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Abstract. We study a class of evolution models, where the breeding process involves an arbitrary
exchangeable process, allowing for mutations to appear. The population size n is fixed, hence after
breeding, selection is applied. Individuals are characterized by their genome, picked inside a set
X (which may be uncountable), and there is a fitness associated to each genome. Being less fit
implies a higher chance of being discarded in the selection process. The stationary distribution of
the process can be described and studied. We are interested in the asymptotic behavior of this
stationary distribution as n goes to infinity. Choosing a parameter A > 0 to tune the scaling of the
fitness when n grows, we prove limiting theorems both for the case when the breeding process does
not depend on n, and for the case when it is given by a Dirichlet process prior. In both cases, the
limit exhibits phase transitions depending on the parameter .

1. Introduction

The model and setup. We study the (uncountable) infinite alleles evolution model, where the breed-
ing and mutation is governed by an X-valued infinitely exchangeable process &1,&o, ..., we shall
refer to £ as the breeding process. Throughout the paper X’ stands for the Polish (i.e. complete
and separable metric) space of all alleles, the elements of X" are called (geno)types in sequel. By the
de Finetti-Hewitt-Savage theorem, the process £ is in one-to-one correspondence with a probability
measure 7 on the Borel o-algebra of all probability measures P equipped with the topology of weak
convergence on X, because for every n € N, and A; € B(X),i=1,...,n,

P6i € Aot € A = [ Tla(A)m(ao) (11)
=1
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where B(X) stands for Borel o-algebra of X’ (see, e.g. Hjort et al., 2010, Ch 3 or Fortini et al., 2000,
Theorem 1). Hence we identify the process £ with 7 (see Subsection 2 for details). The measure 7
will be referred to as the prior measure. In models of evolution, a commonly used prior is the law
of the Dirichlet process DP(m, &), where @ is a (typically non-atomic) probability measure on X
and m > 0 is so-called concentration or precision parameter. With this prior the breeding process
is the following: for every n > 1, A € B(X), and population x1, ...,z

m_ n 1 &
P(én-ﬁ-l € A|€1 =x1,..,6n = -Tn) = m+na(A) + m4+n : E - 6I1(A) (1'2)
1=
where P(§ € A) = a(A). If x7,...,x} are the distinct values of x1,...,x, with ny,...,n; being

their frequencies, the conditional distribution above can be interpreted as follows:

@,  with probability m’in;
bnt1lla =21, & =an ~ { dg=, with probability ;=0 j=1,.... k.

(see, e.g. Ghosal and van der Vaart, 2017; Hjort et al.; 2010). This interpretation allows to obtain
the sequence &1, &9, ... by a very simple procedure, known as the generalized Polya urn scheme. The
scheme is very easy to implement making Dirichlet process priors popular in applications (see for
instance samplers in Ghosal and van der Vaart, 2017, Ch. 4.5). When & is non-atomic, then with
probability m/(m + n) the random variable &, takes a new value that is not previously seen in
Z1,...,Ty —a mutation. Hence the ratio m/(m+n) can be interpreted as the mutation probability.
In the literature of evolution models, the Polya urn scheme with non-atomic & is often referred to
as Hoppe urn (with m typically denoted by 6), the only difference between the two urns is that in
the Polya urn the mutations are labeled and & specifies their origin. In particular, the celebrated
Ewens sampling formula, along with its consequences, holds under Polya urn scheme, and therefore
the Dirichlet process prior is central in evolution theory.

We start with a fixed population size n. The process & models the breeding: given the population
Z1,...,Tn, the new genotype x,11 is bred from the conditional distribution of &,41 given & = x;,
i=1,...,n, denoted as P¢(-|z1,...,2,). Observe that since the order in the population is arbitrary,
exchangeability is a natural assumption about the breeding process . After a new individual
with genotype x,41 is born, it either replaces an already existing member of the population, or
it is discarded, and the population remains unchanged. The probability that z,,1 is kept in the
population depends on the fitnesses of all population members. So, in what follows, let w : X — RT
be a bounded continuous strictly positive function, assigning a fitness to every type. The bigger
w(xp+1), the more likely that a newborn member replaces an already existing one in the population.
There are several selection schemes possible. In Lember and Watkins (2022), the following schemes
were introduced.

e Single tournament selection:
(1) Sample p41 ~ Pe(- | 21,...,2p)
(2) Sample ¢ randomly from {1,...,n}
(3) With probability % replace z; with x,41 and discard x;, otherwise discard
Tn+1-
e Inverse fitness selection:
(1) Sample @y1 ~ Pe(- [ 215, 27)
(2) Sample i from {1,...,n + 1} with probabilities proportional to {w(l R S, |

z1)’ w(Tnt1)

(3) If i <n+ 1, then replace x; by zp+1.



An evolution model with uncountably many alleles 1043

Both selection schemes define a Markov kernel on X™. Lemma 2.1 below proves that both kernels
satisfy the detailed balance equation with stationary measure

1 - n n
P,(A) = z /Ajljlw(xj)Pg (dx), AeB&x"), (1.3)
where P is the law of (&1,...,&n), x = (z1,...,2,) € X" and Z,, is the normalizing constant.

Hence the stationary (or limit) distribution of the genotypes in n-elemental population has clear
and explicit closed form, depending solely on w and 7.

The measure P, in (1.3) is the main object of interest. The article focuses on the limit of P,
when the population size n grows and the fitness function w,, and prior m, both might depend on
n. Since P, is defined on different domains X™ the definition of a limit is not straightforward. To
overcome that problem, we consider two parallel approaches:

e The first approach is to consider the triangular array of random variables

(Xl,na--~vXn,n)NPn, n=12...

and ask: is there a limit stochastic process X1, Xo, ... such that for every m and for every
m-tuple of integers t1,ta, ..., Ly, it holds (as n — oco) that
(th,'ru th,na RN 7Xtm,n) = (th,XtQ, ey Xtm)- (14)

If such a limit process exists, it can be considered as an approximation of the population
(X1ny--.,Xpnn) for big n. Theorem 3.1 provides the main technical tool for proving the
convergence (1.4) and, hence, the existence of the limit process.

e The second approach is to transfer the measures P, into the measures @), on P. For that
we define the mapping ¢ that maps a vector x to its empirical measure:

1
g:Xn_>’Pa g(X):ﬁ((le-f--F&,;n) (15)

and we define Q,, as P,g~ "', i.e. the pushforward measure
Qu(E) == Pa(g"'(B)), E € B(P). (1.6)

In other words, @, is the distribution of g(Xi,...,X},), where (X1,...,X,) ~ P,. Since
P, is invariant with respect to permutations, i.e. the n-dimensional random vector having
distribution as P, is exchangeable, we see that P, can be uniquely restored from @, so in
a sense they are the same. In Subsection 2.2, we shall argue that g is measurable, i.e. @, is
well defined. Since the measures ), are defined on the same domain P, the question now
is the existence of a limit measure Q* such that @, = @Q* (the weak convergence). The
Q,-counterpart of Theorem 3.1 is Theorem 3.4 that provides necessary conditions in terms
of w, and m, for existence of Q*. Since the proof of Theorem 3.4 is based on large deviation
inequality, an additional assumption that X is compact is imposed.

The phase transition results. For the first convergence results in Section 4 we consider the case
where the prior is arbitrary and independent of n, m, =: m. As weight functions, we take

W () = exp {—W’)] , (1.7)

where A > 0 and the function ¢(z) is nonnegative, continuous and bounded. The parameter A
controls how fast the differences between fitness functions w, vary when n increases. The case
A = 0 corresponds to the case w, = w for every n. Observe that P, in (1.3) is invariant with
respect to multiplying w by a positive constant, hence when w is bounded from above, there is no
loss of generality in taking it to be bounded by 1 as (1.7) implies. Let us note that often, in the
two-allele model (X = {a, A}), the fitness of the two alleles @ and A is taken as 1 and (1 + v/n)
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respectively. Since (1+v/n) & exp[y/n], we retrieve (approximately) the fitness in (1.7) by choosing
¢(a) =0, ¢(A) = v and A = 1. We shall see, from the limiting results as n goes to infinity, that
A =1 is indeed, in a sense, the right scaling.

Theorems 4.2 and 4.7 are the main phase transition theorems for arbitrary m. The results of both
theorems can summarized as follows:

e The case A > 1. Then (1.4) holds with the limit process being equal to the breeding process
¢ and @, = . This means that when A > 1, then the differences between fitnesses vanish
so quickly that the selection has no influence in the limit.

e The case A = 1. Then (1.4) holds with the limit process being an infinitely exchangeable
process with prior measure 7 (specified in Theorem 4.2) that depends on ¢ and 7 and is
different from 7. Then also Q,, = 7.

e The case )\ € [0,1). In this case we impose an additional mild assumption on ¢ (that
in particular guarantees the uniquess of the minimum z,), and we also assume that the
support of 7 contains d,,. Then (1.4) holds with the limit process being degenerate with
one possible path z,,x,,--- and @, = 64+, where ¢* = 6,,. This means that when A <1
then the selection is so strong that breeding has no influence in the limit and only the fittest
type x, (that maximizes w,, for every n) survives.

In Section 5 we consider the case when the prior measure is the law of DP(m,,, &), but the fitness
function is still (1.7). We let the concentration parameter m,, scale with n, depending on the same
parameter \ as follows: m, = en'™*, where ¢ > 0. This choice of m,, as we see in the following,
leads to interesting limiting behaviours, while keeping the number of free parameters at a minimum.
When A\ = 1, then m,, = ¢, and therefore 7 is independent of n, hence this case is the case considered
above. However, the case A € [0, 1) needs special treatment. Observe that when A = 0, then w,, = w
and the mutation probability m,,/(n+ m,) = ¢/(1+ ¢) is independent of the population size n and
this makes the case A = 0 appealing.

The results with Dirichlet process prior, Theorems 5.3, 5.7 and 5.9 can be summarized as follows,
the additional assumptions are that X is compact, @ has full support and z, is the unique minimizer
of ¢. We remark that in the case A € (0, 1), the limit measure is independent of \.

e The case A = 0. Then (1.4) holds with the limit process being an iid process with X; ~ r*
and @), = d,+. The measure r* depends on the inequality

/ _ W) gy > LEC (1.8)
X

w(z,) — w(x) c

When (1.8) holds, then r* has density r*(z) with respect to a:

cw(x)

") = G e —we)

where 6 > 0 depends on w, & and ¢ (see Lemma 5.1). Observe that the density is with
respect to a-measure, so when @ has an atom, then 7* (i.e. the limit population) has the
same atom, but its mass is re-weighted. But when (1.8) fails, then r* has an absolutely
continuous part (with respect to @) with density

w(zo) — w(x)

but also an atom at x,. When (1.8) fails, then & cannot have an atom at x,, but w is peaked
so heavily in neighborhood of z, that in the limit measure an atom appears. Thus, when
(1.8) fails, then in the limit population there is a fixed proportion of individuals with the
fittest type x,.
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e The case A € (0,1). Then (1.4) holds with the limit process being an iid process with
X; ~q* and @, = ¢*. The measure ¢* depends on the inequality

/ b G st (1.9)
X

¢($) - ¢($o)
When (1.9) holds, then ¢* has density ¢*(x) with respect to a:
o c
q (JJ) - ¢($)—C—€,

where 6 > 0 is a parameter. When (1.9) fails, then ¢* has an absolutely continuous part
(with respect to @) with density

gi(x) = ‘

¢(z) — d(xo)

but also an atom at x,. Thus, when (1.9) fails, hence &(x,) = 0, in the limit an atom at z,
is created.

e The case A = 1. This is a special case of the constant prior with 7 = Dir(c,&). Thus (1.4)
holds with the limit process being an infinitely exchangeable process with prior measure 7
(specified in Theorem 4.2) and @,, = 7.

e The case A > 1. Here the influence of fitness vanishes and (1.4) holds with the limit process
being degenerate with one possible path X, X,--- with X ~ & and Q,, = dx, where X ~ a.

