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A RNN for temporal consistency in low-light
videos enhanced by single-frame methods

Claudio Rota , Marco Buzzelli , Simone Bianco , Raimondo Schettini

Abstract—Low-light video enhancement (LLVE) has received
little attention compared to low-light image enhancement (LLIE)
mainly due to the lack of paired low-/normal-light video datasets.
Consequently, a common approach to LLVE is to enhance
each video frame individually using LLIE methods. However,
this practice introduces temporal inconsistencies in the resulting
video. In this work, we propose a recurrent neural network
(RNN) that, given a low-light video and its per-frame enhanced
version, produces a temporally consistent video preserving
the underlying frame-based enhancement. We achieve this by
training our network with a combination of a new forward-
backward temporal consistency loss and a content-preserving
loss. At inference time, we can use our trained network to
correct videos processed by any LLIE method. Experimental
results show that our method achieves the best trade-off between
temporal consistency improvement and fidelity with the per-
frame enhanced video, exhibiting a lower memory complexity
and comparable time complexity with respect to other state-of-
the-art methods for temporal consistency. Code and videos are
available at https://github.com/claudiom4sir/LLTC.

Index Terms—Low-light video enhancement, temporal consis-
tency, video processing.

I. INTRODUCTION

Low-light image enhancement (LLIE) is an image process-
ing task focused on improving the quality of images taken
in low-light conditions [1]–[4]. With the increasing popular-
ity of video data, low-light video enhancement (LLVE) has
become essential for a wide range of applications, including
surveillance, social media, and autonomous driving [5]–[7].
Compared to LLIE methods, LLVE methods can consider the
temporal dependency among frames to exploit additional data
that may inform the enhancement of the sequence [8]. Despite
the growing demand for LLVE methods, their development has
been severely limited by the lack of dynamic low-light video
datasets [2]. Collecting such datasets is a challenging task, as
it requires complex acquisition mechanisms to acquire aligned
low-/normal-light video pairs [9]. For these reasons, a common
approach to achieve LLVE is to consider video frames as
independent images and enhance them using existing LLIE
methods. Unfortunately, this approach may introduce temporal
artifacts, such as flickering and abrupt changes in brightness
or color, as the temporal relationships among frames are not
considered. A possible solution to extend LLIE methods to
videos is the use of post-processing methods for temporal
consistency [10]–[14], which aim to convert a temporally
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Fig. 1. Artifacts introduced by existing methods for temporal consistency.
MIRNet [16] is a LLIE method. Lai et al. [11] progressively darken frames
due to error accumulation (left). Both Lai et al. [11] and TDMSNet [12]
introduce visible ghosting effects due to wrong frame alignment (right).

inconsistent video into a temporally consistent one preserving
as much as possible the appearance of the enhanced frames.
Lai et al. [11] introduce the first learning-based method for
temporal consistency, where a recurrent network is trained
with a temporal consistency loss and a content-preserving
loss to ensure similarity with the per-frame processed video.
Zhuo et al. [12] propose Temporal Denoising Mask Synthesis
Network (TDMSNet), a multi-branch recurrent network that
predicts optical flow [15], a motion mask and a refinement
mask. The optical flow and motion mask branches align
frames while masking out regions occluded by motion, and the
refinement mask corrects the result of the previous operation
to improve temporal consistency. Lei et al. [14] propose Deep
Video Prior (DVP), which is based on the idea that temporal
inconsistency can be viewed as an overfitting problem. They
propose to train a neural network directly on a video using
a content-preserving loss, and to stop the network training
as soon as its output is similar to the per-frame processed
sequence, before temporal artifacts are overfitted. Although
different methods to improve temporal consistency exist, they
lack appropriate mechanisms to capture the video motion
dynamics or they progressively accumulate small errors over
time, introducing visible artifacts in the resulting video, as we
can see in Fig. 1.

