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A B S T R A C T

This article presents the development of an expert system to support the diagnosis of post-harvest diseases of
stored apples. We propose a picture-based and conversational interaction with users, where sampled images
depicting symptoms of apples with known diseases are presented to users to elicit their feedback on perceived
similarities in order to determine the most likely diagnosis of a diseased target apple. This article makes, besides
the description of the industrial application scenario, multiple contributions circled around three rounds of user
studies: (i) an usability and effectiveness assessment of the approach, where three user interface configurations
are put to a test and the effectiveness of different types of user feedback mechanisms is assessed; (ii) contextual
multi-armed bandit approaches for dynamic selection of displayed images with symptoms of diseased apples,
that clearly outperform random and greedy sampling baseline strategies; (iii) a comparison of two different
strategies for determining the context representation of a contextual multi-armed bandit approach, namely
based on PCA of image features and a gamified large-scale user study. We therefore provide design insights for
the development of such diagnosis applications on diseases that manifest themselves through visual symptoms
in general and, hence, the findings can be also valid for domains other than post-harvest fruit diseases.
1. Introduction

The domesticated apple (Malus 𝑥 domestica) is the third most pro-
duced fruit in the world (behind bananas and watermelons) according
to FAO, with an amount of more than 87 million metric tons in
2019 (Shahbandeh, 2021). In the same year, annual worldwide ship-
ments of apples were valued at more than 7 billion USD (Workman,
2020). Apple trees are indeed the most common temperate fruit tree
species and, due to their good storage properties, apples can be stored
for prolonged periods of time under controlled atmosphere conditions.
Nevertheless, physiological disorders and pathogenic microorganisms
can deteriorate the quality and quantity of the produce and lead to
considerable economic losses (Sutton et al., 2014). Our goal is therefore
to develop an application for interactive decision support (Marakas,
1998) that helps users to correctly diagnose a disease in due time
(i.e., independently from the development and the advancement stage
of the disease), in order to decide on the prevention and the man-
agement of post-harvest diseases in apples. For instance, it depends
on the exact pathogen species to decide on the right strategy for
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immediate damage containment or to recommend a plant protection
scheme for the following year. This characteristic of the system is in
line with the recent definition of agricultural decision support systems
as provided by Zhai et al. (2020). Namely, ‘‘an agricultural decision
support system can be defined as a human–computer system which
utilizes data from various sources, aiming at providing farmers with
a list of advice for supporting their decision-making under different
circumstances’’. In fact, in order to reliably determine the nature of
the disease, several macroscopic symptoms, such as appearance, tex-
ture, consistency and colour of the lesion, as well as the odour of
the decaying fruit need to be considered. Thus, the crucial aspect of
this system is the user interaction, where an interactive and highly
useable interface needs to incrementally incorporate the users’ feedback
about observed symptoms in order to effectively guide the diagnosis
workflow. The importance of the design and other factors influencing
the uptake of such a type of tools has been extensively investigated
by Rose et al. (2016). Thus, we propose DSSApple, a picture-based
and conversational application system for the diagnosis of post-harvest
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diseases in apple fruits. Pictures depicting symptoms of the diseased
fruit or plant are the predominant source of information in systems for
automated disease diagnosis in agriculture. Images represent a type of
data that can be easily processed by machine, as well as understood
by (non-expert) humans. Moreover, our system is designed in such a
way that the user is actively involved in the diagnostic process. An
extensive discussion on the motivations that influenced this decision
is presented in Section 4. The approach of interacting with users in a
way that mimics the human-to-human dialog has been referred in the
recommender systems literature as ‘‘conversational’’ (Christakopoulou
et al., 2016). By adopting this paradigm, users do not need to specify all
their preferences and constraints upfront within a single ‘‘static’’ step,
but the information is elicited during an interactive ‘‘conversation’’
where the system should properly react to user feedback (Jugovac &
Jannach, 2017). The presented core framework can be easily extended
such that it can also include other sources of expert information in the
reasoning mechanism. In future work, we will allow users to interact
with the system using additional structured knowledge and evidence
elicitation mechanisms, next to images. Furthermore, this knowledge
base will enable the system to illustrate the actual diagnosis with
additional information to better guide users in the decision-making
process concerning the treatment of suggested diagnosis. Nevertheless,
the core methodological aspects for DSSApple user interface and the
interactive diagnostic system are fully described in this paper.

In this work we explore a wide range of aspects that are worth to
be investigated in the context of DSSApple. Namely, we address the
following research questions:

R.Q.1 How effective and useable is a picture-based expert system on
the task of diagnosing post-harvest diseases of apple?

R.Q.2 Which is the impact of different interface configurations in
terms of effectiveness and usability of this system?

R.Q.3 How much could a conversational interaction paradigm im-
prove the effectiveness of the expert system?

R.Q.4 How could the symptoms be represented in a machine-readable
manner in order to improve the capability of the system adapt-
ing to the user feedback?

The listed research questions are explored and evaluated by means of
an extensive set of user studies. Thus, the resulting contribution that
we present in this article is many-fold, namely:

• We illustrate the design of a picture-based expert system for the
novel and challenging task of identifying post-harvest diseases of
apple fruit.