The case of finite X and the relation with previous work. The literature on mathematical population
genetics is vast and focuses on various aspects of the evolution of traits within a population (see
Ewens, 2004 and references therein). A common feature of these models is the fact that individuals,
characterized by their genome (or “type”, “trait”), breed and die. Mutations may occur and a
fitness be associated to each type. The population can be modelled as having a varying or a fixed
size. In the first case the process is usually a birth-death process and one can focus either on the
equilibrium when time grows, or on the trajectories. For instance the asymptotic distribution of
fitnesses is studied by Guiol et al. (2011); Ben-Ari et al. (2011); Bertacchi et al. (2018) in an evolution
scheme where a random number of least fit individuals die at each generation, while Bertacchi et al.
(2016); Iwasa and Levin (1995) study the effect of random /deterministic events on this distribution;
Bansaye et al. (2019) and Berzunza et al. (2021) study the convergence of the evolutionary process
as the population size goes to infinity. An example of a model where the fitness function has more
than one local maximum is the NK-model, which has been rigorously studied in Durrett and Limic
(2003) and Evans and Steinsaltz (2002). The population is assumed to have a constant size in
classical models such as the Wright-Fisher and the Moran models, but even with this assumptions
there are still many theoretical challenges and applications (see for instance Durrett and Mayberry,
2011; Schweinsberg, 2017a,b).

In our model, the population has constant size n, breeding is conditional sampling from a very
general exchangeable process and selection takes place at death (where less fit individuals are more
likely to be removed). We are interested in the asymptotic behaviour, as the size of the population
increases, of the stationary distribution of types.

The case of finitely many types |X| = K < oo was treated in Lember and Watkins (2022). Then
P is just a simplex and when 7 is the Dirichlet distribution Dir(ayq,...,ax), then the breeding
process can be considered as a version of the well known Moran model without selection (see
Lember and Watkins, 2022, Section 2.1). When the selection (either single tournament or inverse
fitness) is added, then we end up with a version of the Moran model with breeding and selection.
The stationary measure P, in this case (7 equals to Dirichlet distribution) in terms of allele counts
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is as follows

Pao o) = g R S (1) (1), (110

where (a), = a(a+1)---(a+n—1), o] = a1 +-- -+ ax and ni > 0 stands for the number of type
kin (x1,...,2,), thus ny 4+ --- + nx = n. Since P, is exchangeable, it can be equally presented in
terms of counts and in the literature it is typically done so. As pointed out in Lember and Watkins
(2022) there are many other versions of Moran models leading the same stationary distribution (the
parameters « are obtained then from mutation probabilities). Hence the case m = Dir(ay, ..., ak)
is an important special case also in the finite allele model.

Although one may argue that in reality the set of types A is always finite, we emphasize that
its cardinality is much larger than the population size itself. Thus, since we are considering limits
when the population size grows to infinity, it is reasonable to assume that X is infinite, which poses
some difficulties in studying this model. For finite X', the limit theorems of this paper hold true as
well (they are just a special case), but the proofs are much simpler. Hence in a sense the current
article can be considered as a generalization of Lember and Watkins (2022), but the generalization
is far from being trivial. For general X, a new machinery needs to be built, and it is the purpose of
the current paper. The difference between general and finite X is well illustrated by the Dirichlet
process results (Theorems 5.3 and 5.7). In the finite case, since oy > 0 for every k = 1,..., K, the
inequalities (1.8) and (1.9) both hold. In the finite case the limit probability measures r* and ¢*
are elements of a simplex (thus K-dimensional vectors) as follows:

* _ w(k)ak * o f
S TG ey S AL 7 iy

where in both formulas € is a parameter. Since in the finite case ¢ = |a| and a; = %’“‘, we see that

k=1,... . K

these measures are indeed the same as given by Theorems 5.3 and 5.7. However, quite surprisingly
for general X the additional atom appears. This is something one cannot predict based solely on the
results of Lember and Watkins (2022). Also the proofs of Theorems 4.2 and 4.7 for general X" are
essentially different from the ones in the case of finite X, they are based on large deviation results
and therefore the additional assumption of compactness is needed. We also would like to stress
that all limits in Lember and Watkins (2022) as well as all limits in the in the current paper are
obtained without diffusion approximation. For example, when X is finite, 7 is Dirichlet distribution
and A = 1, the the limit density — sometimes called as Wright’s formula — can be found in the
literature (for references, see Lember and Watkins, 2022, Section 3.4), typically connected to the
diffusion approximation. However, while the proof in Lember and Watkins (2022) uses fairly simple
mathematics and no diffusion approximation, the generalization to general X (Theorem 4.2 in the
current article) uses more involved mathematics, but again no diffusion approximation.

Outline of the paper. In Section 2, the model and the main objects of the article, are formally
defined. In Subsection 2.1, the detailed balance equation is proven showing that P, is indeed the
stationary measure of the model (with population size n). In Subsection 2.2 we give an alternative
representation of P, and define the measure @,,. In Section 3, the limit process (infinite population)
and the sense of convergence are defined. The main results of Section 3 are Theorems 3.1 and 3.4.
The first of them proves the existence of the limit process under rather general assumptions and the
second theorem shows there also exists a limit measure @ such that @,, = @ (under the additional
assumption that X is compact). These theorems are the basis of the paper. Section 4 is devoted
to the case when the prior measure 7 is arbitrary but independent of n. The main results of that
section are Theorems 4.2 and 4.7; these two theorems together give the first phase transition result
as described in Introduction. In Section 5, the Dirichlet process prior is considered. The main results
are Theorem 5.3, 5.7 and 5.9 which provide phase transition results for that case. The proofs of
these theorems are rather technical and therefore they are presented in Section 6.
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2. Preliminaries

Recall that P stands for the set of all probability measures on Borel o-algebra B(X'). In what
follows, we shall denote the elements of P by q. For any integrable function f on X, we shall denote
by

(f.q) = /X f(@)q(dz).

The set P is equipped with Prokhorov metric and so this is a complete separable metric space as
well, see (Billingsley, 1999, p. 72). Prokhorov metric metrizes the weak convergence of probability
measures, denoted by ¢, = ¢ in the sequel, and the Borel o-algebra B(P) is such that for any
A C B(X), the mapping ¢ — ¢(A) is B(P)-measurable (see e.g. Ghosal and van der Vaart (2017,
Proposition A.5)). Also for any continuous bounded function f on X, the function g — (f,q) is
continuous and hence B(P)-measurable as well. In what follows, we shall also see n-fold product
measures ¢" on B(X™). Since g — ¢(A) is measurable for every A € B(X), then also ¢ — ¢"(A)
is measurable for every A € B(X™). This follows from Dynkin’s 7 — A theorem: clearly for any
cylinder A = Ay x -+ x A, the mapping ¢ — ¢"(A) = q(41) - - - q(A,) is measurable (as a product
of measurable functions). The set A = {4 € B(X") : ¢ — ¢"(A) is measurable } is a A-system (i.e.
contains X™ and closed with respect to complements and disjoint unions) containing all cylinders.
Since X is Polish, the cylinders generate B(X™), and so, by Dynkin’s m — A theorem, B(X™) C A.

To see the one-to-one correspondence between breeding processes £ and measures w, observe
that for every measure 7, there is a process & satisfying equation (1.1). Indeed, for any A €
B(X™), the map ¢ — ¢"(A) is integrable then P'(A) = [y @"(A)m(dq) exists and the family
{P¢'} satisfies Kolmogorov’s consistency conditions. The claim follows from Aliprantis and Border
(2006, Theorems 12.7 and 15.26). The other direction — to every exchangeable £ there corresponds a
measure 7 — follows from de Finetti-Hewitt-Savage representation. Recall that P¢(-|x) stands for the
conditional distribution of &,11. The existence of a regular version for the conditional probability in
Polish spaces is a consequence of Pfanzagl and Pierlo (1966, Theorem 7.8). Indeed it is enough that
the o-algebra contains a sub-c-algebra which is separable (generated by a countable collection of
sets) and the probability measure is compact approximable. Both conditions hold for a probability
measure on the Borel o-algebra of a Polish metric space: the first one is trivial and the second one
follows from Aliprantis and Border (2006, Theorem 11.20).

2.1. Detailed balance equation.

Kernels. Recall the two selection schemes: single tournament and inverse fitness. Both define a
Markov chain with uncountable state space X™. When X is finite, as in Lember and Watkins
(2022), then the corresponding transition matrix is easy to define. We now define the corresponding
transition kernels for both schemes. Recall that w is a strictly positive, bounded and continuous
fitness function on X.

Let, for every A € B(X"), xe X" and k=1,...,n

Ap(x):={z € X : (X1,...,Xk—1,%, Xkt1,-- -, Xn) € A}
Observe that when A = A; x --+ x A, is a cylindrical set, then

Ag, when x; € A;, forevery je{l,....k—1,k+1,...,n};
Ak(x)z{@,k else. ! ’ vIed }
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The transition kernel corresponding to the single tournament selection is
1 n
P =—
(x, A) - g Py(x,A), where
k=1
w(x)
Pi(x, A ::/ ————— Pe(dx|x) 4 b (x)d,, (Ar(x)),
)= [ )+ 0165 (4460

_ w(x)
bk(x) = /X w($) i w(:ck.) Pg(d.ﬂx).
Here by (x) is the probability that a newborn individual x,; looses the tournament to xj. Hence,
the first term of Py(x,A) is the probability that z,41 wins over zj and is born in Ag(x); the
second term is the probability that z,1 looses the tournament to zj. Clearly Py (x,-) a probability
measure on B(X™). The weight n~! represents the fact that all individuals in population have equal
probability to be picked for the tournament. We observe that, applying Dynkin Theorem, one can
prove that x — Py(x, A) is measurable for every A € B(X").
The transition kernel corresponding to the inverse fitness selection is

P(x,A) = Z Pu(x, A) + ¢(x)0x(A),  where
k=1
1

P X, A Pe(dz,i1]x
Hoo )= / <>zy+fw<xk>/w<xj> eldonslx)

Pe(dapq1]%).

/ x Y w wn+1)/w($j)
Here ¢(x) is the probability that x,; is chosen and so nothing is changed, the first term in P (x,A)
is the probability that zj is chosen and newborn x,; is in Ag(x).
Reversibility. The following lemma shows the P,, defined in (1.3), is the stationary measure for

both single tournament and inverse fitness kernel, and the stationary process is reversible.

Lemma 2.1. Let P(x,A) be the transition kernel corresponding to the single tournament selection
(resp. to the inverse fitness selection). Then, for every B, A € B(X™), it holds

/ P(x,A)P,(dx) = /P(X,B)Pn(dx). (2.1)
B A

Proof: 1t suffices to prove (2.1) if A and B are both cylinders: A = A; x---x A, B= By X---X By.
Let us consider the single tournament selection kernel. For any fixed k

/ Pl A)Pa(dx) =
// a:n+1) Pg(dxnﬂlx)w(m)"'w(xn)Pg(dX)+/ br(x) Py (dx) =
; ANB

p(x) W $n+1 + w(zy)

/ / w(a?n) ($n+1)P”+1(dX, d:UnJrl) -|-/ bk(X)Pn(dX) = ($)
Ag(x

93n+1) + w(wy) ANB

Now, if we define
BA = {x e X" (z1,...,2,) € B, (1, .., The1, Tni1, Thols-- - Tn) € A}
ABp = {x € X" (x1,...,2,) € A, (T1,. ., The1, Trg1, Thals- - -, Tp) € BY,
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we have that one set can be obtained from the other by swapping z; and x,+1. Whence

w(Tn11) +1
Pn dx,dzp,1) =
//Ak(x) w(Tny1 +w($kz) ( +)

'w(l‘ (l‘n+1) n-+1
P dzi,...,dzg,...,dz, =
L w(xnﬂ P e (B d =

/ w(az ( ) (xn+1)Pn+1(d.%'1, . 7dxn+17 .. d.??]g) =
BA, :L’n+1) + U}(flfk)
1) w(@pg1) - w(TR) S
pr d:L',...,dSL’,-udl'n =
/ABk w(ka + w(Tng1) ¢ N ) =

/A/ U}(Q: ) (-Tn-i-l)) P;J’_l(dxydxn—i-l)‘

(xnﬂ) + w(@y

Although the sets BA, and BA; are, in general, different, the last equality holds because the
function as well as the measure is invariant with respect to change z,1 and x. Thus,

8) = //B w(xpa1) +g?;;))P?H(dX,dfﬁn+1) +/AF‘|B br(x) P (dx) :/APk;(X, B)P,(dx)

and this concludes the first part of the proof.
For the inverse fitness kernel, we proceed similarly. Clearly,

/ P(x, A)Py(dx) = Y / Py(x, A)P,(dx) + / ¢(x) Py (dx).
B i—1/B BnA
Let now £k =1,...,n be fixed and, as previously, we obtain
/ Pi(x, A)P,(dx) =
— " n+1 Pe(dzn41|x) P (dx) =
Ic

2w ﬂfk)/w(wj)

n+1 1
1 (xk) ($n+1)( 1 > Pg‘“(d:zl,..

