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Abstract

In order to evaluate the effect of a policy or treatment with pre- and post-treatment
outcomes, we propose an approach based on a transition model, which may be ap-
plied with multivariate outcomes and accounts for unobserved heterogeneity. This
model is based on potential versions of discrete latent variables representing the
individual characteristic of interest and may be cast in the hidden (latent) Markov
literature for panel data. Therefore, it can be estimated by maximum likelihood in
a relatively simple way. The approach extends the Difference-in-Difference method
as it is possible to deal with multivariate outcomes. Moreover, causal effects may be
expressed with respect to transition probabilities. The proposal is validated through
a simulation study, and it is applied to evaluate educational programs administered
to pupils in the 6th and 7th grades during their middle school period. These pro-
grams are carried out in an Italian region to improve non-cognitive skills. We study
if they impact also on students’ cognitive skills in Italian and Mathematics in the
8th grade, exploiting the pre-treatment test scores available in the 5th grade. The
main conclusion is that the educational programs aimed to develop non-cognitive
abilities help the best students to maintain their higher cognitive abilities over time.
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1 Introduction

In many applications, especially in education, the main focus is on the causal effect

of a treatment or policy on a certain individual characteristic of interest, such as the

ability in certain subjects. Even in absence of experimental data, a context in which this

evaluation may be performed getting rid of different types of confounding factors is when

pre- and post-treatment outcomes are available. In this context, it is natural to apply the

Difference-in-Difference (DiD) method, which is also very popular in other fields such as

economics (for a review, see Imbens and Wooldridge, 2009; Lechner, 2011; Lee, 2016).

Taking inspiration from the standard DiD method, we propose a novel causal infer-

ence approach based on potential versions of discrete latent variables that represent the

individual characteristic of interest. It is based on a model that we name Causal Latent

Transition (CLT) and that, in reduced form, is equivalent to a latent Markov (LM) model

for panel data with initial and transition probabilities depending on individual covariates

(Bartolucci et al., 2014).

The main features that characterize the CLT model are:

(i) multivariate outcomes: the model can be used in a multivariate setting where the

same individual characteristic, represented by the latent variables, is measured by

more response variables that may also have a different nature;

(ii) unobserved heterogeneity: the individuals are clustered in a finite number of ho-

mogenous subpopulations identified by the states of the latent variables that, by

definition, are not directly observable. Specific causal effects are defined and esti-

mated for each of these subpopulations.

To better understand the CLT model, it is useful to recall the principal characteris-

tics of LM models for panel data (Bartolucci et al., 2013). These models have a structure

closely related to that of hidden Markov models for time-series (MacDonald and Zucchini,

2016) as a sequence of discrete latent variables is assumed to exist for every individual.

Each sequence follows a Markov chain of first order with a number of states that is

left unspecified, thus providing more flexibility with respect to the corresponding models

formulated on the basis of continuous latent processes (Bartolucci et al., 2022). In the
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application motivating this paper these latent variables represent the individual charac-

teristic or personal trait of interest, which is a certain type of cognitive ability. For every

time occasion and conditionally on the corresponding latent variable, each response vari-

able measuring an individual characteristic is conditionally independent of the response

variables at different time occasions. As such, the CLT model may also be adopted with

more than two occasions of observation, although in the application we use to illustrate

the proposal only pre- and post-treatment outcomes are available.

Unlike the standard LM formulation, we adopt potential latent variables for the pro-

posed CLT model to enhance causal interpretations. In particular, causal effects are

expressed in terms of logits for the transition probabilities between states of these latent

variables. However, it is also possible to express these effects in terms of differences be-

tween probabilities or directly as effects on the response variables in a flexible way. The

idea of using potential versions of the latent variables in formulating an LM model has

already been exploited in the model proposed by Bartolucci et al. (2016) that, in turn, ex-

tends the causal latent class model proposed by Lanza et al. (2013). In these approaches,

model estimation is based on propensity score weights (Rosenbaum and Rubin, 1983;

Rosenbaum, 2020). In contrast, in the current proposal, estimation of the causal effects is

performed by directly including the covariates in the latent process so that certain types

of unobserved confounding may be eliminated, as in the DiD approach. Moreover, the

CLT model allows analyzing sequential stage developments from the estimated transition

probabilities.

The model parameters are estimated by a rather standard Expectation-Maximization

(EM) algorithm that makes use of suitable recursions (Baum et al., 1970; Dempster et al.,

1977; Welch, 2003) so that the overall approach is relatively easy to apply even when

extended to more than two time occasions. In particular, available statistical packages,

such as LMest (Bartolucci et al., 2017) in the open source software R (R Core Team, 2022),

may be directly used with minor adjustments; the code developed for the application is

available at the GitHub repository: https://github.com/penful/CausalLT.

The proposed approach is validated by a simulation study and illustrated by an ap-

plication aimed to analyze the effect of a certain treatment on the Human Capital (HC)

3

https://github.com/penful/CausalLT


development, which comprises skills and expertises acquired through the investment in

education and whose returns are identified by higher individual expected earnings (Becker,

1994). The HC has traditionally been defined in terms of Cognitive Skills (CSs), namely

innate and acquired abilities and competencies usually associated with learning and prob-

lem solving tasks, such as reasoning, remembering, speaking, and understanding (see,

among others, Heckman et al., 2014; OECD, 2015). However, researchers and practition-

ers in education have recently become more and more interested in measuring and studying

Non-Cognitive Skills (NCSs) that, differently from the CSs, are defined as personality re-

sources linked to motivation in learning, relational capabilities, emotional stability, and

autonomy in pursuing personal objectives. NCSs potentially affect goal-directed efforts,

healthy social relations, adequate judgement and decision-making; these skills can be im-

proved by means of suitable educational programs (Heckman and Kautz, 2012; Heckman

et al., 2014). A vast literature demonstrates that educational programs can increase the

NCSs and that an increase in the NCSs produces a consistent improvement in the CSs.

Therefore, in our application, we consider this hypothesis rising from the HC literature,

and we address the following scientific question: “Do NCSs programs causally determine

an improvement of the CSs?”. To address this question, we rely on data coming from a

study based on a sample of primary and middle class students of the Autonomous Province

of Trento (named PAT) in Italy over three consecutive school years (from 2015 to 2018) in

which students’ cognitive abilities are measured at two occasions. During this period, the

PAT implemented a plan based on educational activities tailored to reinforcing the NCSs

of students. Data are referred to the schools that voluntarily agreed to this program so

that we dispose of a sample involving treated and untreated PAT students. The effects of

these programs are evaluated by considering Italian and Mathematics test scores derived

from administrative surveys managed by the Italian National Institute for the Evaluation

of the Educational System (INVALSI). Merging these data with those deriving from ad-

ministrative surveys carried out by the PAT, we dispose of many covariates that can be

suitably exploited.

The remainder of the paper is structured as follows. In Section 2, after a brief review

of the LM model with covariates, we introduce the proposed CLT model, whose main
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features are discussed in Section 3. In Section 4 we show the results of the simulation

study, some details of which are reported in the Supplementary Information (SI) file. In

Section 5 we introduce the application illustrating the NCSs and educational programs,

and we describe the data. In Section 6 we report the empirical results of the CLT model

and those obtained with the DiD method for the data at issue. Additional details and

results related to the application are shown in the SI file. Finally, Section 7 provides main

conclusions.

2 Causal latent transition model

In the following, after a brief review of the LM model with covariates in the structural

component model, we describe the proposed CLT model, illustrating first its assumptions,

its possible extensions, and finally the estimation method of the model parameters.

2.1 Preliminaries

In the context of a panel study and with reference to individual i, i = 1, . . . , n, and occa-

sion t, t = 0, . . . , T − 1, we observe a vector of r response variables Y it = (Yi1t, . . . , Yirt)
′

that may be of different types. In the applicative context that will be illustrated in Section

5 these variables are continuous, but they may be categorical or discrete with an arbi-

trary number of levels. For every individual i we also consider a vector of time-varying

covariates X it.

In order to model panel data having the structure described above, the LM approach

(Bartolucci et al., 2013, 2014) relies on individual sequences of discrete latent variables

that are collected in the vectors H i = (Hi0, . . . , Hi,T−1)′, i = 1, . . . , n. Every latent

variable Hit may assume a value from 1 to k; this amounts to define k latent states,

or equivalently latent clusters or classes, with individuals in the same state having the

same behavior. The latent variables affect the distribution of the corresponding vector

of response variables so that each Y it is conditionally independent of the other response

vectors Y is, s 6= t, given Hit. The conditional distribution of Y it given Hit may be of

any type as in a finite mixture model (McLachlan and Peel, 2000). Analogously to our
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proposal, mixture models assume that the sample is generated by different subpopulations

or clusters thus extending the model-based clustering methods also known as unsupervised

learning (Früuhwirth-Schnatter et al., 2019). When the response variables are continuous,

it is natural to rely on the multivariate Gaussian distribution with mean depending on

the latent state and common variance-covariate matrix (Bouveyron et al., 2002), that is,

Y it|Hit = h ∼ Nr(µh,Σ), h = 1, . . . , k, i = 1, . . . , n, t = 0, . . . , T − 1, (1)

where latent state h is a realization of Hit. In certain formulations with categorical

response variables, it is also assumed that the random variables of each vector Y it are

conditionally independent given Hit.

Every sequence H i follows a first-order Markov chain with initial and transition prob-

abilities depending on the covariates. In particular, we adopt the following multinomial

logit parametrization for the initial probabilities:

log
p(Hi0 = h|X it = x)

p(Hi0 = 1|X it = x)
= x′βh, h = 2, . . . , k. (2)

For the transition between states, the following multinomial logit parametrization is as-

sumed for t = 1, . . . , T − 1:

log
p(Hit = h|Hi,t−1 = h̄,X it = x)

p(Hit = h̄|Hi,t−1 = h̄,X it = x)
= x′γ h̄h, h̄, h = 1, . . . , k, h 6= h̄. (3)

Estimation of these LM models typically relies on the maximum likelihood method.

Some details about this aspect are provided in the following, after having introduced the

assumptions of the proposed CLT model.

Concluding this preliminary section, it is worth recalling that the use of discrete la-

tent variables that characterizes LM models has certain advantages with respect to using

continuous latent variables. Among these advantages, we can mention the flexibility, be-

cause with the proper number of latent states it is possible to approximate any continuous

distribution adequately. Moreover, this approach is particularly useful when the interest

is in clustering units in homogenous groups; within the LM approach this clustering is
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dynamic, in the sense that the same unit can be assigned to different groups across time.

For a deeper discussion on these points, see Bartolucci et al. (2022).

2.2 Model assumptions

In the following, we formulate the CLT model with explicit reference to two time occasions

(T = 1), corresponding to the specific context of application of interest. Moreover, as in

the standard DiD method, we make use of baseline covariates that are time-constant and

are collected in the vectors X i. We assume that the individual-specific response variables

depend on a vector H i = (Hi0, Hi1)′ of two latent variables having a discrete distribution

with support {1, . . . , k}. Moreover, we assume conditional independence between the

response variables given the latent process at different time occasions.

As mentioned above, we define a specific conditional distribution of the responses for

each latent state. In our application, in particular, we rely on assumption (1), where the

conditional means µh, h = 1, . . . , k, and the variance-covariance matrix Σ are parameters

whose estimates permit to interpret the latent states, as will be clear in Section 6. Obvi-

ously, the Gaussian distribution is a natural choice given that the test scores considered in

the application are measured on a continuous scale. However, the present approach may

be extended to deal with response variables having a different nature, even categorical,

and then other distributions may be easily included; see Bartolucci et al. (2013).

We conceive the CLT model considering potential versions of the latent variables Hit.

