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Alicia Gómez-Pascual a,b,**,+, Talel Naccache c,+, Jin Xu d, Kourosh Hooshmand b, 
Asger Wretlind b, Martina Gabrielli e, Marta Tiffany Lombardo e,f, Liu Shi g, Noel J. Buckley h,i, 
Betty M. Tijms j, Stephanie J.B. Vos k, Mara ten Kate j, Sebastiaan Engelborghs l,m, 
Kristel Sleegers n,o, Giovanni B. Frisoni p,q, Anders Wallin r, Alberto Lleó s, Julius Popp t,u, 
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A B S T R A C T   

Background: Alzheimer’s disease (AD) is a neurodegenerative condition for which there is currently no available 
medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a 
phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI 
conversion to AD is needed. 
Method: Here, we propose a machine learning-based approach to detect the key metabolites and proteins 
involved in MCI progression to AD using data from the European Medical Information Framework for Alz-
heimer’s Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in 
multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only 
features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. 
Results: Multiclass models of metabolites highlighted nine features further validated in an independent cohort 
(0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the al-
gorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in 
vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 
mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to 
distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, 
alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. 
Conclusions: This omics integration approach highlighted a set of molecules associated with MCI conversion 
important in neuronal and glia inflammation pathways.   

1. Introduction 

Mild cognitive impairment (MCI) is defined as the symptomatic 
predementia stage characterized by objective impairment in cognition 
that does not interfere notably with activities of daily life [1]. It is 
estimated that over 15% of community dwellers have MCI. The preva-
lence of MCI increases with age and decreases with education and it is a 
heterogeneous and unstable condition [2]. MCI individuals who even-
tually progress to Alzheimer’s Disease (AD) diagnosis are classified as 
MCI converters (cMCI) while those who remain stable or improve are 
classified as MCI stable (sMCI). It has been reported that approximately 
38% of individuals with prevalent or incident MCI will revert back to a 
normal cognition diagnosis while 29% will progress to dementia [3]. A 
better characterization of the molecular mechanisms behind MCI con-
version to AD is necessary for an early detection of AD. Previous studies 
on MCI progression to AD analyzed data from different natures, specially 
cognition tests, demographic information, neuroimaging and cerebro-
spinal fluid biomarkers [4–9] using traditional statistics methods such as 
statistical tests, correlation and similar metrics [9] as well as models 
such as Cox regression [5,9] or Bayesian networks [10]. With the 
advancement of high-throughput sequencing technologies, it is possible 
the generation of large-scale data such as the genome, transcriptome, 
proteome, metabolome and lipidome, which can provide new insights 
into complex diseases such AD [11]. These measures are taken from 
biofluids such as plasma and cerebrospinal fluid, as structural and 
functional changes in the brain can be reflected in these fluids [12]. 
Recent studies on MCI progression are starting to incorporate omics 
data, including genomics [4,13], transcriptomics [13], proteomics [10, 
14] and metabolomics [15,16] data. This omics data have been analyzed 
in combination with imaging and clinical data through machine learning 
(ML) algorithms such as lasso regression [4,10,17], random forest [18], 
support vector machines (SVM) [4,17] as well as deep learning algo-
rithms [4,6,8]. The main advantage of multi-omics data is that it can be 
integrated to study the complex interplay between different biological 
layers (i.e. transcriptomics, metabolomics, proteomics). To this end, 
different strategies for multi-omics data integration has been proposed, 
including (1) early concatenation, commonly used because of its 
simplicity, it consists of concatenation of every datasets into a single 
large matrix; (2) intermediate integration, where datasets are projected 
into a latent space transformed or mapped to reduce their complexity, 
either independently or jointly; (3) late integration, where each omic is 
analyzed separately and most relevant features are integrated afterward 

[19]. Most of the studies of MCI progression to AD analyzed a single type 
of omic. Therefore, the integration of multi-omics data is poorly 
explored in the field of study of MCI progression to AD [13]. 

Here, we analyzed plasma proteomics and metabolomics data from 
healthy controls, MCI and AD participants from the European Medical 
Information Framework for Alzheimer’s Disease Multimodal Biomarker 
Discovery Study (EMIF-AD MBD) [20] in order to identify key pathways 
involved in the MCI conversion to AD. To the best of our knowledge, this 
is the second study where both, proteomics and metabolomics data is 
analyzed to investigate the progression from MCI to AD. The first study, 
published by François, M. et al. (2022) [21], was carried out on a small 
cohort (NC = 40, MCI = 20, AD = 20) with only untargeted proteomics 
and untargeted metabolomics data. The present research focuses on the 
EMIF-AD study cohort made up of 800 participants with targeted and 
untargeted metabolomic and proteomic data from plasma samples. In 
our study, two research questions were proposed. First, we wanted to 
identify the most reliable proteins and metabolites that differentiate 
between controls, MCI and AD subjects. To this end, proteins and me-
tabolites were analyzed separately with four ML algorithms and 
repeated features were kept for downstream analysis. Secondly, we 
proposed a more specific research question: which proteins and me-
tabolites are most relevant in differentiating between sMCI and cMCI 
donors? To this end, paired proteomics and metabolomics data from 
MCI conversion participants with follow-up information were concate-
nated, which allowed us to capture inter-omics interactions not detected 
when evaluating each omic separately. To the best of our knowledge, 
this is the first study where paired proteomics and metabolomics data 
from MCI participants with follow-up information is analyzed. Although 
previous studies have investigated MCI progression to AD in MCI par-
ticipants with follow-up information, they analyzed omics different from 
proteomics and metabolomics [13]. 

Multiclass models of metabolites selected oleamide, an endocanna-
binoid, as a key metabolite to distinguish between controls, MCI and AD 
participants. Since another endocannabinoid, anandamide, was previ-
ously found in microglia cells [22], we investigated oleamide in the 
same cell type with in-vitro experiments and demonstrated that 
disease-associated microglia excreted oleamide in vesicles. Multiclass 
protein models did not show any proteins selected by the four algo-
rithms. Our MCI conversion models showed that Alpha-synuclein 
(SNCA), Properdin (CFP), Peptidase inhibitor 15 (PI15), pancreatic 
hormone (PPY), phospholipase A2 (PLA2G1B) and testis-expressed 
sequence 29 protein (TEX 29), not selected with multiclass models, 
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were extracted as the most confident features to distinguish between 
sMCI and cMCI. In summary, our results suggested pathways in MCI 
conversion to be associated with inflammation, sedation and neural 
degradation. 