In this work, we propose a recurrent neural network that
improves the temporal consistency of video frames indi-
vidually enhanced by LLIE methods while preserving the
underlying frame-based enhancement. Our method requires
two contiguous low-light frames Lt and Lt−1, the current
frame Et enhanced by a LLIE method, the previous frame
St−1 corrected by our method, i.e. stabilized, and produces
a stabilized frame St. We address the key limitations of
existing methods by defining a frame alignment module that
captures motion dynamics to prevent ghosting effects, and
introducing a backward temporal consistency loss to avoid the
progressive degradation of frame quality. Using a forward-
backward temporal consistency loss and a content-preserving
loss, our method learns to achieve temporal consistency with-

https://orcid.org/0000-0002-6086-9838
https://orcid.org/0000-0003-1138-3345
https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0001-7461-1451
https://github.com/claudiom4sir/LLTC


2

Fig. 2. Overview of the proposed method for temporal consistency. We compute the optical flow from Lt−1 to Lt to obtain L̂t and Ŝt via warping. We
process L̂t and Lt with the Low-light Encoder El, and Ŝt and Et with the Enhanced Encoder Ee. The encoded features are concatenated, refined by different
residual blocks, and decoded using the decoder D. The residual is then added to Et to obtain the stabilized frame St, which also serves as the new St−1

for the next time step.

out introducing new artifacts, preserving the aspect of the
per-frame enhanced video. We evaluate our method on two
LLVE datasets, whose videos are enhanced by different LLIE
methods. The experimental results show that our method
can better improve temporal consistency while preserving the
underlying frame-based enhancement compared to existing
methods for temporal consistency.

II. PROPOSED METHOD

We indicate with L the low-light frames, with E the frames
individually enhanced by a LLIE method, and with S the
frames stabilized with our method for temporal consistency.
Considering a low-light video LN

t=1 with N frames and its per-
frame enhanced version EN

t=1, our goal is to obtain a video
SN
t=1 that is temporally consistent and consistently similar to

EN
t=1. The overview of our method is shown in Fig. 2.

A. Architecture

We implement a recurrent network F that takes as input
two contiguous low-light frames Lt and Lt−1, the current
frame Et enhanced by a LLIE method, and the previously
stabilized frame St−1 (the output of our method at the previous
time step). Our method produces the stabilized frame St as
output. Initially, we set S1 to E1. We first compute the forward
optical flow from Lt−1 to Lt using RAFT [17], and use it
to warp Lt−1 and St−1, obtaining L̂t and Ŝt, respectively.
Then, we concatenate L̂t with Lt and feed it to the Low-
light Encoder El. Similarly, we concatenate Ŝt with Et and
feed it to the Enhanced Encoder Ee. We then concatenate the
output of the two encoders and refine them using a sequence
of residual blocks [18]. We then decode the output of the last
residual block with the decoder D, using skip connections
from the Enhanced Encoder Ee via concatenation to improve
reconstruction quality. Since St and Et are expected to be
similar in content, we compute the residual instead of the
actual pixel values as:

St = Et + F(Lt, L̂t, Et, Ŝt) . (1)

We use the stabilized frame St as input for the next time step,
where it becomes the new St−1. In each time step, F learns
to use both local and global information to ensure that St is
temporally consistent with St−1 while visually preserving the
enhancement of Et.

B. Loss function

We optimize our method using two loss functions: the
temporal consistency loss and the content-preserving loss.

The temporal consistency loss LTC is defined as the warp-
ing error between St and St−1, which measures the per-pixel
difference of adjacent frames after alignment via optical flow.
We compute the forward optical flow from Lt−1 to Lt using
RAFT [17] and we use it to warp Lt−1 and St−1 obtaining L̂t

and Ŝt. We use the occlusion mask Mt = exp(−α||Lt−L̂t||22)
to avoid computing the loss over occluded regions as in [11].
We find that using only the loss in the forward direction, i.e.
LTCfw

, causes small errors to accumulate at each time step,
resulting in progressively darker frames. This issue is evident
in existing temporal consistency methods, which are neither
designed nor tested for LLVE, as illustrated in Figure 1 (left).
By incorporating the backward loss, the method enforces con-
sistency in both directions, helping to balance these errors and
preventing the gradual degradation of frame quality, ensuring
that brightness and other attributes remain stable throughout
the video sequence. Therefore, we also compute the loss in
the backward direction, LTCbw