Zn Jpa, H?ﬂlw(mg) o w(z;)

n+1 1

< d$n+1) =

1
Zn JAB, H;““l w(x;)

/ Pi(x, B) P, (dx).
A

1 w(zg)w(Tng1) < )71P'E"+1(d3317 conydepgr) =

= wiz)

0

2.2. The measures P, and @),. In the previous section we saw that the measure P, defined as in
(1.3) is a stationary measure for different selection schemes. The main objective of the current
article is to study the asymptotic behavior of P, as the population size n increases. To be more
general, we shall assume that the fitness functions w,, and the prior measures m,, depend on n hence,
for every n, the measure P, on B(X™) is the following

/ Hwn ;)P (dx) / / Hwn 2)q(dz ;)T (dg). (2.2)
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The second equality in (2.2) follows from the fact that, for every nonnegative measurable f : X"
R*, it holds

f(x) P (dx) / / f(x)q(dxy) - - - g(dxy)mn(dq).
Xn n
Indeed, if f = 14, then

P (A) :/ A)mp(dg) = / » f(x)q(dzy) - - - q(dxy, )T (dg).

By linearity, the same holds for simple functions and then extends to nonnegative measurable
functions by using the monotone convergence theorem and Fubini-Tonelli’s theorem.

Thus, if A = A1 x -+ x A,, then

P,(A) / H / wp (z 7rn(dq) (2.3)
and now it is easy to see that

Zn = /P (wn, q)" 7 (dg). (2.4)

An alternative representation of P,. It turns out that it is convenient to represent the measure P,
slightly differently as follows. For every ¢ € P, we define a probability measure r,, on B(X):

_ Jawn(z)g(dz)
rgn(A) : (wned) , AeB(X). (2.5)
The mapping ¢ — <wn,q> is continuous, and it can also be shown that for any fixed A € B(X)
the mapping ¢ — [, wn(z (daz) is measurable. Indeed, ¢ — ¢(A) is measurable for all A € B(X),
hence by linearity ¢ — [, f X )q(dz) is measurable for all measurable simple function f; for a generic
nonnegative measurable functlon f, the result follows by taking the usual limit argument f, T f
where {fy}, are simple functions. And so for any A, the mapping g — 74,(A) is measurable as
well. By 7 — X argument, for any A € B(X™"), ¢ — r7,,(A) is measurable, where ry, stands for
n-fold product measure.
Given a probability measure m, on B(P), we define another probability measure 7,, on B(P) as
follows

n

1

AnlE) i= - /E (wn, @) n(dg), E € B(P). (2.6)

Here Z,, is the normalizing constant, thus Z, is asin (2.4). Now, the measure P, can be alternatively
defined as follows

Po(A) = / i (A)ia(dg), A€ B(A™). (2.7)
P
To see that the equality (2.7) holds, observe that the rlght hand side of (2.7) defines a probability
measure that for any measurable Cyhnder A=A x---x A, reads

[ i) = [ Zﬁqu,n(Ai)wn 7L H / wn(2)g(dz) ) mn(dg) = Pa(A),

where the last equality holds by (2.3). Therefore these measures coincide on cylinders, hence also
on B(&X™).

We can go one step further, and consider the mapping

n:P =P, r(q) i =rgn. (2.8)
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For every n, the map r, is continuous: let f be a bounded continuous function on X'. Note that w,
and f - w, and bounded and continuous for every n. Whence,

[ F@ratin) = ——— [ f@unaan(d
moge | f@witaatan) = [ o)

<wn, q)

Thus 7,(¢m) = Tgum = Tgn = Tn(q), whence 1, is measurable. Now define the pushforward measure
vn on B(P) as follows vy, (E) := 7, (r, ' (E)). Thus by change of variable formula

Pn(A):/pr;n(A)ﬁn(dq):/Pq”(A)yn(dq), Ae B(&x"). (2.9)

The measure Q. Recall the mapping g defined in (1.5) and the measure @,, defined in (1.6). The
mapping ¢ is many-to-one, because all permutation of a vector x have the same g(x). Observe that
for any function f on X™, it holds: n=! >°% | f(x;) = (f, g(x)). This observation helps us to see that
the mapping ¢ is continuous. Let x™ — x be a convergent sequence in X". Since the convergence
in X™ is equivalent to pointwise convergence, it follows that as m — oo, for any continuous and
bounded function on X", i.e for any f € Cp(X™), it holds

n
(f,9(x 12 F@)y = n™"> " fa) = (f,9(x)).
i=1
So the convergence x™ — x implies g(xm) = ¢g(x), hence g is continuous and measurable. The
advantage of @), over P, is that, for every n, the measure @, is defined on the same domain B(P),
and so one can study the convergence on @), in the usual sense of weak convergence of probability

measures. When X is finite, then the measure ), can be constructed explicitly, see Lember and
Watkins (2022).

3. Limit process and limit measure Q*

3.1. The limit process. We now turn to the asymptotics of P, as n grows. Recall that we aim to
show the existence of a limit process X1, Xo,... so that (1.4) holds, where (Xi,,...,Xnn) ~ Py.
Observe that (1.4) is equivalent to the following: for any m € N,

(Xipsooors Xonn) = (X1, ..., Xin). (3.1)

Indeed, from (3.1), it follows that (1.4) holds when ¢; < t3 < ... < t,, and the weak convergence
of random vectors implies that of the permutations. According to (2.7), for every A; € B(X),
i=1,...,m, it holds

P(X1n €A1, ..., Xpnn € Ap) = / [ ren(A)Tn(dg) =: Pa(Ar x -+ x Apy).

By the canonical representation, the existence of a stochastic process is equivalent to the existence
of a probability measure P* on (X, ), where ¥ is the product o-algebra. The measure P* can be
considered as the distribution of X. Let C(Ay X -+ x Ap) = {(x;) € X 121 € Ay, ..., 2 € A}
be any measurable cylinder, where A; € B(X), i = 1,...,m. With slight abuse of notation, we shall
denote by P*(Aj X - -+ x A;,) the measure of the cylinder C(A; X - - x Ay,). If P* is the distribution
of X, then P*(A; x --- x Ap,) = P(Xy € Ay,..., X, € A,,). Since cylinders are a convergence-
determining class, (Billingsley, 1999, Theorem 2.8), the convergence (3.1) holds if for every m, and
every measurable and P*-continuous cylinder A = {(x;) € X*° :x1 € Ay,...,zy € Ay} it holds

P (A X -+ X Ap) = P*(A1 X -+ X Ap). (3.2)



1052 Daniela Bertacchi, Jiiri Lember and Fabio Zucca

Recall that A is P* continuous when P*(0A) = 0, where 0A stands for the boundary of A. To
summarize, for showing (1.4), it suffices to show the existence of a probability measure P* on
(X, %) such that for all P*-continuous cylinders (3.2) holds.

In the following theorem {r, ,}, are probability measures on X which do not necessarily coincide
with the ones defined by (2.5) (with wy, as in (1.7)). We will see that for that particular choice of
measures {rqn}n, by Corollary 3.2, the hypotheses in Theorem 3.1 concerning uniform convergence
to rq and continuity of the map ¢ — r, are always satisfied.

Theorem 3.1. Suppose there exists a probability measure T on P such that 7, = T. For every
q € P andn €N, let rgpn, 74 € P be such that sup,ep |rgn(A) — 74(A)] — 0 for all A € B(X).
Assume also that g — rq is continuous. Then there exists an infinitely exchangeable process X so
that for every m € N, the convergence (3.1) holds. Moreover, the limit process is such that for every
m €N and Ay, ..., Ap € B(X),

P (Ar x - % Ay) = /Pr;"(Al X - x Ap)T(dg). (3.3)

Proof: Let for every m and distinct integers ¢1,...,tn € N, 4,4, be a probability measure on
B(X™) defined as follows:

it (A) = /P m(A)R(dg), A€ BA™).

The definition is correct, because by assumption ¢ — 7, is measurable, and so for every m and
A € B(X™), the mapping ¢ + 77'(A) (product measure) is measurable as well. Note that this
definition depends on m but is independent of the choice of t1, ..., ty,. Clearly the family {pu, . +,.}
fulfills the consistency conditions, and so by Kolmogorov existence theorem there exists a measure
P* on (X, ¥) such that for every distinct integers ¢1,...,t, and every A € B(X™), it holds

P* ({(.’L‘Z) € X (.’L’tl, .. .,.’L'tm) (S A}) = ,utl’m,tm(A).

In particular
P*(A1 x -+ x Ap) = p1, (A1 X -+ X Apy) :/ Hrq(Ai)?r(dq).
Pzt

Thus P* is the distribution of an infinitely exchangeable process, and the theorem is proven, when we
show that (3.2) holds for all P*-continuous cylinders. To show (3.2), we use Skorohod representation
theorem (Billingsley, 1999, Theorem 6.7) according to which there are P-valued random variables
W, and W such that W, has distribution 7,, W has distribution @ and W,, — W a.s.. The

theorem applies on separable metric space, but P equipped with Prokhorov metric is separable. Fix
a P*-continuous cylinder A = {(z;) € X :x1 € Ay,...,zy € Ay} and let us denote

ful@) =[] ram(As) =1 (Ar x - x Ap), - F(g) = [ [ rg(Ai) = r (A1 x -+ x Apy).
=1 =1

If m = 1, then by assumption, it immediately follows that sup,|f.(q) — f(q)| — 0. Since the
functions are bounded, the uniform convergence also holds when m > 1. Indeed, if f, — f and
gn — g uniformly and all functions are bounded by 1, then

|fngn - fg‘ = ’fngn - fng+ fng - fg‘ < ’fn(gn - g)‘ + ’g(fn - f)‘ < ’fn - f’ + |gn - g"
Let Econt C P be the set of continuity points of f. We shall show that 77(E¢ont) = 1. Since

A = {(2;) € X (x1,...,2m) € DAy X -+ X Ap)},

where 9(A; X - -+ X A;,) is the boundary in X™, we have (since A is P*-continuous)

PH(94) = /P PO(AL X - x A))T(dg) = 0.
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The integral of non-negative function is zero only if the function is 7-a.s. equal to 0 and so we have
7(F) =1, where

F:={q: rg‘(a(Al X oo X Ap)) = 0}.
We now show that F' C FEcont. Indeed, if ¢ € F and ¢, = ¢, then by the continuity assumption
Tq, = 7¢ and thus also ry' = 77" (because weak convergence of marginal measures implies weak
convergence of the product measure). Since r{"(9(A1 X --- x Ay,)) = 0, it follows that

T (AL X o X Apy) = rg (A X X Ay).