2. Methods 

2.1. Participants from the EMIF-AD Multimodal biomarker discovery 
study 

This study employed data from the European Medical Information 
Framework for Alzheimer’s Disease Multimodal Biomarker Discovery 
Study (EMIF-AD MBD) [20]. It is a cross-cohort study consisting of 
collated data from 11 European cohorts that aims to discover novel 
diagnostic and prognostic markers for AD-type dementia by performing 
analyses in multiple biomarker modalities. The 11 cohorts included 
three multicenter studies and eight single centers (for more information, 
see Supplementary Table 1). For this study, a total of 230 participants 
with normal cognition (NC), 184 participants with AD-type dementia 
and 386 participants with MCI were included. The criteria to diagnose 
NC subjects was a normal performance on neuropsychological assess-
ment (within 1.5 SD of the average for age, gender and education). MCI 
subjects were diagnosed according to the criteria of Petersen [23] in 
nine cohorts and the criteria of Winblad et al. [24] in the other two 
cohorts. Finally, AD-type dementia was diagnosed according to the 
National Institute of Neurological and Communicative Disorders and 
Stroke–Alzheimer’s Disease and Related Disorders Association criteria 
(NINCDS-ADRDA) [25]. Of 386 MCI participants, 100 were later diag-
nosed with AD-type dementia (defined as cMCI), 219 remained as MCI 
(defined as sMCI) and 67 participants do not have this information 
available. The average clinical follow-up time for MCI participants was 
2.2 (SD 1.3) years. From all cohorts, available data on demographics, 
clinical information, neuropsychological testing, cognition and Aβ status 
data were gathered. In addition, targeted and untargeted metabolomic 
and proteomic analyses were performed on plasma. 

2.2. Metabolomics data acquisition and preprocessing 

Metabolomics data was acquired by Metabolon Inc. (Morrisville, NC, 
USA). The relative levels of 883 plasma metabolites were measured in 
fasting blood samples using three different mass spectrometry methods 
previously described by Kim M. et al. (2019) [26]. Area counts for each 
metabolite in each sample were extracted from the raw data. The 
extracted area counts were then normalized to correct for variation 
resulting from instrument inter-day tuning differences. After removing 
metabolites whose levels fall above 3 standard deviations of the mean 
value as well as metabolites with more than 50% missing data, 540 
metabolites were kept for downstream analysis. Remaining missing 
values were imputed using the k-nearest neighbour algorithm with k =
24 through the preProcess’ function (method = “knnImpute") from the 
caret R package (6.0–94 version) [27]. Subsequently, the metabolomics 
data were log10 transformed. 

2.3. Proteomics data acquisition and preprocessing 

Plasma protein levels were assessed in plasma using the SOMAscan 
assay platform (SomaLogic Inc.). This aptamer-based assay enabled the 
simultaneous measurement of up to 3630 proteins [28]. Samples were 
grouped and measured separately. Proteins with more than 20% of 
missing values were not detected in these datasets, therefore, all proteins 
were kept for downstream analysis. Remaining missing values were 
imputed using the k-nearest neighbour algorithm with k = 60 through 
the preProcess function (method = “knnImpute") from the caret 6.0–94 
R package. Subsequently, the proteomics data were log10 transformed. 
Batch effects were corrected separately for the validation cohort (the 
EDAR cohort) and the rest of the cohorts using the ‘ComBat’ function 

from the sva R package (3.46 version) [29]. 

2.4. Number of subjects for multiclass models and MCI conversion models 

Our aim was to discover the most relevant clinical characteristics, 
proteins and metabolites involved in two different tasks: (1) classifying 
samples into NC, MCI and AD donors and (2) distinguishing between 
sMCI and cMCI. In both approaches, clinical covariates were included in 
the models. Although 26 clinical covariates were selected, 14 of them 
were discarded because of a high percentage of missing values (>20%), 
including CSF markers, neuroimaging markers and cognition tests. The 
clinical variables maintained for downstream analysis included: years of 
education (Eduy), age, gender, amyloid status (CSF Aβ42/40 < 0.061 
determines abnormality), Aβ z-score, APOE dich, local p-Tau, local t- 
Tau, mini-mental state examination (MMSE), priority attention z-score, 
priority language z-score and priority memory immediate z-score. 

First, to identify the most relevant proteins and metabolites impli-
cated in the classification of NC, MCI and AD donors, proteins and me-
tabolites were treated separately. On the one hand, multiclass models of 
proteins were created using the levels of 3630 proteins and 12 clinical 
covariates as predictors. To create multiclass models of proteins, data 
from the EDAR cohort was reserved for validation purposes (NC = 21, 
MCI = 44, AD = 65) while data from the other cohorts was randomly 
split into train (NC = 147, MCI = 240, AD = 84) and test (NC = 62, MCI 
= 102, AD = 35) in 70/30 proportion. On the other hand, multiclass 
models for metabolites were created using as predictors the levels of 540 
metabolites and the same 12 clinical covariates. To create those models, 
the EDAR cohort was reserved for validation purposes (NC = 29, MCI =
18, AD = 32) and the remaining data was randomly split into train (NC 
= 119, MCI = 181, AD = 73) and test (NC = 51, MCI = 77, AD = 31) in 
70/30 proportion. Statistics of the clinical characteristics of this dataset 
have been previously published by Shi et al. [30]. Although subjects 
used for proteomics and metabolomics models are not identical, most of 
the samples overlap. Specifically, 508 samples have paired data, 103 
samples only have metabolomics and 292 only have proteomics. 

