions A±(w) are given. The 
metric

ds2
10 = e

�
2 f1(w, w̄)

[
ds2(AdS6) + f2(w, w̄)ds2(S2) + f3(w, w̄)dwdw̄

]
(B.1)

is given by the following warping functions

f1 = |∂wG|√1 − R2

κ
√

R
, f2 = 1

9

(
1 − R

1 + R

)2

, f3 = 4κ4R

|∂wG|2(1 − R)2 (B.2)

where

G = |A+|2 − |A−|2 + 2ReB , κ2 = −∂w∂w̄G = |∂wA−|2 − |∂wA+|2 ,

∂wB = A+∂wA− −A−∂wA+ , R + R−1 = 2 + 6κ2G
|∂wG|2 ,

(B.3)

while the fluxes are given by:

τ = C0 + ie−� = − i
∂w(A+ +A−)∂w̄G − R∂w̄(Ā+ + Ā−)∂wG
∂w(A+ −A−)∂w̄G + R∂w̄(Ā+ − Ā−)∂wG

,

B2 + iC2 =2

3
i

((
1 − R

1 + R

)2
∂wA+∂w̄G + ∂w̄Ā−∂wG

3κ2 − Ā− −A+

)
Vol(S2) .

(B.4)

We have set the AdS6 radius equal to one. Notice that the entire solution is invariant under 
reparameterization if the complex coordinate w → z(w), which means that in principle we can 
use one of the holomorphic functions (or a combination of them) as a definition of the complex 
coordinate.
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B.2. Matching the solutions

In this section we will show how to match (2.1) with (B.2)-(B.4). By equating the warping 
functions f1, f2 we get the following conditions

G = 4σ 2∂σ V ,
κ2

|∂wG|2 = 1

2σ 2

∂2
ηV


 − 3∂2
ηV ∂σ V

. (B.5)

Since the warping f3 is actually coordinate dependent, we need to keep also the metric factor to 
make a comparison f3ds2(C). Using the definition of R we have that

2

3

κ2

G
dwdw̄ = ∂2

ηV

3σ∂σ V
(dσ 2 + dη2) (B.6)

and therefore, from equations (B.5) we can write

|∂wG|2dwdw̄ =
((

∂ηG
)2 + (∂σG)2

)
(dσ 2 + dη2) . (B.7)

It is now immediate to notice that if we define a complex variable z = σ − iη this consistency 
relation is automatically solved. Since the DGKU solution is defined up to a change of complex 
variables, we can consistently identify w = z from now on.

Let’s now consider the flux from (2.1)

B2 + iC2 = 2

3
i

(
6V − i

3
η − iσ∂σ V

(− 1
3 − 6i∂ηV

)
∂2
σηV + 18i∂σ V ∂2

ηV




)
Vol(S2) ,

(B.8)

and compare it with (B.4) we have that the two expressions match if we set

A+ + Ā− = i

3
η − 6∂σ (σV ) . (B.9)

Notice that σV = V̂ is the harmonic function defined in (2.4) and, since it is also real, it defines 
just one holomorphic function V(z)

σV = V(z) + V(z) (B.10)

as already noticed in (2.9). Using this condition and the fact that A+ is holomorphic while Ā−
is anti-holomorphic, we have that (B.9) completely defines A± in terms of σV and the new 
coordinate z:

A± = ∓ z

6
− 6∂z(σV ) . (B.11)

With these definitions one can check that the axion-dilaton expressions are identical.
Notice that ∂z̄A± = 0 if ∂z̄∂zV̂ = 0 and viceversa. In the solution we consider in the body of 

the text however we have that V̂ is not harmonic everywhere, indeed using (C.1) we have

(∂2
σ + ∂2

η )V̂ = δ(σ )R(η) (B.12)

which is due to the presence of the charge distribution at σ = 0. This means that in σ = 0 the 
functions A± are not holomorphic anymore; this is reflected in (2.9), where we have a different 
complex function depending on the sign of σ . In the next section we will see, however, that it is 
possible to extend the solutions in [50] across σ = 0 in a natural way.
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In order to compare the two backgrounds we had to impose w = z. As a consequence, we have 
that the two holomorphic functions A± are defined just in term of one holomorphic function (i.e. 
V) and the coordinate z. This means that if we perform a generic change of complex coordinate 
z → 6F(z) we get the general expression for (B.11):

A± = ∓F − ∂z(σV )

∂zF
, (B.13)

which defines two generic holomorphic functions in terms of two generic holomorphic functions.

