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Introduction

A pseudo-Riemannian structure consists of a manifold with a C∞ field of

non degenerate symmetric bilinear forms on its tangent bundle. The most

studied case, the so-called Riemannian structure, has signature of the form

(n,0). In the following, we will consider structures with signature of the form

(n − 1,1), i.e., Lorentzian structures. As in the Riemannian setting, we can

study Lorentzian manifolds using classical objects of differential geometry,

like geodesics, connections and curvature; despite this, the two cases have

a lot of differences. The most remarkable one concerns completeness: for

example, compact Riemannian manifolds are geodesically complete, instead

in a compact Lorentzian manifold this is guaranteed only if the sectional

curvature is constant, as proved by Carrière [Car89] and Klingler [Kli96].

A space-form is a complete pseudo-Riemannian manifold of dimension

greater than 2 with constant curvature [KR85]. A Lorentzian manifold of

constant sectional curvature positive, zero, negative is locally isometric to

the so-called de-Sitter (dS), Minkowski, Anti-de Sitter (AdS) space-form,

respectively. By the completeness theorems, it follows that every compact

manifold of constant sectional curvature is isometric to the quotient of the

universal cover of one of the models by a discrete subgroup of the isometry

group.

In this thesis, we deal with three-dimensional AdS geometry, mostly with
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Introduction

AdS 3-manifolds which admits a foliation by closed timelike geodesics. The

three-dimensional Anti-de Sitter space AdS3 identifies with PSL2(R) en-

dowed with the Lorentzian structure induced by the Killing form of its Lie

algebra. The identity component of the isometry group of AdS3 is naturally

isomorphic to PSL2(R)×PSL2(R), acting on PSL2(R) ≃ AdS3 by right and

left multiplication.

Kulkarni and Raymond proved that every compact AdS3-manifold is a

Seifert bundle over a surface [KR85]. The fibration can be chosen so that

the fibers are geodesics. Each of these manifolds can be obtained as quotient

of AdS3 by a discrete subgroup of the group of isometries of AdS3, acting

properly discontinuously, up to finite cover.

Moreover, the subgroup has the form (j × ρ)(Γ) where, up to switching

the two factors of PSL2(R)×PSL2(R), the group Γ is isomorphic to the fun-

damental group of an orientable closed surface and j, ρ ∈ Hom(Γ,PSL2(R))
are representations, with j Fuchsian. We recall that PSL2(R) is the group of

orientation preserving isometries of the hyperbolic plane. If j is discrete and

faithful, then j(Γ) acts properly discontinuously on H2. Thanks to the work

of Gueritaud, Kassel, Wolff [GKW15], ρ is “strictly dominated” by j, i.e.,

there exists a (j, ρ)-equivariant map from H2 to H2 which is a contraction

and this property is strictly related to the existence of a geodesic foliation.

In Chapter 3, after giving a background on Anti-de Sitter geometry, we

extend the results of [GKW15] to the non complete case. In particular, we

study AdS manifolds which admit foliations by timelike geodesics of length

π. More precisely, given a (even non complete) hyperbolic surface (S, g),
a representation ρ ∶ π1(S) → PSL2(R) and an equivariant contractive map

f ∶ S̃ → H2 with respect to ρ, there exists an AdS spacetime M (S, ρ, f) with

a fiber bundle τ ∶ M (S, ρ, f) → S such that the fiber τ−1(⋅) is a timelike

geodesic of length π.
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Then we show that this construction is in some sense universal.

Theorem A. Up to switching the time-orientation, any spacetime M foli-

ated by timelike geodesics of length π is of the form M (S, ρ, f).

In order to be more accurate, we prove that if X is a unit future-directed

timelike vector field generating a foliation F on the manifold M and ω is the

volume form on M , then the quadratic form q(v) = ω(v,X,∇vX) is either

positive or negative for almost all spacelike vectors v. Geometrically, this

means that if γ ∶ [0,1]→M is a spacelike geodesic and `(t) is the leaf in F

passing through γ(t), then `(t) rotates always in the same direction. This

allows us to distinguish two classes for the foliations: F is right-handed if

q(v) > 0, left-handed otherwise. The way we label the two classes depends

on the time-orientation.

We find that a foliation for M (S, ρ, f) is always left-handed and in the

following we stipulate to fix the orientation so that all the foliations are

left-handed.

The second goal of the thesis is to analyze the singularities that arises

when S is the regular part of a surface with cone singularities. To this aim,

we introduce the notion of generalized spin-cone singularity. The idea is

to mimick the definition given by Barbot and Meusburger [BM12] in the

flat case, notably, flat 3-dimensional Lorentzian manifolds with singularities

coming from Euclidean surfaces with cone singularities and closed 1-forms on

these surfaces. They considered a wedge in the Minkowski space quotiented

by isometries which are composition of a rotation and a translation in the axis

direction. Other exampels of Anti-de Sitter manifolds with cone singularities,

along timelike lines and called particles, can be found in previous works of

Benedetti, Barbot, Bonsante and Schlenker [BBS11, BB09, BS09].

In our case, the singularity is constructed around a timelike geodesic of

the AdS3-space, that is a closed geodesic. However, since the tube around a
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Introduction

geodesic in AdS3 is not simply connected, we need to lift it to the universal

cover. More precisely, we denote with AdS3
∗ the complement of a geodesic

and we reproduce something similar to the flat case in the universal cover of

AdS3
∗. Indeed, a local model for this kind of singularities can be obtained by

taking into account the quotient of the universal cover ÃdS3
∗ by a lattice Λ of

the group Isom(ÃdS3
∗). We notice that Isom(ÃdS3

∗) = S̃tab(i)× S̃tab(i) ≃ R2.

In this thesis, we are mainly interested in manifolds that admit timelike

foliations. For this purpose, we prove:

Theorem B. The quotient ÃdS
3
∗ÒΛ admits a foliation in timelike geodesics

of length π if and only if F0 = (0,2π) is a primitive element of the lattice Λ.

Let Λ = ⟨F0,G0⟩ be a discrete lattice in ÃdS3
∗ with F0 as in Theorem B.

The element G0 is not uniquely determined, in fact it is defined up to integer

multiples of F0. We prove that G0 = (θ0, η0) ∈ R+ ×R mod (0,2π) classifies

all the lattices Λ such that ÃdS
3
∗ÒΛ admits a timelike foliation.

In Chapter 2, we provide the generalized spin-cone model for the AdS3-

spacetime.

Definition. Let Λ = ⟨(0,2π), (θ0, η0)⟩ be a discrete lattice in Isom(ÃdS3)
with (θ0, η0) ∈ R+ ×R mod (0,2π). We define model for a generalized spin-

cone singularity associated to (θ0, η0) the quotient manifold:

AdS3
(θ0,η0)

∶= ÃdS3
∗ÒΛ.

One can define an AdS3-manifold M with generalized spin-cone singu-

larities as an AdS3-manifold in the complement of singular sets which are

locally modelled on AdS3
(θ0,η0)

. Let us remark that θ0 is a well-defined posi-

tive number, while η0 ∈ RÒ2πZ.

In Chapter 3 we prove the following result:

Theorem C. A manifold M (S, ρ, f) has generalized spin-cone singularities

if and only if S is a hyperbolic surface with cone singularities. Moreover,

4



chosing a contraction map f with equivariance ρ is equivalent to provide a

(left-handed) foliation.

Cone points on the surface correspond to spin-cone singularities on the

manifold. Moreover, if (θ0, η0) is the pair of invariants determining a spin-

cone singularity on M (S, ρ, f), θ0 is the conical angle of the corresponding

cone point in S.

As we said, a compact Anti-de Sitter manifold is, up to a finite cover, a

quotient of PSL2(R) by a discrete group of the form j, ρ ∈ Hom(Γ,PSL2(R)).
Tholozan in [Tho15] proved that the volume of such a quotient is proportional

to the sum of the Euler classes of the representations j and ρ.

In Chapter 4, we compute the volume of a manifold M (S, ρ, f) that allows
us to state a result similar to Tholozan’s theorem for compact manifolds.

Theorem D. Let M = M (h, f, ρ) be a bundle over an oriented hyperbolic

surface S. Then the volume of M is determined as function of the maps

f, d∶ S̃ → H:

Vol (M ) = π[Area(f) +Area(d)].

Outline of the thesis. In Chapter 1 we give a brief background of

pseudo-riemannian geometry and we introduce the formalism of (G,X)-
structures. Furthermore, we lay out the models for AdS3, then we study

timelike geodesics and foliations for this space. In Chapter 2, after review-

ing the notion of conical singularities for the hyperbolic plane, we define the

model for the generalized spin-cone singularity in AdS3. In Chapter 3, we

provide the construction of an AdS3-manifold as fiber bundle over a hyper-

bolic surface and we show the way to obtain AdS3-manifold with generalized

spin-cone singularities. In Chapter 4 we compute the volume of such mani-

folds.
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CHAPTER 1

Background on Geometric

structures and Lorentzian

Geometry

The intent of this chapter is to provide basic elements of geometric structures

on manifolds and to present the formalism of (G,X)-strucures.
Endowing a manifold M with a geometry means to locally identify M

with a homogeneous space X, namely a space equipped with a group G

acting transitively on it. The idea of a model geometry starts with Klein and

Lie. After them, Ehresmann initiated a general study of geometric structures

[Ehr36].

1.1 The formalism of geometric structures

1.1.1 Definition of geometric structures on a manifold

We introduce in this section the notion of (G,X)-structure and the basic

theory [BBS11]. For more details on the topic of geometric structures we
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1. Background on Geometric structures and Lorentzian Geometry

refer to the surveys [Gol10],[Gol19], [Gol88]. Informally, we can say that a

geometric structure is a way to equip a manifold with a geometry.

Definition 1. A geometry is a pair (G,X) where X is an analytical manifold

and G is a Lie group acting on X by diffeomorphism. We will require that

the action is faithful, transitive and analytic.

Very basic examples of geometries are given by:

• Euclidean geometry : (G,X) = (Isom(Rn),Rn);

• affine geometry (G,X) = (Aff(Rn),Rn).

If we want instead an example which is not a geometry in the above

sense, we can consider the pair (Diffeo(Rn),Rn): the action of the group of

diffeomorphisms satisfies the first two conditions, but not the third one.

Definition 2. Let (G,X) be a geometry and M a compact manifold having

the same dimension as X.

A (G,X)-atlas on M is an atlas A = {(Ui, ϕi)} where {Ui} is an open

covering of M and

ϕi ∶ Ui →X

are injective local diffeomorphisms such that for all i, j ∈ I, over each con-

nected component of Ui ∩Uj, there exists g ∈ G such that

ϕj = g ○ ϕi.

The element g ∈ G is said transition function.

Since the set of (G,X)-atlas is preordered by inclusion, we can give the

following definition.

Definition 3. A (G,X)-structure is a maximal (G,X)-atlas.

8



1.1 The formalism of geometric structures

Remark 1. Every (G,X)-atlas is contained in a unique (G,X)-structure
formed by all the charts ϕ ∶ U → X that are A -compatible, i.e., such that

A ∪ {(U,ϕ)} is still a (G,X)-atlas.

If M is equipped with a (G,X)-structure, we will say that M is locally

modeled on X or that M is a (G,X)-manifold.

As first examples, we can get (G,X)-structures on a manifold M from a

local diffeomorphism ϕ ofM inX. As charts we take the immersion restricted

to open sets small enough so that the restriction is a diffeomorphism onto

the image. In this case the atlas is given by {U,ϕ∣U}, where U is chosen so

that ϕ∣U is injective. Notice that transition maps in this atlas are trivial.

An other example is given in low dimensional topology.

Example 1.1.1. Let S be a closed surface. It admits a (G,X)-structure,
where

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(3)/O(2) = S2 if χ(S) > 0

O(2) ⋉R2/O(2) = E2 if χ(S) = 0

PGL(R)/O(2) = H2 if χ(S) < 0

where χ(S) is the Euler characteristic of the surface S.

Definition 4. Let f ∶ M → N a local diffeomorphism and A = {(Vj, ψj)}
(G,X)-stucture on N . We define the pull-back f∗(A ) through f as the

(G,X)-structure on M given by f∗(A ) = {(Ui, f ○ ψj)}.

Proposition 1.1.2. If M is simply connected, any (G,X)-structure on M

is induced by a local diffeomorphism dev∶M →X.

Definition 5. Let M be a (G,X)-manifold and f a diffeomorphism of M .

We will say that f preserves the (G,X)-structure or that is a (G,X)-
structure automorphism if the (G,X)-structure is equal to its pull-back

through f .

9



1. Background on Geometric structures and Lorentzian Geometry

More generally, we will say that a local diffeomorphism f ∶M → N is a

morphism of (G,X)-manifolds if the (G,X)-structure on M is equal to the

pull-back by f of the (G,X)-structure on N .

Proposition 1.1.3. Let M be a (G,X)-manifold and H a group of diffeo-

morphisms of M acting freely and properly discontinuously on M and pre-

serving the (G,X)-structure. Then, there exists a unique (G,X)-structure
on the quotient M/H such that the covering map from M to M/H is a

morphism of (G,X)-structures.

The above proposition allows us to construct more (G,X)-structures.
Let M be a manifold of the same dimension as X and M̃ its universal

covering, where the fundamental group π1(M) is identified with the group

Aut(M̃ → M) of the automorphisms of the covering. Let ρ∶π1(M) → G be

a representation. Now let us assume that there exists a ρ-equivariant diffeo-

morphism dev∶ M̃ →X and equip M̃ with the pull-back (G,X)-structure by

dev. Thanks to the equivariance of dev, the action of π1(M) preserves the

(G,X)-structure and so we obtain a (G,X)-structure on M .

A more specific way to construct (G,X)-manifolds is to consider a discrete

subgroup Γ of G acting freely and properly discontinuously. Then, we have

that the quotient X/Γ is a (G,X)-manifold.

Actually, by the following proposition [Ehr36] we can say that all the

(G,X)-structures are constructed in this way.

Proposition 1.1.4. A (G,X)-structure on M determines a pair (dev, ρ),
where dev∶ M̃ →X is a local diffeomorphism, called the developing map, and

ρ∶π1(M) → G is a homomorphism, called holonomy representation. More-

over, the following equivariance property holds:

dev(γx̃) = ρ(γ)dev(x̃)

for every x̃ ∈ M̃ .

10



1.1 The formalism of geometric structures

The maps dev and ρ are unique up to the action of G, which means that

two pairs (dev, ρ) and (dev′, ρ′) induce the same (G,X)-structure on M if

and only if there exists an element g ∈ G such that

dev′ = g ○ dev

and

ρ′ = gρg−1

that is dev′ is a translate of dev itself and gρg−1 in a conjugate of ρ.

1.1.2 Completeness and geodesic completeness

In this section, we will treat the fundamental topic of completeness, tran-

scribed in the language of (G,X)-structures.

Definition 6. A (G,X)-manifoldM is complete if dev ∶ M̃ →X is a covering

map.

Let us note that if X is simply connected, the notion of completeness is

the same as saying that the developing map is a diffeomorphism. In other

words, the developing map diffeomorphically identifies M̃ with X. In that

case, the holonomy representation identifies the fundamental group with a

discrete subgroup of G acting as deck transformations on X. Therefore,

complete (G,X)-manifold are the quotients Γ/X where Γ is a discrete

subgroup of G acting freely and properly discontinuous on X.

In order to motivate Definition 6 we state the following proposition.

Proposition 1.1.5. Let X be a G-homogeneous space. Let us suppose that

G preserves an affine connection on X that is geodesically complete. Let M

be a manifold equipped with a (G,X)-structure and an induced connection.

11



1. Background on Geometric structures and Lorentzian Geometry

Then, M is geodesically complete if and only ifM is isomomorphic, as (G,X)-
structure, to a quotient of X by a discrete subgroup of G acting freely and

properly discontinuously on X.

In the case of compact manifolds, we can give a further characterization

for the completeness.

Proposition 1.1.6. Let X be a simply connected G-homogeneous space, M

a compact (G,X)-manifold and (dev, ρ) a pair associated to the (G,X)-
structure of M . Then, M is a complete (G,X)-manifold if and only if

ρ(π1(M)) acts freely and properly discontinuously on X.

1.1.3 Basics on Lorentzian geometry

Definition 7. A Lorentzian metric on a manifold of dimension n+1 is a non-

degenerate symmetric 2-tensor g of signature (n,1). A Lorentzian manifold

is a connected manifold M equipped with a Lorentzian metric g.

Definition 8. In a Lorentzian manifold M we say that a non-zero vector

v ∈ TM is

• spacelike if g(v, v) > 0;

• timelike if g(v, v) < 0;

• lightlike if g(v, v) = 0.

Thus, we will refer to linear subspaces V ⊂ TxM as spacelike, timelike,

lightlike if the restriction of gx to V is respectively positive definite, degener-

ate or indefinite. A differentiable curve is spacelike, lightlike, timelike if its

tangent vector is respectively spacelike, lightlike, timelike at every point. It

is causal if the tangent vector is either timelike or lightlike.

12



1.2 Anti-de Sitter geometry

1.2 Anti-de Sitter geometry

There are several models of Anti-de Sitter geometry. In the following we will

introduce some of them.

1.2.1 The quadric model

Let Rn,2 be the vector space Rn+2 endowed with the non-degenerate bilinear

symmetric form ⟨x, y⟩n,2 ∶= ∑n
i=1 xiyi−xn+1yn+1−xn+2yn+2 with signature (n,2).

We define the (n + 1)-dimensional Anti de Sitter space as

Hn,1 ∶= {x ∈ Rn+2 ∣ ⟨x,x⟩ = −1}.

For x ∈ Hn,1, the tangent space TxHn,1 is x⊥ and g ∶= ⟨ , ⟩
∣THn,1 is a

bilinear form of signature (n,1). As a consequence, (Hn,1, g) is a Lorentzian

manifold and it can be verified that it has constant curvature −1 with respect

to the lorentzian metric g.

Furthermore, the pair (Isom(Hn,1),Hn,1) defines a (G,X)-structure and

every Lorentzian manifold of constant curvature −1 is locally modelled on

Hn,1.

Let us observe that Hn,1 is diffeomorphic to Hn ×S1. Let Hn = {z =
(z1, ..., zn+1) ∈ Rn+1 ∣ z2

1 + ... + z2
n − z2

n+1 = −1, zn+1 > 0} the hyperboloid model

for the hyperbolic space. Then, the map ϕ∶Hn ×R→ Hn,1 defined by ϕ(z, t) =
(z1, ..., zn, zn+1 cos t, zn+1 sin t) is a covering for the Anti-de Sitter space with

deck transformations of the form (z, t)↦ (z, t+ 2kπ) for every k ∈ Z. Hence,
it induces the diffeomorphism ϕ̄ ∶ Hn × RÒ2π → Hn,1 [BS10].

1.2.2 Klein model

Under the canonical projection π ∶ Rn,2/{0} → RP n+1, the Anti-de Sitter

space of dimension n + 1 identifies with the subset Ω = {[x] ∣ qn,2 < 0}. The

13



1. Background on Geometric structures and Lorentzian Geometry

Klein model, that we denote with AdSn+1, is a domain in the projective space

RP n+1 whose boundary is the quadric of signature (n,2). In order to be more

specific,

∂AdSn+1 = {[x] ∈ RP n+1 ∣ qn,2(x) = 0},

that is the projectivization of the set of lightlike vectors in Rn,2.