. We compute the backward
flow from Lt to Lt−1 and use it to warp Lt and St obtaining
L̂t−1 and Ŝt−1. L̂t−1 is used in occlusion mask Mt−1. The
complete loss is defined as follows:

LTC = LTCfw
+ LTCbw

=
T∑

t=2

||Mt ⊙ (St − Ŝt)||1

+ ||Mt−1 ⊙ (Ŝt−1 − St−1)||1 ,

(2)

where ⊙ is pixel-wise multiplication and M are occlusion
masks. The content-preserving loss LP [27] is the distance
between features of the 4th layer ϕ of a pretrained VGG-16
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TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS FOR TEMPORAL CONSISTENCY. THE BASELINE RESULTS REFER TO FRAMES ENHANCED BY LLIE 
METHODS WITHOUT ANY STABILIZATION, WHILE THE OTHER RESULTS CORRESPOND TO FRAMES STABILIZED BY A TEMPORAL CONSISTENCY METHOD. RESULTS ARE 
REPORTED AS WE (↓) / PSNR (↑). BEST RESULTS ARE IN BOLD, SECOND-BEST RESULTS ARE UNDERLINED. OUR METHOD ACHIEVES THE BEST TRADE-OFF 
BETWEEN TEMPORAL CONSISTENCY IMPROVEMENT AND FIDELITY WITH THE PER-ENHANCED VIDEO.

LLIE methods DID dataset [19] SDSD dataset [2]

Baseline + Lai et al. [11] + TDMSNet [12] + DVP [14] + Ours Baseline + Lai et al. [11] + TDMSNet [12] + DVP [14] + Ours

MIRNet [16] ♦ 10.37 / - 3.64 / 21.25 3.29 / 26.85 4.70 / 27.16 2.32 / 29.52 12.40 / - 4.44 / 15.46 4.09 / 22.88 6.44 / 29.63 4.18 / 29.93
Kind++ [20] ♦ 5.38 / - 4.85 / 26.27 4.37 / 29.25 5.12 / 31.16 3.12 / 33.62 16.74 / - 12.07 / 17.61 8.44 / 23.59 14.39 / 31.72 9.19 / 34.18

ZeroDCE++ [21] ♦ 4.67 / - 3.93 / 26.54 3.45 / 30.00 4.87 / 34.51 2.49 / 33.66 11.88 / - 8.54 / 19.07 5.89 / 24.31 10.08 / 34.09 6.69 / 34.57
EnlightenGAN [22] ♦ 6.25 / - 4.91 / 22.97 4.22 / 28.27 6.11 / 30.01 3.06 / 30.98 14.82 / - 10.18 / 17.42 7.18 / 23.52 12.53 / 32.17 7.65 / 32.56

BTTF [23] ♦ 8.67 / - 3.22 / 21.71 3.08 / 27.83 4.08 / 26.75 2.24 / 31.05 9.14 / - 2.84 / 17.39 2.67 / 24.35 4.06 / 32.42 2.76 / 33.18
ChebyLighter [24] ♦ 8.39 / - 5.97 / 22.07 4.97 / 27.35 5.17 / 29.96 3.73 / 31.18 12.20 / - 8.12 / 16.11 6.62 / 22.01 9.42 / 32.88 7.10 / 32.12

RetinexNet [25] ♦ 8.34 / - 7.02 / 23.27 5.43 / 28.23 7.77 / 32.96 3.86 / 30.35 22.08 / - 15.05 / 16.13 10.64 / 22.75 20.46 / 32.52 10.78 / 30.24
URetinexNet [26] ♦ 5.14 / - 3.75 / 23.58 3.30 / 27.92 5.17 / 29.96 2.24 / 31.56 11.10 / - 7.23 / 16.16 6.16 / 22.32 9.78 / 33.64 6.42 / 32.14
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Fig. 3. Trade-off between temporal consistency improvement and fidelity
with the per-frame enhanced sequences. The upper-left corner is the optimal
spot (high temporal consistency, high fidelity). Each point corresponds to an
entry of Table I, except for baseline (colors represent LLIE methods, see
symbol colors in the table). Shapes represent temporal consistency methods.
Our method (▲) is closer to the optimal spot, showing the best trade-off.