B.3. Examples

In the DGKU formalism, the branes are given by the poles of the holomorphic functions 
A±(w), which are all localized on the real axis of the Poincaré half-plane, and the value of the 
residue of ∂wA(w) at the pole is the charge of the (p, q)-brane. In this section, we will see how 
solutions with three and four poles are mapped in terms of our potential V . We refer to [55] for 
the specific form of the solutions we are considering.

B.3.1. TN theory
The TN theory is given by a three pole solutions

A± = 3N

8π
(± log(w − 1) + (∓1 − i) log(w + 1) + i log(2w)) , (B.14)

where the poles are at w = 1, 0, −1. The coordinate z = σ − iη is defined as

z = −3(A+ −A−) = 9N

4π
log

(
1 + w

1 − w

)
⇒ w = coth

(
2πz

9N

)
. (B.15)

Notice that the imaginary axis for w becomes the interval η ∈ (0, 9N/4) at σ = 0, while the real 
axis, which is the space-time boundary, is mapped as following

w ∈ (−1,1) ⇒ η = 9

4
N , σ ∈ (−∞,∞) ,

w ∈ (−∞,−1) ∪ (1,∞) ⇒ η = 0 , σ ∈ (−∞,∞) .

So the space-time boundary in the w coordinate is consistently mapped in the space-time bound-
ary for σ and η.

The potential is defined by the following equation

∂z(σV ) = −A− +A+
12

= − iN

16π
log
(
e− 4πz

9N + 1
)

(B.16)

which can be integrated leading to

V = 9iN2

64π2σ

(
Li2

(
−e− 4π(|σ |+iη)

9N

)
− Li2

(
−e

−4π(|σ |−iη)
9N

))
= 9N2

32π2σ

∞∑
k=1

(−1)k+1

k2 sin

(
4kπ

9N
η

)
e− 4kπ

9N
|σ | ; (B.17)

notice that we set to zero the integration constant as required by the boundary conditions and we 
had to introduce the absolute value of σ since the Li2(w) is well defined when |w| < 1. Notice 
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that if we define P = 9N
4 we have that (B.17) is exactly of the form (2.7), and we can easily 

identify the coefficient of the Fourier expansion:

ak = P 2

18π2

(−1)k+1

k2 . (B.18)

We can go a bit further and in particular match this case with the example in section 3.3. 
Indeed if we set N = 1 in (3.11) and we take the large P limit, with the caveat that η and σ can 
be of order P , we get a potential which is proportional to (B.17) up to some numerical factors. 
We are following the steps that lead from eq. (D.5)to eq. (D.6) for an approximate potential. 
This is not surprising, indeed the gauge group for the TN theory is exactly the one in 3.3 with an
SU(2) flavor instead of the first gauge group with group. However, the contribution obtained by 
changing the quiver is subleading in the large P limit and it can be ignored.

B.3.2. +MN theory
The +MN theory is a four-poles solution where the poles are at w = 0, 23 , 12 , 1. The holomor-

phic functions are given by

A± = 3

8π
(±M(log(3w − 2) − logw) + iN(log(2w − 1) − log(w − 1))) (B.19)

and, similarly to the previous example, we can define z = σ − iη from them:

z = −3(A+ −A−) = 9M

4π
(log(w) − log(3w − 2)) ⇒ w = 2

3

(
1

3e
4πz
9M − 1

+ 1

)
.

(B.20)

We also have

∂z(σV ) = −A− +A+
12

= iN log
(− tanh

( 2πz
9M

))
16π

(B.21)

which can be integrated obtaining

V = 9iMN

64π2σ

(
Li2

(
−e− 4π(|σ |+iη)

9M

)
− Li2

(
e− 4π(|σ |+iη)

9M

)
− Li2

(
−e− 4π(|σ |−iη)

9M

)
+ Li2

(
e− 4π(|σ |−iη)

9M

))
= 9MN

32π2σ

∞∑
k=1

1 − (−1)k

k2 sin

(
4πk

9M
η

)
e− 4πk

9M
|σ | (B.22)

where again we have set to zero the integration constant and regularized the Li2. Again, this 
potential is exactly of the form (2.7) once we identify P = 9M

4 and

ak = MP

8π2

1 − (−1)k

k2 . (B.23)

Following the steps that lead from eq. (D.5)to eq. (D.6) for an approximate potential, we 
notice that the potential (B.22) matches exactly the one in (3.14) in the large P limit, up to an 
overall numerical factor.
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Appendix C. Some useful identities