Isometries of AdSn+1 are projective transformations which preserve

∂AdSn+1 [BS20].

For instance, in the case n = 2, if we consider the affine chart x4 ≠ 0 of

RP 3, the intersection of AdS3 with the affine chart is mapped to the interior

of the one-sheeted hyperboloid given by the equation {x2
1 + x2

2 − x2
3 = 1}.

In this model, geodesics are given by straight lines. In particular, spacelike

geodesics intersect with the boundary in two points, timelike geodesics do not

have any intersection with the boundary and lightlike geodesics are tangent

to the boundary [Tou16].

A hyperboloid of one sheet is foliated by two families of straight lines,

which we refer to as the right family and the left family. The group

Isom+(AdS3) of space and time-orientation preserving isometries of AdS3

preserves each family of the foliation. Fixing a spacelike plane Π in AdS3,

its intersection with the boundary ∂AdS3 is a spacelike circle. This pro-

vides an identification between ∂AdS3 and RP 1×RP 1. Indeed, given a point

x ∈ ∂AdS3, there exists a unique line in the right family and a unique line in

the left one which pass through x. It follows that x ∈ ∂AdS3 gives a point in

RP 1 ×RP 1. If we take another spacelike plane, the pair of points in RP 1 is

conjugated by an element of PSL2(R).

Notice that the model Hn,1 is a 2 ∶ 1 covering over the Klein model AdSn+1.

14



1.3 Anti-de Sitter space in dimension three

1.3 Anti-de Sitter space in dimension three

1.3.1 PSL2(R)-model

In this thesis we are interested in 3-dimensional Anti-de Sitter manifolds,

so here we provide the model we will use mostly in this dimension [BS20].

Notice that R4 equipped with the quadratic form q(x,x) ∶= ⟨x,x⟩2,2, i.e., R2,2,

is isometric to the space of 2 × 2 matrices M2(R) with the quadratic form

of signature (2,2) given by −det. In this way, H2,1 is identified with the Lie

group SL2(R).
Moreover, it is possible to identify PSL2(R) = SL2(R)Ò± Id to Isom+(H2),

i.e., the group of orientation-preserving isometries of the hyperbolic plane, in

the upper-half plane model

H2 ∶= ({z ∈ C ∣I(z) > 0}, ∣dz∣2
I(z)2

)

by associating to an isometry of H2 its extension to the visual boundary

∂∞H2 = RP 1, which is a projective transformation.

As a consequence, we can see the model AdS3 as the group of isometries

of the hyperbolic plane.

1.3.2 The isometry group

Using the isomorphism between R2,2 and M2(R) we can also provide a de-

scription of the isometry group of Hn,1 through the group SL2(R)×SL2(R).
The left action of this group on M2(R) is given by left and right multiplica-

tions, that is

(A,B) ⋅ T = ATB−1.

In particular, thanks to the Binet formula, this action preserves the bilinear

form induced by −det, so we have a group representation

SL2(R)×SL2(R)→ O(M2(R),−det),
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1. Background on Geometric structures and Lorentzian Geometry

where O(M2(R),−det) ≃ O(2,2) identifies with the group IsomH2,1. Taking

the connected component of identity of the target, since the groups have

same dimension, the representation is surjective. Moreover, its kernel is

{(Id, Id), (−Id,−Id)}, so by the First Isomorphism Theorem we obtain that

Isom0(H2,1) = SL2(R)×SL2(R)Ò{(Id, Id), (−Id,−Id)} ,

so the isometry group of H2,1 is identified (up to a finite covering)

with SL2(R)×SL2(R) acting on SL2(R) by left and right multiplication,

while AdS3 is identified with the group PSL2(R) with isometry group

PSL2(R)×PSL2(R) acting by left and right multiplication.

1.3.3 Timelike geodesics

Let us consider the set given by

`i,i ∶=StabPSL2(R) = PSO2(R)

={T ∈ PSL2(R) ∣ T (i) = i}.

Notice that `i,i is a projective line in P(M4(R)) entirely contained in PSL2(R)
so it is a timelike line. More precisely

γ(θ) = Rθ
i = {

⎡⎢⎢⎢⎢⎣

cos θ2 − sin θ
2

sin θ
2 cos θ2

⎤⎥⎥⎥⎥⎦
∣ θ ∈ [0,2π)}

provides a parametrization of `i,i. Moreover, we notice that ⟨γ̇(θ), γ̇(θ)⟩ = −1,

hence `i,i has length π. Notice that Rθ
i geometrically is the rotation of H2

around i of angle θ.

Remark 2. As already mentioned, there is a 2 ∶ 1 covering map between

H2,1 and AdS3 so that geodesics in the first model have length 2π.

The line `i,i is a closed timelike geodesic. In particular `i,i, passes through

the identity. We can get every timelike geodesic by the action of (the identity

component of) the isometry group PSL2(R)×PSL2(R) on PSL2(R).

16



1.3 Anti-de Sitter space in dimension three

Proposition 1.3.1. Every timelike geodesic in AdS3 has the form:

`x,y ∶= {T ∈ PSL2(R) ∣ T (y) = x}

for x, y ∈ H2.

Lemma 1.3.2. SL2(R)×SL2(R) acts on `x,y in a way that

(A,B) ⋅ `x,y = `A(x),B(y),

for every (A,B) ∈ SL2(R)×SL2(R).

Proof. Take first F ∈ (A,B) ⋅ `x,y, so

F = ATB−1 for some T ∈ SL2(R) s.t. T (y) = x.

In particular,

FB(y) = AT (y) = A(x),

so F ∈ `A(x),B(y).

On the other hand, if F ∈ `A(x),B(y), we have

F (B(y)) = A(x),

so that A−1FB ∈ `x,y and F ∈ A`x,yB−1.

Remark 3. For every x, y ∈ H2 there exist A,B ∈ Isom+(H2) ≃ PSL2(R)
such that A(i) = x and B(y) = i. Then (A,B) ⋅ `i,i = `x,y is a geodesic, since

(A,B) ∈ Isom+(PSL2(R)).

Proof of Proposition 1.3.1. First of all, let us observe that `x,y is a geodesic.

For every x, y ∈ H2 there exist A,B ∈ Isom+(H2) ≃ PSL2(R) such that A(i) =
x and B(y) = i. By the Lemma 1.3.2 we can write `x,y = (A,B) ⋅ `i,i with
(A,B) ∈ Isom+(PSL2(R)). Thus it is well-defined the map

Ψ ∶ H2 ×H2 → {timelike geodesics in PSL2(R)}

(x, y)↦ `x,y

17



1. Background on Geometric structures and Lorentzian Geometry

that is PSL2(R)×PSL2(R)-equivariant. The group PSL2(R)×PSL2(R) acts

on the set of timelike geodesic transitively, so the map Ψ is a bijection.

Proposition 1.3.3. The following equivalence holds:

`x1,y1 ∩ `x2,y2 = ∅ ⇐⇒ distH2(x1, x2) ≠ distH2(y1, y2).

Proof. Let us assume that `x1,y1 ∩ `x2,y2 ≠ ∅. There exists A ∈ `x1,y1 ∩ `x2,y2
such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T (y1) = x1

T (y2) = x2

and then we have that

distH2(x1, x2) = distH2(T (y1), T (y2)) = distH2(y1, y2),

where the second equality holds because T is an isometry of the hyperbolic

plane.

Conversely, if distH2(x1, x2) = distH2(y1, y2), then there exists T ∈
Isom(H2) sending the geodesic arc between y1 and y2 onto that between

x1 and x2. Thus, T ∈ `x1,y1 ∩ `x2,y2 .

Corollary 1.3.4. If f ∶ H2 → H2 is weak a contraction, for every x ≠ y ∈ H2,

`x,f(x) ∩ `y,f(y) = ∅.

Proof. Since f is a weak contraction,

distH2(f(x), f(y)) < distH2(x, y). (1.1)

In particular, distH2(f(x), f(y)) ≠ distH2(x, y) for every x ≠ y, therefore, by
Proposition 1.3.3, we attain the desired result.

18



1.3 Anti-de Sitter space in dimension three

Thanks to Corollary 1.3.4, given f ∶ H2 → H2 contraction, the set

{`x,f(x) ∣x ∈ H2} is a foliation for AdS3. Indeed, if A ∈ PSL2(R) namely

A ∈ `x,f(x) where x = Fix(A ○ f) is the fix point of the map A ○ f which exists

and it is unique.

1.3.4 Orientation choice

Let us observe that if A = [ a bc d ] ∈ TIdAdS3 then tr(A) = 0. If we also require

that det(A) > 0 we have necessarily that bc < 0. The two possibilities, either

b < 0 and c > 0 or b > 0 and c < 0 determines the choice of the time orientation:

respectively future or past directed. Let us introduce

H+ ∶= {A = [ a b
c −a ] ∈ TIdAdS3 ∣det(A) = 1, b < 0, c > 0}. (1.2)

Then, it is well-defined the map

Φ ∶H+ → H2 (1.3)

A↦ Fix(exp tA).

Observation 1.3.5. If A = [ a b
c −a ] is an element in H+, the fixed point of

exp(tA) ∈ PSL2(R) is Fix(exp tA) = a+i
c .

Proof. Let z ∈ H2 the point such that exp(tA)(z) = z for every t. Then z is

the zero of the vector field VA = d
dt exp(tA)∣t=0.

We can write exp(tA) = [ 1+ta tb
tc 1−ta ] + o(t), thus

exp(tA)(z) = (1 + ta + o(t)z + (tb + o(t)))
(tc + o(t))z + (1 − ta + o(t))

= (z + t(az + b) + o(t))(1 + t(a − cz) + o(t))

= z + t(−cz2 + 2az + b) + o(t).

Therefore VA(z) = −cz2 + 2az + b. The zeros on CP 1 are z1 = a+
√
a2+bc
c and

z2 = a−
√
a2+bc
c . Since a2 + bc = −detA = −1, we have c ≠ 0 and bc < 0. Then

z1 = a+i
c and z2 = a−i

c . As consequence we have Fix(exp tA) = a+i
c with c > 0.
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1. Background on Geometric structures and Lorentzian Geometry

Proposition 1.3.6. The map Φ ∶H+ → H2 is an isometry with inverse map

Φ−1∶H2 →H+ such that associates to every x ∈ H2 the future directed vector

X ∈ T 1
Id Stab(x).

Remark 4. Recall that Stab(x) = `x,x, so the unitary vector tangent X is a

generator of `x,x.

Observation 1.3.7. If B ∈ TIdAdS3 with detB < 0, then exp(tB) is hyper-

bolic.

Proof. The conditions tr(B) = 0 and det(B) < 0 imply that the matrix B

diagonalize on R. If v1 = (x1, y1) and v2 = (x2, y2) are real eigenvectors for

B, then they are also real eigenvectors for exp(tB) and [x1 ∶ y1], [x2 ∶ y2] are
fixed point in RP 1 for exp(tB).

Lemma 1.3.8. B ∈ TAH+ if and only if Fix(exp tA) ⊆ Axis(exp tB).

Proof. (⇒) Let us observe that there exists γ ∈ PSL2(R) such that

Ad(γ)A =
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
Ad(γ)B = λ

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
(1.4)

for some λ ∈ R. Indeed, choosing λ such that λ2 = ⟨B,B⟩ it easy to

check that

⟨A,A⟩ = ⟨
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
⟩, (1.5)

⟨A,B⟩ = 0 = ⟨
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

λ 0

0 −λ

⎤⎥⎥⎥⎥⎦
⟩, (1.6)

⟨B,B⟩ = λ2 = ⟨
⎡⎢⎢⎢⎢⎣

λ 0

0 −λ

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

λ 0

0 −λ

⎤⎥⎥⎥⎥⎦
⟩. (1.7)
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1.3 Anti-de Sitter space in dimension three

So there exists T ∈ SO+(TIdAdS3) such that T (A) = [ 0 −1
1 0 ] and T (B) =

λ[ 0 1
1 0 ]. Since Ad ∶ PSL2(R) → SO+(TIdAdS3) is an isomorphism, we

prove the existence of γ satisfying (1.4).

Notice that Fix ([ 0 −1
1 0 ]) = i and Axis ([ λ 0

0 −λ ]) = iR+, thus we have

Fix exp(tA) = Fix(exp(tγ−1[ 0 −1
1 0 ]γ)) (1.8)

= Fix(γ−1 exp t[ 0 −1
1 0 ]γ)) = γ−1i

and

Axis(exp tB) = γ−1 Axis(exp t[ λ 0
0 −λ ]) = γ−1(iR+). (1.9)

Since i ∈ iR+ , then γ−1i ∈ γ−1(iR+).

(⇐) Similarly, there exists γ ∈ PSL2(R) such that γ(Fix(exp(tA))) = i and
γ(Axis(exp tB)) = iR+. Therefore,

● from Fix(exp t(γAγ−1)) = i

⇒ exp t(γAγ−1) = Stab i

⇒ γAγ−1 =
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦

● from Axis(exp t(γBγ−1)) = iR+

⇒ exp t(γBγ−1) = exp t

⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
= Stab(iR+)

⇒ γBγ−1 = λ
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
.

In conclusion, ⟨A,B⟩ = ⟨γAγ−1, γBγ−1⟩ = ⟨
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
, λ

⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦
⟩ = 0.
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1. Background on Geometric structures and Lorentzian Geometry

Lemma 1.3.9. Let Φ∶H+ → H2 as defined before. For every A ∈ H+ and

B ∈ TAH+, B ≠ 0, the vector i dAΦ(B) ∈ TΦ(A)H2 has the same direction and

orientation of Axis(exp tB).

Proof. Firstly let us observe that if the statement is true for the pair (A,B),
it is true for (γAγ−1, γBγ−1) and viceversa.

Since Φ(γAγ−1) = γΦ(A), we have that B ∈ TAH+ implies γBγ−1 ∈
TγAγ−1H+ and as a consequence

dγAγ−1Φ(γBγ−1) = d

dt
Φ(γA(t)γ−1)∣t=0 = dγ(

d

dt
Φ(A(t))) = dγ ○ dAΦ(B).

Besides, Axis(exp(t(γBγ−1))) = γAxis(exp tB) as oriented geodesics.

This allows us to consider just the matrices

A =
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎣

λ 0

0 −λ

⎤⎥⎥⎥⎥⎦
.

Notice that in this case:

• dAΦ(B) = λdAΦ[ 1 0
0 −1 ];

• Axis(exp tB) = sign(λ)Axis(exp t[ 1 0
0 −1 ]).

This leads us to prove the lemma in the simpler case with A = [ 0 −1
1 0 ] and

B = [ 1 0
0 −1 ]. Let us consider a path A(t) = [ sinh t − cosh t

cosh t − sinh t ] in H+ such that

A(0) = A and Ȧ(0) = B .

Then

dAΦ(B) = d

dt
Φ(A(t))∣t=0 =

d

dt

sinh t + i
cosh t

∣t=0 = 1.

Since Ti Axis(exp t[ 1 0
0 −1 ]) = iR and i is positively oriented, the thesis is

proved.

Proof of the Proposition 1.3.6. We need to prove that for every A ∈H+ and

B ∈ TAH+, if ∣∣B∣∣ = 1 then ∣∣dAΦ(B)∣∣H2 = 1. Using the equivariance rule of

Φ for the action of PSL2(R), we can lead the proof to the case A = [ 0 −1
1 0 ]

22



1.3 Anti-de Sitter space in dimension three

and B = [ 1 0
0 −1 ]. In that case, Φ(A) = i, dAΦ(B) = 1 and ∣∣dAΦ(B)∣∣H2 =

1
I(Φ(A))2

∣∣dAΦ(B)∣∣E2 = 1.

Definition 9. Let [ , ] be the Lie bracket on TIdAdS3. We define the 3-form

ω(x, y, z) = −⟨[x, y], z⟩.

Proposition 1.3.10. The 3-form ω is

• ω is alternating;

• ω is non-zero.

Since ω is a non-zero 3-form, it gives an orientation over TIdAdS3.

Definition 10. A basis (v1, v2, v3) for TIdAdS3 is positive if ω(v1, v2, v3) > 0.

It is negative otherwise.

Remark 5. For every γ ∈ PSL2(R), ω(Ad(γ)(x),Ad(γ)(y),Ad(γ)(z)) =
ω(x, y, z).

Proposition 1.3.11. Let (A,B1,B2) be an orthonormal future di-

rected basis for TIdAdS3. Then (A,B1,B2) is positive if and only if

(dAΦ(B1), dAΦ(B2)) is a positive basis for TΦ(A)H2.

Proof. Let us prove the thesis for the case A = [ 0 −1
1 0 ], B1 = [ 1 0

0 −1 ], B2 =
[ 0 1

1 0 ]. In this case ω(A,B1,B2) = 4, thus it is a positive basis. Indeed,

Ti Axis(exp tB1) = R and Ti Axis(exp tB2) = iR. By the previous Lemma

dΦ(B1) ∈ R+ ⋅ (−i) and dΦ(B2) ∈ R+ ⋅ (1), therefore dΦ(B1) and dΦ(B2) form

a positive basis for TiH2.

Now let us consider the general case and define the map L∶TIdAdS3 →
TIdAdS3 such that L(A) = [ 0 −1

1 0 ], L(B1) = [ 1 0
0 −1 ], L(B2) = [ 0 1

1 0 ].
The map L ∈ O+(TIdAdS3) because it preserves orthonormal basis and

future directed vectors. If A,B1,B2 is a positive basis, then L ∈ SO+(TIAdS3)
and so there exists γ ∈ PSL2(R) such that L = Adγ−1. Since A = Ad(γ)[ 0 −1

1 0 ],
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1. Background on Geometric structures and Lorentzian Geometry

B1 = Ad(γ)[ 1 0
0 −1 ], B2 = Ad(γ)[ 0 1

1 0 ], then dAΦ(B1) = dγd[0 −1
1 0 ]

Φ([ 0 1
1 0 ]) and

dAΦ(B2) = dγd[0 −1
1 0 ]

Φ([ 1 0
0 −1 ]). Noting that dγ preserves the orientation, also

(dAΦ(B1), dAΦ(B2)) is positive. Moreover, if A,B1,B2 is a negative basis,

we observe that A,B1,−B2 is positive, then dAΦ(B1),−dAΦ(B2) is positive

too and in conclusion dAΦ(B1), dAΦ(B2) is negative.

1.3.5 Pure rotation and translation in AdS-space

Given a basis of TId SL2(R) composed by the matrices

J0 =
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
, J1 =

⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦
, J2 =

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
,

we can write `i,i = {expId(tJ0)}, as J0 is a vector tangent to the geodesic `i,i.

If Rθ
i is a rotation of angle 2θ as isometry of H2 fixing the imaginary

unit, S ∶= (Rθ1
i ,R

θ2
i ) is an isometry of PSL2(R) that fixes the geodesic `i,i.

In particular, this kind of isometries translate a point on `i,i of a parameter

θ1 − θ2 and rotate tangent vectors in T PSL2(R) orthogonal to the geodesic

of an angle θ1 + θ2.