Then, MCI conversion models were created to specifically identify 
the key molecules to distinguish between sMCI and cMCI. To create MCI 
conversion models, 386 MCI participants were initially available in the 
EMIF-AD dataset. First, only MCI participants with follow-up informa-
tion were kept to create the models, leading to 319 MCI participants 
(cMCI = 100, sMCI = 219). Additionally, in the next step, only partic-
ipants with both proteomics and metabolomics data available were kept 
to create MCI conversion models, leading to 194 MCI participants with 
follow-up information and both proteomics and metabolomics data 
available (cMCI = 91, sMCI = 103). The descriptive statistics of clinical 
characteristics for this dataset are reported in Supplementary Table 2. 
To build MCI conversion models, clinical features (n = 12), proteomics 
(n = 3630) and metabolomics (n = 540) were concatenated in the same 
matrix. In this scenario, subjects from the EDAR cohort were not 
reserved for validation purposes since it did not include enough samples 
to this end (sMCI = 5, cMCI = 6). Instead, all MCI participants with 
follow-up information and paired metabolomics and proteomics data 
were used for the hyperparameter tuning of the models (sMCI = 103, 
cMCI = 91). 

2.5. Machine learning-based pipeline 

A machine learning-based pipeline was developed to create both 
multiclass models of proteins, multiclass models of metabolites and MCI 
conversion models, slightly adapted to account for each problem’s 
particularities. The caret R package functions (6.0–94 version) were 
used to deal with different ML algorithms and the typical ML tasks, 
including data preprocessing, model tuning, and performance evalua-
tion. Firstly, control parameters to train the models were defined in the 
‘trainControl’ function from the caret R package. For multiclass models, 
a 10-folds stratified cross-validation repeated three times was applied. 
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Instead, for MCI conversion models, a 3-folds stratified cross-validation 
repeated 10 times was applied since a low number of folds implies larger 
validation sets and lower variance across estimates for classifier per-
formance. Then, for multiclass models, imbalanced class distribution 
within cross-validation was dealt with a downsampling approach on the 
majority class. For MCI conversion models, classes were already quite 
balanced (sMCI = 103, cMCI = 91), therefore, class balancing was not of 
application. To create the models, four ML algorithms belonging to four 
different algorithm families were proposed: logistic regression (LR), 
random forest (RF), support vector machines (SVM) and multi-layer 
perceptron network (MLP). These algorithms are implemented within 
caret with the glmnet (glmnet library 4.1–8), rf (randomForest library 
4.7–11), svmLinear (kernlab library 0.9–32) and mlpWeightDecay 
(RSNNS library 0.4–17) packages, respectively. For each algorithm, 
hyperparameter tuning and model selection was performed using 
training samples and producing performance estimates based on cross- 
validation for each hyperparameter value. First, a hyperparameter 
grid was designed to explore a wide area of the hyperparameter space 
with large distances between successive values for each hyper-
parameter. It helps in focusing on a specific area of that space. After this 
area was selected, a more specific grid was designed only to cover that 
area. Balanced accuracy was used to select the best model within mul-
ticlass models to avoid biases introduced by imbalance between the 
different classes and the AUC (the Area Under the ROC curve) was used 
for MCI conversion models as it is best suited for binary classification 
tasks. To assess whether the MCI conversion binary classifier was 
actually learning, we used a binomial test to check whether the accuracy 
(AC) is higher than the no information rate (NIR) i.e., the proportion of 
elements from the majority class. The test is implemented in the con-
fusionMatrix method from caret. In addition, to evaluate classifiers 
performance for each class, precision recall curves were also created, 
appropriate for imbalance classes. These curves were built through the 
‘pr_curve’ function from the yardstick R package (1.3.0 version) [31]. 

2.6. Feature importance 

All the four algorithm families contributed to the final multiclass 
models of proteins and those of metabolites with the 20 most relevant 
features selected by their corresponding best model. Such relevance was 
assessed for all four algorithms with a permutation-based approach [32, 
33]. It is based on the assumption that if a variable is important, after 
permuting the values of this variable, the model’s performance will 
worsen. The larger the change in model performance, the more impor-
tant the variable will be. Thanks to being a model-agnostic method, it 
can be used within all algorithms and compare predictors’ relevance 
across models. Since the permutation feature importance relies on 
measurements of the model error, permutation was applied on unseen 
test data. The pipeline uses the ‘explain’ function followed by ‘mod-
el_parts’ function both from the DALEX R package (2.4.3 version) to 
estimate variable importance on the test set as a change in loss function 
(loss cross entropy in this case) after variable permutations. Each feature 
is permuted 10 times by default. After performing the permutation 
analysis within each technique, no bias towards uncorrelated features 
was detected in all the four cases. 

For MCI conversion models, the permutation-based approach was 
not of application since all of the MCI participants with follow-up in-
formation and both metabolomics and proteomics data available were 
used for the hyperparameter tuning and permutation feature importance 
requires estimates of model error produced on unseen examples. 
Therefore, model-specific methods were used instead through the ‘var-
Imp’ function from the caret R package. Finally, once detected the top 20 
most relevant features for each algorithm, the features selected in at 
least 3/4 algorithms were kept for downstream analysis. To demonstrate 
the reliability of the selected features, a logistic regression model is 
trained with selected features as predictors and tested with a validation 
cohort. 

2.7. Univariate analysis 

Selected molecules level distribution was pairwise compared be-
tween diagnostic groups with Wilcoxon test (two-side test) through the 
wilcox.test function from the stats R package (4.2.2. version). Differ-
ences in proteins or metabolites levels adjusting for age and sex cova-
riates were tested with an analysis of covariance (ANCOVA) using the 
‘aov’ function from the stats R package (4.2.2. version). 

2.8. Correlation network 

The features selected as relevant by at least three of the four algo-
rithms from MCI conversion models were included in a correlation 
network with MCI conversion as the target. Correlations were estimated 
using the ‘cor_auto’ function from the ‘qgraph’ R package (1.9.8 version) 
[34]. The correlation network was represented using the ‘qgraph’ 
function from this same package. 

2.9. Further studies for selected proteins 

The metabolites and proteins repeatedly selected were further 
studied. The metabolite selected by all the algorithms was further 
studied with in-vitro experiments (see Microglia in-vitro experiments 
section). Instead, proteins selected by all algorithms were further 
investigated in the literature to see if they had been previously associ-
ated with AD-phenotype. To this end, two different resources were used: 
1) a systematic review from Kiddle, S. J. et al. (2014) [35], where a list of 
21 published discovery or panel-based blood proteomics studies of AD 
was reviewed and 2) Agora database, a web application that hosts 
high-dimensional human transcriptomic, proteomic, and metabolomic 
evidence for whether or not genes are associated with Alzheimer’s dis-
ease (https://agora.adknowledgeportal.org/). 

