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Brain diseases, including both neurodegenerative diseases and mental disorders, rep-
resent the third largest healthcare problem in developed countries, after cardiovascular
disorders and cancer [1]. The majority of human brain diseases have a multifactorial etiol-
ogy and are characterized by different molecular alterations that act in synergy during the
disease development [2]. In the last decade, the advancement of omics technologies, such
as genomics, transcriptomics, proteomics, epigenomics, metabolomics, miRNomics, and
lipidomics, offers a great contribution to the identification of novel molecular pathways,
and to understand pathophysiological alterations underlying brain diseases. However,
molecular profiling, which makes it possible to deepen the understanding of these disor-
ders, has shown some limitations. Therefore, the analysis and integration of data derived
from massively parallel technologies will allow the simultaneous identification of molecular
alterations at different levels (transcript, gene, microRNA, protein, lipid, cellular metabolic
processes), incorporating the available information, and thus contributing to providing
novel insights into the mechanisms underlying human brain diseases [3].

This Special Issue gathers four reviews and six original research articles highlighting
the potentialities of omics approaches in different brain diseases. Some authors reviewed
the applications and impact of microfluidics technology on research in Alzheimer’s dis-
ease (AD), as an alternative platform to understand disease-associated pathways and
mechanisms [4]. Regarding age-related disorders, another outstanding review discussed
the emerging field of NADomics, the high-throughput study of nicotinamide adenine
dinucleotide (NAD+) and its related metabolites. As the NADome (NAD+ metabolome)
represents an important biomarker for aging and neurodegenerative diseases, the authors
suggested that NADomics can be used to elucidate the pathobiology of these disorders
and identify potential therapeutic strategies [5]. Moreover, Perrone and collaborators
aimed to review the most recent advancements in genomics, metabolomics, and proteomics
related to sudden infant death syndrome (SIDS), which is characterized by an unexpected
death during the sleeping period, typically occurring in infants under 1 year of age, and is
associated with defects in the portion of the brain that controls breathing. These authors
suggested that a model integrating different data from biomarkers and omics analyses may
represent a valuable tool to identify a risk profile of SIDS in newborns [6]. Finally, another
review addressed the role of zinc and its related proteins as important modulators of the
epigenome in different chronic diseases, discussing their interaction with the chromatin [7].

Concerning neuropsychiatric disorders, an integrative multi-omics analysis identified
four categories of key genes involved in the pathogenesis of schizophrenia (SCZ), thus
offering new insights to better understand the complexity and regional heterogeneity of
SCZ [8]. Moreover, another study suggested that the disruption of DGCR8-dependent
microRNA biogenesis is crucial for the 22q11.21 copy number variant (CNV) genes in-
volved in psychiatric disorders for late fetal cortical development [9]. MiRNomics has
also been analyzed by some authors who described a panel of CSF-enriched miRNAs as a
possible tool to identify and characterize new molecular signatures in different neurological
diseases [10].

Life 2021, 11, 1202. https://doi.org/10.3390/life11111202 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-2730-5974
https://doi.org/10.3390/life11111202
https://doi.org/10.3390/life11111202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11111202
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11111202?type=check_update&version=2


Life 2021, 11, 1202 2 of 3

In regards to proteomics, Drastichova and collaborators performed a study in a rat
brain after withdrawal from morphine, revealing that alterations in protein expression
and phosphorylation are associated with synaptic plasticity and cytoskeleton organization,
thus contributing to long-term neuroadaptations induced by drug use and withdrawal [11].
Additionally, another study used a combined approach of mass spectrometry-based label-
free quantitative proteomics (LFQ) and bioinformatics to investigate the protective effect
of Orthosiphon stamineus leaf proteins (OSLPs) in SH-SY5Y cells induced by H2O2 insults
that have been prevalently reported in different neurological disorders [12]. Finally, some
authors demonstrated the utility of chloride adducts for the examination of human brain
lipidomics, as no single platform can evaluate lipidomics as a whole [13].

In conclusion, brain diseases, such as neurodegenerative diseases and mental disor-
des, need integrative understanding that draws a more reliable hypothesis for pathology,
which can be accomplished by an in-depth study of molecular information [14–16]. How-
ever, molecular profiling, which makes it possible to understand brain diseases, has been
relatively insufficient [17–20]. This Special Issue can provide important information to
help gain an in-depth understanding of the molecular aspects of diverse brain diseases.
Furthermore, it is believed that multi-omics analysis should be used for brain diseases
because multi-omics technology includes multiple molecular profiling, metadata, and big
data processing with informatics and computer science, so it is possible to provide new
macroscopic, as well as microscopic, insights for understanding brain diseases [21–23].
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