Let us explain this claim more in detail. As for the first fact, let us

consider η ∶ [0, π] → PSL2(R) parametrization of `i,i such that η(0) = η(π) =
Id, then there exists k ∈ R arc length such that S η(t) = η(t + k). For t = 0,

(Rθ1
i ,R

θ2
i )η(0) = Rθ1−θ2

i = η(k), from which follows that the translation is

k = θ1 − θ2.

As for the second assertion, if J ∈ TIAdS3 with J ⊥ TId`i,i,, then J ∈
Span{J1, J2}, the angle between P t

0(J) and dIdS (J) is θ1 + θ2, where P t
0(J)

is the parallel transport of J along `i,i (for t = θ1 − θ2) and dIdS (J) is its

image through the differential map.

This angle can be easily calculated noting that, in our case, for every

24



1.4 Timelike geodesics in ̃PSL2(R)

t ∈ R:
P t

0(J) = J,

under the identification of Tη(t)AdS3 ≃ η(t)⊥ with a subspace of M2(R).
Moreover, using that Rθ

iJ = JRθ
i for every J ∈ Span{J1, J2}, we can check

that

dIdS (J) = Rθ1+θ2
i J

so we have

⟨P t
0(J), dIdS (J)⟩S (Id) = cos(θ1 + θ2).

It follows that the desired angle is θ1 + θ2.

Let us define Rθ = (Rθ/2
i ,R

θ/2
i ) and T ϕ = (Rϕ/2

i ,R
−ϕ/2
i ) two specific isome-

tries of PSL2(R) fixing `i,i. Note that the first isometry has no translation

parameter along `i,i, but it just rotates the plane orthogonal to the tangent

vector J0 by an angle θ. The second has translation ϕ and no rotation around

`i,i.

Notation 1.3.12. From here on, we will denote

AdS3
∗ ∶= AdS3/`i,i

that is the Anti-de Sitter space identified with PSL2(R) without the geodesic
`i,i, ⊂ PSL2(R).

1.4 Timelike geodesics in ̃PSL2(R)

In this section we study ̃PSL2(R), i.e, the universal cover of the Lie group

PSL2(R).
Let us observe that the center of ̃PSL2(R) is a cyclic subgroup generated

by τ0 ∈ ̃PSL2(R), where τ0 = γ̃(1) for γ∶ [0,1] → PSL2(R) timelike geodesic

with γ(0) = γ(1) = Id and γ̃ is lifting such that γ̃(0) = Id.
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1. Background on Geometric structures and Lorentzian Geometry

Therefore, for every closed timelike geodesic α ∶ [0,1] → PSL2(R) it is

α̃(1) = τ0α̃(0). All the geodesics of ̃PSL2(R) are lifting of closed geodesics in

PSL2(R), thus τ0(˜̀) = ˜̀ for every timelike geodesic ˜̀⊂ ̃PSL2(R).
Let π ∶ ̃PSL2(R) → PSL2(R) be the canonical projection and T ∈

Isom( ̃PSL2(R)) . Both π and T ○ π can be regarded as developing maps

for ̃PSL2(R), hence there exists π∗(T ) ∈ Isom(PSL2(R)) such that π ○ T =
π∗(T ) ○ π. As a consequence, we can define a homomorphism

π∗ ∶ Isom( ̃PSL2(R))→ Isom(PSL2(R))

such that the following diagram

̃PSL2(R) ̃PSL2(R)

PSL2(R) PSL2(R)

T

π π

π∗(T )

(1.10)

is commutative.

Given (α̃, β̃) ∈ ̃PSL2(R) × ̃PSL2(R), we can define a diffeomorphism

Θ̃(α̃, β̃) such that for every γ̃ ∈ ̃PSL2(R), Θ̃(α̃, β̃)γ = α̃γ̃β̃−1. There exists

Θ(α,β) with π(α̃) = α, π(β̃) = β, such that

̃PSL2(R) ̃PSL2(R)

PSL2(R) PSL2(R)

Θ̃(α̃,β̃)

π π

Θ(α,β)

is commutative. Moreover, since π is a group homomorphism, Θ(α,β)γ =
αγβ−1 for every γ ∈ PSL2(R).

In particular, Θ̃ ∶ ̃PSL2(R) × ̃PSL2(R) → Isom( ̃PSL2(R)) and, by 1.10,

π∗(Θ̃(α̃, β̃)) = Θ(α,β). Furthermore, notice that

kerπ∗ = Θ̃(Z( ̃PSL2(R)) ×Z( ̃PSL2(R))),

in particular kerπ∗ is a cyclic subgroup generated by T0 ∶= Θ̃(τ0, Id) =
Θ̃(Id, τ0).
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Lemma 1.4.1. Every isometry of ̃PSL2(R) is induced by left and right mul-

tiplication.

Proof. There is a short exact sequence

1Ð→∆Ð→ ̃PSL2(R) × ̃PSL2(R) Θ̃Ð→ Isom( ̃PSL2(R))Ð→ 1,

where ∆ = {(τ, τ) ∣ τ ∈ Z( ̃PSL2(R))}.
It is easy to show that ker Θ̃ = ∆ < Z( ̃PSL2(R)) × Z( ̃PSL2(R)). If

(α,β) ∈ ker Θ̃, then α = β and α ∈ Z(PSL2(R)). Indeed, if Θ̃(α,β) ⋅ γ = γ
for every γ ∈ ̃PSL2(R), in particular for γ = Id we have α = β. Impos-

ing that Θ̃(α,α)γ = γ for every γ ∈ ̃PSL2(R), we obtain αγα−1 = γ for

every γ, thus α ∈ Z( ̃PSL2(R)). On the othe hand, let (α,α) ∈ ∆. Then

Θ̃(α,α)γ = αγα−1 = γ for every γ ∈ PSL2(R), that is Θ̃(α,α) = Id.

Let us see now that Θ̃ is surjective. If T ∈ Isom( ̃PSL2(R)), then there

exists (α,β) ∈ PSL2(R) such that π∗(T ) = Θ(α,β). Fix α̃, β̃ such that

π(α̃) = α, π(β̃) = β. Then π∗(Θ̃(α̃, β̃)) = π∗(T ) and so π∗(T −1Θ̃(α̃, β̃)) = 1.

In conclusion T −1Θ̃(α̃, β̃) = Θ̃(γ̃1, γ̃2) for γ̃1 and γ̃2 ∈ Z( ̃PSL2(R)), thus T =
Θ̃(γ̃1

−1α̃, γ̃2
−1β̃).

Notation 1.4.2. We write Stab instead for the stabilizer of a point or a

geodesic in the isometry group of ̃PSL2(R).

Proposition 1.4.3. Let `1 = `a1,b1 and `2 = `a2,b2 a pair of disjoint geodesics

in PSL2(R) and ̃̀
1, ̃̀

2 their lifts in ̃PSL2(R).

(i) If a1 ≠ a2 and b1 ≠ b2, then Stab(̃̀1)∩Stab(̃̀2) = Z ⋅T0 = (τ0,1) = (1, τ0);

(ii) If a1 ≠ a2 and b1 = b2 = b, then Stab(̃̀1) ∩ Stab(̃̀2) = Θ̃({1} × ̃̀
b,b).

In both cases, if T ∈ Stab(̃̀1) ∩ Stab(̃̀2):

• for all p ∈ ̃̀
1 and q ∈ ̃̀

2, dist(p, Tp) = dist(q, T q) = ξ;
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1. Background on Geometric structures and Lorentzian Geometry

• ξ = π if and only if T = T0.

Remark 6. In the former case ξ ∈ πZ, while in the later case ξ ∈ R.

Proof of Proposition 1.4.3. Let us note that T ∈ Stab(̃̀1) ∩ Stab(̃̀2) if and

only if π∗(T ) ∈ Stab(`1) ∩ Stab(`2). Therefore,

Stab(̃̀1) ∩ Stab(̃̀2) = π−1
∗ (Stab(`1) ∩ Stab(`2)).

In the first case, Stab(`1) ∩ Stab(`2) = {Id}. Thus,

Stab(̃̀1) ∩ Stab(̃̀2) = π−1
∗ (Id) = kerπ∗ = ZT0.

In the second case, Stab(`1)∩Stab(`2) = {Id}×Stab(b1), where Stab(b1) =
`b1,b1 . Therefore,

Stab(̃̀1) ∩ Stab(̃̀2) = π−1
∗ (Id × Stab(b1))

= Θ̃((π,π)−1({Id} × `b1,b1))

= Θ̃(Z( ̃PSL2(R) ×̃̀
b1,b1)

= Θ̃({1} ×̃̀
b1,b1).

Let us notice that {Id} ×̃̀
b1,b1 ∩∆ = {Id}. Thus,

Θ̃ ∶ {1} ×̃̀
b1,b1 → Stab(̃̀1) ∩ Stab(̃̀2).

1.5 Timelike foliations for AdS3

Definition 11. A time-tube in AdS3 is an open subset U ⊂ AdS3 with a

foliation {`i}i∈I such that

i) for every i ∈ I , `i is a closed timelike geodesic;
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1.5 Timelike foliations for AdS3

ii) U = ∪`i;

iii) `i ∩ `j = ∅ if i ≠ j: in fact, for every p ∈ U there exists unique i(p) ∈ I

such that p ∈ `i(p);

iv) the unitary tangent field X ∈ (Γ(U ), TAdS3) such that

● X(p) ∈ Tp`i(p),

● X(p) is future oriented,

is C∞.

Let us recall that every geodesic in AdS3 is in the form

`a,b = {γ ∈ AdS3 ≃ PSL2(R) ∣γ(b) = a}.

For every connected time-tube U in AdS3 foliated by F = {`a(i),b(i)}, with
{a(i) ∣ i ∈ I } and {b(i) ∣ i ∈ I } subsets in H2, one of the following inequalities

holds:

(i) distH2(a(i), a(j)) < distH2(b(i), b(j));

(ii) distH2(a(i), a(j)) > distH2(b(i), b(j)).

Moreover, one between {a(i) ∣ i ∈ I } and {b(i) ∣ i ∈ I } is an open subset.

Let us define the following subsets in AdS3:

(i) UL ∶= {(p, q) ∣ distH2(ā(p), ā(q)) < distH2(b̄(p), b̄(q))};

(ii) UR ∶= {(p, q) ∣ distH2(ā(p), ā(q)) > distH2(b̄(p), b̄(q))}.

Theorem 1.5.1. There exists the following dichotomy:

or U = UL and UR = ∅ or U = UR and UL = ∅.
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Lemma 1.5.2. Let us define the maps ā, b̄ ∶ U → H2 such that ā(p) ∶= a(ip)
and b̄(p) ∶= b(ip) with p ∈ `ip ∶= `a(ip),b(ip). Then, they are C∞.

Proof. Let ρp∶PSL2(R)→ PSL2(R) be a map such that ρp(q) = qp−1. As con-

sequence we have that ρp`ā(p),b̄(p) = `ā(p),ā(p). It holds that ā = Φ(dp(ρp)X(p))
and b̄ = Φ(dp(λp)X(p)), where λp(q) = p−1q and Φ is the isometry defined in

1.3.6.

Proof of Theorem 1.5.1. As consequence of the Lemma 1.5.2, the subsets UL

and UR are open subsets in AdS3. Since U is connected, and U = UL ∪UR

and UL ∩UR = ∅, we obtain the thesis.

Proposition 1.5.3. Let us assume U = UL. The following properties hold:

(i) b̄(p) = b̄(q) if and only if i(p) = i(q), that is p and q are in the same

leaf;

(ii) Ω = {b̄(p) ∣p ∈ U } is open in H2;

(iii) f ∶ Ω→ H2 such that f(b̄(p)) = ā(p) is well defined and it is a distance

decreasing map.

Proof. (i) Let us observe that if b̄(p) = b̄(q), being dist(ā(p), ā(q)) <
dist(b̄(p), b̄(q)) when i(p) ≠ i(q), it follows necessarily that i(p) = i(q).

(ii) Let Π be a spacelike plane. Then D ∶= U ∩ Π is an open subset in

AdS3. In particular D ⊂ U it is a totally geodesic spacelike disk.

Since D intersects every leaf of the foliation at most once, we can

define the injective map D → H2 such that p ↦ b̄(p). This map is

continuous (Lemma 1.5.2), so as a consequence of the Invariance of

Domain Theorem Ω = b̄(D) is an open subset in H2.

(iii) Since Ω = {b̄(p) ∣p ∈ UL}, by definition of UL it follows that

distH2(f(b̄(q), f(b̄(q)))) = distH2(ā(p), ā(q)) < distH2(b̄(p), b̄(q)).
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Before considering a foliation, let us study the mutual position of two

timelike geodesics. Let `1 and `2 be disjoint timelike geodesics in PSL2(R).
Let us fix a spacelike geodesic γ joining a point p ∈ `1 and a point q ∈ `2. Let

A1,A2 ∈ SL2(R) such that p = [A1] and q = [A2] and γ̃(0) = A1, γ̃(1) = A2.

Let B1 ∈ TA1 SL2(R) and B2 ∈ TA2 SL2(R) be future oriented unitary vectors

and denoteX1 ∶= dA1 π̃(B1) andX2 ∶= dA2 π̃(B2), where π̃ ∶ SL2(R)→ PSL2(R)
is the projection map. Notice that:

• ⟨A1,A1⟩ = −1, ⟨B1,B1⟩ = −1, ⟨A1,B1⟩ = 0, thus

`1 = π̃(Span(A1,B1)) ∩PSL2(R) = π̃(Span(A1,B1));

• ⟨A2,A2⟩ = −1, ⟨B2,B2⟩ = −1, ⟨A2,B2⟩ = 0, thus

`2 = π̃(Span(A2,B2)) ∩PSL2(R) = π̃(Span(A2,B2)).

This chain of equivalences holds:

`1 ∩ `2 = ∅ ⇐⇒ Span(A1,B1) ∩ Span(A2,B2) = ∅

⇐⇒ R2,2 = Span(A1,B1)⊕ Span(A2,B2)

⇐⇒ {A1,B1,A2,B2} is a basis for R2,2.

Proposition 1.5.4. With the previous notations, let Y be the parallel ex-

tension of X1 along the spacelike geodesic γ such that γ(0) = p and γ(1) = q.
Then {γ̇(1),X2, Y (q)} is a basis for TqAdS3.

Proof. Let B(t) ∈ Tγ̃(t)SL2(R) be such that dπ̃(B(t)) = Y (t). B(t) is parallel
along γ̃(t). Let us recall that

DB(t)
dt

= (B′(t))T = B′(t) + ⟨B′(t), γ̃(t)⟩γ̃(t) = 0.

Therefore, B′(t) ∈ Span γ̃(t) ⊂ Span(A1,A2) and thus B(t) ∈ B +
Span(A1,A2), where B1 ∈ TA1 SL2(R) such that dA1 π̃(B1) = X1. In
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particular, B(1) ∈ B + Span(A1,A2) ⊂ Span(B1,A1,A2), from which

Span(B1,A1,A2) = Span(B(1),A1,A2) = Span(B(1), ˙̃γ(1),A2). Let us con-

sider B2 such that dπ̃(B2) = X2. It is B2 ∉ Span(B1,A1,A2), hence

B2 ∉ Span(B(1), ˙̃γ(1)), so {B2,B(1), ˙̃γ(1)} is actually a basis for TA1SL2(R).
Since ˙̃γ(1) and B(1) are indipendent vectors (in particular, one is space-

like the other one is timelike), it follows that { ˙̃γ,B(1),B2} form a basis

for TA2SL2(R). Moreover, since dA2 π̃( ˙̃γ) = γ̇, dA2 π̃(B(1)) = Y (1) and

dA2 π̃(B2) = X2 with dA2 π̃ ∶ TA2SL2(R) → Tq PSL2(R) isomorphism, we can

conclude that {γ̇(1),X2, Y (q)} is a basis.

Definition 12. Let `1 = expp(tX1) and `1 = expq(tX2) be disjoint timelike

geodesics. Given a space-like geodesic γ joining p ∈ `1 and q ∈ `2, we will say

that `2 is right-rotated (respectively left-rotated) with respect to `1 along γ if

and only if {γ̇(1),X2, Y (q))} is a positive (resp. negative) basis for TqAdS3,

where Y is the parallel extension of X1 along γ.

Lemma 1.5.5. Let ` = `a,b and `′ = `a′,b′ be disjoint geodesics. Let γ a

spacelike geodesic orthogonal to ` joining p ∈ ` and q ∈ `′, then `′ right-

rotated with respect to ` along γ if and only if d(a, a′) < d(b, b′).

Proof. Up to isometry of AdS3, we can suppose p = Id, q = [ eδ 0
0 e−δ

] with

δ > 0 and ` = `i,i. Let us call X = [ 0 −1
1 0 ] and γ(t) = cosh t Id+ sinh t[ 1 0

0 −1 ].
Notice that ⟨[ 0 −1

1 0 ], [ et 0
0 e−t

]⟩ = 0, thus [ 0 −1
1 0 ] ∈ Tγ(t)AdS3. As a consequence,

X(t) =X is the parallel field along γ.

We have

TqAdS3 = Span{γ̇(1),
⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
}

= Span{
⎡⎢⎢⎢⎢⎣

eδ 0

0 −e−δ

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
}

and we can check that {[ eδ 0
0 −e−δ

], [ 0 −1
1 0 ], [ 0 1

1 0 ]} is a positive basis for TqAdS3.
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Thus, writing

Y = α
⎡⎢⎢⎢⎢⎣

eδ 0

0 −e−δ

⎤⎥⎥⎥⎥⎦
+ β

⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦
+ ξ

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
with α2 + ξ2 − β2 = −1, `′ is right-rotated if and only if ξ > 0.

Now, if ` = `a′,b′ , we have that q−1`′ = Stab(b) and `′q−1 = Stab(a), then
Φ(q−1Y ) = b, Φ(Y q−1) = a. The map Φ is an isometry, thus

distH2(a, a′) = distH2(Φ(X),Φ(Y q−1))

= distH2(X,Y q−1)

= arcosh(−⟨X,Y q−1⟩),

distH2(b, b′) = distH2(Φ(X),Φ(Y q−1))

= distH2(X,Y q−1)

= arcosh(−⟨X,q−1Y ⟩).

Since q−1Y = α
⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦
+β

⎡⎢⎢⎢⎢⎣

0 −e−δ

eδ 0

⎤⎥⎥⎥⎥⎦
+ξ

⎡⎢⎢⎢⎢⎣

0 e−δ

eδ 0

⎤⎥⎥⎥⎥⎦
and Y q−1 = α

⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦
+

β

⎡⎢⎢⎢⎢⎣

0 −eδ

e−δ 0

⎤⎥⎥⎥⎥⎦
+ ξ

⎡⎢⎢⎢⎢⎣

0 eδ

e−δ 0

⎤⎥⎥⎥⎥⎦
we have that ⟨X,Y q−1⟩ = −(β cosh δ − γ sinh δ) and

⟨X,q−1Y ⟩ = −(β cosh δ + ξ sinh δ) from which

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cosh distH2(a, a′) = [β cosh δ − ξ sinh δ],

cosh distH2(b, b′) = [β cosh δ + ξ sinh δ],
(1.11)

therefore cosh distH2(b, b′) − cosh distH2(a, a′) = 2 sinh δξ. It follows ξ > 0 if

and only if distH2(b, b′) > distH2(a, a′).