In particular, underlying every Hit we assume the existence of the potential latent variable

H
(g)
it corresponding to the latent state of individual i at occasion t if he/she had taken

the treatment (g = 1) or not (g = 0). On the basis of these latent variables, we formulate

the average treatment effect on the treated (ATET) measured on the logit scale. More

importantly, this causal effect is specific of the two potential latent states at the two time

occasions, that is,

ATET1h̄h(x) = log
p(H

(1)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 1)

p(H
(1)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = 1)

− log
p(H

(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 1)

p(H
(0)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = 1)
,

(4)
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where h̄ is referred to the latent state at the first occasion and h at the second. Note that

the above definition is conditional on a given value of the baseline covariates, denoted by

x, and it is referred to specific subpopulations. However, as will be clear in the following,

when we formulate a suitable regression model for the latent POs we assume that the

causal effect is constant with respect to x.

We formulate the following assumptions to identify the above causal effects:

1. Stable Unit Treatment Value Assumption (SUTVA), according to which:

Hit = giH
(1)
it + (1− gi)H(0)

it , t = 0, 1;

therefore, the outcome experienced by individual i is not affected by the assignment

and received treatment by other individuals or, in other terms, there are no relevant

interactions between members of the population.

2. Exogeneity (EXOGEN), according to which the covariates in X i are time invariant

and measured at the initial period before the treatment assignment or time variant

but they are not influenced by the treatment.

3. No Effect for the Pretreatment Population (NEPT), which is motivated by the fact

that the treatment is administrated between the two occasions and, therefore, it has

no effect at t = 0. Consequently, it results that

p(H
(1)
i0 = H

(0)
i0 |X i = x, Gi = g) = 1, g = 0, 1, ∀ x ∈ X .

4. Common Support (COSU), according to which every individual has a positive prob-

ability of receiving any type of the treatment; it is also named positivity assumption.

5. Common Trend (CT), according to which, in terms of transition probabilities, we
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have

log
p(H

(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 1)

p(H
(0)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = 1)

= log
p(H

(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 0)

p(H
(0)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = 0)
,

for h̄, h = 1, . . . , k, h 6= h̄, ∀ x ∈ X .

According to Lechner (2011), p. 179, and with reference to the DiD, the CT assump-

tion states that: “the differences in the expected potential non-treatment outcomes over

time (conditional on X) are unrelated to belonging to the treated or control group in the

post-treatment period. This is the key assumption of the DiD approach. It implies that if

the treated had not been subjected to the treatment, both subpopulations defined by D

= 1 and D = 0 would have experienced the same time trends conditional on X.” Note, in

particular, that with references to the CLT model, this assumption is directly formulated

on the transition probabilities from H
(0)
i0 = h̄ to H

(0)
i1 = h, given the covariates, which

may be interpreted on the same footing as differences between conditional expected values

used to define CT in the standard DiD framework. Similarly to the differences between

conditional expected values, the transition probabilities do not depend on the treatment

group so that non-treated units represent a proper counterfactual. On the other hand, we

allow the potential outcome for the initial occasion to depend on the group although, on

the basis of NEPT, there is no difference between the two potential latent variables H
(0)
i0

and H
(1)
i0 because the treatment has not been administered yet. In this way, the proposed

method also allows for a form of non-observable confounding as we do not require the

potential outcomes to be conditionally independent of the treatment given the covariates

as in other causal frameworks.

Apart from CT, an important condition of our approach is EXOGEN according to

which the observed covariates, not related to the treatment, do not differently influence the

treated and non-treated groups. Similar arguments hold for non-linear models where “the

conditional expectation of the observable outcome variable is related to the conditional

expectation of a latent outcome variable”, by means of “a strictly monotonously increasing
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and invertible function” (Lechner, 2011, pp. 200-203). As already mentioned, this is the

case of the CLT model, where the link between the conditional expectations of observable

outcomes and unobserved covariates is based in the logit function, which is one-to-one.

Now we can prove that the average effect of the treated group is identified. The NEPT

assumption implies that Equation (4) can be rewritten as

ATET1h̄h(x) = log
p(H

(1)
i1 = h|H(1)

i0 = h̄,X i = x, Gi = 1)

p(H
(1)
i1 = h̄|H(1)

i0 = h̄,X i = x, Gi = 1)

− log
p(H

(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 1)

p(H
(0)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = 1)
.

Due to SUTVA, the first term of the previous equation is directly equal to

log
p(Hi1 = h|Hi0 = h̄,X i = x, Gi = 1)

p(Hi1 = h̄|Hi0 = h̄,X i = x, Gi = 1)
,

whereas CT and SUTVA imply that the second term is equal to

log
p(Hi1 = h|Hi0 = h̄,X i = x, Gi = 0)

p(Hi1 = h̄|Hi0 = h̄,X i = x, Gi = 0)
.

In the end, it results that

ATET1h̄h(x) = log
p(Hi1 = h|Hi0 = h̄,X i = x, Gi = 1)

p(Hi1 = h̄|Hi0 = h̄,X i = x, Gi = 1)

− log
p(Hi1 = h|Hi0 = h̄,X i = x, Gi = 0)

p(Hi1 = h̄|Hi0 = h̄,X i = x, Gi = 0)
.

To apply the approach in practice it is convenient to formulate a multinomial logit

model of the following type for the initial probabilities for g = 0, 1:

log
p(H

(0)
i0 = h|X i = x, Gi = g)

p(H
(0)
i0 = 1|X i = x, Gi = g)

=

= log
p(H

(1)
i0 = h|X i = x, Gi = g)

p(H
(1)
i0 = 1|X i = x, Gi = g)

= β
(g)
0h + x′β1h, h = 2, . . . , k, (5)

where β
(g)
0h allows us to account for the difference between treated and non-treated groups
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in the initial period; this assumption is in agreement with the NEPT. For the transition

between states at the second time occasion, the following logistic model is assumed in

agreement with CT for g = 0, 1:

log
p(H

(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = g)

p(H
(0)
i1 = h̄|H(0)

i0 = h̄,X i = x, Gi = g)
= γ

(0)

0h̄h
+ x′γ1h̄h, h̄, h = 1, . . . , k, h 6= h̄. (6)

We also assume that

log
p(H

(1)
i1 = h|H(1)

i0 = h̄,X i = x, Gi = 1)

p(H
(1)
i1 = h̄|H(1)

i0 = h̄,X i = x, Gi = 1)
= γ

(1)

0h̄h
+ x′γ1h̄h, h̄, h = 1, . . . , k, h 6= h̄, (7)

whereas the same logit referred to the probabilities p(H
(1)
i1 = h|H(1)

i0 = h̄,X i = x, Gi = 0)

is left unspecified. Note that the covariates affecting the transition probabilities could also

include the lagged response variables as we do in our application, illustrated in Section 6.

Parameters γ
(0)

0h̄h
and γ

(1)

0h̄h
may be interpreted in terms of causal effect of the treatment.

In particular, for h 6= h̄ we directly have that

ATET1h̄h(x) = δh̄h = γ
(1)

0h̄h
− γ(0)

0h̄h
; (8)

as already mentioned, this effect is constant with respect to x. We can easily express the

causal effects on another scale. For instance, by taking the exponential of the expression

in (8) we can express these effects as odds that are of more straightforward interpretation

in certain fields. In addition, we can directly express these effects as differences between

probabilities, as clarified in the following.

Finally, we make it clear that the parametrization on the initial and transition prob-

abilities assumed in (5), (6), and (7) could be seen as restrictive. In particular, we could

consider the case in which the regression coefficients for the covariates are group spe-

cific, not only the intercept. With reference to the transition probabilities, this amounts

to include two separate vectors of coefficients, denoted by γ
(0)

1h̄h
and γ

(1)

1h̄h
for the non-

treated and treated units, respectively. This implies a more complex way to define the

ATET1h̄h(x) and the overall causal effect with respect to that in (8). For this reason, we

prefer to rely on the assumption that γ
(0)

1h̄h
= γ

(1)

1h̄h
= γ1h̄h, with a similar restriction on
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the initial probabilities. These restrictions can be checked in an application, as we will

illustrate in Section 6; we also studied violations of these restrictions within the simulation

experiments described in Section 4. Another possible extension to conceive is the pres-

ence of interactions between the covariates or the effect of suitable transformation of the

covariates. In this case, however, it is sufficient to include such effects in the vectors X i

while retaining the same assumptions as above on the initial and transition probabilities.

2.3 Estimation

The previous assumptions, and in particular parametrizations (5), (6) and (7), imply the

following reduced form for the initial and transition probabilities of the latent variables

Hit:

log
p(Hi0 = h|X i = x, Gi = gi)

p(Hi0 = 1|X i = x, Gi = gi)
= β

(0)
0h + giβ̄0h + x′β1h, h = 2, . . . , k, (9)

log
p(Hi1 = h|Hi0 = h̄,X i = x, Gi = gi)

p(Hi1 = h̄|Hi0 = h̄,X i = x, Gi = gi)
= γ

(0)

0h̄h
+ giγ̄0h̄h + x′γ1h̄h,

h̄, h = 1, . . . , k, h 6= h̄, (10)

where β̄0h = β
(1)
0h − β

(0)
0h and γ̄0h̄h = γ

(1)

0h̄h
− γ

(0)

0h̄h
= δh̄h corresponds to the ATET1h̄h(x)

according to (8). These two equations for the first time occasion and for the transition

between the two time occasions correspond to Equations (2) and (3), respectively, in the

standard LM model with covariates.

Estimation is carried out on the basis of the maximum likelihood approach, as shown

in Bartolucci et al. (2014). The likelihood function of the model is maximized through the

EM algorithm (Baum et al., 1970; Dempster et al., 1977), where the manifest distribution

of the observed responses is computed through suitable recursions (see Bartolucci et al.,

2013, Ch.5, for details about its implementation). The algorithm alternates two steps

until convergence: at the E-step we compute the expected value of the so-called complete

data log-likelihood given the observed data and the current value of the parameters; at

the M-step we maximize the expected complete data log-likelihood with respect to the

model parameters, so we update the vector of parameters. These two steps are iterated

12



until convergence is reached.

Standard errors for the parameter estimates are obtained by exact computation of the

information matrix or through reliable numerical approximations of this matrix. In our

application, and as is rather common, we select the number of latent states (k) through

the Bayesian Information Criterion (BIC, Schwarz, 1978), which typically leads to a more

parsimonious model with respect to other selection criteria (Bacci et al., 2014). A detailed

simulation study proposed in Bartolucci et al. (2016) shows the validity of this criterion

also for the potential outcome formulation of the LM model.

Finally, note that it is also important to predict the sequence of latent states for a

given unit in the sample over time. In particular, path prediction corresponds to predicting

the latent state for each time occasion given the observed data, and it is obtained on the

basis of the posterior distribution of the latent variables. This procedure is also named

local decoding.

Suitable procedures to properly initialize the EM algorithm and perform model se-

lection, and other computational tools required for the estimation and prediction, are

available in the R package LMest (Bartolucci et al., 2017).

3 Further details on the proposed approach

In this section we provide some comments about the proposed CLT approach, and we

introduce some possible extensions.

3.1 Relevant features of the proposal

The CLT model addresses the following main issues:

(a) Number and types of outcomes: (i) the CLT model is formulated in a multivariate

form, and it allows us to estimate different causal effects of the treatment by looking

at the joint variability of the responses over time; (ii) the CLT model is a non-

linear model that overcomes the problems related to the scale dependence and the

limited support of the variables. The probability distribution of the potential latent

variables given the treatment and the pre-treatment covariates is invariant with
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respect to transformations of these variables. The observed responses are related

to the latent variables by means of the distribution in Equation (1). Moreover, the

CLT respects the identifiability conditions requested for a casual model by Puhani

(2012).

(b) Instead of comparing multiple static models, the CLT approach allows studying the

initial conditions through the estimates of the initial probabilities, and then it ana-

lyzes sequential stage developments through the estimated transition probabilities.

(c) Unobserved heterogeneity: in many cases, especially with big data, huge populations

are composed of specific subpopulations that differ for unobserved characteristics.