2.10. Microglia in-vitro experiments 

2.10.1. Rodent microglial culture preparation and extracellular vesicles 
isolation 

Pure murine and rat primary microglia were obtained as established 
in Gabrielli et al. [36]. Independent experiments were performed as 
independent cell preparations and from those several replicates were 
collected. Microglia have been stimulated with 1:20 
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) from 
murine GM–CSF–transfected X63 cells [37]. GM-CSF is a member of the 
colony-stimulating factor superfamily that induces microglial prolifer-
ation, migration and upregulation of surface markers [38]. Supernatants 
have been cleared from cell debris before storing. Cells have been 
scraped in physiological solution, pelleted and stored in methanol. 
Extracellular vesicles (EVs) have been isolated through differential 
centrifugation from the cell supernatant upon 30 min ATP stimulation at 
110,000×g [39] and stored at − 80C◦. 

2.10.2. Isolation of EVs from the plasma of AD patient and control group 
Plasma samples were collected from five subjects with a diagnosis of 

Alzheimer’s disease (75.6 ± 2.7 years, 2/3 males/females ratio) and five 
healthy controls (65.6 ± 3.7 years, 3/2 males/females ratio). All par-
ticipants or their representatives provided informed written consent 
following the protocol approved by the Ethical Committee of Fonda-
zione Don Carlo Gnocchi, according to the declaration of Helsinki. In-
clusion criteria for AD considered: diagnosis of AD according to NIA-AA 
criteria; mild dementia stage as documented with a Clinical and De-
mentia Rating (CDR) scale score between 0.5 and 1; absence of psy-
chiatric or systemic illness. To have a global index of cognitive 
functioning, all subjects performed cognitive evaluation using the 
Montreal Cognitive Assessment test (MoCA). Human peripheral blood 
samples of each subject were collected in EDTA-treated tubes (BD 
Vacutainer, Becton Dickinson). To isolate the plasma, samples were 
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centrifuged at centrifugation at 1300g × 10 min for removing cells and 
then at 1800g × 10 min for the depletion of platelets. Plasma aliquots 
were anonymized, aliquoted and stored at − 80 ◦C in the biorepository of 
the Laboratory of Nanomedicine and Clinical Biophotonics of Fonda-
zione Don Carlo Gnocchi (Milan, Italy) until further use. 500 μl of 
plasma samples were then thawed and centrifuged at 10,000 g for 10 
min and then used for EVs isolation by size exclusion chromatography 
(SEC; qEV, Izon, Christchurch, New Zealand), following manufacturer’s 
instructions. Eluted fractions from 6 to 8 containing EVs in PBS were 
retained, added with 0.1% DMSO and stored at − 20 ◦C until further 
analysis. 

3. Results 

3.1. Machine learning models performance per data modality and 
algorithm 

Multiclass models were created to identify the key molecules that 
best distinguish amongst NC, MCI and AD individuals. To this end, four 
different ML algorithms were applied on plasma samples in two different 
scenarios: (1) metabolites and clinical covariates and (2) proteins and 
clinical covariates. For multiclass models of metabolites and clinical 
data, LR and RF showed the highest performance on the test set (0.819 
and 0.821 mean balanced accuracy, respectively) (see Supplementary 
Table 3). Then, SVM reported a slightly lower performance followed by 
MLP (0.773 and 0.747 mean balanced accuracy, respectively) (Supple-
mentary Table 3). Interestingly, a very similar trend was observed for 
multiclass models of proteins, where the number of variables is more 
than 6 times the number of variables in multiclass models of metabolites 
(3630 vs 540 features). LR reached the highest performance on the test 
(0.819 mean balanced accuracy) followed by RF (0.784), SVM (0.765) 
and finally MLP (0.718) (see Supplementary Table 3). Note that the LR is 
a linear model with L1 regularization and RF is naturally suited for high- 
dimensional problems due to its random choice of predictors when 
splitting trees within the forest. MLP is not specially prepared for this 
type of problems when the number of samples is low. This is not the case 
for SVM which, besides, it deals with high-dimensional problems in a 
natural way. However, the variability induced by the choice of kernel 
function may inject a high variability in its behaviour. 

For both metabolomics and proteomics approaches, experiments 
reported the AD class as showing the lowest precision rate for SVM and 
MLP algorithms (see Supplementary Fig. 1). This comes from a high 
proportion of false positives, mostly MCI participants classified as AD 
subjects. When comparing multiclass models performance using 
metabolomics with those using proteomics data, LR experiments re-
ported identical performance for the test set (0.819 and 0.819 test mean 
balanced accuracy for metabolites and proteins, respectively). On the 
other hand, RF performs better with metabolomics than with proteomics 
(0.821 vs 0.784 test mean balanced accuracy, respectively). 

The MCI conversion problem was also addressed by creating models 
from clinical and paired metabolomics and proteomics data from MCI 
participants with follow-up information. These models reported a mean 
AUC of 0.64 across the different algorithms (see Supplementary 
Table 4). Among them, RF stood out with the highest performance 
within cross-validation with a 0.66 AUC (P-value [Acc > NIR] < 0.0225). 
Nevertheless, all of the algorithms showed a very similar performance. 
The final hyperparameter grid used for each algorithm and data mo-
dality is available in Supplementary Table 5. 