Definition 13. Let F = {`i}i∈I a timelike foliation of an open subset

U of AdS3. We will say that F is right-handed if distH2
∗

(a(i), a(j)) <
distHyp2

∗

(b(i), b(j)) for every i, j ∈ I , i ≠ j. Equally, F is right-handed

if `j is right-rotated with respect to `i for every i, j. In the other way, we will

say that F is left-handed.

33



1. Background on Geometric structures and Lorentzian Geometry

Lemma 1.5.6. If X is the unitary vector field generating a right-handed

foliation F for the open subset U of AdS3, then for every p ∈ U :

ω(v,X,∇vX) > 0

for almost all v ∈ TpU spacelike vector.

Proof. Let w ∈ TpAdS3 be a vector such that {v,X(p),w} is a positive basis.

Let e1(t) and e2(t) be respectively the parallel transport of X(p) and w along

γ = exp(tv). Let us notice that

X(t) = λ(t)γ̇(t) + µ(t)e1(t) + ν(t)e2(t)

with ν(t) > 0 if t > 0. Then

∇vX = DX
dt ∣t=0

= λ̇(0)v + µ̇(0)X + ν̇(0)w.

In particular, since ν(t) > 0 for t > 0, ν(0) = 0, thus ν̇(0) ≥ 0. If ω is the

positive volume form on AdS3, ω(v,X,∇vX) = ν̇(0)ω(v,X,w) ≥ 0.

Remark 7. In general we cannot expect ω(v,X,∇vX) > 0.

Let us assume now that v ⊥ X(p). Let us fix a(t), b(t) ∈ H2 such that

`(γ(t)) = `a(t),b(t). Let us notice that from (1.11) it follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cosh distH2(a(0), a(t)) = (µ(t) cosh t − ν(t) sinh t),

cosh distH2(b(0), b(t)) = (µ(t) cosh t + ν(t) sinh t).

Let us set distH2(a(0), a(t)) = At + o(t) and distH2(b(0), b(t)) = Bt + o(t),
expanding at the second order both the members:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + A2

2 t
2 + o(t2) = (1 + µ̇t)(1 + t2

2 ) − ν̇t2 + o(t2),

1 + B2

2 t
2 + o(t2) = (1 + µ̇t)(1 + t2

2 ) + ν̇t2 + o(t2),
(1.12)
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from which µ̇ = 0, A2

2 = 1 − ν̇
2 ,

B2

2 = 1 + µ̇
2 . It follows that B2 − A2 = 4ν̇ and

(1 − A2

B2 ) = 4ν̇
B2 = 2ν̇

1+ν̇2 . Therefore
A2

B2 = 1 − 2ν̇
1+ν̇ = 1−ν̇

1+ ˙̇ν
. Let us observe that if

b(t) = expb(0) u(t), B = ∣∣u̇(0)∣∣ = ∣∣ḃ(0)∣∣, (1.13)

a(t) = expa(0)w(t), A = ∣∣ẇ(0)∣∣ = ∣∣ȧ(0)∣∣. (1.14)

Setting a(t) = f(b(t)) then ȧ(0) = db(0)f ḃ(0), then A
B = ∣∣db(0)f(ḃ(0))∣∣

∣∣ḃ(0)∣∣
.

For every b ∈ b̄(U ), L (b) = supu∈Tb(0)H2
∣∣db(0)f(u)∣∣

∣∣u∣∣ , then L (b) ≤ 1 because

f decreseas the distances. Fixing p ∈ ` = `a,b

L (b)2 = sup
v⊥`, v∈TpAdS3

1 − ν̇
1 + ν̇ ,

where we recall that ν̇ = ω(v,X(p),∇vX).

Corollary 1.5.7. The following are equivalent:

(i) f is a contraction;

(ii) there exists ν such that for every v ⊥X, ω(v,X,∇vX) ≥ ν∣∣v∣∣2.

Moreover, if ν0 > 0 is the biggest value realizing the inequlity then c2 = 1−ν20
1+ν20

and c is the contraction constant for f .

Proposition 1.5.8. Let U a time-tube with a right-handed foliation F .

Then the map b̄∶U → H2 is a summersion with kerdpb̄ = Span(X(p)).

Proof. Since B(expp tX(p)) = b(p), it holds that dpb(X(p)) = 0. Thus, we

need to show that if v ⊥ X(p), with ∣∣v∣∣ = 1, then dpb(v) ≠ 0. If b(t) =
b(expp tv), then d(b(0), b(t)) = (2 + ν̇)t + o(t) with ν̇ = ω(X,v,∇vX) ≥ 0. It

follows that ḃ ≠ 0.
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CHAPTER 2

AdS-manifolds with singularities

In this Chapter, we recall the definition of a conical singularity on a hyper-

bolic surface and we construct the model for generalized spin-cone singular-

ities as the quotient of ÃdS3
∗ by a specific lattice of the group Isom ÃdS3

∗.

Then we provide a way to compute the length of a timelike geodesic in this

kind of quotient.

2.1 Conical singularities on the hyperbolic

plane

In this section we recall in detail the hyperbolic case. In particular, we will

introduce the notion of conical singularity on hyperbolic surfaces.

Fix a point p ∈ H2 and consider the space H2
∗ = H2 /{p} and its universal

covering H̃2
∗ ≃ R+ ×R given by

H̃2
∗ ≃ R+ ×R→ H2 /{p}

(r, θ)↦ Rθγ(t)

where γ∶ (0,+∞) → H2 is a unit speed geodesic with γ(0) = p and Rθ a

rotation of angle θ around p. In this model of H̃2
∗, we have that Isom+ (H̃2

∗) ≃
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2. AdS-manifolds with singularities

R and the group acts in this way:

τ ⋅ (t, θ) = (t, θ + τ).

The fundamental group π1(H2
∗) is identified with the subgroup 2πZ in R.

In particular, it acts properly discontinuously and freely on H̃2
∗ by transla-

tions. Given a parameter θ0 ∈ R, we define the model for the cone singularity

of angle θ0 as the quotient

H2
θ0 =

H̃2
∗Ò⟨Fθ0⟩,

where Fθ0 is the translation such that

Fθ0(t, θ) = (t, θ + θ0).

Let us notice that H2
θ0

is homeomorphic to a punctured disk, so we will

denote the induced metric on this space with gθ0 .

Definition 14. Let S be a hyperbolic surface and S̃ its universal cover. For

θ0 ∈ R, an isometric embedding Φ ∶ S̃ → H̃2
∗ is said θ0-equivariant isometry if

Φ(γ ⋅ x̃) = Fθ0 ○Φ(x̃)

with x̃ ∈ S̃ and γ ∈ π1(S).

Definition 15 (Hyperbolic surface with cone singularities). A hyperbolic

surface S with cone singularities is an oriented surface with a set of points p =
{p1, ...pn} associated to angles {θ1, ..., θn} ⊂ [0,2π]n. The surface S∗ = S − p

is endowed with the standard hyperbolic metric and for every pi there exists

a neighbourhood Ui, an ε > 0 and a θ0-equivariant isometry ∆ ∶ Ũi/{pi}→ H̃2
∗

such that

∆ ○ π−1(Ui) ⊇ {(r, θ) ∣ r < ε}

where here π ∶ S̃ → S is the universal covering of S and (r, θ) are the coordi-

nates of H̃2
∗.
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Remark 8. If d ∶ S̃ → H2 is a developing map for S, for every neighbourhood

Uj of the singular point pj, the holonomy is given by a representation h ∶
π1(S)→ PSL2(R) such that, for every peripheral γ ∈ π1(S∗)

h(γ) = Rθj
q

with q = d(pj) ∈ H2.

Moreover, for every connected component Ũj ⊂ π−1(Uj), there exists an

open subset V ∋ q of the hyperbolic plane such that

V /{q} ⊆ d(Ũj/{p̃j}),

where p̃j is the point in Ũj such that π(p̃j) = pj.

2.2 The generalized spin-cone model

For the 3-dimensional Anti-de Sitter space, we shall define a more general

type of singularity. In this section we introduce the model that is the gen-

eralized spin-cone singularities. This model is based on a classification of

quotients of ÃdS3
∗∗ = ̃AdS3/`i,i by Z2-lattices of isometries, which admit a

foliation by timelike geodesics of length π.

2.2.1 Universal cover of AdS3
∗

Let us start by studying the universal cover of AdS3
∗ and its group of isometry.

Definition 16. For z ∈ H2 we denote by Lz the unique orientation-preserving

isometry fixing the geodesic through i and z and such that Lz(i) = z.

Let be Λη = (Rη
i , Id), Pξ = (Id,Rξ

i ). Then, the map

Π ∶ R+ ×R ×R→ AdS3
∗

(r, η, ξ)↦ PξΛη(Lier) = Rη
iLierR

−ξ
i
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2. AdS-manifolds with singularities

is the universal covering of AdS3
∗.

Notation 2.2.1. We will denote the covering space with ÃdS3
∗.

Remark 9. The map Π coincides with the developing map of AdS3
∗.

Proposition 2.2.2. The group of isometry is Isom(ÃdS3
∗) ≃ R2. The action

on ÃdS3
∗ is given by

(η0, ξ0) ⋅ (r, η, ξ) = (r, η + η0, ξ + ξ0).

Remark 10. Under this identification, the automorphisms group for Π is

given by Aut(Π) = ⟨(2π,0), (0,2π)⟩ ≃ Z⊕Z.

Proof of Proposition 2.2.2 . Let us observe that the isometries of AdS3
∗ are

the isometries of the AdS3-space preserving the geodesic `i,i, moreover

Isom(AdS3
∗) ≃ Stab(i) × Stab(i).

Now, given ϕ ∈ Isom(AdS3
∗) and X = (r, η, ξ) ∈ ÃdS3

∗, the image through

the isometry is ϕ(X) = (r′, η′, ξ′) ∈ ÃdS3
∗ and its projection is Π(ϕ(X)) =

Pξ′Λη′(Lier′) ∈ AdS3
∗. On the other hand Π(X) = PξΛη(Lier) ∈ AdS3

∗. Both

Π and Π ○ ϕ can be regarded as developing maps, so there exists Π∗(ϕ) ∈
Isom(AdS3

∗) such that the following diagram is commutative:

ÃdS3
∗ ÃdS3

∗

AdS3
∗ AdS3

∗ .

ϕ

Π Π

Π∗(ϕ)

The isometry Π∗(ϕ) has to preserve Im(Π) = AdS3
∗. In particular, Π∗(ϕ)

preserves the singular geodesic, that means

Π∗(ϕ) = (Rθ
i ,R

λ
i ),
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2.2 The generalized spin-cone model

where θ, λ ∈ [0,2π].
Accordingly, there exists a pair (θ̃, λ̃) ∈ R2 defining an isometry u ∈

Isom(ÃdS3
∗) and such that Π∗(u) ∈ Stab(i) × Stab(i) and Π∗(f) = Π∗(u).

It follows Π∗(f ○u−1) = id. Thus f ○u−1 ∈ Γ = Aut(Π). Since Γ is a subgroup

of R2 and ϕ = (ϕ ○ u−1) ○ u, if u ∈ Γ, then ϕ ∈ Γ and we can also conclude

ϕ ∈ R2.

2.2.2 ÃdS3
∗
and ̃PSL2(R) as coverings of PSL2(R)

Since the lifting of the map p ∶ ÃdS3
∗ → PSL2(R) to ÃdS3

∗ → ̃PSL2(R) can be

regarded as a developing map, there exists a homomorphism p̃∗ ∶ Isom ÃdS3
∗ →

Isom ̃PSL2(R), then for every ϕ ∈ Isom(ÃdS3
∗) there exists a map p̃∗(ϕ) ∈

Isom ̃PSL2(R) such that the diagram

ÃdS3
∗ ÃdS3

∗

̃PSL2(R) ̃PSL2(R)

ϕ

p p

p̃∗(ϕ)

is commutative. Similarly, it is the map p∗ ∶ Isom(ÃdS3
∗) → Isom(PSL2(R))

such that p∗(ϕ) ○ p = p ○ ϕ for every ϕ ∈ Isom(ÃdS3
∗).

Proposition 2.2.3. Let ϕx,y ∈ Isom(ÃdS3
∗) be the isometry such that

ϕx,y(r, a, b) = (r, a + x, b + y). Then,

• p∗(ϕ) = (Rx,Ry) ∈ Isom(PSL2(R))

• p̃∗(ϕx,y) = Θ̃(R̃x, R̃y) ∈ Isom( ̃PSL2(R)).

Proof. Let us call π ∶ ̃PSL2(R) → PSL2(R) the covering map, then there

exists π∗ ∶ Isom( ̃PSL2(R))→ Isom(PSL2(R)).
We have π∗(p̃∗(ϕx,y)) = π∗(Θ̃(R̃x, R̃y)), hence for every (x, y) ∈ R2 there

exists k(x, y) ∈ Z such that

p̃∗(x, y) = Θ̃(R̃x+2πk, R̃y).
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2. AdS-manifolds with singularities

The map k ↦ k(x, y) is continuous, so it is constant. Since ϕ0,0 = (0,0) = Id

and p̃∗(ϕ0,0) = Id = Θ̃(R̃0, R̃0), we conclude that k(0,0) = 0 and so k(x, y) = 0

for every (x, y) ∈ R2.

2.2.3 Homotopy class of a timelike geodesic

Let us consider now the homotopy class of a timelike geodesic in AdS3
∗ =

AdS3/`i,i.
First of all we remark that π1(AdS3

∗, x0) is Abelian so it can be canonically

identified with the free homotopic classes [S1,AdS3
∗] = Z⊕Z. We will always

implicity use this identification getting rid of the base point.

Now, any closed timelike geodesic contained in AdS3
∗ is of the form `a,b

for some a, b ∈ H2. Notice that since `a,b ∩ `i,i = ∅, the distances in H2

are distH2(a, i) ≠ distH2(b, i) so there are two possibilities: distH2(a, i) <
distH2(b, i) or distH2(a, i) > distH2(b, i). This fact allows to distinguish two

classes of timelike geodesics in AdS3
∗. Those two classes correspond to two

different homotopy classes:

[`a,b] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αr if d(a, i) < d(b, i),

αl if d(a, i) > d(b, i).

We want to prove that every geodesic in AdS3
∗ is homotopic either to `i,b

and `a,i and that they represent the unique homotopy classes in π1(AdS3
∗).

Firstly we have to ensure that `i,b does not represent a class for every b ∈
H2 /{p} (and the same for `a,i).

Lemma 2.2.4. The geodesic `i,b and `i,b′ are in the same homotopy class for

every b, b′ ∈ H2 /{p}, where p is singular point.

Proof. It follows by the observation that H2 /{i} is connected.

Proposition 2.2.5. The geodesic `a,b is homotopic to `i,b if d(a, i) < d(b, i)
while it is homotopic to `a,i otherwise.
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2.2 The generalized spin-cone model

Proof. It is clear that `a,b ∩ `i,i ≠ ∅ if and only if d(a, i) = d(i, b). So, let us

consider the cases where `a,b doesn’t intersect the singular geodesic `i,i,, i.e.,

d(a, i) < d(b, i) or d(b, i) < d(a, i).
The two cases are analogous. Let us consider the case 0 < dist(a, i) <

dist(b, i): there exists a path at ⊂ H2 with a0 = i and a1 = a, such that for

every t

dist(at, i) < dist(b, i) and `at,b ⊂ AdS3
∗,

that is, `at,b ∩ `i,i ≠ ∅ for every t ∈ [0,1]. Notice that is not possible to

construct a similar path between `a,b and `a,i without meeting `i,i.

These results and in particular the proposition 2.2.5 show that `i,b and

`a, i are representatives respectively for the classes αr and αr.

Remark 11. The classes αr and αr form a basis of π1(AdS3
∗).

At this point, it is useful to notice that we can write

• `i,b = {Rθ
i (Lb)−1 ∣ θ ∈ [0,2π]},

• `a,i = {(La)Rθ
i ∣ θ ∈ [0,2π]},

for every a, b ∈ H2.

Proposition 2.2.6. Let ˜̀ be a complete timelike geodesic in the universal

cover ÃdS3
∗ and Π(˜̀) = ` its image in AdS3

∗.

Then,

Stab(˜̀) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R × {0} if ` = `i,b,

{0} ×R if ` = `a,i,

Z ⋅ (2π,0) if [`] = αr,

Z ⋅ (0,2π) if [`] = αl.
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2. AdS-manifolds with singularities

Proof. We already know that every geodesic in AdS3
∗ has the form `a,b with

a, b ∈ H2 distinct points and we can distinguish the cases 0 < d(a, i) < d(i, b)
and 0 < d(i, b) < d(a, i) so that every timelike geodesic will be homotopic

either to the special timelike geodesic `i,b or `a,i.

Let us first consider the case ` = `i,b and ˜̀∈ Π−1(`i,b). Since

Π−1(`i,b) = {(d(i, b), x0 + x, y0 + 2πk), x ∈ R, k ∈ Z}

with x0, y0 ∈ R fixed, knowing that the lift ˜̀ is just an element in the preimage

of `i,b so
˜̀= {(d(i, b), x0 + x, y0), x ∈ R},

where we chose k0 = 0.

If ϕ ∈ Stab(˜̀), by definition ϕ(˜̀) = ˜̀ and, because of the commutative

diagram, it is also H(ϕ)(`) ⊆ `.
Recalling that Isom(ÃdS3

∗) ≃ R2 (Proposition 2.2.2) acts by translation

on the last two components of ˜̀, it is clear that

Stab(˜̀) = R × {0}.

It is the same for the symmetric case with ` = `a,i.

Let us consider the case for 0 < d(a, i) < d(i, b) so that ` is homotopic to

`i,b and let ˜̀
0 be a lift of `i,b. Thus, we want to show that

Stab(˜̀) = StabΓ(˜̀) = StabΓ(˜̀
0),

where Γ = Aut(Π) = 2πZ × 2πZ.

First we see that StabΓ(˜̀) = StabΓ(˜̀
0) for every ˜̀, ˜̀0 ∈ Π−1(`): in general

the stabilizers of the lifting of the free homotopic curves are conjugates in Γ.

In our case Aut(Π) ≃ π1(AdS3
∗) is Abelian, so the stabilizers in Γ are exactly

the same. By the previous discussion StabΓ(˜̀) = StabΓ( ˜̀
0) = StabΓ( ˜̀

0) ∩
2πZ × 2πZ = 2πZ × {0}.
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2.2 The generalized spin-cone model

Now let us prove Stab(˜̀) = StabΓ(˜̀). Recall the map p∗ ∶ Isom(ÃdS3
∗) →

Isom(PSL2(R)) seen in Section 2.2.2 and notice that kerp∗ = Γ. Let

ϕ ∈ Isom(ÃdS3
∗) preserving ˜̀ that is not in Γ. If g ∈ Stab(˜̀), then

p∗(g) ∈ Stab(`a,b) ∩ Stab(`i,i), being `a,b ∈ PSL2(R) with i ∉ {a, b} geodesic

corresponding to ˜̀. Notice that

Stab(`a,b) ∩ Stab(`i,i) = (Stab(a) × Stab(b)) ∩ (Stab(i) × Stab(i)) = (Id, Id),

so that p∗(g) = (Id, Id) and g ∈ Γ. We conclude that Stab(˜̀) = StabΓ(˜̀) =
StabΓ(˜̀

0) = (2π,0) ⋅Z.