In such a situation, treatment may have a different effect on each subpopulation,

and the DiD method cannot jointly measure all these effects. On the other hand,

the CLT model allows us to detect unobserved heterogeneity differently with respect

to the proposal of Keane and Wolpin (1997), and it also allows us to account for the

potential endogeneity of latent abilities (Hansen et al., 2003) as well as to discover

latent clusters on the basis of the observed outcomes. The number of these latent

groups is not fixed a priori but it is suitably determined; see also the discussion in

Section 7. The ATET1h̄h(x) in (4) is measured for each pair of subgroups (h̄, h),

with h̄, h = 1, . . . , k, and in this way it is possible to verify if the treatment has

different impacts.

(d) In the CLT model the outcomes are only dependent on the latent POs, influenced by

the observed pre- and post-treatment covariates. These latent variables are defined

differently from the factorial model (Cunha et al., 2010) as they are assumed to

follow a Markov process (Bartolucci et al., 2014). In cases of incomplete information,

the proposal overcomes the identification problems highlighted by Jöreskog (1966)

because “identification requires that the investigator specifies some features of the

model” as well as the indeterminacy of scores (Vittadini, 1989).
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3.2 Possible extensions

In formulating the CLT model, we adopt a convenient logit parametrization to express the

ATET. We can also write these effects directly in terms of differences between probabilities

as an alternative of (4). In particular, consider the effects

ATET∗1h̄h(x) = p(H
(1)
i1 = h|H(1)

i0 = h̄,X i = x, Gi = 1)

−p(H(0)
i1 = h|H(0)

i0 = h̄,X i = x, Gi = 1), (11)

where, again, h̄ is referred to the latent state at the first time occasion and h is that at

the second occasion. Given assumptions (6) and (7), it is possible to express this effect as

ATET∗1h̄h(x) =
exp(γ

(1)

0h̄h
+ x′γ1h̄h)

1 +
∑

h′ 6=h exp(γ
(1)

0h̄h′ + x′γ1h̄h′)
−

exp(γ
(0)

0h̄h
+ x′γ1h̄h)

1 +
∑

h′ 6=h exp(γ
(0)

0h̄h′ + x′γ1h̄h′)

for given x and h 6= h̄, where the denominators are multinomial logit normalizing con-

stants. The previous expression may be exploited to express an estimate of the ATET on

the probability scale once the model parameters have been estimated.

It may be also of interest to express the causal effect of the treatment directly on the

observable outcomes. In this case, for outcome of type j, j = 1, . . . , r, we have the effect

expressed as

ATET†j(x) =
k∑

h=1

E(Yij1|Hi1 = h)p(H
(1)
i1 = h|X i = x, Gi = 1)

−
k∑

h=1

E(Yij1|Hi1 = h)p(H
(0)
i1 = h|X i = x, Gi = 1), (12)

where Yij1 is an element of Y i1 and

p(H
(g)
i1 = h|X i = x, Gi = 1) =

k∑
h̄=1

p(H
(g)
i0 = h̄|X i = x, Gi = 1)

×p(H(g)
i1 = h|H(g)

i0 = h̄,X i = x, Gi = 1), g = 0, 1,

is the probability at the second time occasion that the potential latent outcome for treat-
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ment g is equal to h. Even in this case the causal effects may be estimated on the basis

of the parameter estimates by exploiting the previous formulae.

Finally, as already mentioned, the approach may be easily extended to deal with

settings in which more than two occasions of observation are available. In this case the

model will be based on an initial probability formulation of type (5) and a sequence of

T − 1 transition probabilities of type (6) and (7). Moreover, the treatment effects may

be formulated for t = 1, . . . , T − 1 with expressions of type (4), (11), and (12), which are

denoted by ATETth̄h(x), ATET∗th̄h(x), and ATET†jt(x), respectively.

4 Simulation study

In order to validate the proposed approach, we performed a simulation study related

to the application presented in Section 5. This study is based on a benchmark design

described in Section 4.1, whose results are commented in Section 4.2, and on alternatives

to this design based on using a larger set of covariates and misspecified models presented

in Section 4.3.

4.1 Benchmark design

For a sample of size n, with n = 1, 000, 2, 000, we considered individual vectors of three

exogenous covariates X i = (Xi1, Xi2, Xi3)′, the first two of which are continuous and the

third is dichotomous, and individual vectors of r = 2 response variables Y i0 = (Yi01, Yi02)′

and Y i1 = (Yi11, Yi12)′ for the two time occasions, with i = 1, . . . , n. The covariates are

generated by letting Xi1 = X∗i1, Xi2 = X∗i2, and Xi3 = 2 · I(X∗i3 ≥ 0)− 1, where I(·) is the

indicator function equal to 1 if its argument is true and 0 otherwise, with X∗i1, X∗i2, and

X∗i3 having the following trivariate Gaussian distribution:


X∗i1

X∗i2

X∗i3

 ∼ N3




0

0

0

 ,


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1


 .

16



Data are generated from a model with k = 2, 3 latent states. Under this model, the

response variables have a bivariate Gaussian distribution with mean depending on the

latent state, denoted by µh = (µh1, µh2)′ for latent state h, with values increasing with h.

The conditional variance-covariate matrix Σ is common to all latent states and assumes

values corresponding to different levels of correlation ρ. Values of these parameters are

reported in Table 1 of the SI file.

The initial states referred to H
(g)
i0 , for g = 0, 1, are drawn from the logistic model in

Equation (5), whereas, for the transition to the state at the second time occasion, the

logistic models in (6) and (7) are assumed, depending on parameters having specific values.

Note that these values are chosen so that treated individuals tend to belong to the second

(or third) latent state with higher probability at the beginning and that the treatment

has a positive effect in terms of transition probabilities. Values of the parameters involved

in these model components are again reported in Table 1 of the SI file.

Finally, the assignment of the treatment is based on the logistic model

log
p(Gi = 1|X i = x)

p(Gi = 0|X i = x)
= α0 + x′α1,

with two possible values for the intercept, α0 = −1, 0, corresponding to two different

proportions of treated and non-treated individuals, and two possible values for α1, equal

to 0 or 0.5·1, corresponding to the situation of exogenous or endogenous treatment, where

1 is a vector of ones of suitable dimension.

Overall, we considered 32 different scenarios, corresponding to the combination of two

different values of n, ρ, k, α0, and α1. Under each scenario, we drew 1,000 samples from

the assumed model, and for every sample, we estimated the parameters of the proposed

CLT model with covariates, also obtaining the standard errors by using the asymptotic

method. Estimates for two versions of the model are compared: in the first, the only

covariate is the indicator variable for the treatment, which is a misspecified model given

the data generation process. In the second, the covariates are also included further to this

indicator variable; see the SI file for additional details.
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4.2 Results under the benchmark design

In order to summarize the simulation results, we consider the average bias (Av.Bias) and

the average root mean square error (Av.RMSE), which are computed as

Av.Bias =
1

kr

k∑
h=1

r∑
j=1

∣∣∣∣∣ 1S
S∑

s=1

(µ̂
[s]
hj − µ

[0]
hj)

∣∣∣∣∣ ,

and

Av.RMSE =

√√√√ 1

kr

k∑
h=1

r∑
j=1

1

S

S∑
s=1

(µ̂
[s]
hj − µ

[0]
hj)

2,

where µ̂
[s]
hj denotes the estimate of µhj obtained for the s-simulated sample and µ

[0]
hj denotes

its true value. Results in terms of these two indicators are reported in Table 2 of the SI

file.

We conclude that the means of the latent states are properly estimated by both CLT

models with and without covariates, apart from the indicator variable for the treatment.

The bias and RMSE also behave as expected with respect to the sample size and the

model complexity, with a typical decrease of both as the sample size (n) and the number

of latent states (k) increase. In this regard, it is not possible to spot significant differences

between the two methods.

Then we consider the estimation of the effects of main interest, which are the causal

parameters δh̄h defined in (8). When k = 2 with a binary treatment, the causal effects are

two, whereas when k = 3 they are six. In this case, the simulation results are evaluated

in terms of bias and root mean square error (RMSE) for every parameter. These results

are reported in Tables 3 and 4 of the SI file.

We observe that the difference between the two methods is remarkable, with a clear

advantage of the proposed approach that includes the covariates in the estimated model.

This is particularly evident in terms of bias, which is low for the proposed model and

severe when the model is estimated without covariates, even if the treatment is exogenous
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given the covariates. The behavior of bias and RMSE with respect to n and k is as

expected and coherent with the comments provided about Table 2 of the SI file.

Finally, we considered the precision of the method to obtain the standard errors for

the parameter estimates in terms of relative bias (R.Bias), which is computed as

R.Bias =
1
S

∑S
s=1(ŝe(δ̂hj)

[s] − se(δ̂hj)[0])

se(δ̂hj)[0]
− 1,

where ŝe(δ̂hj)
[s] is the standard error for δ̂hj obtained on the basis of the s-th simulated

sample and se(δ̂hj)
[0] is its true value obtained as standard deviation of the δ̂

[s]
hj parameter

estimates. These results are reported in Table 5 of the SI file.

For the first 100 samples generated under the different scenarios of the benchmark

design, we also performed the selection of the optimal number of states k on the basis of

the BIC according to the same procedure that will be used in the application; see Section

6. We found that the correct number of states, equal to 2 or 3 depending on the specific

scenario, has always been selected on the basis of this procedure.

4.3 Other simulations designs

As a first extension of the benchmark design illustrated above, we considered the case of

a larger number of covariates, which is even closer to the context of the application. In

particular, the simulation designs include seven additional covariates that are generated

from independent Gaussian distributions with mean equal to the mean of the first three

variables and variance equal to 1; in symbols, we have

Xij|X∗i1 = x∗i1, X
∗
i2 = x∗i2, X

∗
i3 = x∗i3 ∼ N

[
1

3
(x∗i1 + x∗i2 + xi3), 1

]
, j = 4, . . . , 10.

The full vector of covariates, which now has dimension 10, is still denoted by X i and is

used both in the generation of the data and the treatment as described in Section 4.1. In

particular, for all model components, the simulation models rely on the same values of

the intercepts, while the vectors of regression coefficients are augmented with all elements

equal to 0; see also Table 1 of the SI file. The full vector of these covariates is also used
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in the model estimated for every simulated sample. Overall, the added covariates do not

have a significant effect but, being highly correlated with the significant covariates, their

presence may represent a challenge for the proposed approach.

The results of the additional simulation study described above show that, while the

quality of the estimates of the µhj parameters is not affected by the higher number of

covariates with respect to the benchmark design, the quality of the estimates of the initial

and transition probabilities and, consequently of the δh̄h parameters, worsens. With

n = 1, 000, in particular, for certain simulated samples the estimates of these regression

parameters tend to extreme values and directly affect the Bias and RMSE. With n = 2, 000

these extreme estimates are not observed, and the estimation results are overall rather

similar to those obtained under the benchmark design. The main conclusion of this

additional simulation scenario is that the approach must be carefully applied when there

are many covariates and it is necessary to adopt an accurate selection of the covariates so

as to avoid unreliable parameter estimates.

As outlined at the end of Section 2.2, the proposed approach assumes that the effect

of the covariates on the transition probabilities is the same for non-treated and treated

units, that is, γ
(0)

1h̄h
= γ

(1)

1h̄h
. We can then consider the implication of the violation of this

assumption. For this aim we generated samples from a model that is similar to that used

within the benchmark design with the main difference that the transition probabilities for

non-treated units are computed as in (6) with a specific vector γ
(0)

1h̄h
and, similarly, those of

the treated units are computed as in (7) with a specific vector γ
(1)

1h̄h
. The assumed values

of these new parameters within the simulation study are obtained as γ
(0)

1h̄h
= γ1h̄h−0.25 ·1

and γ
(0)

1h̄h
= γ1h̄h + 0.25 · 1, with γ1h̄h having elements indicated in Table 1 of the SI file.