model [28], here extracted from St and Et to encourage the
method to visually preserve the enhancement of Et in St. The
loss is defined as follows:

LP =
T∑

t=2

||ϕ(St)− ϕ(Et)||1 . (3)

The overall loss function is defined as follows:

L = λ1LTC + λ2LP . (4)

Note that LTC and LP optimize two contrasting aspects: the
former forces a similarity between St and St−1, while the
latter does it between St to Et. Using only LTC (i.e., λ2 = 0)
may lead to temporally consistent frames, but very different
from the enhanced frames. We empirically set λ1 to 100 and
λ2 to 0.1. We set α = 50 in M and T = 11 during training.

III. EXPERIMENTS

A. Experimental setup

We compare our method with existing video temporal
consistency methods: Lai et al. [11], TDMSNet [12], and
DVP [14]. We use videos from the DID dataset [19] enhanced
by MIRNet [16], ZeroDCE++ [21], Kind++ [20], Enlighten-
GAN [22] and BTTF [23] for training and evaluation. We
consider the results of these LLIE methods as our baseline.
We train a single model for Lai et al. [11], TDMSNet [12]
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Fig. 4. Qualitative comparison with state-of-the-art methods for temporal
consistency. Sequences are from the DID dataset [19]. Baseline results refer
to frames enhanced by MIRNet [16] (first column) and BTTF [23] (second
column). We blend two consecutive frames across the diagonal (upper-right vs
bottom-left parts). A visible blending is an indicator of temporal inconsistency.
The blending is not visible in our method, and the obtained frames preserve
the aspect of baseline frames.

and our method considering all the above LLIE methods.
Instead, we optimize multiple DVP [14] models as, by design,
it needs a new model to be trained on each test video. We also
evaluate the temporal consistency methods on videos enhanced
by ChebyLighter [24], RetinexNet [25], and URetinexNet [26]
to show generalization performance to other LLIE methods
not used during training. For this purpose, we also evaluate the
temporal consistency methods on videos from another dataset,
i.e. SDSD [2].
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Following [14], we use the Warping Error (WE) [11] 
between each pair (St−1, St) to evaluate temporal consistency. 
Optical flow i s c omputed u sing R AFT [17]. W e d etect and 
mask out occlusions as in [29]. Lower WE values indicate 
better temporal consistency. We use the PSNR [30] between 
each pair (Et, St) for the evaluation of fidelity w ith t he per-
frame enhanced sequence. Higher PSNR values indicate better 
fidelity.

B. Quantitative and qualitative comparison

The quantitative comparison is reported in Table I. We
can see that all the temporal consistency methods improve
the temporal consistency with respect to the baseline. Lai et
al. [11] obtain poor temporal consistency and fidelity per-
formance. TDMSNet [12] is effective in improving temporal
consistency but is unable to preserve the fidelity with the
per-frame enhanced sequence. In contrast, DVP [14] achieves
high fidelity but the resulting frames are still inconsistent. Our
method represents the best trade-off: it achieves high temporal
consistency with high fidelity. Indeed, it obtains the best
temporal consistency performance on all the LLIE methods on
the DID dataset [19] while better preserving the appearance
of the enhanced frames on six out of eight LLIE methods.
Observing the results on the SDSD dataset [2], we can see that
the difference in temporal consistency performance between
TMDSNet [12] and our method is very small, while our
method is much better at preserving the fidelity with the
enhanced frames. In Fig. 3, we provide a visualization of
the entries from Table I to better show the trade-off between
temporal consistency improvement and fidelity with the per-
frame enhanced video. The points related to our method are
closer to the upper-left corner, which represents the optimal
spot (high temporal consistency, high fidelity).