Proposition 2.2.7. Let α̃ be a complete geodesic in ÃdS3
∗ such that Π(α̃)

is in the homotopy class αl and let T = (0, y) an isometry of ÃdS3
∗ preserving

α̃. Then, T acts on α̃ as a translation of x
2 .

Proof. Let us distinguish two cases:

(i) x ∈ 2πZ,

(ii) x ∉ 2πZ.

Let us see the case (i). Here Π(α̃) is homotopic to `a,i. The map p̃ ∶ ÃdS3
∗ →

̃PSL2(R) is such that p̃∣ ˜̀ is injective and realizes an isometry between ˜̀ and

p̃(˜̀). If p̃∗ ∶ Isom(ÃdS3
∗) → Isom( ̃PSL2(R)) is the induced map over the

isometry groups, then by Proposition 2.2.3:

p̃∗(0,2π) = Θ̃(R̃0, R̃2π) = Θ̃(Id, R̃2π) = T0.

The following diagram
˜̀ p̃(˜̀)

˜̀ p̃(˜̀)

p̃

ϕ T
k0
0

p̃

where T k00 is a translation of πk0 (Proposition 1.4.3).
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2. AdS-manifolds with singularities

Let us see now the case (ii). Here Π(α̃) = `a,i. Then, we can give the

following parametrization to α̃.

α̃(t) = (r0, x0, t).

Then, α̃′(t) = ∂

∂y
. To compute the speed of Π (α̃(t)), we need to compute

first the norm of the derivative in y:

∥ d
dh

Π (γL(t + h))∣h=0 ∥ =

∥ d
dh

(Rx0
i Leir0R

−(t+h)
i )

∣h=0

∥ =

∥ d
dh

((Rx0
i Leir0R

−t
i )R−h

i )
∣h=0

∥ =

1

2

XXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXX
= −1

2
,

where we recall that ∥A∥ ∶= ⟨A,A⟩ = −det(A).
Therefore

length (Π (α̃(t))) =
RRRRRRRRRRR
∫

2π

0

d

dt
∥Π (α̃(t)) ∥dt

RRRRRRRRRRR

=
RRRRRRRRRRR
∫

2π

0
−1

2
dt

RRRRRRRRRRR
= 2π ⋅ 1

2
= π.

We are studying quotients of ÃdS3
∗ by Z2-lattices with foliation F in

timelike geodesics of length π and here we provide a condition for the manifold

to have such a foliation. Remember that two types of foliation are possible

in AdS3
∗, right-handed and left-handed. We prove the following result first.

Proposition 2.2.8. Let Λ be a lattice and F be a foliation in timelike

geodesics for AdS3
∗ which is Λ-invariant. Then, F is left-handed if and only

if every ` ∈ F is in the hotopopy class αl.
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2.2 The generalized spin-cone model

Proof. Let γ(t) = (t, θ0, ϕ0) be a spacelike geodesic in ÃdS3
∗ and `(t) the leaf

through γ(t), with projection Π(`(t)) = `a(t),b(t) in AdS3
∗. Using the fact that

`a(t),b(t) rotates always on the left along Π(γ(t)) (Lemma 1.5.5), we see that

there exists limt→0 `a(t),b(t) = `a,b with `a,b ∩ `i,i ≠ ∅, since Π(γ(t)) converges

to a point in `i,i.

Denote by α(t) the point on `(t) in the future of Π(γ(t)) at distance

ε. Notice that α(t) extends to a continuous path α ∶ [0,+∞) → AdS3
∗ since

α(0) ∈ `a,b/`i,i. So there exists α̃ ∶ [0,+∞) → ÃdS3
∗ such that α̃(0) ∈ `(0). It

follows that the leaf through α̃(t) = `(t), hence limt→0 `(t) = `0 is a complete

geodesic in ÃdS3
∗. Thus, Π(`0) is a geodesic contained in AdS3

∗, Π(`0) ≠ `a,b.
But this contradicts the assumption Π(`(t)) = `a(t),b(t) → `a,b.

Since F is left-handed, then distH2(a1, a(t)) ≥ distH2(b1, b(t)), so pass-

ing to the limit distH2(a1, i) ≥ distH2(b1, i). The geodesics `a1,b1 and `i,i are

disjoint, thus

distH2(a1, i) > distH2(b1, i).

Proposition 2.2.9. Let Λ be a lattice for Isom ÃdS3
∗ such that ÃdS3

∗ÒΛ

admits a foliation in timelike geodesics of length π, then F0 = (0,2π) is a

generator for Λ if and only if the foliation is left-handed.

Proof. Since Stab(˜̀) ≃ Z ⋅γ, using Proposition 2.2.6 we know that γ ∈ {0}×R
with length π, then γ = (0,2π).

Remark 12. If ⟨F0,G0⟩ and ⟨F0,G1⟩ are two basis of Λ, then there exists

k ∈ Z such that G0 +G1 = kF0. Indeed, we can write as linear combination

G1 = kF0 + hG0 with k, h ∈ Z. Since ⟨F0,G1⟩ is a basis if and only if

RRRRRRRRRRRRR
det

⎡⎢⎢⎢⎢⎣

1 α

0 β

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRR
= 1,

then β = ±1. Thus, G1 = kF0 ±G0.
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2. AdS-manifolds with singularities

Since we are interested in lattices Λ such that ÃdS
3
∗ÒΛ admits a foliation

in timelike geodesics of length π, by the previous results, we need to take

a lattice Λ = ⟨F0,G0⟩ with F0 irreducible element in the lattice such that

F0 = (2π,0) or F0 = (0,2π). Indeed, the transformations in Λ = ⟨F0,G0⟩
permute the leaves of the foliation and F0 preserves every leaf acting on

each by a translation of π. Moreover we can say also something about the

generator G0.

Corollary 2.2.10. Let {F0,G0} and {F0,G1} be Z-basis of Λ, with F0 =
(2π,0). Then if G0 = (θ0, η0) and G1 = (θ1, η1), there exists k ∈ Z such thatd

θ1 = θ0 an η1 = η0 + 2πk.

Proof. By Remark 12, there exists k ∈ Z such that G1 = kF0 +G0, thus

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ1 = θ0,

η1 = 2πk + η0.

Definition 17. Let Λ = ⟨(0,2π), (θ0, η0)⟩ be a lattice in Isom(ÃdS3). We

define model for a generalized cone-spin singularity with (θ0, η0) ∈ R×RÒ2πZ
the quotient manifold:

AdS3
(θ0,η0)

∶= ÃdS3
∗ÒΛ

Remark 13. By Proposition 2.2.10, generalized spin-cone singularities are

classified by θ0 ∈ R and η0 ∈ RÒ2πZ.

Remark 14. AdS3
(θ0,η0)

with θ0 ∈ R and η0 ∈ RÒ2πZ has a left-handed

foliation in timelike geodesics of length π.
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CHAPTER 3

Foliated Anti-de Sitter manifolds

In this Chapter, we introduce the construction of a three dimensional Anti-de

Sitter manifold as fiber bundle over a hyperbolic surface. The main purpose

is to show that all the AdS3-manifold with generalized spin-cone singularities

are fibrations over a surface with conical singularities.

3.1 Quotients of the 3-dimensional Anti-de Sit-

ter space

By the works of Kulkarni and Raymond [KR85], Klingler [Kli96] and Kassel

[GKW15], the three dimensional compact Anti-de Sitter manifolds are in the

form
PSL2(R)Òj × ρ(π1(S))

where S is an oriented compact surface, j ∶ π1(S) → PSL2(R) is a Fuchsian

representation and ρ ∶ π1(S) → PSL2(R) is a representation strictly domi-

nated by j. It follows that a compact Anti-de Sitter manifold admits a finite

covering which is a circle bundle over a compact surface of genus greater than

2, and the surface is a Seifert bundle.
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3. Foliated Anti-de Sitter manifolds

Thus, it is possible to describe the deformation space of Anti-de Sitter

structures on a circle bundle of Euler class k over an oriented compact surface

S of genus g ≥ 2.

In the further section, we provide a construction for compact AdS3-

manifolds as fiber bundle over a compact hyperbolic surface.

3.2 AdS-manifold as circle bundle over a sur-

face

3.2.1 First result: construction of the circle bundle

Let (S, g) be an oriented hyperbolic surface, not necessarily complete, with

developing map d and holonomy j. We consider also an equivariant map

f ∶ S̃ → H2, that is

f(γx̃) = ρ(γ)f(x̃)

with ρ ∶ π1(S)→ PSL2(R) with monodromy representation.

Definition 18. We say that f ∶ S̃ → H2 equivariant map is a weak contraction

if and only if

distH2(f(x), f(y)) < distS̃(x, y) (3.1)

for every distinct points x, y ∈ S̃ sufficently close.

In the following, we will associate any tern (S, ρ, f) such that f is a

weak contraction with a three dimensional Anti-de Sitter manifold M ∶=
M (S, ρ, f) so that:

• the holonomy map of M is given by the pair (j, ρ), that is

D ○ γ = (j(γ), ρ(γ)) ⋅D ,

with D a developing map for M ;
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3.2 AdS-manifold as circle bundle over a surface

• there exists a fibration τ ∶M → S whose fiber τ−1(x) is a closed geodesic

in M for every x ∈ S.

We will construct explicitly the manifold M as fiber bundle over the

surface. Let us fix {Uα}α∈A a finite cover of S with each Uα geodesically

convex set for the metric g, and let us denote by {Ũα̃}α̃∈Ã the open cover of S̃,

given by lifting the open sets in {Uα} and such that d∣Ũα̃ is a diffeomorphism

onto its image. If π ∶ S̃ → S is the covering map, we define an induced map

π∗ ∶ Ã → A over the indices such that

∀α̃ ∈ Ã π(Ũα̃) = Uπ∗(α̃).

For every x ∈ S, the action of the fundamental group π1(S) on π−1(x) is

free and transitive, therefore we can define an action of π1(S) on Ã in the

following way:

for every γ ∈ π1(S) γ ⋅ α̃ = β̃

where β̃ ∈ Ã is the index such that γ ⋅ Ũα̃ = Ũβ̃.

Given a pair of maps (d, f) as defined before, for every x̃ ∈ S̃ we can look

at the timelike geodesic:

`x̃ ∶= `d(x̃),f(x̃) = {T ∈ PSL2(R) ∣ T (f(x̃)) = d(x̃)}.

Since d∣Ũα̃ is injective, for every x̃ ∈ Ũα̃ the geodesic `(x̃) is the same as

` z , f ○ (d
∣Ũα̃

)−1(z), where z = d(x̃) ∈ H2. Moreover, as f is a weak contraction,

the composition f○d−1
∣Ṽα̃

is a contraction for each Ṽα̃ = d(Ũα̃).
Therefore, thanks to the Corollary 1.3.4, for every x̃ ≠ ỹ ∈ Ũα

`x̃ ∩ `ỹ ≠ ∅.

For this reason, the set

Mα̃ = ⋃
x̃∈Ũα̃

`x̃ = {T ∈ PSL2(R) ∣ T (f(x̃)) = d(x̃) for some x̃ ∈ Ũα̃} (3.2)
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3. Foliated Anti-de Sitter manifolds

is indeed foliated by timelike geodesics, and we can rewrite it as

Mα̃ = {T ∈ PSL2(R) ∣ ∃! x̃ ∈ Ũα̃ such that T (f(x̃)) = d(x̃)}. (3.3)

Proposition 3.2.1. The set Uα̃ is a time-tube.

Proof. • Mα̃ is foliated by closed timelike geodesics. Let us call ν the

unitary tangent field generating the foliation.

• Mα̃ is an open subset in AdS3. Given Π spacelike plane, the following

map is well-defined:

F ∶ Ũα̃ → Π ⊂ PSL2(R) (3.4)

x̃↦ `x̃ ∩Π.

Moreover it is injective, because of the fact that the timelike geodesics

form a foliation. For the Invariance of Domain Theorem, F (Ũα̃) is open
in Π.

We define now the injective map:

Θ ∶ Ũα̃ × [0, π]→ PSL2(R) (3.5)

(x̃, t)↦ expF (x̃)(tν(x̃)).

Therefore, again for the Invariance of Domain Theorem Θ(Ũα̃×[0, π]) =
Mα̃ is an open subset.

Then, we set

M ∶= ⊔
α̃∈Ã

Mα̃. (3.6)

Let ι ∶M → PSL2(R) be a map such that, for every X ∈Mα̃,

ι∣Mα̃
= ια̃,
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3.2 AdS-manifold as circle bundle over a surface

where ια̃ ∶Mα̃ → PSL2(R) is the inclusion map.

Furthermore, thanks to (3.3), there are well-defined projections τα̃ ∶Mα̃ →
Ũα̃ such that for every x̃ ∈ Uα̃,

τ−1
α̃ (x̃) = `x̃.

Remark 15. Using a similar argument as the one seen in Proposition 3.2.1,

we can say that τα̃ is a continuous map for every α̃.

Therefore, we can define τ ∶M → S̃ as the map such that

τ∣Mα̃
= τα̃. (3.7)

Remark 16. As we already noted, two geodesics inMα̃ have no intersection,

so the map ι is injective if restricted to Mα̃, but for X ∈ Mα̃ and Y ∈ Mβ̃

it can happen that they correspond to the same element in PSL2(R). As a

consequence, we can just say that the map ι is locally injective.

For every x̃ ∈ Ũα̃ ∩ Ũβ̃ ≠ ∅, the images of τ−1
α̃ (x̃) and τ−1

β̃
(x̃) through ι

represent the same timelike geodesics in PSL2(R). This proves that τ is not

globally injective.

Taking into account the previous remarks, in order to identify two points

in M , we introduce on this domain the following equivalence relation:

X ∼ Y ⇐⇒ τα̃(X) = τβ̃(Y ) and ια̃(X) = ιβ̃(Y ), (3.8)

for X ∈Mα and Y ∈Mβ. This allows us to consider the quotient space

M̂ ∶=MÒ∼ (3.9)

together with the projection map p ∶M →MÒ∼.

Remark 17. The projection p has the following properties:

• p∣Mα̃
is injective;
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3. Foliated Anti-de Sitter manifolds

• p∣Mα̃
∶Mα̃ → p(Mα̃) is a homeomorphism onto its image;

• p(Mα̃) is an open set in M̂ .

For every class C in M̂ we have C = [X] with X ∈Mα̃ for some α̃ ∈ Ã ,

so we can define the map τ̃ ∶ M̂ → S̃ by

τ̃([X]) = τα̃(X). (3.10)

In particular, τ̃ does not depend on the choice of the representative, thanks

to the definition on M̂ .

Moreover τ̃ is a circle bundle over S̃: for every x̃ ∈ S̃ there exists a

neighbourhood Ũα̃ such that

τ̃−1(Ũα̃) =Mα̃ ≃ Θ(Ũα̃ × [0, π]) ≃ Ũα̃ × S1, (3.11)

where Θ is the map defined in 3.5. Notice that Θ(Ũα̃ × [0, π]) is foliated by

timelike geodesics in PSL2(R) and every timelike geodesic is homeomorphic

to a circle of lenght π.

Lemma 3.2.2. The map τ̃ is continuous.

Proof. More generally, f ∶XÒ∼→ Y is continuous if and only if f ○p ∶X → Y

is continuous with p ∶X →XÒ∼ projection. In our case, τ̃ ○p(X) = τ̃([X]) =
τα̃. Furthermore, we know that τα̃ is continuous, so it is τ̃ .

Proposition 3.2.3. The quotient space M̂ is an AdS3-manifold.

Proof. First of all, the map τ̃ allows us to say that M̂ is a Hausdorff space:

• since τ̃ is a continuous map, τ̃−1(Ũα̃) is an open set for the induced

topology on M̂ , as Ũα̃ is an open set in S̃. In particular, τ−1
α (Ũα̃) ≃Mα̃

is Hausdorff;

• let us consider C1 and C2 distinct points in M̂ . For every X ∈ C1 and

every Y ∈ C2 we can distinguish two cases:
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3.2 AdS-manifold as circle bundle over a surface

(i) τ̃(X) ≠ τ(Y ), so there exist V,U ⊂ S̃ neighbourhoods of

τ̃(X), τ̃(Y ) such that U ∩ V = ∅ and C1 ∈ τ̃−1(V ), C2 ∈ τ̃−1(U)
with τ̃−1(V )∩ ∈ τ̃−1(U) = ∅;

(ii) τ̃(X) = τ̃(Y ) = x̃ ∈ Ũ α̃ and ι(X) ≠ ι(Y ) hence X and Y are

distinct points in iα̃(Mα̃) so they can be separated.

Then, we can define for M̂ the atlas {(p(Mα̃), ια̃ ○ p∣Mα̃
−1)}.

3.2.2 Action of the fundamental group on a timelike

foliation of an AdS-domain

In this section we introduce a natural action of π1(S) on M̂ in order to prove:

Theorem 3.2.4. M ∶= M̂Ò∼ is a circle bundle over the surface S with

geodesic fibers.

To this aim, firstly we consider the homomorphism H ∶ π1(S) →
Isom(PSL2(R)) as H(γ) ∶= (j(γ), ρ(γ)) for every γ ∈ π1(S). In particu-

lar, we show the action of γ ∈ π1(S) on the leaves of a foliated open subset

in AdS3 and the action of H(γ) on the sets Mα̃ immersed in PSL2(R). By

the action on M we obtain an induced action on the quotient M̃ .

Considering that d and f are π1(S)-equivariant with holonomies respec-

tively j and ρ, for every γ ∈ π1(S) and x̃ ∈ S̃:

`γx̃ = `d(γx̃),f(γx̃) = `j(γ)d(x̃),ρ(γ)f(x̃)
= (j(γ), ρ(γ))`d(x̃),f(x̃) =H(γ) ⋅ `x̃,

where H(γ) ∶= (j(γ), ρ(γ)) is an isometry of PSL2(R). Therefore, for every

α̃ ∈ Ã and for every γ ∈ π1(S) we have

H(γ) ⋅ ια̃(Mα̃) =j(γ)( ⋃
x̃∈Ũα̃

`x̃)ρ(γ)−1 = ⋃
x̃∈Ũα̃

j(γ)`x̃ρ(γ)−1

= ⋃
x̃∈Ũα̃

H(γ) ⋅ `x̃ = ⋃
x̃∈Ũα̃

`γx̃ = ιγ⋅α̃(Mγ⋅α̃).
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3. Foliated Anti-de Sitter manifolds

As a consequence, we can define an action onM in the following way: for

every γ ∈ π1(S) there exists a map Ĥ(γ)∶M →M such that

ι(Ĥ(γ)(Mα̃)) =H(γ)(ια̃(Mα̃)). (3.12)

We set Ĥ(γ)
∣Mα̃

∶= ι−1
γ⋅α ⋅H(γ) ⋅ ια.

Lemma 3.2.5 (Equivariance of τ and ι). For every γ ∈ π1(S) the map Ĥ(γ)
is such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ι ○ Ĥ(γ) =H(γ) ○ ι,

τ ○ Ĥ(γ) = γ ⋅ τ.
(3.13)

Proof. The first equivariance relation holds by the definition. Let us now

consider the second relation. If X ∈Mα̃, then X ∈ `x̃. Now, Ĥ(γ) ⋅X ∈Mγ⋅α̃,

indeed Ĥ(γ) ⋅X ∈ Ĥ(γ) ⋅ `x̃ =H(γ)`x̃ = `γx̃. As a consequence,

τ(Ĥ(γ)(X)) = γx̃.