Thus f(g,) — f(q) and so g € Econt. Since T(Feont) = 1, from W,, — W a.s. it follows f(W,) —
f(W) ass. From the uniform convergence, it follows that |f,(W,) — f(Wy,)| — 0. These two facts
together imply f,(W,) — f(W), a.s. Finally, since the functions f, are all bounded by 1, by the
bounded convergence theorem it follows E f,,(W,,) — Ef(W). Since

Po(Ap X - X Apy) = /P?“Z'?n(Al X oo X Ap)Tn(dg) = /an(Q)ﬁn(dQ) = Efn(Wy)
P An) = [ x anntan) = [ flayn(n) = B£0V),

we have (3.2). O

Corollary 3.2. Let ry, and wy, be as defined in (2.5) and (1.7) respectively. If X > 0, define rq = g,
while if A\ =0, let vy be the measure proportional to wdq, where w = wy, (in this case wy, does not
depend on n). Then
(1) supyep |rg.n(A) = 14(A)| — 0 for all A € B(X);
(2) g 1rq is continuous;
(3) if T, = T (where T, is defined in (2.6)) then P, converges (in the sense of (3.1)) to the
measure P* defined in (3.3).

Proof: (1) Recall that ¢ — 7y, is continuous as explained after (2.8) and that w,(x) =
exp(—¢(x)/n*). Let w(z) :=1 (for all z) if X > 0 and define w(z) := exp(—¢(z)) = wn ()
(for all z) if A =0.
Note that sup,cy |wp(z) —w(z)] = 0if A = 0. If X > 0, then sup,cy |wp(x) — w(z)| =
1 — exp(—sup, ¢(z)/n?), which goes to 0 as n tends to infinity, since ¢ is by hypothesis
bounded. It follows that

sup [(wy, q) — (w, q)| < sup(|lw, —wl,q) — 0.
q q

Clearly the same argument holds when integrating over any set A. We now observe that

inf e v wy(x) = exp(—sup, ¢(x)/n?) > 0, when X > 0 and it is equal to 1 when A = 0. This
implies that, for all A € B(X),

<]1A7Una q> <]1Aw7 q>
s Vanld) == 5, 0 T wa

(2) Although the continuity of ¢ + 7, follows by the same argument as the continuity of
q + T¢n, we shall now show that it can be directly deduced from the continuity of g = 7y,
and the uniform convergence stated in 1. Let f be a bounded, nonnegative, measurable
function on X and consider a sequence {¢,}m such that g, = ¢. By using the Uniform
Bounded Convergence Theorem (see for instance Bertacchi and Zucca, 2003, Theorem 2.3),

as n — 0o,

sup ‘ /Xf(a:)rq,n(d:c) = /Xf(:c)rq(dx)‘ = sup ’ /OJFOO rgn(f > t)dt — /;oo rq(f > t)dt| — 0.

qeP qeP
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Suppose now that, in addition, f is continuous. Take £ > 0 and ng = ng(¢) such that for all
n > ng we have

sup‘/xf(x)rq,n(dx)—/Xf(:r)rq(dx)‘ <e/3.

qeP

Since ¢ — 744, is continuous for every n € N, take mg = mg(e, ng) such that

‘/Xf(w)rqm,no(dm) - /Xf(x)rq,no(dl‘)‘ <e/3

for all m > my. Clearly, for all m > my

| /X F@)rq, (dz) — /X fyrg(dn)| < | /X F(@)rq,, (dz) - /X F (@) gm0 ()|
] [ 1@ nnlde) = [ f@rya ()
+| [ 1@ram@n - [ @) <e.

(3) If m, = 7 then all the assumptions of Theorem 3.1 are satisfied and the claim follows.
O

Remark 3.3. The proof of Corollary 3.2 shows that the assumptions of Theorem 3.1 on ry, and 7,
are satisfied also with more general weight functions than those considered in (1.7). Indeed

e if the weight functions are such that ¢ — 74, is continuous for every n € N and
supyep [g.n(A) — 14(A)] — 0 for all A € B(X), then g — 7, is continuous;

e in particular, if w, and w are measurable functions so that inf,cyw(x) > 0 and
supgey |wn(z) — w(z)] — 0, then ¢ — 1y, is continuous for every n € N and
sup ep [Tgn(A) — 14(A)| — 0 for all A € B(X) with r, being the probability measure
proportional to wdg.

3.2. The weak convergence of @n. The goal is to show that under the same assumptions as in
Theorem 3.1 with the additional requirement that X is compact, the measures (),, converge to a
measure (. Recall the function g in (1.5) that maps every sequence x = (x1, ..., 2, ) to its empirical
measure. To stress the dependence of n, it this section, we shall denote the function g as g,,.

Theorem 3.4. Suppose X is compact and the assumptions of Theorem 3.1 hold. Let Q = 7r—!,

where 1 : P+ P is defined from the rq in Theorem 5.1, as v(q) = rq for all ¢ € P. Then @Qn = Q.

Proof: By the Portmanteau theorem (see for instance Billingsley, 1999, Theorem 2.1), it suffices to
show that for every open set E € B(P) we have liminf, Q,(E) > Q(F). Recall that, according to
(2.9),

Qu(E) = /P (g (B))Tn(dg) = /P (" (E))va(de), E € B(P).

Let E be an open set. We first show that liminf, v,(E) > Q(F). For that, we use Skorohod
representation again, so let Z, ~ ©,, Z ~ 7T be P-valued random variables so that Z, — Z, a.s..
Recall that we use parallel notation r,(q) :=: r¢, and r(q) :=: rq, where rp,7 : P — P. We now
argue that the a.s. convergence Z, — Z (with respect to Prokhorov metric) entails r,(Z,) — r(Z),
a.s.. Since the convergence with respect to Prokhorov metric is equivalent to to the weak convergence
of measures, it suffices to show that ¢, = ¢ implies r,(g,) = r(q). To see that take A to be a
rq-continuous set. Then

g n(A) = 1q(A)] < |rg,m(A) = 14, (A)] + [rq, (A) — re(A)].
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By assumption, [rg, n(A) — g, (A)| < sup, [rgn(A) —r¢(A)| — 0, and since g — r(g) is continuous,
it follows that |rq, (A) —rq(A)] — 0. Hence r,(¢n) = r(q), and so r,,(Z,) — r(Z). Since E is open,
it follows that

P({r(2) € E}\liminf{r,(Z,) € E}) =0
n
and so the following holds for all open sets F

QE)=7(r"Y(E)) =P(r(2) € E) < P(limninf{rn(Zn) € E})

L (3.4)
< liminf P(rn(Zy,) € E) = liminf 7, (r;, ' (E)) = liminf v,,(E).

Denote by m(d) the d-covering number (i.e. the minimal number of §-balls needed to cover P),
Es ={p e P :d(p,E) <} the closed d-blowup of E and recall the definition of relative entropy

In (& dp ifp<yq
Do) = {ffoo S 55

When X is compact, then also P is compact, so m(d) < oo. For us it is important that m(d) is
independent of q.
Since X is compact, for every ¢ € P the following inequality holds (see Dembo and Zeitouni, 2010,
Example 6.2.19):

n({ —1 . .
E)) < inf ( §) exp[— inf D(p|q)- ) 3.6
¢" (92" (B) < inf (m(6) exp[— inf D(pllg) -] (3.6)
Let E§ be closed é-blowup of E€. Then, for any ¢ > 0, define
Fs = (E55)°.
Clearly Fjy is an open set inside E, and UgsoFs = E. We now argue that for any § > 0,
inf D > 0. 3.7
perep, (pllg) (3.7)

If not, there would be a sequence {g,}n in Fs and {p,}, in E§ so that D(p,|¢,) — 0. From
Pinsker’s inequality, it follows that d(pn,¢n) — 0, where d stands for Prokhorov metric. But since
pn € E§ and g, € (ES;)¢, it must be that d(pn,qn) > 6 for every n. Hence (3.7) holds. From (3.6),
we obtain that for every § > 0,there exists () such that

sup ¢" (90" (B%)) < m(6) expl=e(9) -m],  inf ¢"(g,"(E)) 21— m(6) exp[=£(9) -n].  (38)

Therefore,
Qu(E) = [ 0" (E)alda) > (1= m(6) expl=s(6) - nl) v, ().
5
From equation (3.1), since Fjy is open we deduce that

liminf @, (F) > liminf v, (Fs5) > Q(Fs) T Q(E), asd 0
n n
where the last limit follows from the continuity of a measure. O

Remark 3.5. The additional assumption of compactness is disappointing. In the proof above, it was
needed for the Sanov type of inequality (3.6), which, in turn, was needed for the uniform convergence
n (3.8). The convergence (3.8) is, in a sense, exponentially fast, but for our proof the speed is not
important, it just suffices to have:

nf 7"(9," (E)) = 1. (3.9)

Recall that for every open E, and for every ¢ € E, by SLLN ¢"(g,'(E)) — 1. The convergence
(3.9) states that on the set Fj this convergence is uniform and then our proof applies.
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Remark 3.6. In Lember and Watkins (2022), it was shown that, when X’ is finite, for any continuous
and bounded f: P — R, it holds: [, fdQ, — [, fdQ. In our notation

[ H@@utan = [ [ foat)a@xpvn(da).
P P Jan
By SLLN,
folq) = . flgn(x))g" (dx) = f(q),
and if this convergence were uniform, i.e.

Sl;p |fn(Q) - f(Q)’ - O’ (310)

then from v, = @, by using the Skorohod representation, it would follow that fp fa(@vn(dg) —
J» f(9)Q(dg). In Lember and Watkins (2022) the equation (3.10) for finite X was obtained with
Bernstein polynomials.

4. Arbitrary prior w

In this section, we consider the case when the prior 7 is arbitrary and independent of n. In what
follows, we take wy, as defined in (1.7). By Theorem 3.1 and Corollary 3.2, to ensure the existence
of the limit process, it suffices to show 7, = 7.

Since in the integral (2.6) defining 7,, we have the function (w,, ¢)", we start with the following
observation.

Proposition 4.1. If m — oo, and ¢ is nonnegative and integrable with respect to q (but not
necessarily bounded), then

¢
(exp[——], )™ — exp[~(¢, q)]. (4.1)
Moreover, when ¢ is bounded, then the convergence is uniform over q.

Proof: Let us consider an i.i.d. sequence {X;};en of random variables with law ¢. Clearly, by using
the Law of Large Numbers and the Bounded Convergence Theorem, we have

(oo (= 0 atam)" <[ [Teww (- “32)]

since exp(— Y 1", d)(gi)) — exp(E[-¢(X1)]) a.s. as m — oo.

Suppose now that ¢ is bounded, say |p(x)| < K for all z € X; it is enough to prove that
E[Y,, — mg|]] — 0 as n — +oo uniformly with respect to ¢, where Y, := > | ¢(X;)/n and
mq = E[¢p(X7)]. For every ¢ > 0, given any ¢ we have

E[[Yn —mq|] = E[|Yy — mg[Ljy, —m,|<e/23] + E[[Yn — mg| Ly, —my|>e 23]

8K?
+————<e¢

< £
= 2 ' n(e/2)? ~

+ 2K P(|Y, —mg| >¢/2) <

| ™

ifn > (68/% (and this does not depend on q). O
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4.1. The case A > 1. Let us begin with the case A > 1. We establish the convergence of the measure
7, which was defined in (2.6). The next theorem states that when A > 1, then the influence of
fitness vanishes, and the limit process X equals the breeding process &. When A = 1, then the limit
process is another infinitely exchangeable process whose prior measure differs from the breeding one
7, and depends on ¢ as well as on .

Theorem 4.2. Let the fitness function be as in (1.7) where ¢ is non-negative, measurable and
bounded. Suppose m, = w; and let A > 1. Then the following convergences hold:
(1) If A\ =1, then T, = 7, and P,, — P* in the sense of (3.1), where

7(E) = - /E expl—(,q)]n(dg), where Z:= /P exp[— (@, q)]n(dg),

P (A x - x Ap) = /PHq(Ai)w(dq), ¥m € N, A; € B(X).
=1

If, in addition, X is compact, then Q, = 7.
(2) If X > 1, then @, = m and P, — P¢ in the sense of (3.1). If, in addition, X is compact,
then Q, = 7.

Proof: Before explicitly dealing with the two cases, we note that by Corollary 3.2, we only need to
establish the convergence of 7,. Since r, = ¢, from Theorem 3.1 we will get the convergence of P,
to the limiting process.