The results of this additional simulation scenario are very close to those obtained

under the benchmark design in terms of Bias and RMSE of the estimators of the causal

parameters of interest. In particular, the proposed CLT approach maintains a considerable

advantage over the LM model without covariates in estimating these effects.
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5 Application

A large literature demonstrates that there are strong links between NCSs and CSs both

in the educational process and work environment (see, among others, Cunha et al., 2006;

Heckman et al., 2006; Cunha and Heckman, 2007, 2008; Cunha et al., 2010; Heckman

and Kautz, 2012; Heckman et al., 2014; OECD, 2015; West et al., 2016). Three studies

are particularly relevant from the methodological point of view. Based on a static factor

model, the first shows that CSs and NCSs are equally crucial to success in many life

dimensions such as education, income level, employment, and adolescent “risky” behav-

iors (Heckman et al., 2006). The second study defines CSs and NCSs as unobservable

traits generating observed outcomes such as learning test results, level of education, ed-

ucational achievement, salary level, and performance in job career (Cunha et al., 2010).

The mutual influence in causal terms of NCSs and CSs is assessed by accounting for the

socio-economic characteristics of the family through a dynamic factor model. Edin et al.

(2022) show that the economic return to the NCSs is higher than the return to CSs.

Other researchers attempt to verify whether appropriate educational projects conceived

to improve NCSs also improve CSs. See, among others, Tierney et al. (1995), Kahne

and Bailey (1999), Martins (2010), Holmlund and Silva (2014), and Garćıa-Pérez and

Hidalgo-Hidalgo (2017). In general, the current literature shows that the implemented

tutoring and accompaniment activities decrease the dependence on drugs or alcohol. At

the same time, the improvement of self-concept and school outcomes is minor, especially

for those students with more critical family and social conditions.

Concerning our application, we address the following scientific question already in-

troduced in Section 1: “Do NCSs programs causally determine an improvement of the

CSs in the Italian educational context?”. We use the proposed CLT model to evaluate

whether programs that stimulate NCSs also lead to improvement in CSs, and we compare

the effects with those estimated with the DiD method. First of all we describe the avail-

able data, particularly regarding the outcomes, the kind of NCSs considered, the other

covariates, and the educational programs finalized to improve the NCSs.

In particular, the data concern a sample of primary and middle class students of the
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PAT observed from the 5th grade through the 8th grade during the 2015-2018 school

years. As previously indicated, 25 schools with 1,561 pupils (out of 77 with a total popu-

lation of 5,502 students) freely accepted participating in the PAT survey in 2015. Among

these schools, 12 (with 845 students in 111 classes) freely adopted the above mentioned

educational programs to improve the NCSs. The data are derived by integrating five

datasets illustrated at the beginning of Section 2 of the SI file. The PAT is an Italian

region whose students show excellent test results and in which there are no severe socio-

economic problems and attention to NCSs is already an established practice. In this way,

the analysis of the link between NCSs and CSs is not affected by disturbing factors.

5.1 Outcomes

The measurement of the CSs that are the outcomes of our analysis is based on standardized

national tests. In fact, we consider the scores students achieved in the INVALSI tests in

the 5th and 8th grades (primary outcomes). The tests are explicitly built to assess the

students’ knowledge of Italian literacy and Mathematics nationwide and are carried out

with different degrees of difficulty and methods. For example, in the 5th grade (elementary

school), they are written on paper, and in the 8th grade (middle school), they use an

adaptive computer technology. The observed score is obtained by counting the number

of correct answers in the total: the achievement of 55-60% of correct answers on all tests

certifies the sufficiency. The percentage of correct answers is reported net of cheating, to

provide data as accurate as possible, a phenomenon detected through a statistical control

referring to those “improper” behaviors held during the administration of the INVALSI

tests (correct answers provided because copied from other students or books or even

suggested more or less explicitly by teachers). The national average of the test scores on

the Rasch scale for each grade is fixed at 200. Data sources and descriptive statistics on

these variables are in Section 2 of the SI file through Tables from 6 to 10.
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5.2 Description of the non-cognitive skills and other covariates

The NCSs considered in our analysis are five main distinct but related personality traits,

named the Big Five (John et al., 1999; Heckman et al., 2014), which correspond to the

following five dimensions: (i) openness to experience, namely the propensity to open one-

self to reality and new cultural or intellectual experiences; (ii) conscientiousness, namely

the disposition to be responsible, hardworking, and organized; (iii) extraversion, namely

the openness of oneself toward other people and things at the origin of a general behavior

in living class and school education activities; (iv) agreeableness, namely the orientation

towards cooperation, altruism, and cordiality in social relations that generates personal

and social level of human and friendly relationships between students and among students

and teachers for what concerns the school environment; (v) emotional stability (or in op-

posite meaning neuroticism), namely the containment of the emotional reactions, without

sudden mood changes. Some other NCSs are (vi) school motivation, namely students’

desire to participate in learning activities to improve knowledge; (vii) external locus of

control, that is, the help that students need to achieve school goals (Gagné and Deci,

2005). Table 6 of the SI file describes in more detail non-cognitive skills considered in the

illustrative example. The covariates are selected according to substantive knowledge of

the context and data and considering the recent literature on the topic, as illustrated in

the previous section.

5.3 Educational programs

Starting from 2015 up to 2018, the PAT elaborated plans for schools focused on student

learning and the NCSs improvements involving teachers, active teaching methodologies,

information orientation, training, and counseling. Very solid activities were proposed, at

several occasions, from a scientific and organizational point of view. They were structured

and designed according to the following four macro-categories: (i) training orientation

managed by teachers during school hours, inside the programs of disciplines-subjects

of study, or inside the curriculum (for example, alternation of experiences school-work,

etc.); (ii) counseling out of school hours generally managed by external experts to the
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school; (iii) information and orientation including activities addressed to the whole school

such as open days, orientation fairs, meeting with privileged witnesses, etc.; (iv) mixed

projects (derived as combinations of the previous three activities), for example, projects

to combat the risk of discomfort and early school leavers. These activities involved an

information part (the school paths in the second cycle), a part of counseling (discovery

and strengthening the identity of the students), and training activity of the teachers in

reducing the risk of dropping out for the students. The schools themselves freely decided

whether or not to carry out these training projects by communicating their choice to

the PAT. Once a school chooses to participate, all students compulsorily participate in

the same activities with the same time commitment that varies among projects. From

the institutional point of view, the schools were allowed to: (i) implement their own

projects concerning their actual educational offer, including special activities for students;

these were carried out even with some involvement with local authorities, and frequently

they were out of school; and (ii) choose improvement projects from a list of projects

proposed by the PAT and related to the students’ learning objectives (INVALSI, academic

achievement, skills certifications, etc.).

5.4 Absence of self-selection and check of causal latent transi-

tion model assumptions

In dealing with an observational study, we have to exclude any self-selection both of the

schools participating and non-participating to the survey and of the schools participat-

ing and non-participating to the educational PAT programs. First of all, we examined

whether the schools that voluntarily participated in the survey had students who, on

average and with reference to the INVALSI 2015 test, had the same level of cognitive

ability as students in schools that did not participate. We consider the average achieve-

ment scores in Italian and Mathematics for each school, and we compared participating

and non-participating schools according to such average scores. We recall that there are

25 participating schools with 1,561 pupils and 52 non-participating schools with 3,941

pupils, and we recall that the school freely decides to adhere to the programs. The results
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reported in Table 9 of the SI file show no significant differences between these two school

types, so we can conclude for an absent or limited impact of self-selection.

We consider the average test scores in Italian and Mathematics in the 5th and 8th

grades and average values for the covariates at the baseline (t = 0, 5th grade) across

treated and non-treated students of the participating schools. According to the t-tests

reported in Table 10 of the SI file, no significant differences either in Italian nor in Math-

ematics can be detected between the average scores of treated and non-treated students

at the baseline (t = 0). We observe that at the baseline, students who received the

treatment show an average score that is worse in Mathematics with respect to the score

of not-treated students, while they have a better average score in Mathematics after

the treatment. Treated students show higher values for all covariates: school motivation,

quality of class relations, external support for student autonomy, well-being at school, dis-

comfort at school, bullying acted, and bullying right away. The parental socio-economic

status related to the international socio-economic index named ESCS is equal in both

groups, although the parents’ employment status is slightly higher for treated students.

The proportion of females and students with fathers having an Italian nationality is similar

between treated and non-treated students.

We can state that the model assumptions hold for this application, as explained in

the following. First of all, SUTVA holds because either all classes in the same school

carried out the educational program to increase NCSs, and there are no interactions

between students in treated and non-treated schools. Second, regarding EXOG we have

to consider that the NCSs and the other covariates in the model are those collected before

the treatment through the INVALSI 2015 test, such as social capital and socio-economic

and demographic characteristics of the students; thus they are not influenced by the

treatment. Third, NEPT holds because the PAT educational programs were implemented

between the 5th and 8th grades without affecting the previous individual characteristics.

In effect, in the present case, the observed covariates are defined before the beginning of

the treatment, and therefore they are time invariant. Moreover, the results in Table 10

of SI file show that the average values of the treated and non-treated outcomes both at

times t = 0 an t = 1 are almost equal. As we show in Section 6, we can verify the effect
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of the treatment only on the worst and best subgroups of students but not on the overall

groups of the treated and non-treated students. This a posterior evidence that the CT

property is respected. Fifth, COSU holds since treatments are considered conditional to

the covariates in every group of schools, and each student has a positive probability of

receiving the treatment. Therefore, the ATET, that is, the causal effect of the educational

programs aimed to increase NCSs on CSs, may be identified.

6 Empirical results

First we show the results obtained with the proposed multivariate CLT model, and then,

as a comparison, we also show the results obtained with the DiD approach as mentioned in

Section 1. We account for missing values on the covariates through dummies as indicators

for missing values (Dardanoni et al., 2011) in both models.

6.1 Results of the causal latent transition model

The CLT model is estimated as mentioned in Section 2.3 through the EM algorithm.

Table 1 shows the results of the model selection procedure. The BIC index leads to

selecting a model with two latent states.

Table 1: Maximum log-likelihood, number of parameters, and BIC index for an increasing
number of latent states ranging from 1 to 4

k ˆ̀ #par BIC

1 -30647.51 5 61331.79

2 -30084.10 60 60609.39

3 -29890.94 147 60862.78

4 -29756.70 266 61469.32

According to the estimated conditional means shown in Table 2, which are increasingly

ordered, we identified two subpopulations of students clustered in low and high levels of

performance. Students in the first state or cluster show an average score of around

195 for both Italian and Mathematics, whereas students in the second cluster are the

best performing since they show an average score of around 235 for Italian and 246 for
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Table 2: Estimated cluster conditional averages

Latent state (h)

Scores 1 2

Italian 192.312 235.133

Mathematics 196.071 246.636

Mathematics, with an average gain of around 40 points on both subjects. It is worth

mentioning that it is always possible to interpret the states as different achievement

stages in subjects even under a model with more than two latent states. In fact, states

can always be ordered according to the estimated conditional means, thus providing a

proper interpretation as achievement levels.

At the beginning of the 5th grade, the average probability of belonging to the first

cluster is 0.648. According to the estimated variance-covariance matrix, which is assumed

as homogeneous across clusters, there is a weak positive association (ρ̂ = 0.381) between

Italian literacy and achievement on Mathematics. Figure 1 shows the contour plot of

the estimated marginal distributions. As we explain above, the average Italian score for

both standardized tests is 200; therefore, students of the PAT region classified in the first

cluster slightly underperform with respect to the national average and those in the second

cluster are very well-performing.