In this appendix we quote some useful calculations. We work with the two potentials defined 
by eq. (2.3) and find,

V̂ =
∞∑

k=1

ak sin

(
kπη

P

)
e− kπ |σ |

P , (C.1)

∂σ V̂ = −
∞∑

k=1

ak

(
kπ

P

)
sg(σ ) sin

(
kπη

P

)
e− kπ |σ |

P ,

∂ηV̂ =
∞∑

k=1

ak

(
kπ

P

)
cos

(
kπη

P

)
e− kπ |σ |

P ,

∂σ ∂ηV̂ = −
∞∑

k=1

ak

(
k2π2

P 2

)
sg(σ ) cos

(
kπη

P

)
e− kπ |σ |

P ,

∂2
η V̂ = −

∞∑
k=1

ak

(
k2π2

P 2

)
sin

(
kπη

P

)
e− kπ |σ |

P ,

∂2
σ V̂ =

∞∑
k=1

ak

(
kπ

P

)(
kπ

P
− 2δ(σ )

)
sin

(
kπη

P

)
e− kπ |σ |

P .

Also, the following are useful,

∂σ V = σ∂σ V̂ − V̂

σ 2 , ∂ηV = ∂ηV̂

σ
, ∂2

ηV = ∂2
η V̂

σ
(C.2)

∂σ ∂ηV = σ∂η∂σ V̂ − ∂ηV̂

σ 2 , ∂2
σ V = 2V̂ − 2σ∂σ V̂ + σ 2∂2

σ V̂

σ 3 .

We use these results are used in the analysis of the behaviour of the field strengths and potentials 
as required in the Page charges, see Section 2.4.

C.1. The field B2

We will use the identities above (C.1)-(C.2), to study the B2 field. Ignoring the volume of the 
two-sphere Vol(S2), the expression is,

9

2
B2 = η − (σ∂σ V )(∂σ ∂ηV )



= η − (σ 2∂σ V̂ − σ V̂ )(σ∂σ ∂ηV̂ − ∂ηV̂ )


σ 4 .

σ 4
 = σ
[
(σ∂σ ∂ηV̂ − ∂2

η V̂ )2 + (∂2
η V̂ )(3σ∂σ V̂ − 3V̂ − σ 2∂2

σ V̂ )
]

(C.3)

Replacing the expansions in eqs. (C.1) we find

σ 4
 = σ
(
M2 +NS

)
,

M =
∞∑

ak

(
k2π2

P 2

)(
sin

(
kπη

P

)
+ |σ | cos

(
kπη

P

))
e− kπ |σ |

P ,
k=1
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N =
∞∑

k=1

ak

(
k2π2

P 2

)
sin

(
kπη

P

)
e− kπ |σ |

P ,

S =
∞∑

k=1

ak sin

(
kπη

P

)
e− kπ |σ |

P

(
3 + 3kπ |σ |

P
+ k2π2σ 2

P 2

)
.

The reader than check that for σ → ±∞ we have

σ
 = a2
1e−2 π |σ |

P
π4

P 4 . (C.4)

Putting all together, we have for B2,

9

2
B2 − η = PQ


σ 4 , (C.5)

P =
∞∑

k=1

ak sin

(
kπη

P

)
σe− kπ |σ |

P

(
1 + kπ |σ |

P

)
,

Q =
∞∑

k=1

ak cos

(
kπη

P

)(
kπ

P

)
e− kπ |σ |

P

(
1 + kπ |σ |

P

)
.

Evaluating the field in σ → ∞ we find

B2(±∞, η) = f4(±∞, η) = 2

9

[
η − P

π
sin
(πη

P

)
cos

(πη

P

)]
. (C.6)

C.2. The field C0

We have the expression,

C0

18
= ∂ηV + σ∂σ ∂ηV

1 + σ∂2
ηV

3∂σ V

=
∞∑

k=1

ak cos

(
kπη

P

)
e− kπ |σ |

P

⎡⎣ kπ

Pσ
−

kπ
Pσ

+ k2π2

P 2 sgn(σ )

1 + C
B

⎤⎦ , (C.7)

C = σ 2
∞∑

k=1

ak

(
k2π2

P 2

)
sin

(
kπη

P

)
e− kπ |σ |

P ,

B = 3
∞∑

k=1

ak sin

(
kπη

P

)
e− kπ |σ |

P

(
1 + kπ |σ |

P

)
.