(1) Since for any ¢ and any n, it holds (exp[—%], ¢)"™ < 1, we obtain from (4.1) and the Bounded
Convergence Theorem that, for any E € B(P),

2l B) = [ (expl=21,0)"n(da) = [ expl(ova)ln(do). (1.2

Theorem 3.1 are fulfilled with w( 1, then for compact X Theorem 3.4 implies @,, = 7.

From (4.2), it follows that 7,(E) — 7(F), meaning that 7, = 7. Since the assumptions of
x) =
(2) When A > 1, then by Proposition 4.1, eventually as n — oo

1/n)\—1

1« (2exp(—<¢, q>)) -1

and by dominated convergence, again, for any measurable F

[ teol=21.0"x(da) = (). (1.3

Therefore 7, = . The convergence Q),, = 7 is a consequence of Theorem 3.4.

> (exp[—%]’qu > <W>1/nk1

0

Observe that for the weak convergence of 7, the boundedness of ¢ is not needed. However, it is
needed for the uniform convergence of w, — w, hence for existence of the limit process (Theorem
3.1) and for the weak convergence of @, (Theorem 3.4). Theorem 4.2 is a direct generalization of
Theorem 5.1 (2) and (3) in Lember and Watkins (2022), and no additional assumptions are imposed.

4.2. Case A € ]0,1).

Preliminaries: densities and powers. Let 7 be a finite measure (not necessarily a probability mea-
sure) on B(P). Let S be the support of . For a measurable function f: P — R,

I flloo :=esssup(f) :=inf{c: |f| < ¢ m—a.e.}.
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If f is continuous then || f|lc = supyes [f(g)|- Also recall that for any 0 < m < oo

£l 5= ([ (@l n(an) ™

If f is essentially bounded, m grows and 7 is a probability measure, then || f||n, || fllcoc < co. Then
it follows that || f|lm — ||f|lcc @lso when 7 is a finite (but not necessarily a probability) measure.

For any sequence measurable, essentially bounded functions f,, : P — RT | and m,, 1 oo, we
define a sequence of probability measures i, on B(P), where

tin(E) :—/Ehn(q)ﬂ(dq)a hn = A %dw = (Hfjﬁmn)mn-

If || fro — flloo — O uniformly, with f essentially bounded), we get that the functions f,, are essentially
bounded as well, thus (recall 7 is finite) fp fmdm < oo for every n. Depending on f, we define

5 ={g€8: f(g) = |flw}. & ={a€8:f(g)> |Fl— ). (4.4)

The following proposition is a generalization of Lember and Watkins (2022, Proposition 5.1).

Proposition 4.3. Let 7 be a finite measure on P. Let p,, S* and S5 defined as above. Then for
every 6 >0, fin (Sg‘) — 1. Moreover, if, for some u € P, u(ﬂ5>0?§\8*) = 0 (for instance if f is
upper semicontinuous) and p, = p then u(S*) = 1.

Proof: Since || fnlloo < 00 and [[fn = flloc — 0 then [|f[lcc < 00 and [[falloc = [[flloc. Since, by
assumption, 7 is a finite measure then for every m,

W allm = 1] < 1 = Fllm < 7(P)5 || fn = flloo = 0.

Since || f|lm, = || flloo, we have

1 fallmn = I flloc| < [ fallmn = Il | + (1l = 1Flloo]
< N fa = Fllmn + [11Flmn = [ flloo]
< w(P)7 llfo = Flloo + Il = I Flloc| = 0.
Now fix § > 0 and note that
S\S5 ={q: f(@) < Ifllc — 3}
Define ¢’ := §/|| f||oo- Then

n + n -
esssup, (115\5(; |’§n\(|iin) = esssupq<]15\sg fa) ﬁ‘;n‘(ﬁn f(q))>
- f(@) + (fule) — () IIflls
= esssupq<]15\8g Hf”oo ”anmn)
f@) I flles | fr = flloo _
< esssupy (Usvsi 1A ) A S 2

provided n is big enough. Thus,

&'\ mn
esssup, (Is\s; n(0) < (1- 5)"" =0,

so that p,(S5) — 1.

Suppose now that 1((Nss0 SF\S*) = 0 and py, = p. Givenany p € P and A C P, define d(p, A) :=
inf,c4d(p,v) where d is the Prokhorov metric. It is clear that p — d(p, A) is a nonnegative,
continuous function such that d(p, A) = 0 if and only if p € A. Whence, ga(p) := min(d(p, A), 1) is
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a nonnegative, bounded continuous function.
Since pp, = p we have

‘[;gsg(P)#(dP):: lim [ gs:(p)un(dp) < lm_pn(P\SF) =0,

n—-+o0o P n—-+o0o

whence u(gs; = 0) = 1, that is 1(S3) = 1. By the continuity of the measure p and ,u( Ns>0 ST;‘\S*) =
0, we have u(S*) = 1. O

Roughly speaking, according to Proposition 4.3, in order to have u(S*) = 1, we need the weak
convergence f, = (. We shall now show that under some mild conditions, when S&* consists of one

measure ¢* then the weak convergence of p, follows from p(S*) = 1 and the limit is d4+. In the
following corollary, let B(q*, &) be an open ball in P centered at ¢* and having radius e.

Corollary 4.4. Let the assumptions of Proposition /.5 hold. Suppose 8* = {q*}. If, for any e > 0
there exists 6 > 0 such that
B(q",¢) 2 S5, (4.5)
then puy, = g
Proof: By hypothesis, for every € > 0 there exists § > 0 so that
n(B(q",€)) = pn(S5).

By Proposition 4.3, 11,(S5) — 1; whence, for every € > 0, pn(B(¢*,¢)) — 1. This implies easily
that pi, = dg+. U

Finally, here is an elementary but useful lemma that we write for the sake of completeness.

Lemma 4.5. Let {m,}nen a sequence of measures on P weakly convergent to a measure w. Let
{fn}tnen a sequence of bounded contmuous functions on P such that limy, 1o || fn — flloo = 0 for
some f. Define vn(A) := [, fu(p)mn(dp) and v(A) := [, f(p)mn(dp) for every Borel set A C P;
then v, = v.

Proof: Fix a bounded continuous function g on P.

| [Lawwatan) = [ atowtan)| = [ oo wmtap) - /mw@mw

< [ o)) - 1 wum+U’ w)mldn) = [ ae)f@e(an)| - (@6)
< gl 1a = Fllo+| [ o) @rmalan) = | o) @)map)] =0

as n — +o0o, since ||fn, — flloo — 0 and m, = 7 by hypothesis (note that g - f is bounded and
continuous). 0

The result. In this section, we consider a continuous ¢ having a unique minimum x,. Thus, in what
follows,

Tp = arg iI%f o(z), @0 = P(z0) = iI%f P(z).

The following assumption is natural and assumes that if ¢(x) is slightly bigger than the minimum ¢,,
then x must be close to x,. It also guarantees that x, is the unique minimum and the convergence
d(xn) = ¢ implies x,, — x,.

Assumption 4.6. For every € > 0 there exist 6 > 0 so that {z : ¢(x) — ¢po < §} C B(z,,¢), where
B(x,,¢) is an open ball centered in x, and having radius e.

Observe that if ¢ is continuous and X compact, then Assumption 4.6 holds, since the minimum
is unique.
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Theorem 4.7. Let the fitness function be as in (1.7) where ¢ is non-negative, continuous, bounded
and satisfies Assumption 4.6; and let X € [0,1). Suppose m, = 7 and that the support of T contains
the measure 0y,. Then m, = g, where ¢* = 6,,. Moreover convergence (3.1) holds with the limit
process being degenerate and having one almost sure path (xo, To, . ..). If, in addition, X is compact,
then Qn = dg+.

Proof: Let us start with the case A € (0,1) and define

Fal@) = (expl=- 510", Fla) = expl(6.4)].

Since ¢ is continuous and bounded, we obtain that ¢ — (¢, ¢) is continuous and so is f. Also f, is
continuous for every n. Assuming that ¢ is bounded above, we obtain by Proposition 4.1 that for
A>0, |[fn— flleo = 0. Since X € (0,1), we take m,, = n'~*. Then

(exp[—%], )"  fmn(g)
Z, 7,

so that u, = 7,. Recall that S is the support of 7,,. By definition

hn(q) =

S* = = in(¢, q).
argmax f(g) = argmin(¢, g)

Since x, is the unique minimum of ¢ and ¢* € S, then §* = {¢*} and

S5 ={q€S" :(¢,q) — o < g(8)}, where g(0) := —In(1 — dexp(¢y))-

Proposition 4.3 applies and so for every ¢ > 0, it holds 7,(S5) — 1. In order to apply Corollary
4.4, we have to check (4.5). By the definition of Prokhorov metric, the ball B(g*,¢) consist of all
measures ¢ such that outside the e-ball B(z,,e) the measure ¢ has mass at most ¢, so that

B(q",e) ={q € P: q(B(xo,¢)) > 1 —¢}.

Therefore, we have to show the following: for every € > 0, there exists § > 0 such that if a measure
q is such that (¢, q) — ¢, < g(6), then it must hold that q(B(a;o,e)) >1—e¢. Let € > 0 be fixed. By
Assumption 4.6, there exists 6, = do(¢) > 0 so that {z : ¢(z) — ¢o < do} C B(xo,e) =: B. Take §
such that ¢g(d)/d, < €. Suppose now that the measure ¢ satisfies (¢, q) — ¢, < g(d). Then

90) = (00) = b0 = [ (0=00)d0> [ (6= 000> 0,01~ a(B)).

whence ¢(B) > 1—g¢(6)/d, =1 — . By Corollary 4.4, 7, = 0.

Consider the case A = 0. Take f,(q) = f(q) = (e~?,q). Since ¢ is continuous, then f is
continuous. The uniform convergence is trivial and Proposition 4.3 applies. As previously, S* =
{¢*}. We now have

Si={qeS:(e?q)>e?-6}={qeS: (w,q) >w,— 5}, w,:=e %.

Observe that Assumption 4.6 implies that the same holds for w: for every € > 0 small enough there
exist § > 0 so that {z : w(x) —w, < 6} C B(xz,,€). Hence, as before, (4.5) holds, and so 7, = 0g~.
Thanks to Corollary 3.2, the convergence 7, = d4+ implies that all the assumptions of Theorem
3.1 are fulfilled and so the convergence (3.1) holds and the limit process is such that with the limit
only the fittest genotype survives.

For the convergence @), = 04+, we apply Theorem 3.4 and Corollary 3.2: when A € (0,1), then
w =1, and so @, = 04+. When A = 0, then w, = w = e~?. Since ¢ is bounded, then w is bounded
away from 0. Recall that r : P — P is as follows r4(A) = (w,q)~! [, wdq. Thus r¢ = 6, = ¢*.
Since T = d4+, it holds that @ = ar-l = (5Tq* = 0+ O
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5. Dirichlet process priors

In this section we consider the Dirichlet process priors as follows: m, is the distribution of the
Dirichlet process D(ay,), where oy, is a finite measure on B(X) (the base measure). Recall that a
random measure P on (X, B(X)) possesses a Dirichlet process distribution D(«y,), when for every
finite measurable partition Ay, ..., A of X,

(P(Al), ce ,P(Ak)) ~ Dir(k; Ozn(Al), ey ozn(Ak)),

where Dir(k; (A1), ..., an(A)) stands for the k-dimensional Dirichlet distribution with param-
eters (o (A1), ...,0n(Ag)). As it is common, we write m, := a,(X) for the total mass of the
base measure, and define a probability measure &, := a,/m,. In what follows, we assume that
ay is fixed and independent of n, thus &, = &, but m,, depends on n, and is typically increasing
in n. We also use the parallel notation DP(m,,&). Since for any A € B(X), E[P(A)] = a(A)

and Var[P(A)] = w, we see that the bigger m,,, the more is the process concentrated on
its mean &. Therefore increasing m,, means increasing the influence of the prior. Considering the
Dirichlet process as a random element on a probability space (2, F,P), i.e. P:Q — P, we define
the measure 7, as its distribution m,(E) := P(P € E), E € B(P). We shall refer to that prior as

the Dirichlet process prior DP(a,,) or DP(m,, &) (see equation (1.2)).