Notation 3.2.6. Taking into account the equivariance of the maps ι and τ

with respect to the action of π1(S), for simplicity, we will denote the action

by γ⋅ for both the cases M and S̃.

From the lemma 3.2.5, the action of π1(S) onM induces an action on the

quotient M̂ =MÒ∼. We have to verify that it is well-defined, i.e., if Y ∈ [X]
then [γ ⋅ Y ] = [γ ⋅X] for every γ ∈ π1(S). If X ∈Mα̃ and Y ∈Mβ̃:

[γ ⋅ Y ] = [γ ⋅X] ⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τγ⋅β̃(γ ⋅ Y ) = τγ⋅α̃(γ ⋅X)

ιγ⋅β̃(γ ⋅ Y ) = ιγ⋅α̃(γ ⋅X)

by definition (3.8). Considering that the action of π1(S) commutes with τ

and ι, we have:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τγ⋅β̃(γ ⋅ Y ) = τγ⋅α̃(γ ⋅X)

ιγ⋅β̃(γ ⋅ Y ) = ιγ⋅α̃(γ ⋅X)
⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ⋅ τβ̃(Y ) = γ ⋅ τα̃(X)

γ ⋅ ιβ̃(Y ) = γ ⋅ ια̃(X)

that is [Y ] = [X].

56



3.2 AdS-manifold as circle bundle over a surface

Lemma 3.2.7. The action of π1(S) on M̂ is properly discontinuous and

free.

• Properly discontinuous: if K ⊂ M̂ is a compact set, also τ(K) ⊂ S̃ is

compact; since π1(S) acts on S̃ properly discontinuously,

γ ⋅ τ(K) ∩ τ(K) = ∅ for almost every γ ∈ π1(S);

since γ ○ τ = τ ○ γ, we have

τ(γK ∩K) ⊂ τ(γK) ∩ τ(K) = γ ⋅ τ(K) ∩ τ(K) = ∅,

and so

γK ∩K = ∅ for almost every γ ∈ π1(S).

• The action is free because π1(S) is torsion free and the action is prop-

erly discontinuous.

Therefore, thanks to the previous lemma, we can conclude that the quo-

tient space M ∶= M̂Òπ1(S) is a circle bundle over S.

3.2.3 Developing map of the AdS-circle bundle

Let us notice that the map p∣Mα̃
∶ Mα̃ → M̂ is an injective isometry and let

us define Wα̃ = p(Mα̃). Then we can define a local isometry D ∶M̂ → AdS3

such that, for every α̃

D∣Wα̃
= ια̃ ○ (p∣Mα̃

)−1.

This map is well-defined, indeed for every Wα̃ ∩Wβ̃ ≠ ∅, it occurs that

ια̃ ○ (p∣Mα̃
)−1
∣Wα̃∩Wβ̃

= ιβ̃ ○ (p∣Mβ̃
)−1
∣Wα̃∩Wβ̃

.

Moreover, for [X] ∈Wα̃ and γ ∈ π1(S):

D∣Wγ⋅α̃
(γ ⋅ [X]) = D∣Wα̃

([γ ⋅X]) = ιγ⋅α̃(γ ⋅X)

=H(γ) ⋅ ια̃(X) =H(γ) ⋅D∣Wα̃
([X])

where H ∶ π1(S)→ Isom(AdS3).
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3. Foliated Anti-de Sitter manifolds

3.2.4 A different interpretation

Let us denote τ ∶= (τ̃ , ι) ∶ M̂ → S̃ ×AdS3. This map is injective by definition

and identifies M̂ with the subspace of S̃ ×AdS3 given by

{(x̃, T ) ∣T (f(x̃)) = d(x̃)}.

Notice that τ is π1-equivariant, where the action on S̃ ×AdS3 is the product

action. Moreover, from this perspective, the map D coincides with the pro-

jection on the second factor, while the circle bundle map is the projection on

the first fact.

3.3 Functoriality of the construction

We can consider the category whose objects are the terns (S, ρ, f), where
S is a hyperbolic surface with weak contraction f equivariant with respect

to the representation ρ. To every (S, ρ, f) we associate the AdS3-manifold

given by M (S, ρ, f) as constructed in the above section. We say that the

map i ∶ (S1, ρ1, f1)→ (S2, ρ2, f2) is a morphism in the category if

• i ∶ S1 → S2 is local isometry,

• f1 = f2 ○ i,

• ρ1 = ρ2 ○ i∗.

By the naturality of the construction is not difficult to check that any map

i is associated to a map I ∶ M (S1, ρ1, f1) → M (S2, ρ2, f2) which is a local

isometry. Then, the following diagram

M (S1, ρ1, f1) M (S2, ρ2, f2)

S1 S2

τ1 τ2

is commutative.
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cone singularities

3.4 AdS-manifold with singularities as fibra-

tion on a surface with cone singularities

In the previous section, we have seen how to obtain an Anti-de Sitter manifold

as circle bundle over a hyperbolic surface. In this section we analyze more

closely the case where S is a compact surface with cone singularities.

Let S∗ be the complement of the set of singularities {pj} in S, with

d ∶ S̃ → H2 developing map for S and f ∶ S̃ → H2 weak contraction. For

the construction seen in the Section 3.2, there exists an Anti de Sitter 3-

manifold M∗ ∶= M∗(S∗, ρ, f) that is a circle bundle over S∗. The purpose of

this section is to show that for every point on the fiber of a singular point on

S∗, the manifold M∗ has a generalized cone-spin singularity.

Now, we look at one singular point pj. Let us define U∗ = U/{pj}. Given

the set Ũ∗ as connected component of π−1(U∗), it results that

• the map d∣Ũ∗ avoids the point p ∈ H2;

• for every x̃ ∈ Ũ and for every γ ∈ π1(S):

d(γx̃) = Rθ1
p d(x̃)

with θ1 ∈ R.

Proposition 3.4.1. Let f ∶ S̃ → H2 be equivariant with respect to the rep-

resentation ρ ∶ π1(S) → PSL2(R). For every γ ∈ π1(S) the isometry ρ(γ) is

elliptic, that is

f(γx̃) = Rθ2
q f(x̃),

with θ2 ∈ R.

Proof. Let us consider a sequence {xn} in Ũ that converges to p̃j lifting of a

singular point {pj} ∈ S. Thanks to the equivariance of f , it holds

distH2(ρ(γ)f(xn), f(xn)) = distH2(f(γxn), f(xn)).
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3. Foliated Anti-de Sitter manifolds

Because f is weak contraction,

distH2(f(γxn), f(xn)) < distS̃(γxn, xn) < θ sinh(distS̃(xn), p̃j)→ 0

where θ is the conical angle in pj. Thus

distS̃(γxn, xn) ≤ θ sinh(distS̃(xn), p̃j)→ 0.

Therefore we can conclude that distH2(ρ(γ)f(xn), f(xn)) converges to

zero, so {f(xn)} converges to f(p̃j) which is the fixed point for ρ(γ).

Remark 18. If `p,q = {A ∈ PSL2(R) ∣ A(q) = p} is a generic timelike geodesic

in AdS3, identified by PSL2(R), and (Rθ1
p ,R

θ2
q ) ∈ PSL2(R)×PSL2(R) an

AdS3-isometry fixing `p,q, then (Rθ1
p ,R

θ2
q ) is conjugated to the pair (Rθ1

i ,R
θ2
i )

fixing the geodesic `i,i.

Proposition 3.4.2. For every point x̃ ∈ Ũ∗ = Ũ/{pj} the timelike geodesic

`(x̃) in AdS3 avoids the timelike geodesic `(p̃j) = `p,q.

Proof. Thanks to the previous remark, we can show the proposition in the

case p = q = i, so that `(p̃j) = `i,i. If `(x̃)∩`(p̃j), then there exists A ∈ PSL2(R)
such that

A(f(x̃)) = d(x̃) and A(i) = i.

As a consequence, we have

distH2(f(x̃), i) = distH2(Af(x̃),Ai) = distH2(d(x̃), i).

Being d ∶ S̃ → H2 a local isometry, this contradicts the fact that f is a a weak

contraction, indeed if ỹ is a point on the ray between x̃ and p̃j, we have

distH2(f(x̃), i) ≤ distH2(f(x̃), i) + distH2(f(x̃), f(ỹ))

< distH2(d(x̃), i) + distH2(d(x̃), d(ỹ)) = distH2
∗

(d(x̃), i).
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Since j(γ) = Rθ1
p and ρ(γ) = Rθ2

q fix respectively p and q in H2, for a given

γ ∈ π1(S) we have

(j(γ), ρ(γ)) ⋅ `p,q = `p,q.

Thanks to the previous considerations, we can study the manifold M

around the fiber of a singular point on S just looking at the neighbourhood

of the geodesic `i,i. Thanks to the functoriality of the construction, for sim-

plicity, we can consider as base the disk (D, gθ) where gθ os the metric such

that D is a hyperbolic surface with one conical singularity at the point x0.

In this case, we have the maps d, f ∶ D̃∗ → H2 such that, for every x̃0 ∈
π−1(x0), d(x̃0) = f(x̃0) = i. Their holonomies will be given by j(γ) = Rθ1

i and

ρ(γ) = Rθ2
i , while the closed curve `(x̃0) corresponds to the geodesic `i,i in

AdS3 fixed by the pair (Rθ1
i ,R

θ2
i ). We will refer to M ∶= M (θ, ρ, f) as the

manifold constructed on D.

Notation 3.4.3. Taking account of the Remark 18, we will consider just the

rotation Rθ
i that fixes i ∈ H2. As a consequence, from now on, we will often

indicate the rotations of H2 fixing the point i just with Rθ, for any θ ∈ R.

Moreover, we notice that Rθ = Rθ+2π and that we can think of θ as an element

of S1.

3.4.1 From the disk to H2
θ

In the previous section we reduced the construction passing from a closed

surface to a disk D. However, dealing with a disk we should discuss the

construction over the boundary. To overcome this critical issue we can think

in a more general way extending the construction to the case where the base

surface for the fibration is H2
∗ ∶= H2 /{i}.

In this respect, we notice that every equivariant weak contraction f ∶
D̃∗ → H2 extends to an equivariant contraction f ∶ H̃2

∗ → H2 in the following
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3. Foliated Anti-de Sitter manifolds

way:

f(t, θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(t, θ) if t ≤m0

f(m0, θ) if t >m0.

This map is a contraction too, because we are composing f with the 1-

Lipschitz map F ∶ H̃2
∗ → D̃∗ such that

F (t, θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(t, θ) t ≤m0

(m0, θ) t >m0.

Then, we have a commutative diagram:

D̃∗ H2
∗

H̃2
∗ H2

θ .

d

where H2
θ is the model of the cone singularity on the hyperbolic plane as

defined in Section 2.1. We can also construct an Anti-de Sitter manifold as

fibration over H2
θ, depending in this case on the functions f and π.

Therefore, we obtain an other commutative diagram:

M (θ, ρ, f) M (H2
θ, ρ, f)

D∗ H2
θ,

I

i

and I and i are isometric inclusions.

3.5 Fibration over H2
θ

Definition 19. Let us define admissible data the tern (θ, η, f) where θ is

the conical angle for the singularity in H2
θ and f ∶ H̃2

θ → H2 a contractive map

equivariant with respect to Rη
i .

Given an admissible data (θ, η, f), as we have seen in the previous section,

we can construct an AdS3-manifold M (θ, η, f) fibered over H2
θ.
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θ

Proposition 3.5.1. The map Ψ ∶ R+ × S1 × S1 → AdS3
∗ given by the map

Ψ(r, eiθ, eiϕ) = (Rθ,Rϕ) ⋅Lir

is a diffeomorphism.

Proof. It is enough to show that the map is injective and proper to conclude

that the map is a diffeomorphism.

The map is injective. Let us remember that (Rθ,Rϕ) ⋅ Lir = RθLirR−ϕ,

then we want to show that RθLirR−ϕ = Rθ′L′irR
−ϕ′ imply (r, eiθ, eiϕ) =

(r′, eiθ′ , eiϕ′). First we notice that distH2(RθLirR−ϕ(i), i) = r, so if RθLirR−ϕ =
Rθ′L′irR

−ϕ′ certainly r = r′. Then we have RθLirR−ϕ(i) = Rθ′LirR−ϕ′(i) and

so RθLir(i) = Rθ′Lir(i), that imply eiθ = eiθ′ , because it it Lir(i) ≠ i. Now we

have RθLirR−ϕ = RθLirR−ϕ′ . Repeating the same argument on the inverses

we can conclude that also eiϕ = eiϕ′ .
The map is also proper. Remember that RθLirR−ϕ(i) ≠ i and Rϕ(i) = i,

so LirRϕ(i) = Lir(i). Since Lir is the traslation of the geodesic through i, we

have dist(Lir(i), i) = r. Then,

distH2(RθLirR
−ϕ(i)), i) = distH2(RθLir(i), i)

= distH2(RθLir(i)),Rθ(i))

= distH2(Lir(i), i) = r > 0.

A sequence (rn, θnϕn) is divergent in R+ × S1 × S1 if rn → 0 or rn →∞.

Let us denote RθnLrnR
−ϕn = γn. The sequence γn diverges in AdS3

∗, since

distH2(γn(i), i) = rn,

then if rn →∞, γn can not converge, while if rn → 0, γn converges to some-

thing fixing i, that is an element in `i.

Let us notice also that S1 × S1 acts on AdS3
∗ as pair of rotations and the

diffeomorphism is equivariant, that is

Ψ(r, θ + θ′, ϕ + ϕ′) = (Rθ′ ,Rϕ′) ⋅Ψ(r, θ,ϕ).
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3. Foliated Anti-de Sitter manifolds

We recall that in AdS3 the pair (Rα/2,Rα/2) is a pure rotation while

(Rα/2,R−α/2) is a pure traslation along the geodesic `i,i. In R+×S1×S1 these

correspond respectively to the isometries (r, θ,ϕ) ↦ (r, θ + α/2, ϕ − α/2) and

(r, θ,ϕ)↦ (r, θ + α/2, ϕ + α/2).
Let us consider M̂ = ⊔Mα̃Ò∼ and the following diagram

M̃ ÃdS3
∗

M̂ AdS3
∗

D̃ev

p
Π

Dev

where M̃ is the universal cover of M and D̃ev is the lifting of Dev, that is

a developing map for M = M̂Òπ1(H2
θ).

The map Dev has holonomy:

H ∶ π1(M )→ Isom(AdS3
∗).

If α ∈ π1(M ) is the homotopy class of some curve of M , then H(α) is

an isometry of

AdS3
∗ ≃ R+ × S1 × S1

and the group of isometry is given by

Isom(AdS3
∗) = {Fθ0,ϕ0 ∣ Fθ0,ϕ0(r, θ,ϕ) = (r, θ0 + θ,ϕ0 + ϕ) with θ0, ϕ0 ∈ R mod 2π}

≃ R2
Ò⟨(2π,0), (0,2π)⟩.

Let Γ = ⟨(a, b)⟩ be a ciclic discrete group with a, b ≠ 0. We define the

quotient space

AdS3
(a,b) ∶=

ÃdS3
∗ÒΓ,

with group of isometry

Isom(AdS3
(a,b)) =

Isom(ÃdS3
∗)Ò⟨(a, b)⟩ ≃

R2
ÒΓ.

The map D̃ev, that can be considered a developing map, has holonomy

H̃ ∶ π1(M )→ Isom(ÃdS3
∗) = R2

and clearly H̃(α)) is a lift of H(α).
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3.5.1 Holonomy for D̃ev

Let us take a γ ∶ [0,1]→ H2
θ, a loop around the singularity and let γ̃ be a lift

in H̃2
θ. Notice that a lift α in M of γ is a non trivial loop different from the

fiber and remember that γ acts as automorphism of the covering M̃ →M .

Given a lifting α̃ of γ in M̃ , we denote Ãt ∶= D̃ev(α̃(t)) for every t ∈ R. By

equivariance of D̃ev, we have

D̃ev(α̃(t + 1)) = D̃ev(γ ⋅ α̃(t)) = H̃(γ)D̃ev(γ ⋅ α̃(t)),

with Dev(α(t)) = π(Ãt) = At ∈ AdS3
∗.

By construction of the manifold M , the path At in AdS3
∗ has the property

that

At(f(γ̃(t)) = d(γ̃(t))

for every t. Let us denote dt ∶= d(γ̃(t)) and ft ∶= f(γ̃(t)) with dist(i, ft) <
dist(i, dt).

The aim of this section is to compute H̃(α̃). Since H(α) = (Rθ,Rη) =
Π(H̃(α̃)), we already know that there exists h, k ∈ Z such that H̃(α̃) =
(θ + 2hπ, η + 2kπ). However, we will show

Proposition 3.5.2. There exists k ∈ Z such that H̃(α̃) = (θ, η + 2kπ).

To this purpose let us introduce the valuation maps

Definition 20. Let A ∈ AdS3
∗. We introduce the projection maps val,val ∶

AdS3
∗ → H2 /{i} defined as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

val(Ã) = A(i),

val(Ã) = A−1(i)

If we denote with dϑ the angle form on H∗ = H2 /{i} and recalling the

definition of pull-back, we can define on AdS3
∗ the 1-forms val∗(dϑ) and

val
∗(dϑ).
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3. Foliated Anti-de Sitter manifolds

In general, given any curve c(t) in AdS3
∗, a lift c̃(t) = (r(t), x(t), y(t)) in

ÃdS3
∗ such that c̃(0) = (r0, x0, y0), it can be described as

c̃(t) = (ρ(α(t)), x0 + ∫
c(t)

val∗(dϑ), y0 + ∫
c(t)

val
∗(dϑ)), (3.14)

where ρ(A) ∶= dist(i,A(i)) denotes the distance between a point A ∈ ÃdS3
∗

and the geodesic `i,i. In order to prove Proposition 3.5.2, we will need the

following technical lemma:

Lemma 3.5.3. Let dϑ the angle form onH2
∗. Let γ1 ∶ R→ H2

∗ and γ2 ∶ R→ H2
∗

path in H2
∗ with same equivariance, that is γi(t+ t0) = Rθ

i γi(t), and such that

dist(γ1(t), γ2(t)) < dist(γ2(t), i),

then

∫
γ1
dϑ = ∫

γ2
dϑ.

Proof. Firslty, let us observe that i ∉ γ1, γ2, i.e., the geodesic path between

γ1(t) and γ2(t), because otherwise there is contradiction with the distance

condition.

Secondly, there exists a homotopy Θ ∶ R × [0,1]→ H2
∗ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(t,0) = γ1(t),

Θ(t,1) = γ2(t),

Θ(t + t0, s) = Rθ
iΘ(t, s).

Since expγ1(t) ∶ Tγ1(t)H
∗
2 → H2

∗ is a diffeomorphism, we can write

Θ(t, s) = expγ1(t) (s(expγ1(t))−1γ2(t)).