We find that at σ = ε for very small ε—and using eq. (2.8) 2πkak = −Pck we have

C0(0, η) = f7(0, η) = 9
∞∑

ck

(
kπ

P

)
cos

(
kπη

P

)
= 9∂ηR(η). (C.8)
k=1
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C.3. The combination C2 − B2C0

We study now the combination appearing when calculating the Page charge for D5 branes. 
Ignoring the volumes of the two-sphere we have,

C2 − B2C0

4
=V − η∂ηV + σ∂σ V − ησ∂η∂σ V

1 + σ∂2
ηV

3∂σ V

. (C.9)

σ(C2 − B2C0)

4
=V̂ − η∂ηV̂ +

⎡⎢⎣σ∂σ V̂ − ησ∂η∂σ V̂ − V̂ + η∂ηV̂

1 + σ 2∂2
η V̂

3σ∂σ V̂ −3V̂

⎤⎥⎦
=

∞∑
k=1

ak

[
sin

(
kπη

P

)
−
(

kπη

P

)
cos

(
kπη

P

)]
e− kπ |σ |

P

(
1 − 1 + kπ |σ |

P

1 + C
B

)
.

The expressions for C, B have been defined in eq. (C.7). We can now evaluate,

(C2 − B2C0)
]σ=−ε

σ=ε
= f5 − f7f4

]σ=−ε

σ=ε

= 8
∞∑

k=1

ak

kπ

P

[
sin

(
kπη

P

)
−
(

kπη

P

)
cos

(
kπη

P

)]
.

Using eq. (C.7) we find after the large gauge transformation,

(C2 − (B2 + �)C0)
]σ=−ε

σ=ε
= f5 − f7(f4 + �)

]σ=−ε

σ=ε
=

8
∞∑

k=1

ak

kπ

P

[
sin

(
kπη

P

)
−
(

kπ

P

)
cos

(
kπη

P

)
(η − 9�

2
)

]
. (C.10)

C.4. The background after rescaling

After the rescaling in eq. (2.26), the full configuration reads

ds2
10,st = f1(σ, η)

[
ds2(AdS6) + f2(σ, η)ds2(S2) + f3(σ, η)(dσ 2 + dη2)

]
,

e−2� = f6(σ, η),

B2 = f4(σ, η)Vol(S2), C2 = f5(σ, η)Vol(S2), C0 = f7(σ, η), (C.11)

f1 = 3π

2

√
σ 2 + 3σ∂σ V

∂2
ηV

, f2 = ∂σ V ∂2
ηV

3

, f3 = ∂2

ηV

3σ∂σ V
,


 = σ(∂σ ∂ηV )2 + (∂σ V − σ∂2
σ V )∂2

ηV .

f4 = π

2

(
η − (σ∂σ V )(∂σ ∂ηV )




)
,

f5 = π

2

(
V − σ∂σ V



(∂ηV (∂σ ∂ηV ) − 3(∂2

ηV )(∂σ V ))

)
,

f6 = 12
σ 2∂σ V ∂2

ηV

(3∂σ V + σ∂2V )2 
, f7 = 2

(
∂ηV + (3σ∂σ V )(∂σ ∂ηV )

3∂σ V + σ∂2V

)
.

η η
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Appendix D. Generic expressions for the central charge and potential

Let us perform an analysis for the holographic central charge of a generic CFT with rank 
function given by,

R(η) =

⎧⎪⎪⎨⎪⎪⎩
N1η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)(η − l) l ≤ η ≤ l + 1, l := 1, ....,P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.

Using eq. (2.7), we compute

kπak =
P∫

0

R(η) sin

(
kπη

P

)
= (D.1)

P

kπ

[
− N1 cos

(
kπ

P

)
+ NP−1 cos

(
kπ(P − 1)

P

)
+

P−2∑
s=1

Ns cos

(
skπ

P

)
− Ns+1 cos

(
k(s + 1)π

P

)]
+

P 2

k2π2

[
N1 sin

(
kπ

P

)
+ NP−1 sin

(
kπ(P − 1)

P

)
+

P−2∑
s=1

(Ns − Ns+1)

(
sin

(
kπs

P

)
− sin

(
kπ(s + 1)

P

))]
.