5.1. Fized mutation probability and fixed fitness (A = 0). Let us now consider the case where m,, =
C

c¢-n where ¢ > 0. Recall that ¢ determines the mutation probability 7. We assume that the
support of & is X, and then also the support of 7, is P. Recall that in this case the fitness
function (1.7) is w(z) = e~?(®*), where ¢ is nonnegative and continuous, (hence bounded when X is
compact). We also assume the existence of z, such that ¢(z,) = infcx ¢(x) =: ¢,. It means that
w(x,) = sup,ey w(z). For the time being, z, need not to be unique; sometimes the uniqueness is
needed, and then we specify it later.

By Theorem 3.1 and Corollary 3.2, to prove convergence of P,, we just need to prove convergence
of T, (which was defined in (2.6)). The main idea is to prove that the sequence 7,, satisfies a LDP
with a certain rate function I(¢q) (whence the need of compactness which is a usual assumption in
large deviations theory). The rate function can be written as I(q) = supy ep F(¢') — F(q). The
expression of F' is different in the case A = 0 and A > 0, but in both cases we prove that if w has
a unique maximizer, so has F. Then I(q) is positive, but for one measure ¢* for which I(¢*) = 0
and from the LDP we get convergence of 7, to d4«. The details are rather lengthy and have been
placed in Section 6.

In what follows, for any measurable positive function f, we shall write (w, f) = [, wfda instead
duy

of using the cumbersome notation (w, py) where 42 = f.

Lemma 5.1. If the following inequality holds:

w(z,) _ 1+¢
————a(dx) > —— 5.1
| e atan) > (5.1)
then there exists only one 6 > wc(fi) such that
x) = S — (5.2)

(e )
is a probability density with respect to &. This unique 0 satisfies the (implicit) equation 0 = (w, f).

Proof: Clearly f(x) > 0 if and only if § > % =: 6,. Denoting f by fy, we see that § — [, foda
is continuous and strictly decreasing. Hence, there exists at most one 6 such that fy is a probability
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density. Such 6 exists, if [}, fg,d@ > 1, which is equivalent to (5.1). To see that 6 = (w, f), observe
that, when fy is a probability density,
f w foda

w
= ]_ _ — d7 = ]_
c /X ( +c 0 )f9 a +c 7 ,
which is possible only if 0 = (w, fy). O

It turns out that the inequality (5.1) is crucial. It does not hold, when w has a very sharp
peak around its maximum value or & puts very little mass around the maximum of w. Hence (5.1)
somehow characterizes w as well as a. Observe that when (5.1) fails, then a(w=!(w(z,)) = 0; in
particular, & cannot have an atom at x whenever w(x) = w(z,).

In order to state and prove our main results we define two subsets of P, namely

Pri={qeP:a<kq}, P,={¢ePi:q<Ka}.
Note that, ¢ € P, if and only if there exists a measurable function h such that ¢(h > 0) = 1 and
da/dg = h. In this case ¢(E) = 0 if and only if @(F) = 0; moreover dg/da = 1/h.

We will see that the asymptotic distribution has a different shape according to whether or not
equation (5.1) holds. On the one hand, when (5.1) holds we have a probability density given by
equation (5.2) and we denote by ¢* the corresponding measure; clearly ¢* € Py. On the other hand,
when (5.1) fails, suppose that x, is one of the absolute maxima of w (right now, we do not assume
Z, to be unique), then a(x,) = 0; since (5.1) fails, it holds

,8::/ fda <1, where f:=
X
and, in this case, we define the measure

¢ = Bq" + (1 - B)da,, (5.4)
where ¢ has density 87! f (with respect to @); we shall argue in Section 6 (after (6.3)) that in this
case ¢* € P1 \ P,.

Our goal is to prove that if x, is the unique maximum for w then 7, = d4«. Recall that in our
case

cw(x,)

(14 ¢)(w(w,) — w(x)) (5.3)

_ 1 n 1 1
wlB) = 5 [ . m(da) = - [ explnln (. 0)ma(da) = - [ explmaGla)im(da),
Zn JE Zn JE Zn JE
(5.5)
where G(q) := 1In((w,q)) and m, = ¢-n. When w is bounded and continuous, then G is a

continuous function on P. We use the following theorem:

Theorem 5.2. (Feng, 2010, Corollary 9.3) Let X be compact, G : P — R be a continuous function,
and let m, be the DP(my, &)-prior. Define the sequence of measures

Fulddg) = - explmaGa) ma(dg).

n
The sequence satisfies a Large Deviation Principle (in short LDP) on the space P as n tends to
infinity, with speed m, ' and rate function
I(q) = u;;)[G(q’) — D(allq")] - (G(q) — D(allq))
LS
where D(a|q) is defined in equation (3.5).

Note that the following theorem holds not only with the weights w as in (1.7) but also for general
continuous (hence bounded), non negative weights.

Theorem 5.3. Let X' be compact and let x, be the unique mazimum for w If (5.1) holds, define q*
as the measure fda, where f is as in (5.2); otherwise define ¢* as in (5.4). Let r¢« be the probability

measure defined on B(X), such that re-(A) < [, wdg*, for all A € B(X). Then
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(1) 7 = g5
(2) the limit process of P, (in the sense of (3.1)) is an i.i.d. process where X; ~ rg«;

(3) Qn = 0r -
See Section 6 for the proof.

Ezample 5.4. Take X = [0,1], x, = 0.3, & — Lebesgue measure and ¢(x) = |x — z,|P. Then (5.1))

holds, if
1 |z—0.3|P
e c+1
_— > . .
/0 <€|$_0'3‘p — 1>d$ - < (5.6)

When c is sufficiently big and p is small enough and, i.e. p < p*(c) (for instance p(1) ~ 0.2), then
(5.6) fails.
When p > p* (so that (5.6) holds), then there exists 6 € [

Trer 1 w(zo) = 1) so that

e—lz—03P | —
flx) = c(l +c— T)
would integrate to 1 over [0, 1]. Then r,« has density
w(z)f(xr) cexp|—|z — 0.3|P] B c
0 01 +c) —exp[—|z — 0.3[P] (1 +c)fele—03P —1
Thus, when n is big enough and Xy,..., X, ~ P,, then X1,..., X, are approximately i.i.d. with

density f*.
When p < p* ((5.6) fails), then # =6, = 1/(c + 1) and so the function f in (5.2) is

— f*(2).

1
f@) = = (1-ewl-le—0ap]) ", 6= /0 fla)dz < 1.
Thus
f@w(a) ¢
R = ().

Hence the measure 74+ is such that

re-(A) = /Afa(x)da: + (1= B)(1+¢)do3(A),

i.e. it has absolutely continuous part with density f¢ (integrating up to 5(1+ ¢) — ¢) and atom 0.3
with mass (1 — 8)(1 + ¢). Thus, when n is big enough and X,...,X,, ~ P,, then Xy,...,X,, are
approximately i.i.d. with measure 7.

5.2. The case X € (0,1). The authors in Lember and Watkins (2022) consider also the case when
T, is the DP(n'~* &)-prior and the fitness function is as in (1.7), i.e. w, = exp[— (m)] A e (0,1).
Thus the mutation probability is (1 +n*)"! — 0. When X is finite, then in this case the limit
process is again an i.i.d process with some measure ¢* that differs from the measures ry+ in the case
A = 0. Somehow surprisingly, the limit measure is independent of X\. We still assume the existence
of x, such that ¢(z,) = infrex ¢(z) =: @0, so that w(z,) = sup,cr w(x).

We now take 7, as DP(c-n'~*, a)-prior. Then the mutation probability is ¢/(n* + ¢) and we
need to study the measure 7,, namely

Tl(B) = 5 / ()" (da) = [E expln In(wn, g)]ma (dg)

1 ’ 1 (5.7)
= Z /Eexp[nl—)\(n)\ In(wn, q))]mn(dg) = Z—n /Eexp[mn - G (q)]mn(dq)
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where m,, = c-n!™* and Gy (q) := L - n* In(wy, ¢) = L - In ((wy, q>"k). We see that G,, depends on
n, and so Theorem 5.2 does not immediately apply. On the other hand, when ¢ is bounded, then
by Proposition 4.1
(wn, @)™ = exp[— (6, )]
and the convergence is uniform in ¢ € P. Since ¢ — exp|[—(¢p,q)] is bounded, it follows that
Gn(q) — G(q) == —%((ﬁ, g) uniformly.
The following result is the analogous of Lemma 5.1; the proof is similar and is left to the reader.

Lemma 5.5. Consider the bounded function ¢ : X — [0,00) and define ¢, := inf, ¢p(x). If the
following inequality holds:

1 1
/X e COES (5.8)
then there exists one 0 € [¢o, ¢o + | so that
c
flx) = o) +o—0 (5.9)

is a probability density with respect to &, and then 0 = (¢, f) = [} ¢(x) f(z)a(dx).

Again, when (5.8) fails, then a({z: ¢(z) = ¢o}) = 0. As in the previous case, the limit distribu-
tion takes two completely different shapes according to whether or not equation (5.8) holds. If it
holds we have a probability density given by (5.9) and we denote by ¢* the corresponding measure;
clearly ¢* € Py. If not, consider z, such that ¢(z,) = ¢o,

f@) = s P ::/dea <1, (5.10)

and define
¢ = Bq" + (1 = B)éz,, (5.11)
where ¢® has density 5! f with respect to @ and ¢(z,) = ¢,. Since f > 0 everywhere (due to the
boundedness of ¢), it follows ¢* € Py \ P,. Observe that ¢* is independent of A. Hence, under (5.8),
it has density (5.9) with respect to @. Otherwise the measure ¢* has atom z, that has mass (1 — /),
where 3 is defined as in (5.10).
The following theorem generalizes Theorem 5.2 (see Section 6.2 for the details of the proof).

Theorem 5.6. Let X be compact, G, G, : P — R be continuous functions that converge uniformly:
sup, |Gn(q) — G(q)| = 0, and let m, be DP(my,&)-prior. Define the sequence of measures

Fuldg) = - explmaGa(a))ma(dg).

n
The sequence satisfies a LDP on the space P as n tends to infinity, with speed m,* and rate function

I(q) = q}él};[G(q/) — D(alld)] = (G(q) — D(allg))-

The following is the analog of Theorem 5.3 in the case A € (0,1).

Theorem 5.7. Let X be compact and ¢ continuous. Assume that x, is the unique mazximum of
w. If (5.8) holds, define ¢* as the measure fda, where f is as in (5.9); otherwise define ¢* as in
(5.11). Then

1) Ty = g+

) the limit process of P, (in the sense of (3.1)) is an i.i.d. process where X; ~ q*;

1
(
(2

(3) Qn = dg-.

The proof can be found in Section 6.
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Example 5.8. Take X = [0,1], z, = 0.3, & — Lebesgue measure and ¢(x) = |z — z,|P. Then (5.8)
holds, if

1
1
/ |z — 0| Pda > —. (5.12)
0 C
When it is so then limit process is iid process, X1, Xo,... where X; has density
f(@) . 0<h<c.

T r—z P tc—0

Otherwise X1, X, ... is iid process with

1
P(X; € A) = c/ |z — xo| Pda + (1 — 5)d,,(A), where g = c/ |z — xo| Pda.
A 0

5.3. The case A > 1. In the case A > 1 we can treat separately the cases A =1 and A > 1. The
first is a special case of a constant sequence of priors, whence Theorem 4.2(1) applies where 7 is
the DP(c, ).
Theorem 5.9. Let the fitness function be as in (1.7) where ¢ is non-negative, measurable and
bounded and suppose that w, is the DP(cn'™, &) with A > 1. Then

(1) 71y, = 6x where X ~ a;

(2) the limit process of P, (in the sense of (3.1)) is (X, X,..., X,...) where X ~ &;

(3) if in addition X is compact then Q, = dx where X ~ a.