We show a qualitative comparison in Fig. 4. For a better
visualization, we blend two consecutive frames along the
diagonal (i.e., upper-right vs bottom-left parts). Note that a
visible blending is an indicator of temporal inconsistency. We
can see the temporal inconsistency of two consecutive frames
enhanced by LLIE methods. Lai et al. [11], TDMSNet [12]
and DVP [14] cannot properly improve temporal consistency,
as the blending is still noticeable. In addition, Lai et al. [11]
introduce artifacts that darken the corrected frames, leading
to low fidelity with the baseline. In contrast, the blending is
almost invisible in our method and the corrected frames appear
to be very similar to the baseline, showing higher temporal
consistency and fidelity, respectively.

C. Complexity comparison

Model complexity is critical to ensure temporal consistency
methods can operate on resource-limited devices. We distin-
guish complexity in memory and time. We use the number
of model parameters and Giga FLOating-Point operations
(GFLOPs) to evaluate these aspects, respectively. The results
are reported in Table II. Our method is the most lightweight,
with about half of the parameters compared to Lai et al. [11].
Concerning GFLOPs, our method has comparable complexity.
In the last row, we can observe that 69% of the parameters

TABLE II
COMPARISON OF MODEL COMPLEXITY. OUR METHOD IS THE MOST

LIGHTWEIGHT AND HAS COMPARABLE EFFICIENCY.

Methods Parameters GFLOPs

480p 720p 1080p

Lai et al. [11] 2.89 M 109.29 247.44 560.87
TDMSNet [12] 3.47 M 150.03 339.68 769.94

DVP [14] 8.63 M 101.89 230.70 522.91
Ours 1.48 M 99.62 240.38 621.07

Ours (w/o alignment) 0.46 M 22.72 51.45 116.62

TABLE III
ABLATION STUDY ON LTCbw

AND EXPLICIT FRAME ALIGNMENT.
RESULTS REPORTED AS WE (↓) / PSNR (↑). WITH THESE COMPONENTS,

WE ACHIEVE BETTER PERFORMANCE. THE ARTIFACTS INTRODUCED
WITHOUT USING LTCbw

(FRAMES BECOMING DARKER OVER TIME) ARE
WELL CAPTURED BY PSNR, BUT NOT BY WE.

LLIE methods Ours w/o LTCbw
w/o align.

MIRNet [16] 2.32 / 29.52 2.25 / 24.12 2.73 / 28.26
Kind++ [20] 3.12 / 33.62 3.03 / 27.22 3.53 / 31.47

ZeroDCE++ [21] 2.49 / 33.66 2.46 / 27.32 2.79 / 32.29
EnlightenGAN [22] 3.06 / 30.98 3.00 / 24.96 3.50 / 29.53

BTTF [23] 2.24 / 31.05 2.19 / 23.66 2.54 / 29.52

are in the alignment module, which has a high impact on
time complexity. Replacing the alignment module with a more
efficient one may improve the overall complexity [31].

D. Ablation study
We conduct ablation experiments to evaluate the impact

of frame alignment and the addition of backward temporal
consistency loss LTCbw

. The results are presented in Table III.
Without LTCbw

, the resulting frames become darker over time,
as captured by the lower PSNR values. We observe the same
behavior in Lai et al. [11]. Temporal consistency is not affected
by this problem, as there are no abrupt changes in brightness
or colors, but the transition is smooth. Indeed, completely
dark frames are very consistent with each other but have
very low similarity with the enhanced frames. Without explicit
frame alignment, misalignment artifacts and ghosting effects
negatively impact both WE and PSNR. We can conclude that
both components are necessary to achieve better results.

IV. CONCLUSIONS

We presented a method to address the problem of temporal
consistency in video frames enhanced individually by meth-
ods for low-light image enhancement (LLIE). Our method
improves temporal consistency and preserves the underlying
frame-based enhancement regardless of the LLIE method
applied. We compared our method with existing methods
for temporal consistency, using two low-light video datasets
enhanced by eight LLIE methods. The results showed our
method achieves the best trade-off between temporal consis-
tency improvement and fidelity with the per-frame enhanced
video. Moreover, it has a lower memory complexity and com-
parable time complexity. In future works, we plan to extend
our work to other tasks such as video color constancy [32],
and other techniques such as content deformation fields [33].
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