Table 4 shows the effects of the covariates (described in Table 7 of the SI file) on the

initial probabilities as in Equation (9). In 5th grade, females tend to belong to the cluster

grouping students with top performance levels: the odds ratio for females versus males is

equal to exp(0.462) = 1.587, thus showing higher CSs than males. Discomfort at school

negatively affects cognitive performance, and the estimated log-odds ratio for distressed

versus happy students is equal to 0.249, revealing the importance of this feeling. The

parent’s employment status and their Italian nationality appear to be important factors

contributing to competitive advantages in terms of CSs for the students. Table 7 displays

the estimated ATET and the effect of the covariates, among which we included the lagged

response variables, thus relaxing the conditional independence assumption and excluding

the covariates related to well-being collected in 2015. Regarding the logistic regression
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Table 3: Estimated variance-covariance matrix between Italian and Mathematics achieve-
ment scores

Scores Italian Mathematics

Italian 840.30 319.53

Mathematics 319.53 841.90

Mathematics
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Figure 1: Contour plot of the estimated densities for the two latent clusters according to
the scores in Italian and Mathematics
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model for the transition probabilities, as in Equation (10), the average transition matrices

are shown in Tables 5 and 6, whose standard errors are obtained through a non-parametric

bootstrap based on 1,000 bootstrap samples. The first one shows a probability of around

0.342 of performing better in advanced studies, that is, of moving from the first to the

second cluster. However, a similar probability (0.401) is estimated for moving from the

second to the first cluster. Looking at Table 6 we observe that, while the probability to

transit to the second cluster is roughly the same for treated and non-treated students,

that from the second to the first cluster is higher for students who have not taken the

educational programs aimed at improving the NCSs (0.463 versus 0.348). Therefore, non-

treated students are more prone to worsening their CSs passing from the 5th to the 8th

grade. The estimated ATET related to the transition from the second to the first cluster

shown in Table 7 is negative and significant and the corresponding odds ratio for treated

versus non-treated students is exp(−3.583) = 0.03, showing that the proposed activities to

improve NCSs reduces the probability that best students worsen during the school years.

In 2015, females mainly belonged to the cluster of best performing students in both

subjects but performed poorly over time compared to males (the coefficient related to the

transition from first to the second cluster is negative and significant). Father’s employment

status is important, especially for moving from the first to the second group (the odds

ratio is exp(0.394) = 1.483). The log-odds of the Italian and Mathematics achievement

scores at the fifth grade are positive for the transition from the first to the second cluster

and negative for the transition from the second to the first cluster. Coherently with the

value added theory (Bryk and Weisberg, 1976), what has been acquired in primary school

helps to increase the CSs and reduces the possibility of decreasing cognitive abilities.

We performed some sensitivity analyses to validate the above results: (i) we investi-

gated a possible differential treatment effect for Italian and Mathematics scores by esti-

mating univariate models for each outcome; the results reported in Table 11 of the SI file

confirm those obtained with the multivariate CTL model; (ii) we evaluated the plausibility

of the conditional Gaussian distribution of each outcome once local decoding, mentioned

at the end of Section 2.3, has been applied. In the SI file we show in Figures 1 and

2 the empirical conditional cumulative distribution functions for both outcomes in each
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cluster at each grade; (iii) we checked also the results of the model with three clusters.

We observe that these results are coherent with the previous results: the latent states

are ordered for increasing values of the outcomes and they are in line with the results of

the model with two latent states especially for what concerns the estimated treatment

effects. We notice that according to the average transition matrices, non-treated students

show a higher transition probability from latent state 2 to 1 and from latent states 3 to

2 compared to non-treated students. They also show a lower probability of remaining in

latent states 2 and 3 compared to non-treated students; (iv) we estimated several models

removing covariates in the initial and/or transition probabilities as well as considering

some interaction effects of the treatment with other covariates such as gender, parents’

socioeconomic index, and scores in Italian and Mathematics at grade 5th. These models

showed a higher BIC index than that of the model reported above.

Finally, we have to stress that our analyses are valid under the CT assumption dis-

cussed in Section 2.2, which in general is a crucial assumption, in the DiD literature.

Although we cannot perform a formal test on this assumption, we are confident it holds

in the light of the data reported in Table 10 of the SI file. In fact, in this table we report

the average score in Italian and Mathematics separately for treated and non-treated stu-

dents, referred to 2012, when students were enrolled in the secondary elementary school

year. Note that this period is earlier than the pretreatment year (2015). The comparison

between the results for 2012 and 2015 leads to the conclusion that the CT is a realistic

assumption.

6.2 Difference-in-Difference estimates

In the following, we report the results obtained with the standard DiD model expressed

for the first time occasion as

Yi0 = α + giγ + x′iβ + gix
′
iφ+ ηi0, (13)

30



Table 4: Estimates of the logit regression parameters of the initial probability to belong to
the second latent state with respect to the first latent state of the CLT model (significant
∗at 5%, ∗∗at 1%)

Covariate Effect s.e.

Intercept -3.275∗∗ 0.455

School motivations -0.027 0.112

Parents’ ESCS index 0.170 0.133

Quality of class relations -0.180 0.184

External support for student autonomy 0.143 0.177

Well-being at school 0.198 0.199

Discomfort at school -1.389∗∗ 0.163

Bullying acted -0.685 0.495

Bullying right away 0.149 0.275

Female 0.462∗∗ 0.199

Italian nationality of the father 0.904∗∗ 0.308

Employment status of the father 0.186∗∗ 0.064

Employment status of the mother 0.232∗∗ 0.054

Missing indicator for parents’ ESCS index 0.684∗∗ 0.199

Missing indicator for gender 2.771∗ 1.683

Missing indicator for father’s nationality -0.301 1.101

Missing indicator for father’s employment 1.075∗∗ 0.344

Missing indicator for mother’s employment -1.172∗∗ 1.291

Table 5: Average transition probabilities of the CLT model and, in parenthesis, estimated
standard errors obtained through non-parametric bootstrap

Latent state (h)

h̄ 1 2

1 0.658 (0.028) 0.342 (0.028)

2 0.401 (0.059) 0.599 (0.059)
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Table 6: Average transition probabilities of the CLT model for treated and non-treated
students and, in parenthesis, estimated standard errors obtained through non-parametric
bootstrap

Latent state (h)

Treatment h̄ 1 2

Treated 1 0.654 (0.040) 0.346 (0.040)

2 0.348 (0.084) 0.652 (0.062)

Non-treated 1 0.662 (0.044) 0.338 (0.044)

2 0.463 (0.073) 0.536 (0.073)

Table 7: Estimates of the logit regression parameters of the transition probabilities under
the CLT model: first column (Effect 1) from the first to the second cluster, second column
(Effect 2) from the second to the first cluster (significant ∗at 5%, ∗∗at 1%)

Covariates Effect 1 s.e. Effect 2 s.e.

Intercept -43.393∗∗ 0.507 45.543∗∗ 0.802

Treatment 0.847 0.814 -3.583∗∗ 1.683

Parents’ ESCS index 0.173 0.561 0.069† 1.116

Female -2.702∗∗ 0.873 2.499∗∗ 1.565

Italian nationality of the father 0.344 0.833 4.425 2.881

Employment status of the father 0.394† 0.236 -0.026 0.426

Employment status of the mother -0.314 0.239 -0.291 0.312

Missing indicator for ESCS index 0.102 0.938 -4.699∗∗ 1.792

Missing indicator for gender -2.520 1.849 -3.134 3.433

Missing indicator for father’s nationality -0.399 2.511 19.818∗∗ 1.881

Missing indicator for parent’s employment 1.998∗ 1.962 -6.046∗ 2.927

Missing indicator for mother’s employment -4.534∗ 1.962 -2.245 3.336

Italian score at the 5th grade 0.078∗∗ 0.011 -0.076∗∗ 0.022

Math score at the 5th grade 0.114∗∗ 0.010 -0.141∗∗ 0.020
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where ηi0 are error terms having zero mean and constant variance and considering as

response the difference between the outcomes on the two time occasions:

Yi1 − Yi0 = δ(0) + x′iλ
(0) + giδ + η̄it. (14)

This model implies that ATET1 = δ, so that it is independent of the covariates and can

be simply estimated by the method of least squares on the basis of the observed data.

Both models are estimated for the test results in Italian and Mathematics. Regarding the

formulation in (13), we included all the available covariates, whereas in (14) we also added

the previous achievement score, and we excluded covariates collected in 2015 related to

the well-being at school.

Apart from the standard DiD formulation described above, we also considered the dou-

bly robust estimator proposed by Sant’Anna and Zhao (2020) that, from a certain point

of view, may be seen as a generalization of the DiD estimators proposed by Heckman et al.

(1997) and Abadie (2005). In particular, we used the R package DRDID (Sant’Anna and

Zhao, 2020) to estimate the models again for Italian and Mathematics scores separately.

In Tables 8 and 9 we show the estimated regression coefficients of the DiD models

according to (13) (top panel) and (14) (bottom panel) without interactions between co-

variates. In order to better characterize some differences, we also provide the results of

the models estimated with data of two subgroups of students: that of students with a test

score above and below the median value at the 5th grade for both subjects.

Regarding the DiD models estimated assuming formulation (14), see the bottom panel

of Table 8, females perform worse in Italian with respect to males and the family back-

ground is important to determine the student’s performance: the estimated partial re-

gression coefficients of the parents’ ESCS index are positive and significant for Model 1

and Model 3 and for all the three models, respectively, see the caption of the tables for a

description of each model. The programs to improve NCSs are effective only to improving

score in Mathematics for Model 1 and Model 3. The coefficient related to the previous

achievement is negative contrary to what is expected for Italian scores under Models 1

and 2, and for Mathematics scores under all the three models.

33



For the double robust DiD estimator proposed by Sant’Anna and Zhao (2020), the

results are reported in Section 3.2 of the SI file (see Table 12). As for the other DiD

models, also with this estimator, the treatment is not significant for Italian, while it is

significant for Mathematics under Models 1 and 2.
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Table 8: Estimates of the regression parameters of the DiD models for Italian scores,
as in Equation (13) (top panel) and Equation (14) (bottom panel), estimated for the
overall students (Model 1), for the best performing students (Model 2), and for the worst
performing students (Model 3) ( †significant at 10%, ∗significant at 5%, ∗∗significant at
1%)

Covariate Model 1 Model 2 Model 3

Intercept 180.514∗∗ 225.749∗∗ 170.593∗∗

Treatment 0.797 -0.419 0.635

School motivations -0.301 1.235 -1.790†

Parents’ ESCS index -0.151 3.248∗ -2.071∗

Quality of class relations -0.610 1.968 1.720

External support for student autonomy 2.618 3.557 0.402

Well-being at school 0.034 -1.689 0.463

Discomfort at school -9.733∗∗ -5.615∗∗ -3.780∗∗

Bullying acted -7.855† -5.596 -3.594

Bullying right away 1.400 2.859 0.119

Female -4.081∗ -0.165 -3.792∗

Italian nationality of the father 13.225∗∗ 3.087 7.573∗∗

Employment status of the father 2.235∗∗ 1.111† 0.132

Missing indicator for parents’ ESCS index 5.291∗∗ 1.810 1.855

Missing indicator for gender -4.407 7.715 -9.573

Missing indicator for father’s nationality 9.313 -5.207 11.176†

Missing indicator for father’s employment 13.247∗∗ 7.158∗ 4.098

Missing indicator for mother’s employment 6.744 -2.261 8.475

Covariate Model 1 Model 2 Model 3

Intercept 82.918∗∗ 83.649∗∗ 81.472∗∗

Treatment -0.426 -0.614 0.105

Parents’ ESCS index 2.135∗ 1.208 4.973∗

Female -8.154∗∗ -8.448∗∗ -8.113∗∗

Italian nationality of the father 0.235 1.245 -4.001

Employment status of the father 1.322∗∗ 0.914∗∗ 2.749∗∗

Employment status of the mother 0.991∗ 1.186∗ 0.475

Missing indicator for parents’ ESCS index 0.944 0.422 2.812

Missing indicator for gender 5.765 2.434 13.993

Missing indicator for father’s nationality -12.681∗ -15.429† -10.424

Missing indicator for father’s employment 6.402∗∗ 5.061∗ 11.359∗

Missing indicator for mother’s employment 0.677 12.518 -20.520

Italian score at the 5th grade -0.401∗∗ -0.402† -0.401†
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Table 9: Estimates of the regression parameters of the DiD models for Mathematics scores,
as in Equation (13) (top panel) and Equation (14) (bottom panel), estimated for the overall
students (Model 1), for the best performing students (Model 2), and the worst performing
students (Model 3) ( †significant at 10%, ∗significant at 5%, ∗∗significant at 1%)