3.2. Key molecules to classify NC, MCI and AD participants 

For multiclass models of metabolites and clinical variables, the top 
20 most relevant features were extracted per algorithm with a 
permutation-based approach (Supplementary Table 6). Then, the over-
lap between the top 20 most predictive clinical and molecular features of 
each algorithm was represented in a Venn Diagram for metabolites 

models (Fig. 1A). Only features selected by 3/4 algorithms were kept for 
downstream analysis since we considered them universal (i.e. not 
exclusive to a particular algorithm), suggesting more biological rele-
vance. Features selected by all algorithms in multiclass models of me-
tabolites included four clinical features (MMSE, priority attention z- 
score, priority language z-score and priority memory immediate z-score) 
and one metabolite, oleamide. Additionally, one clinical covariate and 
three metabolites were selected by 3/4 algorithms: Eduy (years of ed-
ucation), aspartate, serotonin and linoleamide. It is not surprising that 
oleamide and linoleamide were correlated since both molecules belong 
to the fatty acid primary amides, of which oleamide is the most explored 
member. At molecular level, both oleamide and linoleamide were clas-
sified as modulators of intracellular Ca2+ homeostasis via regulation of 
SERCA activity [40]. Additionally, both molecules are considered 
endogenous sleep-inducing lipids [41,42]. In the dataset of study, ole-
amide levels were detected to be increased in sMCI subjects compared to 
NC (Wilcoxon test P < 8.721 ⋅ 10− 10, W = 7793) and further increased in 
cMCI participants compared to sMCI (Wilcoxon test P < 2.696 ⋅ 10− 4, W 
= 4548) (Fig. 1C). However, oleamide levels decreased in AD donors 
compared to cMCI donors (Wilcoxon test P < 1.593 ⋅ 10− 8, W = 9640.5) 
and AD donors reached similar oleamide levels compared to NC donors. 
Changes in oleamide levels were significantly associated with diagnosis 
status after adjusting for age and sex covariates (ANCOVA P < 2 ⋅ 10− 16). 
These same models showed that sex had no influence on oleamide levels 
while age had a significant effect (ANCOVA P < 1.22 ⋅ 10− 8). 

To validate the molecules selected by 3/4 algorithms (five clinical 
covariates and four metabolites), these features were used as predictors 
in a final model, whose experimentation reported a very good perfor-
mance in both test and validation sets (0.845 and 0.726 mean balanced 
accuracy, respectively) (Table 1). The good mean balanced accuracy 
obtained in validation suggests these molecules are effective in dis-
tinguishing NC, MCI and AD participants within independent cohorts to 
those used in training. Finally, to demonstrate that metabolites provide 
additional value in the model in comparison with clinical variables, a 
second model was created using as predictors only clinical covariates 
selected (five covariates). This model reported a lower performance for 
test and validation sets (0.746 and 0.688 mean balanced accuracy, 
respectively) compared with the model including both selected clinical 
covariates and selected metabolites (0.845 and 0.726 mean balanced 
accuracy, respectively) (Table 1). Results showed that clinical covariates 
selected reported a good performance to classify NC, MCI and AD but in 
combination with selected metabolites, a significant improvement in the 
performance is observed (Padj < 6.74 ⋅ 10− 5). From this point, only 
metabolites selected by all the algorithms were further characterized 
with additional experiments. 

For multiclass models created with proteins, the same approach was 
repeated. For each algorithm, the top 20 features were extracted. Then, 
the overlap between the features selected by each algorithm was rep-
resented in a Venn Diagram (Fig. 1B). In this case, five clinical covariates 
were selected by all the algorithms, including Aβ z-score, amyloid status, 
MMSE, priority attention z-score and priority language z-score. How-
ever, none of the proteins were selected by all the algorithms. Addi-
tionally, three other clinical variables and one protein were selected by 
3/4 algorithms, including local p-Tau, local t-Tau, priority memory 
immediate z-score and lysosomal alpha-glucosidase protein (GAA, 
P10253). The features selected by 3/4 algorithms, eight clinical features 
and one protein, were further validated in an independent cohort. The 
model trained with these features as predictors reported a very good 
performance on test and validation sets (0.777 and 0.720 mean balanced 
accuracy, respectively), which shows the confidence of these features to 
classify NC, MCI and AD participants (see Table 1). To show that the 
protein selected, GAA, provides an additional value in this model, a 
second model was trained only with the clinical covariates selected 
(eight covariates). This model reported a lower performance on test and 
validation cohorts (0.757 and 0.703 mean balanced accuracy, respec-
tively) compared with the model including also GAA protein as predictor 
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Fig. 1. Most relevant clinical features, proteins and metabolites extracted with multiclass models and MCI conversion models. Venn diagram shows the 
overlap of the top 20 most relevant predictors of each algorithm for (A) multiclass models of proteins, (B) multiclass models of metabolites and (C) MCI conversion 
models of proteins and metabolites; (D) Oleamide level distribution is represented for NC (n = 203), sMCI (n = 128), cMCI (n = 99) and AD (n = 136) donors. 
Differences in oleamide levels between pairs of groups were estimated using a Wilcoxon test. (E) Differences in the protein levels between sMCI (n = 291) and cMCI 
(n = 100) were estimated using a Wilcoxon test. Only relevant proteins that differentiate MCI stable and converters that are expressed mainly in the brain or in bone 
marrow lymphoid tissues were included (based on Human Protein Atlas dataset). (F) Correlation network including the variables selected as relevant by at least three 
of the four algorithms proposed in all the approaches: multiclass models for proteins, multiclass models for metabolites and MCI conversion models. Pearson cor-
relations were estimated using the sMCI (n = 103) and cMCI (n = 91) donors with paired data (proteomics and metabolomics). Only significant correlations (P <
0.05) with a magnitude over |0.2| are represented. Positive correlations were represented with green color, negative correlations with red. The color saturation and 
the width of the edges corresponds to the absolute weight and scale relative to the strongest weight in the graph. Features were grouped into target, clinical, proteins 
or metabolites. ns, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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(0.777 and 0.720 mean balanced accuracy, respectively) (Table 1). GAA 
significantly improves the model performance (Padj < 0.0442), 
providing an additional value in the models. 