6. Proofs

6.1. The case A = 0. In this section we collect all the technical results that we need to prove the
main theorems of Section 5.1. Recall that P stands for the set of all probability measures on B(&X’)
and remember the definitions

Pri={qeP:a<kq}, P,:={qePi:q<Kal.
Thus P, C P1. We define the objective function F' on P; as follows:

F(q) == In(w, q) — eD(allq),
where the relative entropy D(a||q) is defined by equation ). We now observe that on the set P,,

F(q) —ln<w,g)+c/ Ingda, where g¢g= and (w,g) —/ wgda.
X X

Indeed, ¢ € P, if and only if there exists a measurable function h such that ¢(h > 0) = 1 and
da/dg = h. In this case ¢(E) = 0 if and only if a(E) = 0; moreover dg/da = 1/h. It follows that

when ¢ € Py then
1
D(allq) :/ In-da = —/ In gda.
x 9 x
Therefore, if ¢ € Py, then

F(q)zln(/){wdq)—c/){lnhddzln(/){wgd@)—l—c/)(lngd&.

When ¢ € P,, in order to stress the dependence of F(q) on g = dg/da, with a slight abuse of
notation, we will write F'(g) instead of F'(gq).

In what follows, we are interested in maximizing F(q) over P; and finding the argmax, when it
exists. We split the maximization problem into two parts: maximizing over P, and P; \ P,. On P,,
it holds F'(q) = F(g), where g is the density of ¢ with respect to @. Hence

sup F(q) < sup F(g),
q€Po geEF

(3.5
dg
da
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where F is the set of all probability densities with respect to &. Here there is an inequality, because
the definition of P, implies that suppg = X, but F is the set of all probability densities. We start
with maximizing F' over F.

6.1.1. Mazimizing F' over F, when inequality (5.1) holds. We now show that under (5.1) the function
f asin (5.2) is the unique solution of the above-stated maximization problem. Observe that F'(f) <

oo. Indeed, since {7y < flz) < W then In f(x) is bounded from below; moreover In f(z) <
et =%~
flz) = 1.

Lemma 6.1. If (5.1) holds, then sup,cx F'(g) = F(f) and F(g) < F(f) when g # f, where f is
given by (5.2).

Proof: Let f be the density (5.2). It suffices to show that for any other g € F such that g # f
o-a.8.

F(f)— F(9) :1n9+c/

0
lnfdd—lné?'—c/ Ingdad=In— —c lngdo_¢>0,
X X

0’ x
where 6/ = (w, g). When [ v Ingda = —oo, then the strict inequality holds, otherwise observe that
all integrals above are finite and since

g._  1l+e¢ o’
=da = (1 — >,
/X f c O(c+1)
by Jensen inequality we get

—o [ wfaas om[FEE (- o L))

where the strict inequality follows from assumption f # g & - a.s.. Therefore, it suffices to show
that 0 o
1+4+c¢c c
g~ [—(1- )| =0
B T R O(c+1) -
The latter is equivalent to

ln[lic(1‘9<ci1>)]0‘mgf§° - [lic(l‘e@e—;l))]c'ggl' o

Since wc(f‘l’) <0 =(w,f) <w(x,), and 8 = (w, g) < w(x,), it holds that

/
< - wiwo) _ 1.
T O(c+1) T w(x,)
Denoting 0(%1) =: 1 — «, we obtain that the right hand side inequality in (6.1) is
1
[(1 + f)oz]c(c%— Nl-a)<1
c
and this holds by Proposition 6.2, proven below. ]
Proposition 6.2.
1+ 2)(1 + 1/2)%a"(1 - ):L 6.2
(L 2)(1 4 1/2)7a"(1 - a) (6.2
Proof: Fix a € (0,1). Then z, = 1%, attains the maximum of

u(z) :=(1+2x)(1+1/x)%a”
over [0,00). To see that observe: lim, o u(z) = 0, limg_,o u(x) = 1 and

u'(z) = (Inu(z))u(z) = (In(1 + 1/z) + Ina)u(z),
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so that z,, is the only stationary point of the function u(z). Plugging z, into the left hand side of
(6.2), we obtain
(I+20)1 4+ 1/z4)% 0™ (1 —a) = 1.
O

6.1.2. Mazimizing F' over F, when inequality (5.1) fails. Let x, be such that w(x,) = sup, w(z) =:
w. Right now, we do not assume z, to be unique. Since (5.1) fails, we define 3, f and ¢* as in (5.3)
and (5.4). Clearly

c w

(w,q") = (w, f) + (1 = B)w = @ (B - 1+C+1—6): o = b (6.3)

recall that 6, was defined in the proof of Lemma 5.1. Observe that ¢* € Py \ P,. Indeed, since
(5.1) fails, then 0 = a(w~!(w)) > a(z,) while ¢*(z,) > 0. On the other hand, since f(z) > 0
whenever x ¢ w™!(w), it follows that ¢*(E) = 0 implies ¢*(E) = 0 whence a(E) = 0. In this case
da/dg* = lx\(4,}/f- Now, according to (6.1)

F(q*) =In0, + c/ In fda. (6.4)
X

Lemma 6.3. Let (5.1) fail and g € F. Then F(g) < F(¢*), where F(q*) is defined as in (6.1).

Proof: Observe that F'(q*) is independent of the choice of z,. The proof is the exactly same as
that of Lemma 6.1. The Jensen inequality is an equality, when f/g is constant a-a.s.. In our case
it means ¢ = B~ f. Note that

— c w c+1
1n(w(5—1—+c))—(c+1)1n5<1n(1+c) & Bl4c)—c<pt
and for § < 1 the L.H.S. holds. Thus

F(g)=In((w, f)) —Inpg + c/Xlnfda —clnf = (0(8 -

c
1+¢

) —(c—i—l)lnﬂ—i—c/xlnfda

< ln(lic) +C/Xlnfd07=F(q*)-

6.1.3. Mazimizing F over Py \ P,, when inequality (5.1) holds. Let f be the density (5.2).
Lemma 6.4. Let g € Py \ Po. Then F(q) < F(f).

Proof: Let h = ‘é—g‘. Let g(h > 0) =: p1; thus g(h = 0) =1 — 1. Since ¢ € Py, 1 < 1, because
otherwise 1/h would be a density. Clearly 51 > 0. Let g := 1/h. Thus ¢(g = o0) > 0, but
a(g = o0) = a(h =0) = 0. For any Borel set B

/gda:/ gda:/ 1hdq:/ dg =q(Bn{h > 0}).
B Bn{h>0} Bn{h>0} h Bn{h>0}

4(B) = /B gda + g({h = 0} N B). (6.5)

Whence

We also get that

/ gda = q(h > 0) = b, / wdg = / wgda = / wgda,
X {h>0} {h>0} X

because &(h = 0) = 0 and so

0 = (w,q) = / wgda —I—/ wdg < / wgda +w(1 - B1) = (w,g) +w(l — B1), (6.6)
(h>0} {h=0} x
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where the equality holds if and only if ¢(h = 0) = ¢(h = 0, w = w) (recall that g(h = 0) =1 — f31).
By equation (6.1),

F(q) = n[{w, q)] — C/X Inhda =In¢ + C/X In gda. (6.7)

Therefore, it suffices to prove that

F(f)—F(q)zlnH—f—c/lnfda—ln@'—c/lngdozzlne—c/lngda>0.
x o' x f

X
The proof follows the steps of Lemma 6.1. In this case
g.. _l+c (w, g)
Jda = — .
/Xf a= (- ) (6.8)
so that, after using the Jensen inequality, instead of the inequality (6.1), now we have
1+¢ (w,g) \1¢¢
— < 1. .
(B3 61 + ))} g = (6.9)
To see that (6.9) holds, define
- (w,9)
= 51 (1 T C) .
Since (w, g) < wpP; and O(1 4 ¢) > w, it holds that a € [0, 31]. On the other hand, by (6.6)
o’ , (1 —
o<l ol 5 < (- a)(1+0)+ (14001 — 1) = (1+6)(1 - a).
Hence

e (s, - Ewﬂ))r(z S(+a)(1+ )0 -a) <1,

where the last inequality comes from Proposition 6.2. This proves the strict inequality if the Jensen
inequality is strict.

Since [, gda = B < 1, we obtain that the Jensen inequality is an equality if and only if
f= 5;19; in this case by (6.6), since (w, g) = B1{w, f) = 516, we have 8/ < 0(p1 + (1 — ﬁl)%) and
JxIn$da =1In(B1) so that

lng - c/ In fda > —1In(f1 + (1 — Bl)%) —clnp>-In(Bi+1—-p51)1+¢c) —clnpy >0,

because for every ¢ > 0, it holds

Bi(br+ (1= pB1)(1+¢) =Bi(1 —cbi+c¢) <1.

6.1.4. Mazimizing F over Py \ P,, when inequality (5.1) fails.

Lemma 6.5. Assume that x, is unique. Let g € P1\P, and q # q*, where ¢* is defined as in (5.4).
Then F(q) < F(¢*).

Proof: We know that, since (5.1) fails, then @(z,) = 0, whence ¢* € P; \ P, and since z, is unique,
the construction (5.4) uniquely defines ¢* as well. We have to prove

F(¢*) — F(q) n—c/ln =da > 0, (6.10)
where

w da

00: s hziqv g:h_17 /81:/ gd@a 0/:<'U},q> < <wag>+(1_/81)w
X
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and f is as in (5.3). Observe [, fda == fw.f) ’f>
I. Since now 6,(1 + ¢) = w, from (6.8) we get

/X %do‘z - %(51 - <“;U_g>) (6.11)

and with o = 31 — %—lm and as in the proof of Lemma 6.4 we obtain that (6.9) holds.

When the Jensen inequality is strict, there is nothing to prove. Observe that the Jensen inequality
is an equality if and only if g = %1 f @-a.s. So, when 8 = (31, it means that f = g. This implies that
the inequality 6" < (w, ¢g) + (1 — p1)w = (w, f) + (1 — f)w = 6, must be strict. Indeed, otherwise by
(6.6),q(h =0) = q(h =0, w =w) = 1—B1 but w™'(w) = {x,}, thus q(z,) = 151 = 1—5 = ¢*(z,)
whence ¢ = ¢*. But when 0’ < 6,, and g = f, then (6.10) trivially holds.

Let us now consider the case 81 # 8 and g = By f a-almost surely. In this case

B

+ 15c = 11 Asgain, we follow the steps of Lemma

(w,9) = SHwf) = 20~ )
so that
, L B ¢  _,B(l+c)—pic 0o B
9§<w’g>+<1_61)w_w(l_ﬁl+0)_w( B(1+c) ) lnﬁ’zlnﬂ(1+c)—ﬂ1c'
Now 0, 5 3
g 1
ln@—c lnfda>1n6(1+c—)_6lc clnﬁ>0

To see that the last inequality holds note that it is equivalent to

B> BHB(L + ¢) — Bic).
The function 8 — BT — B¢(B(1 + ¢) — Bic) is strictly positive at 7 and at 1 (both statements

hold for any /31 € [0,1] and ¢ > 0). The function has unique mlnlmum at 31, where it equals 0 and
hence it is strictly positive elsewhere. ([l

6.1.5. Proof of the main theorem when A = 0.

Proof of Theorem 5.5: (1) For any q € P1, 1 In((w, q)) — D(alq) = 2F(q). Since for ¢ & Py we
have D(a||q) = oo, then
1 i 1 1,
sup |~ In({w, q)) — D(alla)| = sup ~F(q) = ~F(¢").
qepP € qeP1 € ¢

Indeed, if (5.1) holds, the last equality follows from Lemma 6.1 and Lemma 6.4. On the
other hand, if (5.1) fails, then we apply Lemma 6.3 and Lemma 6.5 instead. By assumption
Z, is unique so ¢* € Py is the unique maximizer of F(q). Therefore

I(q) = { (F(¢") = F(qg), ifqePy;

0, else.

The LDP implies: for any closed set C":
1

li — In7m,(C) < —inf I 6.12

imsup - In 7, (C) inf Iq (q)- (6.12)
By Lemma 6.2.13 in Dembo and Zeitouni (2010),

D(allq) = sup[{g, @) — In{e?, q)].