By Stokes’ Theorem and since Θ∗(dϑ) is a closed form:

∫
∂([0,t0]×[0,1])

Θ∗(dϑ) = ∫
[0,t0]×[0,1]

dΘ∗(dϑ) = 0,

where dϑ is the angle form on H2
∗. Thus:
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3.6 The fibration is an AdS-manifold with spin-cone singularity

∫
∂([0,t0]×{0})

Θ∗(dϑ) + ∫
∂([0,t0]×{1})

Θ∗(dϑ)+

+∫
∂({0}×[0,1])

Θ∗(dϑ) + ∫
∂({t0}×[0,1])

Θ∗(dϑ) = 0

from which

∫
t0

0
γ1

∗(dϑ) − ∫
t0

0
γ2

∗(dϑ) + ∫
1

0
Θ∗(dϑ)(0, s)ds − ∫

1

0
Θ∗(dϑ)(t0, s)ds = 0.

Proof of Proposition 3.5.2. Using the notation at the beginning of the sec-

tion, by formula 3.14, we need to show that

∫
At

val∗(dϑ) = θ. (3.15)

Now, consider the paths γ1(t) = At(i) and γ2(t) = ft(i) = dt. We have

∫
γ2
dϑ = θ, (3.16)

by definition of cone singularity. On the other hand

distH2(γ1, γ2) = distH2(i, ft) < distH2(i, dt), (3.17)

thus the previous lemma implies that

∫
γ1
dϑ = ∫

γ2
dϑ = θ. (3.18)

3.6 The fibration is an AdS-manifold with spin-

cone singularity

The main goal of this section is to prove that a manifold M (θ, η, f) is dif-

feomorphic to the quotient AdS3
Λ.
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3. Foliated Anti-de Sitter manifolds

Proposition 3.6.1. Let (θ, η, f) be an admissible data, then M ∶=
M (θ, η, f) is diffeomorphic to

ÃdS3
∗ÒΛ,

where Λ = (0,2π) ⋅Z⊕ (θ, η) ⋅Z is the lattice in Isom(ÃdS3).

Notation 3.6.2. In the following we will use just M to indicate M (θ, η, f)
and τ ∶ M → H2

θ is the fibration map over H2
θ. The manifold M has develping

map D ∶ M̃ → AdS3
∗.

Lemma 3.6.3. Let ϕ ∈ π1(M ) a loop homotopic to the fiber (future di-

rected) and α any lift of the generator γ of π1(H2
θ). Then

(i) π1(M ) = Zϕ⊕Zα,

(ii) H̃(ϕ) = (0,2π) and there exists k ∈ Z such that H̃(α) = (θ, η + 2kπ).

Proof. The statement (i) follows from the fact that any S1-bundle over D2
∗ is

trivial. The second part of (ii) is true by Proposition 3.5.2. Let us compute

now H̃(ϕ). Let c ∶ I → M̃ a parametrization of the fiber, that means the

homotopy class is [c] = ϕ. Then, we fix a lift ĉ ∶ I → M̂ and a lift c̃ ∶ I → M̃ .

Notice that ĉ is a closed path in M̂ , instead c̃ is not necessarily closed.

Remember that Dev is the map such that Dev ○π̂ = AdS3
∗ and so that the

following diagram is commutative:

M̃ ÃdS3
∗

M̂ AdS3
∗,

Dev

π̂ Π

Dev

that is Dev ○π̂○ c̃ = Dev ○ĉ = Π○D̃ev○ c̃. This allows to say that D̃ev○ c̃ is a lift

of Dev ○ĉ. By Proposition 2.2.6, we know that D̃ev○ c̃(1) = (2π,0) ⋅ D̃ev○ c̃(0)
or D̃ev ○ c̃(1) = (0,2π) ⋅ D̃ev ○ c̃(0). Moreover, by the equivariance of D̃ev:

D̃ev(ϕ ⋅ c̃(0)) = H̃(ϕ) ⋅ D̃ev ○ c̃(0)
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3.6 The fibration is an AdS-manifold with spin-cone singularity

where ϕ ⋅ c̃(0) = c̃(1), because c̃ is a lift of a parametrization of the fiber.

In conclusion, the map D̃ev induces a diffeomorphism

Dev ∶ M̃Òπ1(M )Ð→
ÃdS3

∗ÒΛ.

that proves the initial statement of the Proposition 3.6.1.

Therefore, we have the following results.

Theorem 3.6.4. If τ ∶ M (θ, η, f) → H2
θ is fiber bundle for an admissible

data (θ, η, f), then τ−1(U) is a generalized cone-spin singularity for every U

neighbourhood of the singular point x0 ∈ H2
θ.

Corollary 3.6.5. If τ ∶ M (θ, η, f) → S fiber bundle over S surface with

conical singularities, then τ−1(U) is a a generalized cone-spin singularity for

every U neighbourhood of a singular point in S.

Corollary 3.6.6. AdS3
(θ,η)

→ H2
θ is a fibration.

Remark 19. The fact that only the first component of H̃(α̃) is determined

as a real number (not only modulo 2π) is a conseguence of this more general

fact. If M is a circle bundle over a pointed disk D∗, that is

S1 M

D∗

F

τ ,

there is a short exact sequence of this type:

1→ π1(S1)→ π1(M )→ π1(D∗)→ 1.

that splits, determining an isomorphism f ∶ π1(M )→ π1(S1)⊕ π1(D∗).
Let ϕ be a generator of π1(S1) and α an element of π1(M ). Then
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3. Foliated Anti-de Sitter manifolds

• {F∗(ϕ), γ} is a basis of π1(M ) if and only if τ∗(γ) is generator of

π1(D∗). Let σ ∶ D∗ → M be a section of τ ∶M → D∗, i.e., such that

τ ○ σ = IdD∗ and (τ ○ σ)∗ = τ∗ ○ σ∗ = (IdD∗)∶π1(D∗)→ π1(D∗);

• two sections σ1 and σ2 are homotopic if and only if (σ1)∗ = (σ2)∗, that
is (σ1)∗ − (σ2)∗ ∶ π1(D∗)→ ker τ∗ = π1(ϕ), where τ ∶ M → D∗.

Therefore (σ1)∗(τ∗(γ)) = (σ2)∗(τ∗(γ)) + nϕ.

3.7 Anti-de Sitter manifolds foliated by time-

like geodesics

In this section we want to show that every AdS3-manifold with a foliation F

in timelike geodesics of length π has the form M (S, η, f) for a surface S.

Notation 3.7.1. In the following we will refer to M as an orientable

and time-orientable AdS3-manifold with developing map D̃ev ∶ M̃ → ÃdS3

and holonomy H̃ ∶ π1(M ) → Isom(ÃdS3). Given Π∗ ∶ Isom(ÃdS3) →
Isom(AdS3), we define H = Π∗ ○ H̃ ∶ π1(M ) → Isom(AdS3) ≃
PSL2(R)×PSL2(R) with HL,HR projections over the left and right com-

ponenst of Isom(AdS3) ≃ PSL2(R)×PSL2(R).

Proposition 3.7.2. Let M be an AdS3-manifold foliated by timelike

geodesics of length π, then for every p ∈ M there exists an open subset

W union of leaves isometric to a timetube in AdS3.

This proposition is a direct consequence of the the following topology

fact:

Proposition 3.7.3. Let ϕ ∶M → N local diffeomorphism and X ⊂M com-

pact subset such that ϕ∣X is injective. Then there exists a neighbourhood U

of X such that ϕ∣U is injective.
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3.7 Anti-de Sitter manifolds foliated by time-like geodesics

Proof. SinceM is locally compact, X admits a basis of neighbourhoods {Un}
such that Un+1 ⊂ Un and ⋂Un = X with Un compact. Let us suppose, by

contraddiction, that there exists two sequences {xn},{yn} such that for every

n

• xn, yn ∈ Un,

• xn ≠ yn,

• ϕ(xn) = ϕ(yn).

Notice that up to a subsequence {xn} and {yn} converge respectively to

x∞, y∞ ∈X. Since ϕ is continuous ϕ(x∞) = ϕ(y∞), thus by injectivity on the

compact set X we conclude that x∞ = y∞.
On the other hand, there exists a neighbourhood V of x∞ = y∞ such that

ϕ∣V is injective. Since xn, yn are both convergent to x∞ = y∞, then there

exists a n0 such that xn, yn ∈ V for every n ≥ n0. Hence xn = yn, getting a

contradiction.

Proposition 3.7.4. Let M an AdS3-manifold that admits an oriented and

timeoriented foliation F in closed geodesics of length α. Then, there exists

an oriented surface S and a summersion π ∶ M → S such that the fiber π−1(x)
is a leaf of the foliation for every x ∈ S.

Proof. By a theorem due to Epstein [Eps72], there exists a Seifert fibration

π ∶ M → S such that γx ∶= π−1(x) is a leaf in F and it is associated to the

coprime integers (p, q). To prove that π is actually a fibration, namely p = 1

for every neighbourhood of a fiber, we fix a disk U0 aroud x0 ∈ S and we

consider π−1(U0). Notice that π1(π−1(U0)) ≃ Z ⋅ [γx0]. Let us fix an other

point y0 ∈ U0. In general, [γy] = p[γx0]. We want to show that p = 1.

In the universal covering, let us fix γ̃x0 and γ̃y lifts of γx0 and γy such

that [γy] ⋅ γ̃y = γ̃y and [γx0] ⋅ γ̃x0 = γ̃x0 . Since [γy] = p[γx0], we have that [γy]
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3. Foliated Anti-de Sitter manifolds

preserves also γ̃x0 . Let us observe that `x0 = Dev(γ̃x0) and `y = Dev(γ̃y) are

geodesics. Moreover, by the equivariance:

• H̃([γx0])(`x0) = `x0 ,

• H̃([γy])(`y) = `y,

• H̃([γy])(`x0) = `x0 .

We can say that the restriction of H̃(γx0) is a translation of lenght α, i.e.

the lenght of the segment on `x0 with endpoints A and H̃([γx0])A, for every
A ∈ `x0 . Likewise, the restriction of H̃(γy) to `y is a translation of length

α. The restriction of H̃([γy]) to `x0 is also a translation of length α. Since

H̃([γy]) = H̃([γx0])p, it follows that the translation lenght of H̃([γy])∣`x0 is

also equal to αp. We know that α ≠ 0 hence it holds that p = 1.

Proof of Proposition 3.7.2. Considering the developing map Dev ∶ M →
AdS3. Let γ be the deck transformation of M corresponding to the ho-

motopy class of a leaf of F . We have that γ preserves every leaf of F̃ and

acts on each as a translation of π.

Now, Dev sends every leaf of F̃ to a geodesic of AdS3 and the restriction

Dev∣`x `x → Dev(`x) is a local isometry and thus a covering. Using that

length(Dev(`x)) = π we deduce that for every x ∈ `x

Dev(γX) = Dev(X),

so H(γ) = IdD∗ .

In this way we see there exists a wel-defined local isometry

Dev ∶ M̃Ò⟨γ⟩→ AdS3.

Notice that M̃Ò⟨γ⟩ is still foliated by geodesics of length π. Since this

foliation is sent to the foliation M by the covering map M̃Ò⟨γ⟩ →M and
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3.7 Anti-de Sitter manifolds foliated by time-like geodesics

the length of the leaves of M is also π, we deduce that small neighbourhoods

of leaves of M̃Ò⟨γ⟩ are sent isometrically to neighbourhoods of leaves of

M . So it is sufficient to prove that the image of some neighbourhood of a

leaf ` in M̃Ò⟨γ⟩ is a timetube in AdS3. By Proposition 3.7.4, the leaves

of the foliation over M are the leaves of a fibration on some surface, so the

neighbourhoods of ` that are union of leaves form a fundamental system of

neighbourhoods of `.

Thus, it is sufficient to prove that there exists a neighbourhood of ` on

which Dev is injective. By Proposition 3.7.3 it is sufficient to check that

Dev∣` is injective, and this follows from the fact that the length of ` is π.

Proposition 3.7.5. Let M be an AdS3-manifold with a foliation F in closed

timelike geodesics. Let X be a generator for the foliation and ω the volume

form on M . Given γ ∶ I →M space-like geodesic and Y (t) parallel transport
of X(γ(0)) along γ, one of the two holds:

or ω(γ̇, Y (t),X(γ(t))) > 0 or ω(γ̇, Y (t),X(γ(t)) < 0.

almost everywhere.

Proof. The result is true for a timetube by Proposition 1.5.6, so it holds on

M as the manifold is union of open subsets isometric to timetubes.

Theorem 3.7.6. Let M be an AdS3-manifold admitting a foliation F by

timelike geodesics of length π. Then, there exists a hyperbolic surface S, a

representation ρ ∶ π1(S) → PSL2(R) and a ρ-equivariant weak contraction

f ∶ S̃ → H2 such that M is diffeomorphic to M (S, ρ, f) so that leaves of F

correspond to fibers of the fibration τ ∶ M (S, ρ, f)→ S.

Remark 20. Notice that in the case of left-handed timelike foliations the

same result can be stated by reversing the maps (f, d) and (a, b)

To prove this theorem we need the following lemma.
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3. Foliated Anti-de Sitter manifolds

Lemma 3.7.7. Let π ∶ M → S be a circle fibration and π̃ ∶ M̃ → S̃ its lift to

the universal cover. For all p̃ ∈ S̃ there exists a neighbourhood U of p such

that Dev∣π̃−1(Ũ) is injective.

Proof. By Proposition 3.7.2, there exists a neighbourhood U such that

π−1(U) is isometric to a timetube. Denote by δ ∶ π−1(U)→ AdS3 the isometric

embedding. Notice that δ is injective and π1-injective, so δ̃ ∶ π̃−1(Ũ)→ ÃdS3
∗

is injective. Now, δ̃ differ by Dev∣π̃−1(Ũ) post-composing by an isometry of

ÃdS3, so we conclude.

Proof of Theorem 3.7.6. By Lemma 3.7.7, there exists U neighbourhood of

p ∈ S and a lift Ũ ⊂ S̃ such that Dev ∶ π̃−1(Ũ) → ÃdS
3
is injective. Let

us observe that Ũ = Dev(π̃−1(Ũ)) is an open subset in ÃdS3 foliated by

geodesics of the form { ˜̀̃
p = Dev(π̃−1(p̃))}p̃∈Ũ . Let T0 be the generator of

Z(Isom(ÃdS3)) such that T0Ũ = Ũ . Thus, U = ŨÒT0
⊆ AdS3 is a foliated

open subset in AdS3.

For every p̃ ∈ S̃, Dev(`p̃) is a geodesic of ÃdS3 hence it is of the form
̃̀
d(p̃),f(p̃) for some f ∶ S̃ → H2 and d ∶ S̃ → H2.

We will show that d is local diffeomorphism and f a contractive map.

Let T 1,+AdS3 be the tangent space of AdS3 of future directed vectors and let

us define (Gl,Gr) ∶ T 1,+AdS3 → H2 ×H2 as the map such that {exp(tv)} =
`Gl(p,v),Gr(p,v) ⊂ AdS3. Notice that Gl(p, v) = Φ(vp−1) and Gr(p, v) = Φ(p−1v),
where Φ is the map introduced in subsection 1.3.4. Recalling that Λ ∶ ÃdS3 →
AdS3 is the covering map, we can consider

(G̃l, G̃r) ∶ T 1,+
Id ÃdS3 dΛÐ→ T 1,+AdS3 (Gl,Gr)ÐÐÐÐ→ H2 ×H2

such that {exp(tṽ)} = ˜̀̃
Gl(p̃,ṽ),G̃r(p̃,ṽ)

.

Let U be an open subset of S such that Dev ∶ π̃−1(Ũ)→ ÃdS3 is injective,

for some lift Ũ . Therefore we can redefine

Ũ =⊔{̃̀d(p̃),f(p̃) ∣ p̃ ∈ Ũ} and U =⊔{`d(p),f(p) ∣p ∈ U}.
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3.7 Anti-de Sitter manifolds foliated by time-like geodesics

Let X̃ be the field generating the foliation on π̃−1(Ũ). Then

d(p) = G̃l(Dev∣π̃−1(p) σ(p), X̃(σ(p))),

f(p) = G̃r(Dev∣π̃−1(p) σ(p), X̃(σ(p))),

where σ ∶ Ũ → π̃−1(Ũ) is any section of π̃ on Ũ .

Let us recall the summersion a ∶ U → H2 defined in Lemma 1.5.2 with

kerdpa = SpanX(p) (Proposition 1.5.8), where in this case X is the unitary

tangent vector field generating the foliation of U . Notice that d(p) = b(Λ ○
Dev∣π̃−1(p̃)(σ(p̃)). Since σ is a section of the fibration, it shall not be tangent

to the fibers and consequently kerdpd = {Id}. Let us say h̃ = d∗(gH2). It

follows that if γ ∈ π1(M) generates the leaf, then H̃(γ) = (g̃,1). In particular,

HR(γ) = Id.

It is well defined the map

j ∶ π1(S) = π1(M)ÒZ ⋅ [γ]→ PSL2(R)

such that HR(α) = j(π∗(α)). Let us observe that from

̃̀
d(γx),f(γx) = H̃(γ)̃̀d(x),f(x)

it follows that d(γx) = j(γ)d(x), thus j is holonomy for the metric h̃ which

descends to a hyperbolic metric h on S.

The map f is a distance decreasing map, in fact f(p) = a(Λ ○
Dev∣π̃−1(p̃)(σ(p̃)).

We can conclude at this point that every AdS3-manifold foliated by time-

like geodesic is a fibration over a surface. In particular, it is diffeomorphic

to an AdS3-manifold of the form M (S, ρ, f) for a surface S with hyperbolic

metric gθ and a ρ-equivariant contractive map f .

Let us notice that for θ ≠ 0 the manifold M (θ, η, f) is a fibration over a

surface with conical singularities, hence it has generalized spin-cone singu-

larities.
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Definition 21. Let M be an AdS3-manifold. We will say that a foliation

F on M is standard if the map f ∶ S̃ → H2 is constant. In this case, the

foliation on M̃ is the pull-back through the developing map of the foliation

on ÃdS3 given by {˜̀
i,x∣x ∈ H2}.

Proposition 3.7.8. Let M be an AdS3-manifold with holonomy H̃ such

that π ∶ M → S fibration in circles and F foliation with timelike geodesics

of length α.

• If α = kπ with k ∈ Z, then

(1) there exists M0 covered by M such that

- π̂∶M →M0 sends leaves in leaves and it is locally isometric;

- the leaves of M0 have length π;

- π̂ is a normal cover;

(2) there exists Ĥ = (ρ, j) ∶ π1(S)→ PSL2(R)×PSL2(R) such that

- Π∗ ○ H̃ = Ĥ ○ π∗
- f is ρ-equivariant.

• If α ∉ Zπ, the foliation is standard.

Proof. We show first the case with α ∉ Zπ. Let us consider U as in the

Lemma 3.7.7. Then Dev(Ũ) is an open subset in ÃdS3 foliated by geodesics

`d(p),f(p). If α ∉ Z, then H(γ) ∉ ZT0 and so we are in the case (ii) of the

Proposition 1.4.3, i.e., there exists b ∈ H2 such that f(x) = b for every x in

an open subset of Ũ . Since f is constant on an open subset Ũ and S̃ is

connected, f is constant everywhere.