By inspection one finds that the second line of eq. (D.1) vanishes. The final value of the generic 
ak is,

ak = P 2

π3k3

P−1∑
s=1

cs sin

(
kπs

P

)
, (D.2)

where one can explicitly compute

cs = (2Ns − Ns−1 − Ns+1), (D.3)

is the rank of flavor group at that node, and N0 = NP = 0. For the examples in section 3 we find:

(Ex1): cs = NPδs,P−1, to compare with eq. (3.10).
(Ex2): cs = N(δs,1 + δs,P−1), to compare with eq. (3.13).
(Ex3): cs = (N − jK)δs,1 + jδs,K , to compare with eq. (3.16).

Since the coefficient cs does not depend on k, we can compute the central charge from eq. (3.8)
in full generality:

chol = − P 4

8π10

∞∑
k=1

P−1∑
l=1

P−1∑
s=1

clcs

(
ei

kπ(l+s)
P + e−i

kπ(l+s)
P − ei

kπ(l−s)
P − e−i

kπ(l−s)
P

k5

)
= (D.4)

− P 4

8π10

P−1∑ P−1∑
clcs

(
Li5(e

i
π(l+s)

P ) + Li5(e
−i

π(l+s)
P ) − Li5(e

i
π(l−s)

P ) − Li5(e
−i

π(l−s)
P )

)
.

l=1 s=1
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The terms for which l = s produce the 2ζ(5) that we found in the case studies. Depending on 
the coefficients cl, cs (conversely, depending on the quiver SCFT) the limit of large P will take 
different expressions.

The reader can check that with the identifications for cs below eq. (D.2), the values of the 
central charge for Examples 1, 2—see eqs. (3.12) and (3.15), are easily recovered. Recovering the 
result for Example 3 in eq. (3.18) is slightly subtler, as it requires the leading order expansions:

2ζ(5) − Li5(e
2πi/N ) − Li5(e

−2πi/N ) ∼ 4π2ζ(3)

N2 + O(1/N3),

Li5(e
iπ(lN+1)

N ) + Li5(e
−iπ(lN+1)

N ) − Li5(e
iπ(lN−1)

N ) − Li5(e
−iπ(lN−1)

N )

∼ 2πi

N

(
Li4(e

iπl) − Li4(e
−iπl)

)
+ O(1/N2).

This can be interpreted as the fact that in the large N limit the kinks that are at finite distance 
from the boundaries can be interpreted as squashed to it, indeed looking at the general expression 
for the Free Energy (3.17) in [55] the ζ(3) and Li4 contributions are obtained from the value of 
the gauge node at the boundaries.

General potential V̂ . We can compute a generic expression for the potential function V̂ (σ, η) as 
defined in eq. (2.7). Indeed, using this together with the generic expression in eq. (D.2) we find,

V̂ = P 2

4π3

P−1∑
s=1

∞∑
k=1

cs

k3

[
Wk + W̄ k − Zk − Z̄k

]
, (D.5)

= P 2

2π3

P−1∑
s=1

csRe (Li3(W) − Li3(Z))

W = e− π(|σ |+iη−is)
P , Z = e− π(|σ |+iη+is)

P .

Using the definition of cs for each example it is immediate to check that the expressions in 
eqs. (3.11), (3.14) and (3.17) are obtained by specialising eq. (D.5).

To close this study for generic expressions of chol and V̂ , let us discuss an approximate ex-
pression for V̂ . Coming back to the expression in eq. (2.7) we may be interested in considering 
the sum of modes up to a maximum value kmax = 
 = lP . We scale P → ∞ and l → 0 such 
that 
 is finite and large. In this way the quotient kπ

P
is always very close to zero, being its largest 

value lπ .
Consider now the potential V̂ for the Example 1. Using that sinx ∼ x for small values of x, 

we have

V̂1 ≈

∑

k=1

(−1)k+1 NP 3

k3π3 sin

(
kπ

P

)
sin

(
kπη

P

)
e− kπ |σ |

P ≈ (D.6)


∑
k=1

(−1)k+1 NP 2

2ik2π2

[
e− kπ

P
(|σ |−iη) − e− kπ

P
(|σ |+iη)

]
=

iNP 2

2π2

[
Li2(−e− π

P
(|σ |−iη)) − Li2(−e− π

P
(|σ |+iη))

]
.

This last expression should be compared with the expression (B.17). Following the same proce-
dure for the potential of the Example 2, we find
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V̂2 ≈ iNP

2π2

[
Li2(e

− π
P

(|σ |+iη) − Li2(−e− π
P

(|σ |−iη))

+ Li2(−e− π
P

(|σ |−iη) − Li2(−e− π
P

(|σ |+iη))
]
. (D.7)

This expression should be compared with that in eq. (B.22).
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