3.3. Key molecules to distinguish between MCI stable and converter 

The overlap of the top 20 most relevant features of the four models 
for the MCI converter scenario was represented with a Venn Diagram 
(Fig. 1D–Supplementary Table 6). Seven features were selected as 
relevant in all models including: local tTau as clinical variable and 
Alpha-synuclein (SNCA), Properdin (CFP), Peptidase inhibitor 15 
(PI15), pancreatic hormone (PPY), phospholipase A2 (PLA2G1B) and 
testis-expressed sequence 29 protein (TEX 29). In addition, proteins 
selected by three algorithms included local pTau as clinical feature 
Junctophilin-3 (JPH3) among other proteins (for more information see 
Supplementary Table 6). Interestingly, none of these clinical features or 
proteins were also selected as relevant by the multiclass models. Among 
the proteins selected in at least 3 of the 4 algorithms, the ones expressed 
mainly in the brain or in bone marrow lymphoid tissues were high-
lighted in Fig. 1E, which includes SNCA, CFP, PI15 and JPH3. Specif-
ically, in our small cohort of MCI participants with follow-up 
information and paired metabolomics and proteomics data, CFP was 
increased in cMCI participants compared to sMCI donors (P < 6.99 ⋅  
10− 4, W = 6010) while JPH3 (P < 6.072 ⋅ 10− 4, W = 3348), PI15 (P <
9.625 ⋅ 10− 5, W = 3164) and SNCA (P < 1.672− 4, W = 3217) were 
decreased in plasma (Fig. 1E). After adjusting for age and sex covariates, 
significant differences between cMCI and sMCI participants were still 
present for PI15 (ANCOVA P < 5.96 ⋅ 10− 4), SNCA (P < 7.08 ⋅  10− 4), 
JPH3 (P < 9.91 ⋅ 10− 4) and CFP (P < 6.39 ⋅ 10− 4) proteins. Sex had no 
influence on the levels of these proteins while age showed a significant 
effect on SNCA protein levels (P < 0.0305). 

To investigate the prediction ability of the features selected repeat-
edly by 3/4 algorithms of MCI conversion models, a final model was 
created with these features as predictors. This model showed a mean 
AUC of 0.872 within the cross-validation (Table 2). To demonstrate that 
molecules selected provide an additional value in this model compared 

to the clinical covariates, a second model only with selected covariates 
was created. Significant differences in the performance of these two 
models were observed (Padj < 3.77 ⋅ 10− 15). Specifically, the model 
created with only clinical covariates showed a mean AUC of 0.649 and 
the model created with both selected clinical covariates and proteins 
showed a mean AUC of 0.872, which suggests that selected molecules, 
proteins in this case, contribute significantly to this model (Table 2). 
Additionally, proteins selected as relevant by all the algorithms for MCI 
conversion, except PLA2G1B, have been previously associated with AD- 
related phenotype. In more detail, these proteins were found to have 
brain eQTL and RNA expression changes in the AD brain (Supplemen-
tary Table 7). 

Finally, the relationship between MCI participants’ clinical features 
and selected proteins were represented in a correlation network, with 
MCI conversion as the target (Fig. 1F). All the proteins correlated with 
MCI conversion with a very similar strength (0.33 mean correlation in 
absolute value). As observed, SNCA, TEX29, PPY and PI15 were 
decreased in cMCI (negative correlation shown in red) while PLA2G1B 
and CFP were increased in cMCI (positive correlation shown in green). 
Additionally, the results showed that cMCI had relatively higher corre-
lation with brain biomarkers such as amyloid status (0.430 correlation) 
and local t-Tau (0.372 correlation) compared to sMCI while MMSE score 
was lower for cMCI individuals compared to sMCI individuals (− 0.261 
correlation). 

3.4. Oleamide detected within microglia vesicles in-vitro 

Oleamide metabolism was flagged as interesting in the multiclass 
models. Since another endocannabinoid, anandamide, had been detec-
ted within microglia and their vesicles [19–21] we were motivated to 
follow up this result. Hence, oleamide on microglia cultures was 
measured and in their secreted EVs (supplementary methods, Supple-
mentary Table 5). Mice microglia cultures showed that supernatant 
microglia, both for unstimulated and activated microglia, had very low 
oleamide concentrations (0.006 and 0.201 μg, respectively) (Supple-
mentary Fig. 2A). Then, oleamide concentration was increased in 
unstimulated microglia and further increased in activated microglia 
(1.191 and 2.24 μg, respectively). The highest concentration of oleamide 
was found in activated microglia EVs (12.62 μg). Once demonstrated 
that oleamide was synthesized and secreted in mice microglial EVs, 
oleamide was further quantified in microglial EVs from other organisms. 
A slightly lower amount of oleamide was observed in rat microglia EVs 
(5.733 μg) compared to mice (8.986 μg) (Supplementary Fig. 2B). In 
addition, in a small pilot study in individuals with AD and control 
subjects, higher oleamide concentration was measured in plasma EVs 
from AD participants (4.688 μg) compared with control subjects (0.529 
μg) (Wilcoxon test P < 0.05) (Supplementary Fig. 2C). 

4. Discussion 

The use of omics data to uncover disease-specific pathways has 
gained great interest in recent years. Omics data represent complex 
molecular interactions, many following non-linear relationships, hence 
machine learning can help understanding these relationships. In this 
study, we used the EMIF-AD MBD dataset and applied four different ML 
algorithms to identify key molecules involved in the conversion of MCI 
to AD. Further molecular exploration was applied on the molecules 
consistently selected by four algorithms. 

4.1. Models performance 

Multiclass models showed a pretty good performance to distinguish 
between NC, MCI and AD participants using both metabolomics (0.790 
mean balanced accuracy on test) and proteomics data (0.772 on test) 
(Table 1). For metabolomics data, RF stood out from the rest of the al-
gorithms with the highest performance on the test set (0.821 mean 

Table 1 
Validation of selected features from multiclass models of proteins and 
multiclass models of metabolites. Features selected by at least 3/4 algorithms 
of multiclass models of metabolomics were validated in a final model. The 
performance of this model was compared with another model created only with 
selected clinical features. The same procedure was repeated for proteomics data.  

Omics data Selected 
features 

Cross- 
validation 
(mean 
balanced 
accuracy ± SD) 

Test (mean 
balanced 
accuracy) 

Validation 
(mean 
balanced 
accuracy) 

Metabolites Clinical 
covariates 

0.763 (0.066) 0.746 0.688 

Clinical 
covariates and 
metabolites 

0.810 (0.052) 0.845 0.726 

Proteins Clinical 
covariates 

0.803 (0.036) 0.757 0.703 

Clinical 
covariates and 
proteins 

0.819 (0.036) 0.777 0.720  

Table 2 
MCI conversion models performance using selected clinical features and 
molecules.  