Let us see now the case with α = kπ. For the statement (1), by Theorem

3.7.6 we can say that Ĥ = (ρ, j) and S has hyperbolic metric h. Let be

M0 = M (h, ρ, j) so by construction there exists a map π0 ∶ M0 → S such
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3.7 Anti-de Sitter manifolds foliated by time-like geodesics

that π−1
0 (⋅) is a geodesic of lenght π. Then, there exists a covering map

p ∶ M →M0 of order k such that the following diagram

M

M0 S

πp

π0

is commutative. Let us remember that if d ∶ S̃ → H2 is developing map for the

metric h, we have M̂0 = {(x,A) ∈ S̃ ×AdS3 ∣A ∈ `f(x),d(x)} with Dev0 ∶ M̂0 →
AdS3 such that Dev0(x,A) = A and π̃0(x,A) = x. Therefore, it is well-defined
a map p̃ ∶ M̃ → M̂0 such that p̃(ξ) = (π̃(ξ),P○Dev ξ), where P∶ ÃdS3 → AdS3

is a projection map. Let us notice that this map satisfies the equivariance rule

p̃(αξ) = π∗(α)p̃(ξ), where π1(S) acts on M̂0 as β ⋅ (x,A) = (β(x), Ĥ(β)A).
Thus, p̃ descends to a map p ∶ M →M0 = M̂0Òπ1(S). The map p̃ is a local

isometry, thus p is local isometry too. Since π̃0 ○ p̃ = π̃, then π0 ○ p = π and it

follows that also the diagram

π1(M )

π1(M0) π1(S)

π∗p∗

π0∗

is commutative. Then p∗(ker(π∗)) ⊆ ker(π0∗)
For the statement (2), let be γ ∈ π1(M ) generating the fiber. We have

H̃(γ) = T k0 , thus Π∗ ○ H̃(γ) = Id. Since ker(π∗ ∶ π1(M ) → π1(S)) = ⟨γ⟩,
for the First Isomorphism Theorem, it follows that there exists a map Ĥ ∶
π1(S)→ Isom(AdS3) such that the following diagram is commutative:

π1(M ) Isom(AdS3)

π1(S) .

Π∗○H̃

π∗

that is Π∗ ○ H̃ = Ĥ ○ π∗. In conclusion, f is ρ ∶=HL-equivariant.
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3. Foliated Anti-de Sitter manifolds

Remark 21. M̃ = {(x, ξ̃) ∈ S̃ × ÃdS3 ∣ ξ̃ ∈ ˜̀
f(x),d(x)}.

We have the following sequence:

Id→ ⟨γ⟩→ π1(M )→ π1(S)→ id .

The action of π1(S) on M̂ is α ⋅ (x, ξ) = (α(x), (ρ(α), j(α)) ○ ξ).
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CHAPTER 4

Volume of AdS compact manifold

with singularities

4.1 Computation of the volume of M

In this section, we want to conclude the description of the three dimensional

Anti-de Sitter manifold M (θ, η, f) by calculating their volume.

Definition 22. Let dVolH2 be the area form on H2. Then f∗(dVolH2) is

π1-invariant. Moreover, it exists a 2-form dA on the surface S such that

π∗(dA) = f∗(dVolH2).

Then we can define

Area(f) = ∫
S
dA.

Theorem 4.1.1. Let M = M (θ, η, f) be a three dimensional Anti-de Sitter

manifold as bundle over a oriented hyperbolic surface (S, gθ). Then the

volume of M is determined as function of the maps f ,d∶ S̃ → H2:

Vol (M ) = π[Area(f) +Area(d)].
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4. Volume of AdS compact manifold with singularities

Let U be an AdS3-domain foliated by timelike geodesics and let X be

the vector field generating the foliation. On this foliation we can define a

1-form dt such that, for every A ∈ U :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dt(X(A)) = 1,

dt(V ) = 0 if V ⊥X(A).

Let us recall now the timelike unit tangent space of Anti-de Sitter at Id:

H+ ∶= T 1
IdAdS = {J ∈M2(R) ∣ trJ = 0, detJ = 1},

which is a hypersurface in the tangent space TIdAdS3 and it is a copy of H.

Thanks to the Caley-Hamilton theorem we can write:

H+ = {J ∈M2(R) ∣ J2 = −1}.

Therefore, the tangent of H+ can be seen in two ways:

TJH
+ = {J ∈M2(R) ∣ tr J̇ = 0,detJJ̇ = 0}

= {J ∈M2(R) ∣ JJ̇ + J̇J = 0.}

Let ω be the area form on H+. We want to show that ω is given by

ω ∶= ωJ(J̇1, J̇2) = −⟨J̇1, JJ̇2⟩.

We need to define the map µJ ∶TJH→TJH+ such that µJ(J̇) = JJ̇ . If

J̇ ∈ TJH+, then JJ̇ ∈ TJH+, because

⎧⎪⎪⎪⎨⎪⎪⎪⎩

trJJ̇ = 0

trJ(JJ̇) = −tr(J̇) = 0,

so the map µJ is well-defined.

Moreover, we have

⟨µJ J̇1, µJ J̇2⟩ = ⟨J̇1, J̇2⟩
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and since J2 = −1 we obtain that

⟨µJ J̇1, J̇2⟩ = ⟨µJµJ J̇1, µJ J̇2⟩ = −⟨J̇1, µJ J̇2⟩.

In particular

⟨µJ J̇1, J̇1⟩,= 0

and so we can say that {J̇1, JJ̇1} is an alternating form and {J̇1, JJ̇1} is an

orthonormal basis, because if J̇1 is a unit vector in TJH, then JJ̇1 is still a

unit vector orthogonal to J̇1.

Therefore,

ωJ(J̇1, JJ̇1) = −⟨J̇1, JJJ̇1⟩

and so the alternating 2-forms ωJ and −⟨⋅, J ⋅⟩ are coincident on the orthonor-

mal basis {J̇1, JJ̇1}, then they are the same.

Now, let us set the maps λ, ρ ∶ W →H+ such that

• λ(A) = A−1X(A);

• ρ(A) =X(A)A−1,

where X is the generator of the foliation with future orientation. Then, fix

Ȧ ∈ TAAdS3 and set λ(A) = J , ρ(A) = J ′. We have

(dAλ)(Ȧ) = −A−1ȦA−1X(A) +A−1dAX(Ȧ)

= J(A−1Ȧ) +A−1dAX(Ȧ),

so, for Ȧ1, Ȧ2 ∈ TAAdS3 orthogonal to X,

(λ∗ω)(Ȧ1, Ȧ2) = −⟨dAλȦ1, JdλȦ2⟩

= ⟨J(A−1Ȧ1) +A−1dAX(Ȧ1),−A−1Ȧ2 + JAdAX(Ȧ2)⟩

= ⟨J(A−1Ȧ1),A−1Ȧ2⟩ + ⟨dAX(Ȧ1, Ȧ2)⟩

− ⟨Ȧ1, dAX(Ȧ2)⟩ − ⟨A−1dAX(Ȧ1), JA−1dAX(Ȧ2)⟩
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4. Volume of AdS compact manifold with singularities

while

dAρ(Ȧ) = dAX(Ȧ)A−1 −XA−1ȦA−1 = dAX(Ȧ)A−1 − J ′ȦA′

so that

ρ∗ω(Ȧ1, Ȧ2) = −⟨dAρ(Ȧ1), J ′dAρ(Ȧ2)⟩

= ⟨dAX(Ȧ)A−1 − J ′ȦA′, J ′dAX(Ȧ)A−1 + Ȧ2A
−1⟩

= ⟨J ′Ȧ1A
−1, Ȧ2A

−1⟩ + ⟨Ȧ1A
−1, dAX(Ȧ2)A−1⟩

− ⟨dAX(Ȧ1), Ȧ2⟩ − ⟨dAX(Ȧ1), J ′dAX(Ȧ2)⟩.

Using the fact that J ′ =X(A)A−1 and J = A−1X(A), we have J ′ = AJA−1.

Given that, we obtain

⟨J ′Ȧ1A
−1, Ȧ2A

−1⟩ = ⟨J ′Ȧ1, Ȧ2⟩

= ⟨AJA−1Ȧ1, Ȧ2⟩ = ⟨JA−1Ȧ,A−1Ȧ2⟩.

Analogously,

⟨dAX(Ȧ1), J ′dAX(Ȧ2)⟩ = ⟨A−1dAX(Ȧ1), JA−1dAX(Ȧ2)⟩.

We can conclude

[(λ∗ω) + (ρ∗ω)](Ȧ1, Ȧ2) = 2[⟨JA−1Ȧ1,A
−1Ȧ2⟩ + ⟨A−1dAX(Ȧ1), JA−1dAX(Ȧ2)⟩]

= 2[ψ1(Ȧ1, Ȧ2) + ψ2(Ȧ1, Ȧ2)],

where

• ψ1(Ȧ1, Ȧ2) = ⟨JA−1Ȧ1,A−1Ȧ2⟩;

• ψ2(Ȧ1, Ȧ2) = ⟨A−1dAX(Ȧ1), JA−1dAX(Ȧ2).⟩.

Remark 22. We want to evaluate [(λ∗ω) + (ρ∗ω)] ∧ dt on the orthogonal

basis {Ȧ1, Ȧ2,X(A)}. Since dt(Ȧ1) = dt(Ȧ2) = 0 and dt(X(A)) = 1, we

obtain

[(λ∗ω) + (ρ∗ω)] ∧ dt(Ȧ1, Ȧ2,X(A)) = [(λ∗ω) + (ρ∗ω)](Ȧ1, Ȧ2).
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Let us now consider {Ȧ1, Ȧ2,X(A)}: if this is a positive orthonormal

basis of TAAdS3, then {A−1Ȧ1,A−1Ȧ2, J} is a positive orthonormal basis too.

So that

ψ1 ∧ dt[Ȧ1, Ȧ2,X(A)] = ψ1(Ȧ1, Ȧ2) = 1

and so ψ1 ∧ dt = dV olAdS3 .

For ψ2 we need some more consideration. Chosen a vector field X ∶W →
R2,2 such that X(A) ⊥ A, then ∇ȦX is the tangent part of dAX(Ȧ) while

the normal part is

[dAX(Ȧ)]N = −⟨dX(Ȧ),A⟩A.

Differentiating we obtain:

d⟨X(A),A⟩ = ⟨dX(Ȧ),A⟩ + ⟨X, Ȧ⟩,

from which

dAX(Ȧ) = ∇ȦX + ⟨X, Ȧ⟩A.

Thus the calculation here becomes

ψ2(Ȧ1, Ȧ2) = ⟨A−1∇Ȧ1
X + ⟨X, Ȧ1⟩Id, JA−1∇Ȧ2

X + ⟨X, Ȧ2⟩J⟩

= ⟨A−1∇Ȧ1
X,JA−1∇Ȧ2

X⟩ + ⟨X, Ȧ1⟩⟨Id, JA−1∇Ȧ2
X⟩+

+ ⟨A−1∇Ȧ1
X,J⟩⟨X, Ȧ2⟩ + ⟨X, Ȧ1⟩⟨X, Ȧ2⟩⟨Id, J⟩.

Let us remember that ⟨Id, J⟩ = 0 because J ∈ TIdAdS3 and, since ⟨X,X⟩ =
−1, both ⟨Id, JA−1∇Ȧ2

X⟩ = 0 and ⟨A−1∇Ȧ1
X,J⟩ = 0. Indeed,

• ⟨Id, JA−1∇Ȧ2
X⟩ = 0 because ⟨Id, JA−1∇Ȧ2

X⟩ = ⟨J,A−1∇Ȧ2
X⟩ =

⟨A−1X,A−1∇Ȧ2
X⟩ = ⟨X,∇Ȧ2

X⟩ = 0;

• ⟨A−1∇Ȧ1
X,J⟩ = ⟨A−1∇Ȧ1

X,A−1X⟩ = ⟨∇Ȧ1
X,X⟩ = 0.

In conclusion, we can say

ψ2(Ȧ1, Ȧ2) = ⟨A−1∇Ȧ1
X,JA−1∇Ȧ2

X⟩.
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We want to calculate the integral

∫
U
ψ2 ∧ dt .

Let us assume, up to shrink the domain W , that there exists a surface

parametrized by

S ∶ (−ε, ε) × (−ε, ε)→ AdS

that intersect all the leaves in the foliation of W once and only once.

Then, we can parametrize the whole domain W using the map

Ŝ ∶ (−ε, ε) × (−ε, ε) × (−π
2
,
π

2
)→ AdS

given by

Ŝ(x, y, t) = ϕt(S(x, y))

where ϕt is the flow of X. With this choice, we have ∂
∂t = X. Note that

∇ ∂
∂t

∂
∂t = 0 because ∂

∂t = ∂Ŝ
∂t is the velocity field of geodesics. In these coordi-

nates

[ψ2 ∧ dt](
∂

∂x
,
∂

∂y
,
∂

∂t
) = ψ2(

∂

∂x
,
∂

∂y
)

so that

∫
W
ψ2 ∧ dt = ∫

π
2

−π
2

∫
ε

−ε
∫

ε

−ε
ψ2(

∂

∂x
,
∂

∂y
)dx dy dt .

Since

∇ ∂
∂x
x = ∇ ∂

∂t

∂

∂x
,

then

ψ2(
∂

∂x
,
∂

∂y
) = ⟨∇ ∂

∂x
X,AJA−1∇ ∂

∂y
X⟩ =

= ⟨∇ ∂
∂t

∂

∂x
,AJA−1∇ ∂

∂y

∂

∂t
⟩ =

= ∂

∂t
⟨ ∂
∂x
,AJA−1∇ ∂

∂y

∂

∂t
⟩ − ⟨ ∂

∂x
,
∇
∂t

[AJA−1∇ ∂
∂y

∂

∂t
]⟩.
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From these relations
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(t) = cos tA(0) + sin tX(0) = A(0)(cos t Id+ sin tJ(0)),

X(t) = − sin tA(0) + cos tX(0) = A(0)(− sin t Id+ cos tJ(0)),
(4.1)

we have

AJA−1 = AA−1XA−1 =XA−1

= A(0)[( − sin t cos t(1 − J(0)2) + (sin2 t + cos2 t)J(0))]A(0)−1.

Thus we can conclude that ∂
∂tAJA

−1 = 0 and so AJA−1 is constant on the

geodesics tangent to ∂
∂t .

Therefore,

D

∂t
(AJA−1∇ ∂

∂y

∂

∂t
) = AJA−1∇ ∂

∂y
∇ ∂

∂t

∂

∂t
+AJA−1R( ∂

∂t
,
∂Ŝ

∂y
) ∂
∂t
.

Now, using the fact that the Anti-de Sitter space has curvature −1,

R( ∂
∂t
,
∂Ŝ

∂y
) ∂
∂t

= −⟨ ∂
∂t
,
∂

∂t
⟩∂Ŝ
∂y

+ ⟨∂Ŝ
∂y
,
∂

∂t
⟩ ∂
∂t

=

= ∂Ŝ
∂y

+ ⟨∂Ŝ
∂y
,
∂

∂t
⟩ ∂
∂t
X.

Since

AJA−1X = AJA−1AJ = AJ2 = −A,

then

ψ2(
∂

∂x
,
∂

∂y
) = ∂

∂t
[⟨∂Ŝ
∂x

,AJA−1∇ ∂
∂y

∂

∂t
⟩]+

− ⟨∂Ŝ
∂x

,AJA−1 ∂

∂y
⟩ + ⟨∂Ŝ

∂y
,
∂

∂t
⟩⟨∂Ŝ
∂x

,A⟩.

The last part of the equation in zero because ∂Ŝ
∂x ∈ TAAdS3, where A =

Ŝ(x, y, t).
We observe that

∫
π
2

−π
2

∂

∂t
⟨∂Ŝ
∂x
,AJA−1∇ ∂

∂y

∂

∂t
⟩dt = ⟨∂Ŝ

∂x
,AJA−1∇ ∂

∂y

∂

∂t
⟩∣
π
2

−π
2
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and Ŝ is π-periodic, so the integral is zero. It remains

∫
W
ψ2 ∧ dt = ∫

π
2

−π
2

∫
ε

−ε
∫

ε

−ε
⟨∂Ŝ
∂x
,AJA−1∇ ∂

∂y

∂

∂t
⟩dx dy dt =

= ∫
π
2

−π
2

∫
ε

−ε
∫

ε

−ε
ψ1(

∂Ŝ

∂x
,
∂Ŝ

∂y
)dx dy dt =

= ∫
W
dvol .

Definitely

∫
W

(λ∗ω + ρ∗ω) ∧ dt = 4∫
W
dvol = 4 Vol(W )

with

∫
W
λ∗ω ∧ dt = π∫

λ(W )

ω = πArea(λ(W ))

and

∫
W
ρ∗ω ∧ dt = ∫

ρ(W )

ω = πArea(ρ(W )).

In conclusion

Vol(W ) = π[Area(λ(W ) +Area(ρ(W ))].

Let Φ ∶H+ → H2 be the isometry defined in 1.3.6.

Through the map Φ, the open subset λ(W ) ⊂ AdS3 identifies an open

set in the hyperbolic plane. We want now to express the geodesics in the

foliation of W using the map Φ.

First, we look at the geodesic `0 passing through the identity. Let V ∈
TId`0 be a unit tangent vector. We can write `0 = exp tV and we know that

it fix a point a ∈ H2, that is `0 = `a,a. Then,

Φ(V ) = Fix(exp tV ) = a.

Let us take ` a timelike geodesic in the foliation of W , so that ` = `a,b
with a, b ∈ H2, a ≠ b, and let A ∈ ` be a point in the geodesic.
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We can write `a,b = (A, Id) ⋅`b,b and `a,b = (Id,A−1)`a,a from which we have

`b,b = A−1`a,b and `a,a = `a,bA−1.

Therefore, each element is obtained respectively as left and right transla-

tion by A−1. In particular, we can write

Id = LA−1(A) = RA−1(A),

where LA−1 ,RA−1 ∶AdS3 → AdS3 are such that LA−1(X) = A−1X and

RA−1(X) =XA−1.

We remind that V ∈ TA`a,b, then

• dALA−1(V ) = A−1V ∈ TId`b,b;

• dARA−1(V ) = V A−1 ∈ TId`a,a,

and so we have `b,b = exp(tA−1V ) and `a,a = exp(tV A−1). Then,

• Φ(A−1V ) = b;

• Φ(V A−1) = a.

Remark 23. Let U ⊂ S and let Ũ be an open subset in the lift of U in the

universal cover of S. As constructed in Chapter 3, τ−1(Ũ) is a domain in the

anti-de Sitter manifold M̃ foliated by timelike geodesics of the form `f(x̃),d(x̃)

with x̃ ∈ Ũ . Thanks to what we have seen before,

Vol(τ−1(U)) = π[Area(λ(τ−1(Ũ))) +Area(ρ(τ−1(Ũ)))]

= π[Area(d(Ũ)) +Area(f(Ũ))].

Let {Uα} be a finite cover of the surface S with lifting {Ũα̃} in the uni-

versal cover of S such that d∣Ũα̃ is a diffeomorphism onto its image.

Then, we can compute the volume of the Anti-de Sitter manifold M̃ as

volume of the union over Ã :

Vol( ⋃
α̃∈Ã

Ũα̃) =
n

∑
i=1

(−1)i+1 ∑
1≤α̃1<...<α̃i≤n

π[Area(d(
i

⋂
k=1

Ũα̃)) +Area(f(
i

⋂
k=1

Ũα̃))]

= π[Area(d) +Area(f)].
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