

Reframing ice adhesion on surfaces: shear strength and toughness measurements with the horizontal push test

L. Stendardo, G. Gastaldo, M. Budinger, V. Pommier-Budinger, I. Tagliaro, P.F. Ibáñez-Ibáñez, C. Antonini

27th May 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956703.

Icing Hazards

- Increase of weight
- Aerodynamic losses
- Blocking of mechanisms and pressure probes

Air France 447 in June 2009: 228 people died because of blocked pressure probes

https://thepointsguy.com/wp-content/uploads/2018/10/final-touch.jpg

Thermal de-icing: Efficiency limits

Chemical de-icing: environmental concerns

https://montecristomagazine.com/wp-content/uploads/2017/05/1Montecristo-Ice-Road-9.jpg https://energiforskmedia.blob.core.windows.net/media/21263/2016-300_bild.jpg https://www.nydailynews.com/resizer/t7t8Gh4DjhK7raBFU0-w2CbM-4A=/1200x801/top/arc-anglerfish-arc2-prod-tronc.s3.amazonaws.com/public/BC7VBTXX7UABZ4YTMPHM3GEKNY.jpg https://blog.weatherops.com/hubfs/iceonpowerlines.jpg

How to measure ice adhesion?

Stendardo, L., Gastaldo, G., Budinger, M., Pommier-Budinger, V., Tagliaro, I., Ibáñez-Ibáñez, P. F., & Antonini, C. (2023). Reframing ice adhesion mechanisms on a solid surface. *Applied Surface Science*, *641*, 158462

Fracture Mechanics

Stendardo, L., Gastaldo, G., Budinger, M., Pommier-Budinger, V., Tagliaro, I., Ibáñez-Ibáñez, P. F., & Antonini, C. (2023). Reframing ice adhesion mechanisms on a solid surface. *Appl. Sur. Sci.*, 641, 158462
D. Leguillon, "Strength or toughness? A criterion for crack onset at a notch," Eur. J. Mech. - ASolids, vol. 21, no. 1, pp. 61–72, Jan. 2002
E. Martin, T. Vandellos, D. Leguillon, and N. Carrère, "Initiation of edge debonding:coupled criterion versus cohesive zone model," Int. J. Fract., vol. 199, no. 2, pp. 157–168, Jun. 2016

5

Dimensional Analysis: Shear Stress

т

D

Dimensional Analysis: Toughness

d/h

Toughness-dominated

- E_{ice}/E_{mold} is a test system constant.
- For each m/D, a different graph is plotted.

$$\frac{G_c D^3}{F^2} E_{ice} = g\left(\frac{h}{D}, \frac{H}{D}\right)$$

m

D

Recap

Stress-dominated fracture

8

 G_c

- The average shear stress is **not a sufficient measure** of ice adhesion.
- For larger interfaces, where **crack propagation** is controlled by toughness, the adhesion strength becomes meaningless.
- With the **SSIF**s, the true adhesion strength can be calculated, possibly reducing the discrepancies of shear strength values reported in literature.
- The total toughness can be calculated from the toughness parameters by knowing the test system parameters (h/D, H/D, and m/D) and the force necessary to propagate the crack.
- The novel methodology is developed for a specific set of experimental cases (i.e., cylindrical ice columns and fixed mold material), and it does not differentiate between normal (G₁) and shear opening (G₁₁).
- It represents, however, a step towards more complete characterization of icephobic surfaces.

Backup

Shear Stress Analysis

Strain Energy Analysis

The numerical model has been verified by performing a series of experimental measures of the ice removal force on aluminum and comparing the obtained toughness value with the literature. The obtained interfacial toughness of Al-6060 aluminum alloy based on our numerical model and experimental data was $G_c = 0.57 \pm 0.26 J/m^2$.

Reference	Test Method	G_I vs. G_{II}	Value [J/m ²]	
Yeong et al. [31]	Pressurized air ice fracture test	G_I	0.72 ± 0.11	
Palanque et al. [14]	Electro-mechanical de- icing	G_I	0.38 ± 0.09	
Pervier and Hammond [32]	Pressurized air ice fracture test	G_I	0.95 ± 0.45	

Stress-dominated detachment: full detachment of the ice in less than 0.17 ms.

200x slow-motion

Mold diameter D = 8 mmPushing height h = 1 mmIce height H = 5 mm

"Reframing Ice Adhesion Mechanisms on a Solid Surface"

Luca Stendardo, Giulia Gastaldo, Marc Budinger, Valérie Pommier-Budinger, Irene Tagliaro, Pablo F. Ibáñez-Ibáñez, Carlo Antonini

Toughness-dominated detachment: visible crack propagation and full detachment in 4 ms.

200x slow-motion

Mold diameter D = 14 mmPushing height h = 1 mmIce height H = 3 mm

"Reframing Ice Adhesion Mechanisms on a Solid Surface"

Luca Stendardo, Giulia Gastaldo, Marc Budinger, Valérie Pommier-Budinger, Irene Tagliaro, Pablo F. Ibáñez-Ibáñez, Carlo Antonini

Material	ho (kg/m ³)	E (GPa)	ν
Aluminum	2700	68	0.36
Nylon	1140	1.5	0.39
Ice	897	9	0.31

$$f = a \sin\left(b\frac{H}{D}\right) + c \cos\left(d\frac{h}{D}\right) + e$$

<i>m/D</i> aspect ratio	а	b	С	d	е
m/D = 0.2	-4.59E+0	6.62E+0	5.71E+3	8.78E-2	-5.71E+3
m/D = 0.167	3.28E+0	-6.49E+0	7.92E-1	9.82E+0	5.24E+0
<i>m/D</i> = 0.143	4.60E+0	-6.90E+0	7.89E-1	1.27E+1	6.77E+0

$\boldsymbol{G_c} \; [\mathrm{J/m^2}]$	F [N]	E _{ice} [GPa]	А	В	A: $\frac{G_c D^3}{F^2} E_{ice} = g\left(\frac{h}{D}; \frac{H}{D}\right)$
0.40	50	9	2.51	5.50	$\mathbf{p}_{t} = \frac{\tau_{ave}}{t} - f\left(\frac{h}{t}, \frac{H}{t}\right)$
0.49	50	8	3.27	5.52	$B: \frac{1}{\tau_{min}} = \int \left(\frac{1}{D}, \frac{1}{D} \right)$
0.69	50	7	3.53	5.53	
0.01	10	9	2.57	5.26	2.5
0.07	20	9	2.80	5.27	20
0.32	40	9	3.26	5.41	$G_{min} \propto F^{2.1}$
0.40	50	9	2.46	5.50	
0.70	60	9	3.06	5.56	ື 1.0 - ປີ -
1.36	80	9	3.30	5.69	0.5 -
2.13	100	9	3.35	5.78	0.0 + • • • • • • • • • • • • • • • • • •

<i>D</i> [mm]	<i>h</i> [mm]	Critical <i>H</i> [mm]	H/D
8	1	-	-
10	1	2.5	0.25
12	1	3	0.25
14	1	3.3	0.24

Ice Adhesion Test System

Mold

Thermoelectric Cell

Ice Adhesion Test System