9€Cy

For every g, the function ¢ — (g, @) —In(e?, q) is continuous and so their supremum D(&/|-)

is lower semicontinuous. Therefore F'is a upper semicontinuous function. Now take C = B¢,
where B is an open ball (with respect to the Prokhorov metric) containing ¢*. Thus, C' is
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compact and so sup e F'(q) = F(qo) for some g, € C. Moreover we know that F'(q) < F(¢*)
for every q # ¢*, in particular F'(q,) < F(q*) since ¢* ¢ C. So we have shown that

sup F(q) < F(q%). (6.13)
q€C
From (6.13) we have inf,ec I(g) > 0 and so from (6.12), it follows that 7,(C) — 0 expo-
nentially fast. This means 7, = 04
(2) When A =0, w, = w and so 1y, = 74. By Theorem 3.1 and Corollary 3.2, the limit process
X1, Xo,... exists and it is the i.i.d process, where X; ~ 74«. When (5.1) holds, then

1 _
ne(d) = o [ w@@ats), AeB()
where f is as in (5.2). When (5.1) fails, then (recall (6.3))

() = o ([ wl@nf@)ae) + (1= Bulan)d (4), A BE),

where f is as in (5.3) and 8 = [,, fda. Since 6, w(x") , we see that when (5.1) fails then
a({z: w(r) = w(x,)}) = 0, hence the proportion of :L'o types in the limit population equals

re({o}) = (1= B)(1 + ¢).

(3) The convergence of @, follows from Theorem 3.4.

0

6.2. The case X € (0,1). This section contains the technical result that we need to prove the main
theorems of Section 5.2.

6.2.1. A generalization of Theorem 5.2. In Section 5.2, we stated Theorem 5.6 which is a general-
ization of Theorem 5.2 for uniform convergence. Our ﬁrst task now is to prove this theorem. The
proof relies on Theorems 6.6, 6.7 and 6.8 below.

Theorem 6.6. (Feng, 2010, Theorem 9.2) Assume X is compact. Then 7, satisfies the LDP with
speed m; 't and rate function H(q) = D(al|q).

Here the rate function H(q) equals D(@||q). As argued in the proof of Theorem 5.3, D(&||-) is
lower semicontinuous and so the level set {q : D(al|q) < a} is closed for every a > 0. Recall that
a rate function is good if all level sets are compact; hence if X is compact, then the rate function

H(q) := D(allq) is good.

Theorem 6.7. (Varadhan lemma, Feng, 2010, Theorem B.1) Assume X is compact and 7, satisfies
the LDP with speed m,, and good rate function H. Let G, and G be a family of continuous functions
on P satisfying sup, |Gn(q) — G(q)| — 0 Then

il [ explm, - Gala)lmalde) = sup (Glo) - H(a). (6.14)
P q

nmn

Theorem 6.8. (Feng, 2010, Theorem B.6)) Assume X is compact and T, is such that
o . N S
%1_1)1(1) lim sgp p— In7,(B(g,9)) = %1_1}1(1) lim nﬁf p— In7,(B°(q,6)) = —I(q),

where B(q,0) == {p : d(p,q) <}, B°q,0) :={p : d(p,q) < 6} and I is a good rate function.
Then 7, satisfies the LDP with rate function I and speed m,*!
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Proof of Theorem 5.0: Since sup, |Grn(q) — G(q)] — 0, for every e1 > 0 there exists n1 so that
|Gn(q) — G(q)| < &1, whenever n > ny. Fix ¢ and 9 and take 6 > 0 so small |G(q) — G(p)| < &2 for
every p € B(q,d) =: B. Estimate

[ map < [ om0y < [ om0 i) = o (6O re ) ),
B B B

Then by Theorem 6.6

1
lim sup poo In (/ em"G"(p)ﬂn(dp)) < (G(q) + &1 + £2) + limsup (Inm,(B))

n n B n

< G(q) +¢e1+e2— inf H(p).
pEB
Similarly, with B® = B°(q,9),

liminfi In (/ em"G”(p)Fn(dp)) > (G(q) — €1 — &2) + liminf (Inm,(B°))

B n

n My
G —c1—¢e9— inf H .
(Q) 1 2 1 Bo (p>

v

Since
Zo= [ e dp),
P
by Theorem 6.7,
1
—1InZ, — sup (G(p) — H(p)).

Therefore

1
limsup — In 7, (B) < G(q) + €1 + €2 — inf H(p) —sup (G(p) — H(p))
n Mp peEB P

1
liminf — In7,(B°) > G(q) —e1 —e2 — inf H(p) —sup (G(p) — H(p))
n Mp peEB° D

Let § — 0. Then €2(0) goes to 0 and lim,, —inf,ep H(p) = —H(p), because —H is upper semi-
continuous and so

lim —inf H(p) = —H

lim —inf 1 (p) (q)

because —inf,cp(qs,) H(p) > —H(q) and so, taking &, — 0, liminf,, —inf,cp(4s,) H(p) > —H(q),
but when p, = ¢ is such that limsup,, —inf,cp(gs,) H(p) = limsup, —H(p,), then by USC, it
holds limsup,, —inf,ep, H(p) < —H(q). The same holds when B is replaced by B°.

Therefore

1
lim limsup — In 7, (B) < G(q) + &1 — H(q) —sup (G(p) — H(p))

1
lim lim inf — In 7, (B°) > G(q) — &1 — H(q) — sup (G(p) — H(p))
0—0 n My p

Since €1 was arbitrary, we see that the assumptions of Theorem 6.8 hold, therefore 7, satisfies the
LDP with speed m,, and rate function I. O

6.2.2. The objective function F'. We now define

F(q) = —(¢,q) —cH(q), q€Pr.
When g € Py, then 99 = g—g and then

F(q) = —/qugda—l—c/xlngda: —(qﬁ,q)%—c/xlngda:F(g).



1072 Daniela Bertacchi, Jiiri Lember and Fabio Zucca

6.2.3. Mazimizing F', when inequality (5.8) holds.

Lemma 6.9. Assume that (5.8) holds. Then F has a unique mazximizer over Pi, which is the
measure with density (5.9) with respect to a.

Proof: Let f be the density (5.9). Again, we split the maximization: over F and over P; \ Py. At
first, we show that for every g € F such that g # f a@-a.s., it holds

F(f)—F(g):—9+c/lnfdo_z—i—ﬁ'—c/lngddzﬁl—ﬁ—c/lngd&>0,
X X x f

where 0 = (¢, g). When [ v Ingda = —oo, then inequality strictly holds, otherwise observe that all
integrals above are finite and since
-0
/ 94a + c’
f c

—c/Xln %do’z > —1In {el_fﬂr,

where the strict inequality follows from assumption f # g & - a.s.. Therefore, it suffices to show
that the L.H.S. is nonnegative; to this aim, note that

by Jensen inequality we get

o —0

C

—0+cr:c(0’—0

9/—0—1n[9/ —ln[ +1Dzo.

& C

We now take ¢ € P1 \ Po. Let h = §2, g = 1/h, p1 = [,g9da = q(h > 0), § = (¢,q) >
(¢, 9) + do(1 — B1). As previously, we obtam via Jensen’s inequality

(<¢7g> + (C— 6)51)

Cc

F(f)—F(q):—9+c/ lnfdd—i—ﬁ'—c/lngd@Z@'—@—cln (6.15)
X X

and it remains to show that

(B0 =0y 00

Since (¢, g) < 0" — ¢o(1 — 1) and ¢ — § > —¢, we obtain that
In (<¢,g> + (C— 9),31) < n (9’ —+ (C— 9),31 — ¢o(1 — ﬁl)) < In (9’ + (C— 9),31 + (C— 9)(1 — 51))

C C C
0 —0 0 —0
)< .

<In(1+

C C

Now it remains to argue that at least one of the inequalities is strict. The Jensen inequality is an
equality only if 51 f = ¢ and in this case F(f) — F(q) =6 — 0 — cIn 3;. Since for g = 1 f, it holds
0" > 510 + ¢o(1 — 1) we obtain that 0/ — 60 > (1 — B1)(¢o — 0) > —c(1 — 1) > cln By, and so
F(f)—F(q)=6¢"—0—clnp; > 0. O

6.2.4. Mazimizing F', when inequality (5.8) fails. Remember the definition of ¢* given in equa-
tion (5.11). Now

(0,07) = (&, f) + (1 = B)do = c + ¢+ (1 — B)po = c + ¢ =: . (6.16)
Since (5.1) fails then @(z,) = 0, which in turn implies ¢* € Py, and then F(¢*) = —¢,+c [, In fda.
f

Lemma 6.10. Let (5.8) fail, z, be the unique minimizer of ¢. Then for every q € P1 such that
q # q*, it holds F(q) < F(q*).
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Proof: Again, we start with maximizing over F. Let g € F. Then, by Jensen Inequality

F(q*)—F(g)Z—%-l—c/xlnfdoz—i—ﬁ/—c/xlngda:9’—(q§0—|—c)—c/ ln%dd

X
Ql_d)o
C

29/—(¢)0—|—C)—Cln|: }ZO,
because for every x, x —1 > Inz. The Jensen inequality is an equality, when Sg = f and then

F(q¢*)— F(g) =0 —0,+ cInB. Then also §' = (¢, g) = ¢, f) = ¢/B + ¢, and, therefore,

F(q*)—F(g):0’—c—gbo—i—clnﬂ:c/ﬁ—i—(ﬁo—c—(ﬁo—i—clnﬁ:c(;—1)—cln;>0.

We now take ¢ € P;\Py. Let, again, h = 99 g =1/h, 3 = Jy9da, 8 = (¢,q) > (¢, 9)+do(1—P51)

q )
and 0, = ¢, + c¢. The inequality (6.15) now reads

Fla") = Fla) = 0o +c [ njda+d —c [ mgdaz0—g,—cm (L= G
x x ¢
and
; — %o 0/_ 01— — Qo 0/_ o 0/_00 0,_90
ln(w)gln( Pol Cﬁl) ¢51):1n(7c¢):1n(1+ )< ——.

The Jensen inequality is an equality when g = %f. When g = g1, then f =g and F(q¢*) — F(q) =
0 — (¢ + ¢). Since q # ¢*, it follows that 68’ > (¢, f) + (1 — 8)¢o = ¢ + ¢, and so F(¢*) > F(q)
(analogously as in the proof of Lemma 6.5). Consider now the case 1 # . Then

F(q¢") = F(q) =0 — (¢o+ )+ c(Inf —1nfy).

Since now
02 51/8(6. )+ (1= B1) = B /Blc + Bou) + 001 = 51) = She+ 6o
we obtain that F'(¢*) — F(q) > %c—i— o — (o +¢) — cln(%) = c(% —-1)— cln(%) > 0. O

6.2.5. Proof of the main theorem when X € (0,1).

Proof of Theorem 5.7: (1) The proof T, = 64 is exactly as in Theorem 5.3, just instead of
Theorem 5.2, Theorem 5.6 should be used.
(2) Note that wy(z) — 1 and sup,, |wy(z) — 1] = 1 —exp[—£%] — 0, since ¢ is continuous ¢ and
X compact. All assumptions of Corollary 3.2 are fulfilled with r, = ¢. By Theorem 3.1, the
limit process X1, Xo, ..., exists, and it is an i.i.d. process, where X; ~ ¢*.
(3) By Theorem 3.4, Q,, = 04+
]

6.2.6. Proof of the main theorem when A > 1.

Proof of Theorem 5.9: (1) The proof is similar to the proof of Theorem 4.2(2). Since 7, is the
DP(n'=*, &), according to Ghosal and van der Vaart (2017, Theorem 4.16), we have that
T, = 0x where X ~ @; let us denote the weak limit by 7. To overcome the fact that here
T, = 7 instead of m, = 7w, we make use of Lemma 4.5: this proves that 7,, = .
(2) It is not difficult to prove that P,(A; x --- x A4,) = &(A;N---NA,) which is the law of the
n-dimensional random vector (X, ..., X) where X ~ a.
(3) It is the same as in Theorem 4.2(2).
]
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