Covariate Model 1 Model 2 Model 3

Intercept 190.214∗∗ 234.950∗∗ 176.686∗∗

Treatment -1.546 -2.145 -0.091

School motivations -1.858 1.301 -2.400∗

Parents’ ESCS index 1.511 1.301 0.617

Quality of class relations 0.176 0.383 0.355

External support for student autonomy -1.635 -4.166† -0.434

Well-being at school 4.990∗ 0.801 3.602∗

Discomfort at school -12.362∗∗ -4.625∗∗ -4.147∗∗

Bullying acted -2.585 3.334 0.267

Bullying right away -0.902 1.462 -3.040

Female 7.052∗∗ 6.789∗∗ 1.580

Italian nationality of the father 10.003∗∗ 0.735 5.087∗

Employment status of the father 1.485∗ 1.410∗ 0.243

Employment status of the mother 1.742∗ 0.784 0.458

Missing indicator for parents’ ESCS index 6.526∗∗ 2.311 0.761

Missing indicator for gender 28.446∗ -38.052 2.659

Missing indicator for father’s nationality 1.412 -6.096 9.082

Missing indicator for father’s employment 6.014† 3.969 0.978

Missing indicator for mother’s employment -10.701 47.940† 2.048

Covariate Model 1 Model 2 Model 3

Intercept 64.766∗∗ 67.157∗∗ 57.070∗

Treatment 3.217∗ 2.542 5.437†

Parents’ ESCS index 0.087 -0.636 1.960

Female -0.789 -1.375 0.656

Italian nationality of the father 3.383 5.164∗ -2.267

Employment status of the father 1.244∗ 1.094† 1.338

Employment status of the mother 1.049∗ 0.764 1.802∗

Missing indicator for parents’ ESCS index 2.619† 1.983 5.042

Missing indicator for gender 8.896 9.831 -4.698

Missing indicator for father’s nationality -12.275† -8.880∗∗ -19.789

Missing indicator for father’s employment 8.671∗∗ 8.927 6.203

Missing indicator for mother’s employment -6.969 -9.306 8.449

Mathematics score at the 5th grade -0.342∗∗ -0.354∗∗ -0.296∗∗
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7 Conclusions

We propose a Causal Latent Transition (CLT) model to estimate a treatment effect when

observations are collected at two time occasions, before and after the treatment. The

model may be cast in the class of latent (hidden) Markov models and may be seen as

an alternative to the Difference-in-Difference method when multivariate outcomes are of

interest and heterogeneous causal effects may be associated with different subpopulations

not directly observable.

In more detail, the main issues of the proposed approach are the following:

(a) it allows us to detect unobserved heterogeneity, account for the potential endogeneity

of latent abilities (Hansen et al., 2003), and discover latent clusters, whose number

is not known a priori. The causal effect is measured for each pair of subgroups and,

in this way, it is possible to verify if the treatment has different impacts;

(b) the CLT approach is formulated as a multivariate non-linear model allowing the esti-

mation of different causal effects by looking at the joint variability of the responses

over time; the probability distribution of the potential latent variables given the

treatment and the pre-treatment covariates is invariant with respect to transforma-

tions of these variables;

(c) rather then comparing multiple static models, the CLT approach analyzes the initial

conditions by estimating the initial probabilities and sequential stage developments

by estimating the transition probabilities;

(d) in the CLT model, the outcomes are only dependent on latent POs, which are

influenced by the observed pre- and post-treatment covariates. Differently from

factor analysis, they are assumed to follow a Markov process and, in this way, the

identification problems and indeterminacy of scores that typically arise in the factor

model are avoided.

Note that within the proposed approach, the number of causal estimands varies with

the selected number of latent states, while in more traditional causal approaches the

number of estimands is fixed. In this regard, selecting the number of states is a crucial
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point and, apart from criteria based on the observed data (see, for instance Figure 1 of the

Supplementary Information), this selection can be driven by reasons of interpretability

depending on the specific application.

The proposal is illustrated by an extensive simulation study and an application to

assess the educational programs aimed to improve non-cognitive skills on pupils. This ef-

fect is evaluated by considering the pupil’s cognitive skills measured through standardized

national tests in Italian and Mathematics administered in the 5th and 8th grades. We

infer a positive effect of the treatment on the subgroup of pupils having higher cognitive

abilities. The results have been validated through suitable sensitivity analyses.

Apart from the present application, the proposal can be suitable to analyze data with

multiple outcomes deriving from many other observational studies where it is important

to verify differential results of the effects of the treatment on heterogeneous populations.

We notice that even if the assumptions of the current CLT model are formulated for two

time periods, these may be simply generalized to the case of more time occasions, and

our proposal can be valuable with panel data as well. Another possible extension would

be to account for more levels in the data structure, such as to capture the school or the

class effects, and therefore a multilevel model would result. The CLT may be formulated

similarly to the model proposed in Bartolucci et al. (2011), where an additional discrete

latent variable is considered to capture the cluster effect. Further extensions can be

conceived using a probit link function and assuming an underlying continuous latent

variable. However, a probit parameterization instead of the proposed logit formulation

would imply a slightly more complex estimation procedure.
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We first provide some details on the simulation design presented in Section 4 of the paper,

and we show additional simulation results to evaluate the proposed causal latent transition

(CLT) model. In Section 2 we describe the data introduced in Section 5 of the paper referred

to the empirical application and show summary statistics of the chosen variables. In Section

3 we show some additional results of the application proposed in Section 6 of the paper. An

example code developed for the simulations and the application is available at the GitHub

repository: https://github.com/penful/CausalLT.

1 Simulation design and results

In the following, we first report the details on the parameter values under the two simulated

scenarios presented in Section 4.1 of the paper. Then, we provide tables with the complete

results of the simulation study described in Section 4.2 of the paper.
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1.1 Simulation design

Table 1 reports the values of the parameters of the benchmark design presented in Section

4.1 of the paper.

Table 1: Parameter values under the different simulation scenarios for a causal latent tran-

sition model with 2 and 3 latent states

k = 2 k = 3

µ1 =

−1

−2

, µ2 =

1

2

 µ1 =

−1.5

−3

, µ2 =

0

0
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1 ρ
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1.2 Simulation results

Tables from 2 to 5 report the results of the simulations described in Section 4.2 of the paper.

Table 2: Simulation results in terms of average bias (Av.Bias) and average root mean square

error (Av.RMSE) for the µhj parameters. CLT refers to the CLT model in which the only

covariate is the treatment, whereas CLTcov refers to the case in which the covariates are also

included in the initial and transition logistic models

µhj (k = 2) µhj (k = 3)

n ρ α0 α11 α12 α13 Av.Bias Av.RMSE Av.Bias Av.RMSE

1000 0.25 -1.00 0.00 0.00 0.00 CLT 0.0015 0.0339 0.0007 0.0505

CLTcov 0.0014 0.0336 0.0007 0.0493

1000 0.25 -1.00 0.50 0.50 0.50 CLT 0.0011 0.0338 0.0011 0.0501

CLTcov 0.0011 0.0335 0.0011 0.0490

1000 0.25 0.00 0.00 0.00 0.00 CLT 0.0007 0.0343 0.0018 0.0520

CLTcov 0.0007 0.0341 0.0017 0.0502

1000 0.25 0.00 0.50 0.50 0.50 CLT 0.0013 0.0341 0.0010 0.0509

CLTcov 0.0013 0.0338 0.0010 0.0496

1000 0.75 -1.00 0.00 0.00 0.00 CLT 0.0007 0.0335 0.0007 0.0497

CLTcov 0.0005 0.0332 0.0006 0.0485

1000 0.75 -1.00 0.50 0.50 0.50 CLT 0.0010 0.0337 0.0020 0.0492

CLTcov 0.0009 0.0334 0.0017 0.0484

1000 0.75 0.00 0.00 0.00 0.00 CLT 0.0005 0.0336 0.0008 0.0495

CLTcov 0.0005 0.0333 0.0009 0.0484

1000 0.75 0.00 0.50 0.50 0.50 CLT 0.0005 0.0338 0.0010 0.0492

CLTcov 0.0005 0.0335 0.0013 0.0479

2000 0.25 -1.00 0.00 0.00 0.00 CLT 0.0005 0.0239 0.0009 0.0357

CLTcov 0.0005 0.0237 0.0009 0.0345

2000 0.25 -1.00 0.50 0.50 0.50 CLT 0.0006 0.0239 0.0008 0.0361

CLTcov 0.0007 0.0237 0.0007 0.0351

2000 0.25 0.00 0.00 0.00 0.00 CLT 0.0006 0.0243 0.0012 0.0354

CLTcov 0.0007 0.0241 0.0010 0.0345

2000 0.25 0.00 0.50 0.50 0.50 CLT 0.0005 0.0238 0.0010 0.0357

CLTcov 0.0005 0.0237 0.0011 0.0346

2000 0.75 -1.00 0.00 0.00 0.00 CLT 0.0008 0.0239 0.0005 0.0347

CLTcov 0.0008 0.0239 0.0004 0.0335

2000 0.75 -1.00 0.50 0.50 0.50 CLT 0.0007 0.0240 0.0011 0.0339

CLTcov 0.0007 0.0237 0.0008 0.0327

2000 0.75 0.00 0.00 0.00 0.00 CLT 0.0005 0.0237 0.0007 0.0352

CLTcov 0.0005 0.0235 0.0009 0.0342

2000 0.75 0.00 0.50 0.50 0.50 CLT 0.0005 0.0241 0.0008 0.0342

CLTcov 0.0004 0.0240 0.0009 0.0332
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Table 3: Simulation results in terms of average bias for the δhh parameters. CLT refers to

the CLT model in which the only covariate is the treatment, whereas CLTcov refers to the

case in which the covariates are also included in the initial and transition logistic models