Omics data Selected features Cross-validation 
(ROC ± SD) 

Clinical features, metabolites 
and proteins 

Clinical covariates 0.649 (0.062) 
Clinical covariates and 
molecules 

0.872 (0.036)  
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balanced accuracy), followed by LR (0.819). A similar trend was 
observed for proteomics data, where LR showed the highest perfor-
mance on the test set (0.819 mean balanced accuracy) followed by RF 
(0.784). The model’s performance was in line with previous work of 
Stamate et al. [43], where a cohort with fewer individuals and groups 
(115 AD donors and 242 NC donors) was used to test the performance of 
plasma metabolites to categorize AD when compared to CSF biomarkers. 
To this end, different machine learning algorithms were used, including 
deep learning, which produced an AUC value of 0.85, extreme gradient 
boosting, which reported a 0.88 and the RF model, which resulted in a 
0.85 AUC value. 

4.2. Multiclass models selected molecules and clinical features 

Although MMSE, priority language z-score and priority attention z- 
score were selected as key clinical covariates to classify NC, MCI and AD 
participants, these variables did not play an important role to distin-
guish between MCI stable and converters. Instead, Tau-related measures 
(p-Tau and t-Tau) were shown to be the most relevant for MCI conver-
sion. Additionally, known risk factors for AD such as sex, age or years of 
education were not chosen consistently by the models (see Supple-
mentary Table 6). Regarding the metabolites, oleamide was selected as a 
relevant predictor by all algorithms for the classification of NC, MCI and 
AD participants. Oleamide is a molecule thought to be synthesized in the 
brain to aid with sleep [44] and is a potent endogenous sedative endo-
cannabinoid [41]. In a previous study with fewer participants, oleamide 
was associated with elevated amyloid levels in MCI participants [26]. 
Xie et al. [45] showed that sleep helps with molecular clearance in the 
brain, hence we could hypothesise that if oleamide aids with sleep in 
early AD, oleamide synthesis could be a coping mechanism to help clear 
misfolded protein. Furthermore, multiclass models selected other three 
metabolites by three of the four algorithms: linoleamide, a relatively 
unknown fatty amide when compared to oleamide, and aspartate and 
serotonin, both neurotransmitters with excitatory and inhibitory func-
tions, respectively. Previous studies have shown that these neurotrans-
mitters were decreased in the brain and were associated with 
Alzheimer’s disease [46]. Finally, multiclass models of proteins high-
lighted one protein, lysosomal alpha-glucosidase (GAA) by 3/4 algo-
rithms. GAA is commonly associated with hyperglycemia, which is a risk 
factor for Alzheimer’s disease [47]. 

4.3. MCI conversion models selected proteins 

Four key proteins were selected by all the algorithms in MCI con-
version models: local tTau as clinical variable and Alpha-synuclein 
(SNCA), Properdin (CFP), Peptidase inhibitor 15 (PI15), pancreatic 
hormone (PPY), phospholipase A2 (PLA2G1B) and testis-expressed 
sequence 29 protein (TEX 29). Decreased levels of PI15, SNCA and 
JPH3 were found in the plasma of cMCI participants compared to sMCI 
individuals (Fig. 1E) while CFP followed the opposite trend. The JPH3 
protein is particularly interesting because it is a neuron specific protein. 
JPH3 controls electrical excitability of neurons in different brain regions 
and is involved in the regulation of intracellular calcium signaling. JPH3 
has been previously linked to Huntington-like disease-2 [48]. CFP be-
longs to the complement system, a well-established pathway of 
inflammation. This supports the hypothesis that inflammation in the 
brain exacerbates the progression of MCI. The last protein selected by all 
algorithms, PI15, is an inhibitor against trypsin and, although unex-
plored, it may play a role in protein degradation in the central nervous 
system. 

4.4. Further experiments with oleamide in microglia and EVs 

Microglia are known to release a variety of signaling molecules that 
impact synaptic transmission in response to injury or inflammation, 
playing a crucial role in maintaining balance in neuronal networks [49]. 

Stella N [50]. demonstrated that microglia produce in-vitro 20-fold 
higher amounts of endocannabinoids (ECs) than neurons or astrocytes, 
likely representing the main source of ECs in the inflamed brain. In this 
regard, Gabrielli, M. et al. [51] demonstrated that ECs are secreted by 
microglia through extracellular membrane vesicles. In addition, ECs 
have been linked to learning, memory and long-term plasticity [52–54] 
and can be neuromodulator lipids [55]. All this evidence motivated us to 
carry out in-vitro experiments to quantify oleamide concentration within 
rodent microglia. Results showed that oleamide was present in activated 
microglia and enriched in EVs released in the pericellular space. In a 
small pilot study with five individuals with AD and five controls, we 
observed that EVs from blood contained oleamide in their cargo and 
oleamide was more abundant in persons with AD. 

5. Limitations 

This study had the advantage of having MCI longitudinal data that 
allowed us to investigate the molecular pathways involved in MCI pro-
gression to AD. Although two different criteria were applied to diagnose 
MCI participants across the different cohorts, both criteria were 
considered equivalent since the scheme that Petersen proposed to di-
agnose MCI subtypes was later adapted in the Winblad et al. report. 
Additionally, this dataset also has CSF biomarkers data as well as 
extensive clinical covariates that helped with the interpretation of the 
results. Nevertheless, cMCI participants showed higher CSF tau and 
amyloid concentrations compared to sMCI participants, which can lead 
to biases in the molecules selection process. In addition, only 194 MCI 
participants with follow-up information and both proteomics and 
metabolomics data were available to create MCI conversion models. 
Because of the low number of samples available and the high hetero-
geneity of MCI participants to convert to AD, all of the samples were 
used for the hyperparameter tuning, giving us more power to find the 
best molecules. In a future release of the EMIF-AD with more MCI par-
ticipants data available, a subset of samples would be left out of the 
training and model selection process for testing the model in order to 
detect any bias in the training data. Finally, another limitation of this 
study is the collinearity between the variables, which is a common 
problem when dealing with omics data. To address this problem, algo-
rithms from four different families were applied, each one dealing with 
correlated variables in a different way. Then, only features selected as 
relevant by all the algorithms were kept for downstream analysis since 
they were considered more universal. Selected features were validated 
in an independent cohort to demonstrate their reliability. In this regard, 
oleamide was one of the molecules selected by all the algorithms. 
Further biological characterization of this molecule was carried out in 
microglia primary culture, which demonstrated that oleamide was 
secreted in EVs from microglia, the first time this mechanism is shown 
in-vitro. However, in-vitro experiments are deemed an artificial condition 
compared with microglia in-vivo. 

6. Conclusions 

In this study, we identified key molecules involved in MCI progres-
sion to AD with a machine learning-based pipeline. One the one hand, 
four different algorithms identified oleamide as a key molecule to 
classify NC, MCI and AD participants. This molecule is linked to sleep 
and memory. In-vitro experiments showed that oleamide is secreted by 
microglia via EVs. Additionally, a pilot study in humans showed a higher 
plasma concentration of oleamide in people with AD compared with 
healthy controls. Moreover, key proteins to predict MCI conversion to 
AD included phospholipase A2 (PLA2G1B), properdin (CFP), alpha- 
synuclein (SNCA) and junctophilin-3 (JPH3), all of them expressed 
mainly in the brain or in bone marrow lymphoid tissues. In relation to 
AD, neural protein JPH3 is a novel potential target together. The ML- 
based pipeline also confirmed established proteins such as synuclein 
(SNCA) and protein activators in the complement cascade (CFP). 
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(https://github.com/aliciagp/ML-multiomics). Patient data are avail-
able upon request by contacting the EMIF-AD data hub steering com-
mittee via the academic EMIF-AD lead, Prof. Pieter Jelle Visser, and data 
access coordinator Dr. Stephanie Vos (s.vos@maasticuniversity.nl) since 
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D. Alcolea, J. Popp, G. Peyratout, P. Martinez-Lage, M. Tainta, P. Johannsen, C. 
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A. Lleó, J. Popp, P. Martinez-Lage, J. Streffer, F. Barkhof, H. Zetterberg, P.J. Visser, 
S. Lovestone, L. Bertram, A.J. Nevado-Holgado, P. Proitsi, C. Legido-Quigley, 
Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived 
networks and highlights causal links in Alzheimer’s disease, Alzheimers Dement, 
J. Alzheimers Assoc. 19 (2023) 3350–3364, https://doi.org/10.1002/alz.12961. 

[31] M. Kuhn, D. Vaughan, E. Hvitfeldt, Yardstick: Tidy Characterizations of Model 
Performance, 2024. https://github.com/tidymodels/yardstick. 

[32] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32. 
[33] L. Breiman, Manual on Setting up, using, and understanding random forests V3.1. 

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf, 2002. 
[34] S. Epskamp, A.O.J. Cramer, L.J. Waldorp, V.D. Schmittmann, D. Borsboom, 

Qgraph: network visualizations of relationships in Psychometric data, J. Stat. 
Software 48 (2012) 1–18, https://doi.org/10.18637/jss.v048.i04. 

[35] S.J. Kiddle, M. Sattlecker, P. Proitsi, A. Simmons, E. Westman, C. Bazenet, S. 
K. Nelson, S. Williams, A. Hodges, C. Johnston, H. Soininen, I. Kłoszewska, 
P. Mecocci, M. Tsolaki, B. Vellas, S. Newhouse, S. Lovestone, R.J.B. Dobson, 
Candidate blood proteome markers of Alzheimer’s disease Onset and progression: a 
systematic review and replication study, J. Alzheimers Dis. 38 (2014) 515–531, 
https://doi.org/10.3233/JAD-130380. 

[36] M. Gabrielli, I. Prada, P. Joshi, C. Falcicchia, G. D’Arrigo, G. Rutigliano, 
E. Battocchio, R. Zenatelli, F. Tozzi, A. Radeghieri, O. Arancio, N. Origlia, 
C. Verderio, Microglial large extracellular vesicles propagate early synaptic 
dysfunction in Alzheimer’s disease, Brain J. Neurol. 145 (2022) 2849–2868, 
https://doi.org/10.1093/brain/awac083. 

[37] T. Zal, A. Volkmann, B. Stockinger, Mechanisms of tolerance induction in major 
histocompatibility complex class II-restricted T cells specific for a blood-borne self- 
antigen, J. Exp. Med. 180 (1994) 2089–2099, https://doi.org/10.1084/ 
jem.180.6.2089. 

[38] H.O. Dikmen, M. Hemmerich, A. Lewen, J.-O. Hollnagel, B. Chausse, O. Kann, GM- 
CSF induces noninflammatory proliferation of microglia and disturbs electrical 
neuronal network rhythms in situ, J. Neuroinflammation 17 (2020) 235, https:// 
doi.org/10.1186/s12974-020-01903-4. 

[39] I. Prada, M. Gabrielli, E. Turola, A. Iorio, G. D’Arrigo, R. Parolisi, M. De Luca, 
M. Pacifici, M. Bastoni, M. Lombardi, G. Legname, D. Cojoc, A. Buffo, R. Furlan, 
F. Peruzzi, C. Verderio, Glia-to-neuron transfer of miRNAs via extracellular 
vesicles: a new mechanism underlying inflammation-induced synaptic alterations, 
Acta Neuropathol. 135 (2018) 529–550, https://doi.org/10.1007/s00401-017- 
1803-x. 

[40] S. Yamamoto, M. Takehara, M. Ushimaru, Inhibitory action of linoleamide and 
oleamide toward sarco/endoplasmic reticulum Ca2+-ATPase, Biochim. Biophys. 
Acta Gen. Subj. 1861 (2017) 3399–3405, https://doi.org/10.1016/j. 
bbagen.2016.09.001. 

[41] C.J. Fowler, Oleamide: a member of the endocannabinoid family? Br. J. Pharmacol. 
141 (2004) 195–196, https://doi.org/10.1038/sj.bjp.0705608. 

[42] J.K. Huang, C.R. Jan, Linoleamide, a brain lipid that induces sleep, increases 
cytosolic Ca2+ levels in MDCK renal tubular cells, Life Sci. 68 (2001) 997–1004, 
https://doi.org/10.1016/s0024-3205(00)01002-x. 

[43] D. Stamate, M. Kim, P. Proitsi, S. Westwood, A. Baird, A. Nevado-Holgado, A. Hye, 
I. Bos, S.J.B. Vos, R. Vandenberghe, C.E. Teunissen, M.T. Kate, P. Scheltens, 
S. Gabel, K. Meersmans, O. Blin, J. Richardson, E. De Roeck, S. Engelborghs, 
K. Sleegers, R. Bordet, L. Ramit, P. Kettunen, M. Tsolaki, F. Verhey, D. Alcolea, 
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