Bias (k = 2) Bias (k = 3)

n ρ α0 α11 α12 α13 δ12 δ21 δ12 δ13 δ21 δ23 δ31 δ32

1000 0.25 -1.00 0.00 0.00 0.00 CLT -0.2622 0.2618 -0.1435 -0.1374 0.2905 -0.3403 0.2269 0.1819

CLTcov 0.0241 -0.0151 0.1200 0.0790 -0.0601 0.0115 -0.0550 -0.0978

1000 0.25 -1.00 0.50 0.50 0.50 CLT -0.1820 0.2994 0.0107 -0.0028 0.2912 -0.3656 0.2420 0.2377

CLTcov 0.0198 -0.0188 -0.0054 0.0309 -0.0376 0.0530 -0.0682 -0.0324

1000 0.25 0.00 0.00 0.00 0.00 CLT -0.2568 0.2617 -0.1671 -0.1730 0.2998 -0.3423 0.2435 0.2383

CLTcov 0.0330 -0.0122 0.0496 0.0500 -0.0532 0.0185 -0.0324 -0.0764

1000 0.25 0.00 0.50 0.50 0.50 CLT -0.2603 0.3100 -0.0729 -0.1002 0.3599 -0.3495 0.2587 0.2674

CLTcov 0.0137 -0.0010 0.0709 0.0334 -0.0361 0.0421 -0.0398 -0.0886

1000 0.75 -1.00 0.00 0.00 0.00 CLT -0.2620 0.2542 -0.1506 -0.1167 0.2949 -0.3354 0.2441 0.2350

CLTcov 0.0239 -0.0305 0.0618 0.0918 -0.0550 0.0173 -0.0494 -0.0692

1000 0.75 -1.00 0.50 0.50 0.50 CLT -0.1894 0.2906 -0.0164 0.0050 0.2888 -0.3594 0.2638 0.2285

CLTcov 0.0158 -0.0234 0.0309 0.0386 -0.0329 0.0450 -0.0513 -0.0970

1000 0.75 0.00 0.00 0.00 0.00 CLT -0.2646 0.2701 -0.1675 -0.1585 0.3184 -0.3450 0.2457 0.2448

CLTcov 0.0200 -0.0082 0.0345 0.0600 -0.0335 0.0031 -0.0465 -0.0541

1000 0.75 0.00 0.50 0.50 0.50 CLT -0.2764 0.3082 -0.0902 -0.1051 0.3561 -0.3520 0.2584 0.2557

CLTcov 0.0017 -0.0127 0.0655 0.0452 -0.0191 0.0292 -0.0562 -0.0612

2000 0.25 -1.00 0.00 0.00 0.00 CLT -0.2650 0.2603 -0.1605 -0.1680 0.3238 -0.3356 0.2613 0.2040

CLTcov 0.0141 -0.0119 0.0355 0.0234 -0.0192 0.0112 -0.0079 -0.0614

2000 0.25 -1.00 0.50 0.50 0.50 CLT -0.1892 0.3009 -0.0264 -0.0173 0.2902 -0.3756 0.2777 0.2727

CLTcov 0.0072 -0.0115 -0.0028 0.0109 -0.0270 0.0163 -0.0064 -0.0153

2000 0.25 0.00 0.00 0.00 0.00 CLT -0.2711 0.2763 -0.1603 -0.1679 0.3349 -0.3338 0.2482 0.2426

CLTcov 0.0074 0.0009 0.0450 0.0422 -0.0051 0.0123 -0.0190 -0.0247

2000 0.25 0.00 0.50 0.50 0.50 CLT -0.2626 0.3029 -0.0890 -0.0982 0.3576 -0.3572 0.2829 0.2882

CLTcov 0.0121 -0.0084 0.0283 0.0322 -0.0123 0.0157 -0.0153 -0.0098

2000 0.75 -1.00 0.00 0.00 0.00 CLT -0.2779 0.2720 -0.1673 -0.1684 0.3138 -0.3460 0.2438 0.2297

CLTcov 0.0048 0.0014 0.0343 0.0277 -0.0302 -0.0023 -0.0275 -0.0370

2000 0.75 -1.00 0.50 0.50 0.50 CLT -0.1889 0.3023 -0.0243 -0.0306 0.2891 -0.3768 0.2850 0.2726

CLTcov 0.0138 -0.0087 0.0025 0.0018 -0.0303 0.0127 -0.0119 -0.0187

2000 0.75 0.00 0.00 0.00 0.00 CLT -0.2775 0.2700 -0.1655 -0.1828 0.3225 -0.3268 0.2484 0.2539

CLTcov -0.0016 -0.0028 0.0483 0.0332 -0.0213 0.0214 -0.0198 -0.0143

2000 0.75 0.00 0.50 0.50 0.50 CLT -0.2652 0.2986 -0.0845 -0.1083 0.3474 -0.3671 0.2837 0.2549

CLTcov 0.0118 -0.0100 0.0471 0.0198 -0.0277 0.0078 -0.0199 -0.0465
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Table 4: Simulation results in terms of root mean square error (RMSE) for the δhh param-

eters. CLT refers to the CLT model in which the only covariate is the treatment, whereas

CLTcov refers to the case in which the covariates are also included in the initial and transi-

tion logistic models

RMSE (k = 2) RMSE (k = 3)

n ρ α0 α11 α12 α13 δ12 δ21 δ12 δ13 δ21 δ23 δ31 δ32

1000 0.25 -1.00 0.00 0.00 0.00 CLT 0.3742 0.3324 0.8417 0.4952 0.4952 0.4254 0.4631 0.4996

CLTcov 0.3054 0.2366 1.6893 0.4273 0.4273 0.2934 0.4619 0.5934

1000 0.25 -1.00 0.50 0.50 0.50 CLT 0.3112 0.3608 0.6033 0.4818 0.4818 0.4429 0.4632 0.6473

CLTcov 0.2989 0.2676 1.1715 0.4259 0.4259 0.3471 0.5217 0.7017

1000 0.25 0.00 0.00 0.00 0.00 CLT 0.3379 0.3237 0.5413 0.4466 0.4466 0.4148 0.4295 0.4704

CLTcov 0.2588 0.2152 0.6051 0.3699 0.3699 0.2667 0.3992 0.9735

1000 0.25 0.00 0.50 0.50 0.50 CLT 0.3405 0.3625 0.5295 0.4887 0.4887 0.4226 0.4465 0.4815

CLTcov 0.2823 0.2493 0.6443 0.4161 0.4161 0.3065 0.4817 1.3158

1000 0.75 -1.00 0.00 0.00 0.00 CLT 0.3631 0.3282 1.0636 0.5119 0.5119 0.4205 0.4626 0.5124

CLTcov 0.2962 0.2427 1.1400 0.4491 0.4491 0.2836 0.4496 0.7999

1000 0.75 -1.00 0.50 0.50 0.50 CLT 0.3151 0.3452 0.6086 0.4762 0.4762 0.4298 0.4487 0.4812

CLTcov 0.3073 0.2534 0.7875 0.4438 0.4438 0.3323 0.4733 0.5507

1000 0.75 0.00 0.00 0.00 0.00 CLT 0.3445 0.3260 0.5228 0.4595 0.4595 0.4143 0.4223 0.4726

CLTcov 0.2558 0.2145 0.8367 0.3679 0.3679 0.2657 0.3867 0.4583

1000 0.75 0.00 0.50 0.50 0.50 CLT 0.3522 0.3592 0.5109 0.4800 0.4800 0.4211 0.4280 0.4611

CLTcov 0.2851 0.2531 0.6228 0.4055 0.4055 0.3081 0.4774 0.5234

2000 0.25 -1.00 0.00 0.00 0.00 CLT 0.3214 0.2980 0.4368 0.4202 0.4202 0.3802 0.3734 0.3917

CLTcov 0.2097 0.1671 0.4645 0.2796 0.2796 0.2030 0.3029 0.3665

2000 0.25 -1.00 0.50 0.50 0.50 CLT 0.2626 0.3284 0.3936 0.3912 0.3912 0.4133 0.3853 0.4033

CLTcov 0.2198 0.1838 0.4647 0.2962 0.2962 0.2339 0.3366 0.3815

2000 0.25 0.00 0.00 0.00 0.00 CLT 0.3162 0.3077 0.3928 0.4017 0.4017 0.3734 0.3506 0.3642

CLTcov 0.1852 0.1521 0.4004 0.2460 0.2460 0.1888 0.2798 0.3132

2000 0.25 0.00 0.50 0.50 0.50 CLT 0.3055 0.3297 0.3647 0.4195 0.4195 0.3921 0.3708 0.3995

CLTcov 0.2034 0.1766 0.4317 0.2772 0.2772 0.2195 0.3127 0.3704

2000 0.75 -1.00 0.00 0.00 0.00 CLT 0.3327 0.3076 0.4384 0.4067 0.4067 0.3835 0.3636 0.3695

CLTcov 0.2047 0.1596 0.4687 0.2750 0.2750 0.1899 0.3116 0.3336

2000 0.75 -1.00 0.50 0.50 0.50 CLT 0.2620 0.3306 0.3991 0.3905 0.3905 0.4133 0.3845 0.3957

CLTcov 0.2182 0.1768 0.4597 0.2884 0.2884 0.2275 0.3350 0.3665

2000 0.75 0.00 0.00 0.00 0.00 CLT 0.3180 0.3001 0.3783 0.3965 0.3965 0.3668 0.3497 0.3820

CLTcov 0.1792 0.1512 0.3805 0.2473 0.2473 0.1928 0.2752 0.3164

2000 0.75 0.00 0.50 0.50 0.50 CLT 0.3055 0.3247 0.3508 0.4099 0.4099 0.4024 0.3756 0.3719

CLTcov 0.1978 0.1736 0.4242 0.2778 0.2778 0.2200 0.3128 0.3564
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Table 5: Simulation results in terms of relative bias (R.Bias) for standard errors obtained

for the δhh parameters. CLT refers to the model in which the only covariate is the treatment,

whereas CLTcov refers to the case in which the covariates are also included in the initial and

transition logistic models

R.Bias s.e. (k = 2) R.Bias s.e. (k = 3)

n ρ α0 α11 α12 α13 δ12 δ21 δ12 δ13 δ21 δ23 δ31 δ32

1000 0.25 -1.00 0.00 0.00 0.00 CLT -0.0137 0.0075 -0.2545 -0.2894 -0.0088 -0.0074 -0.0288 -0.0035

CLTcov -0.0106 -0.0089 -0.5717 -0.4135 -0.0069 -0.0239 -0.0452 -0.1040

1000 0.25 -1.00 0.50 0.50 0.50 CLT -0.0092 -0.0255 -0.0155 -0.0223 -0.0327 -0.0299 -0.0501 -0.2807

CLTcov 0.0044 -0.0235 -0.4068 -0.0253 -0.0117 -0.0330 -0.0651 -0.1943

1000 0.25 0.00 0.00 0.00 0.00 CLT 0.0047 -0.0340 -0.0321 -0.0564 -0.0208 -0.0089 -0.0172 -0.0201

CLTcov -0.0071 -0.0157 -0.0591 -0.0428 -0.0213 -0.0036 -0.0206 -0.5389

1000 0.25 0.00 0.50 0.50 0.50 CLT 0.0035 -0.0229 -0.0382 -0.0498 -0.0317 -0.0255 -0.0426 -0.0135

CLTcov 0.0092 0.0002 -0.0319 -0.0633 -0.0253 0.0052 -0.0442 -0.5728

1000 0.75 -1.00 0.00 0.00 0.00 CLT 0.0385 -0.0160 -0.4131 -0.3327 -0.0730 -0.0238 -0.0146 -0.0270

CLTcov 0.0092 -0.0358 -0.3811 -0.3190 -0.0758 -0.0081 -0.0340 -0.3851

1000 0.75 -1.00 0.50 0.50 0.50 CLT -0.0118 0.0444 -0.0354 -0.0170 -0.0445 0.0055 0.0139 -0.0039

CLTcov -0.0287 0.0240 -0.1373 -0.0323 -0.0734 -0.0210 0.0112 -0.0092

1000 0.75 0.00 0.00 0.00 0.00 CLT -0.0063 0.0001 -0.0162 0.0019 -0.0531 -0.0105 -0.0011 -0.0416

CLTcov -0.0097 -0.0220 -0.3397 -0.0321 -0.0519 -0.0272 0.0021 -0.0390

1000 0.75 0.00 0.50 0.50 0.50 CLT 0.0010 -0.0140 -0.0300 -0.0050 -0.0352 -0.0194 0.0039 0.0060

CLTcov -0.0071 -0.0199 -0.0353 -0.0203 -0.0338 -0.0278 -0.0483 -0.0219

2000 0.25 -1.00 0.00 0.00 0.00 CLT 0.0161 0.0030 0.0288 0.0100 0.0170 -0.0016 0.0220 -0.0479

CLTcov 0.0078 -0.0141 0.0190 0.0140 0.0333 -0.0122 -0.0070 -0.0347

2000 0.25 -1.00 0.50 0.50 0.50 CLT -0.0329 0.0514 0.0279 0.0332 -0.0187 -0.0108 -0.0262 0.0038

CLTcov -0.0429 -0.0033 0.0027 0.0224 -0.0156 -0.0196 -0.0209 -0.0220

2000 0.25 0.00 0.00 0.00 0.00 CLT -0.0451 -0.0407 -0.0357 -0.0290 0.0114 -0.0230 -0.0165 0.0182

CLTcov -0.0366 -0.0234 -0.0325 -0.0373 0.0014 -0.0170 -0.0344 -0.0196

2000 0.25 0.00 0.50 0.50 0.50 CLT -0.0046 -0.0059 -0.0128 0.0087 0.0190 0.0073 0.0142 -0.0037

CLTcov -0.0148 -0.0065 -0.0291 0.0013 0.0062 -0.0284 0.0085 -0.0386

2000 0.75 -1.00 0.00 0.00 0.00 CLT 0.0024 0.0021 0.0068 -0.0251 0.0266 0.0515 0.0029 0.0582

CLTcov 0.0204 0.0175 -0.0181 -0.0421 0.0309 0.0300 -0.0394 0.0143

2000 0.75 -1.00 0.50 0.50 0.50 CLT -0.0348 0.0241 -0.0131 -0.0322 -0.0441 -0.0180 -0.0021 0.0112

CLTcov -0.0406 0.0238 -0.0166 -0.0417 -0.0114 -0.0151 -0.0228 -0.0054

2000 0.75 0.00 0.00 0.00 0.00 CLT -0.0081 -0.0157 -0.0091 -0.0034 -0.0484 -0.0401 -0.0219 -0.0615

CLTcov -0.0155 -0.0247 -0.0043 0.0001 -0.0204 -0.0536 -0.0292 -0.0614

2000 0.75 0.00 0.50 0.50 0.50 CLT 0.0172 0.0062 -0.0070 -0.0122 0.0062 -0.0334 -0.0240 -0.0060

CLTcov 0.0044 0.0017 -0.0393 -0.0592 -0.0115 -0.0518 -0.0011 -0.0138

6



2 Data

The data are derived from the integration of the following five data sources:

(1) INVALSI administrative data collected in 2015 to assess the students’ performance

in the 5th grade in Italian and Mathematics. The Italian test includes two sections

(Reading Comprehension and Grammar), whereas the Mathematics test consists of 27

items covering four main content domains (Numbers, Shapes and Figures, Algebra,

Data, and Previsions). These tests are graded at the national level by advisers rather

than by school teachers;

(2) INVALSI data collected in 2015 according to a questionnaire submitted to the stu-

dents of all Italian schools to gather information on the NCSs. In addition, there is

bullying acted and bullying right away that include words, actions, and images that

hurt, humiliate, or socially exclude someone or that lower someone (inner stability);

(3) INVALSI administrative data collected in 2018 to assess the performance of the stu-

dents in the 8th grade in Italian and Mathematics through tests having the same

features as the data illustrated at point (1) above;

(4) PAT survey carried out in 2018 to collect demographics and socio-economic students’

conditions, such as the parental socio-economic status related to the international socio-

economic index named ESCS (index of economic, social and cultural status) defined

within the Programme for International Student Assessment (OECD, 2015);

(5) PAT survey carried out in 2015 and 2018 concerning the features of the educational

programs implemented by the schools (e.g., classes and teaching methodologies).

In the following, we provide additional details on the definition of non-cognitive skills (Table

6), the observed variables used in the application illustrating the proposal in Sections 5 and

6 of the paper (Table 7), and their summary statistics (Table 8). We also show the results

of the test to compare the average achievement scores of participating and non-participating

schools (Table 9). Finally, Table 10 reports additional descriptive statistics of the available

data and the results of the t-test to compare student achievement scores at the baseline.
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Table 6: Description of the non-cognitive skills

Definition Description

Agreeableness Collaboration and peaceful relationships

Extraversion Attention to improve the school environment

Locus of control Incentive to a personal position in making choices

Motivation Development of affective dimensions linked to motivations

Openness to experience Participation in the life of the local area

Conscientiousness Identification of strengths and weaknesses

Emotional stability Overcoming tense situations in daily life

3 Additional results of the application

3.1 Results of the proposed causal latent transition model

Figure 1 depicts the values of the BIC index reported in Table 1 of the paper, where we

observe the increase in the BIC index for the models with more than two latent states.

 

Number of states

B
IC

1 2 3 4

61332

60610

60863

61469

Figure 1: Values of the BIC index of the CLT model for an increasing number of states
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Table 7: Description of the variables available across years 2015 and 2018

Responses Description

Italian and Math scores at 5th grade† Observed at the age of 10 years

Italian and Math scores at 8th grade† Observed at the age of 14 years

Covariate Type (% of missing values)

School motivations∗ Continuous, standardized

Quality of class relations∗ Continuous, standardized

External support for student autonomy∗ Continuous, standardized

Well-being at school∗ Continuous, standardized

Discomfort at school∗ Continuous, standardized

Bullying acted∗ Continuous, standardized

Bullying right away∗ Continuous, standardized

Parents’ ESCS index Continuous, standardized (26%)

Employment status of father/mother∗∗ Continuous (27%, 30%)

Italian nationality of the father Binary (6%)

Gender Binary (4%)

†Continuous variable with higher scores indicating better results. ∗Variables collected in 2015. ∗∗Values

ranging from 0 to 7 with higher values indicating high employment level. The categories are ordered as

follows: unemployed, house-maker, retired laborer, self-employed, professional, teacher, soldier, manager,

professor, entrepreneur.

Table 8: Descriptive statistics of the INVALSI achievement scores at the 5th and 8th grade

in Italian and Mathematics

Achievement score Italian Mathematics

5th grade 8th grade 5th grade 8th grade

Min 80.238 81.604 111.141 71.691

q1 185.259 188.654 184.784 191.454

Median 204.369 208.177 213.796 216.040

Mean 207.183 210.516 213.696 217.516

q3 229.873 231.782 237.323 240.363

Max 343.456 353.584 364.753 372.015

s.d. 36.595 34.741 38.438 37.589
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Table 9: Average scores in Italian and Mathematics of pupils at the 5th grade attended

schools participating and non-participating to the educational PAT programs, results of the

usual t-test to compare schools

Italian Mathematics

Participating schools, mean (s.d.) 210.508 (6.623) 217.178 (7.508)

Non-participating schools, mean (s.d.) 208.468 (7.199) 214.791 (8.605)

Realized value of the t-statistics (p-value) 1.013 (0.237) 1.186 (0.196)

Table 10: Descriptive statistics of the available data: overall, and treated and nontreated

average values for the outcomes and covariates; relative frequencies for the binary covariates.

Results of the usual t-test to compare the scores treated and nontreated students at the baseline

(t = 0, 5th grade) for Italian and Mathematics

Av.treated Av.nontreated

Responses Average s.d. # 845 # 716

Achievement score in Italian (t = −1) 196.900 34.212 197.588 196.677

Achievement score in Italian (t = 0) 207.183 36.595 207.586 206.708

Achievement score in Italian (t = 1) 210.516 34.741 210.636 210.375

Realized value of the t-statistics (p-value) 0.472 (0.637)

Achievement score in Mathematics (t = −1) 198.600 40.069 197.650 198.649

Achievement score in Mathematics (t = 0) 213.696 38.437 213.079 214.424

Achievement score in Mathematics (t = 1) 217.516 37.589 218.139 216.781

Realized value of the t-statistic (p-value) -0.687 (0.492)

Continuous covariates Average s.d. Av.treated Av.nontreated

School motivation -0.356 0.878 -0.262 -0.467

Parents’ ESCS index 0.102 0.694 0.101 0.104

Quality of class relations -0.001 0.512 0.011 -0.014

External support for student autonomy 0.000 0.529 0.017 -0.021

Well-being at school -0.001 0.517 0.020 -0.025

Discomfort at school 0.001 0.700 0.024 -0.026

Bullying acted 0.000 0.482 0.002 -0.001

Bullying right away 0.000 0.675 0.008 -0.009

Employment status of father 2.579 2.116 2.786 2.335

Employment status of mother 2.301 2.149 2.488 2.081

Binary covariates Proportion Pr.treated Pr.nontreated

Female 0.479 0.293 0.227

Italian nationality of the father 0.810 0.414 0.396
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3.2 Results of the univariate causal latent transition model

In Table 11 we show the results of the estimated average treatment effects on the treated

(ATETs) for the transition from the second to the first cluster and from the first to the

second cluster of the univariate CLT model with k=2 states. These results confirm those

obtained with the multivariate CTL model reported in Table 7 of the paper.

Table 11: Estimates of the logit regression parameters of the treatment and standard errors

(s.e.) for the transition probabilities under the univariate CLT model with k=2 states esti-

mated separately for Italian and Mathematics: first column (Effect 1) from the first to the

second cluster, second column (Effect 2) from the second to the first cluster (∗∗significant at

1%)

Scores Effect 1 s.e. Effect 2 s.e.

Italian 0.729 1.557 -3.935∗∗ 1.557

Mathematics 0.358 0.741 -4.229∗∗ 1.651

3.3 Results of the robust DiD model

In the following we show the average treatment effect (ATET) estimated with the locally

efficient doubly robust difference-in-differences (DiD) estimator defined in Equation (3.1) of

the paper Sant’Anna and Zhao (2020). Table 12 shows effects for the test results in Italian

and Mathematics. We observe that these results are similar to those obtained with the

standard DiD estimator presented in Tables 8 and 9 of the paper for Italian achievement

score. For Mathematics, we get slightly different results from those presented in Table 9 of

the paper since the effect is significant for Models 1 and 2 and not for Model 3, referred to

students performing below the median score.

3.4 Additional analyses

To evaluate the consistency of the assumption related to the conditional Gaussian distri-

bution of the outcomes, we compared the empirical distribution of each outcome once each
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Table 12: DiD estimator of the ATET for Italian with locally efficient doubly robust estimator

proposed by Sant’Anna and Zhao (2020). Estimated effects of models for Italian, as in

Equation (13) (top panel) and as in Equation (14) (bottom panel) of the paper, estimated

for the overall students (Model 1), for students performing above the median score in grade

5th (Model 2) and for students performing below the median score in grade 5th (Model 3)

(∗significant at 5%, ∗∗significant at 1%)

Equation (13) Model 1 Model 2 Model 3

Italian 0.272 -0.036 2.431

Mathematics 4.052∗ 6.838∗∗ 1.867

Equation (14) Model 1 Model 2 Model 3

Italian 0.846 0.410 1.603

Mathematics 3.534∗ 6.605∗∗ 1.326

student has been assigned to a cluster according to the maximum-a-posteriori probability for

each time occasion. This procedure is also known as local decoding (Bartolucci et al., 2013).

Figures 2 and 3 show the conditional empirical distributions of each cluster for scores in

Italian and Mathematics compared with the theoretical ones related to the first and second

time occasions, respectively.

References

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013). Latent Markov Models for Longitu-

dinal Data. Chapman & Hall/CRC, Boca Raton, FL.

OECD (2015). Skills for Social Progress: The Power of Social and Emotional skills. OECD

Publishing.

Sant’Anna, P. H. and Zhao, J. (2020). Doubly robust difference-in-differences estimators.

Journal of Econometrics, 219:101–122.

12



50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Score in Italian

F
n

(x
)

Empirical
X ~ N(197, 28)

(a) Italian, cluster 1, 5th grade

50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Score in Mathematics
F

n
(x

)

Empirical
X ~ N(201, 29)

(b) Mathematics, cluster 1, 5th grade

100 150 200 250 300 350 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Score in Italian

F
n

(x
)

Empirical
X ~ N(237, 30)

(c) Italian, cluster 2, 5th grade
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(d) Mathematics, cluster 2, 5th grade

Figure 2: Empirical and theoretical conditional cumulative distribution function for Italian

and Mathematics obtained once the students have been assigned to a cluster on the basis of

the maximum-a-posteriori rule at each time occasion
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(a) Italian, cluster 1, 8th grade
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(b) Mathematics, cluster 1, 8th grade
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(c) Italian, cluster 2, 8th grade
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Figure 3: Empirical and theoretical conditional cumulative distribution function for Italian

and Mathematics obtained once the students have been assigned to a cluster on the basis of

the maximum-a-posteriori rule at each time occasion
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