• We describe an original adaptation of contextual multi-armed
bandit algorithms (Agrawal & Goyal, 2013; Li et al., 2010) to
produce a dynamic interaction with the user, following the con-
versational paradigm (Jugovac & Jannach, 2017).

• We discuss and analyse two different definitions of the image
context, based on automated image analysis and collected user
interactions.

• We present three large scale user studies conducted to thoroughly
evaluate different aspects of the system, such as usability and
effectiveness.

The rest of the paper is organized as follows. In Section 2 the related
work in the field of expert systems and machine learning classification
are presented. In Section 3 we illustrate the detailed system architec-
ture. In Section 4 the design choices are discussed in light of our specific
diagnostic tasks. In Section 5 we present the adopted methodology
for the conversational interface and image processing. In Section 6 an
extensive evaluation of the different aspects of our system is conducted.
The user studies are described and their results are discussed, before
drawing conclusions and identifying avenues for future work in the
final Section 7.
2

2. Related work

In this section, we review the related work in the area of diagnostic
decision support systems with a particular focus on the agricultural
domain. For better readability, we structure this section such that in
the first part, the literature in the area of knowledge-based expert
systems is presented, while in the second part, the focus is laid on ma-
chine learning and image processing techniques for automated disease
classification.

2.1. Knowledge-based expert systems

Expert and knowledge-based systems attracted the attention of re-
searchers and practitioners since the late ’80s (Plant & Stone, 1991).
These types of systems address complex diagnostic and decision support
tasks based on encoded domain knowledge. In the agricultural domain,
expert systems have been widely adopted to cope with the diagnosis
and the prevention of diseases and disorders largely affecting the
production result (Barbedo, 2016).

In the early years, Roach et al. (1987) proposed POMME, an expert
ystem aiming at helping apple growers to manage their orchards. The
nowledge-based diagnostic module for a common apple disease was
ust a part of the full system that advised growers with respect to
ontrol of disorders and the management of pesticide selection and
pplication. Another earlier prototype of a rule-based expert system
as presented by Boyd and Sun (1994). The system supported the

dentification of 17 different potato diseases, both pathogenic and non-
athogenic, based on 127 prolog-like rules. The core of the reasoning
ystem was composed of 8 knowledge bases, developed together by
nowledge engineers and domain experts and evaluated in fielded
emos. Post-harvest potato diseases were also the focus of the work
resented by Adams et al. (1990). The interactive system included a
nowledge base encoded in the form of if-then rules, and an expert

system interface asking users specific questions in order to provide the
desired diagnosis. The user interacted with the system by answering
questions with ‘‘yes’’/‘‘no’’/‘‘I don’t know’’ or any number of multiple
choice responses. According to authors, when fed with the correct
answers, the system was effective in correctly identifying all the 35
different disorders. A similar methodology was taken by Yialouris and
Sideridis (1996) for supporting decision making for tomato diseases.
Authors exploited an object-attribute-value formalism in order to model
the knowledge base and enhance it with fuzzy logic in order to deal
with the uncertainty. From the same research group, Mahaman et al.
(2003) presented an advisory expert system, called DIARES-IPM, with
an integrated knowledge base, designed as a set of if-then inference
rules. The objective of the system was to help non-experts to identify
pests in crops and to suggest appropriate treatments. In the same
year, the architecture and the implementation of a large web-based
fish disease diagnostic system was also introduced (Li et al., 2002).
Another important contribution was provided by EXSYS, an Expert
system for diagnosing flowerbulb diseases, pests and non-parasitic dis-
orders (Kramers et al., 1998). The system consisted of two components:
the knowledge base and the inference engine. The knowledge was
represented by frame structures with embedded rules and the inference
engine used a backward chaining approach to find the most probable
hypothesis given the set of input symptoms. After an evaluation with
researchers and domain experts the system was fielded within flower
industry.

Later on, Kolhe et al. (2011) reported a web-based intelligent di-
agnostic system for oilseed-crops. The knowledge-based system built
on fuzzy logic reasoning and supported an audio–visual–graphical user
interface using also text-to-speech conversion tools. The system, which
has been tested in three oilseed crops, resulted in drawing fast and
acceptable diagnosis. Gonzalez-Andujar (2009) built an expert system
for the identification of 9 weeds, 14 insects and 14 diseases in olive
crops. Knowledge was gathered by a literature review and interviews
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with experts, and the system adopted the conventional if-then knowl-
edge representation. It was divided into three subsystems (diseases,
pests and weeds), in such a way that only parts of the rules were active
simultaneously. The system also employed 150 digital images to assist
the user within the identification process. The same team of researchers
proposed a similar system applied to the identification of weeds, in-
sects, and diseases in pepper plants (Gonzalez-Diaz et al., 2009). A
more recent example of an agricultural diagnostic system being sup-
ported by knowledge with images was the Identificator system (Pertot
et al., 2012). The framework took advantage of macroscopic features
(symptoms) of strawberries to diagnose potential diseases. Users thus
selected a sequence of predefined images and descriptions of symptoms
to finally get to the correct diagnosis. Our approach innovates these
prior systems not only by building a diagnostic system for a novel
application domain, namely post-harvest diseases of apple fruit, but by
also realizing a conversational and picture-based interaction with users
in order to effectively guide them.

2.2. Machine learning classification

The decision support problem in agriculture has been addressed in
the scientific literature also through automated and machine learning
methods, that do not require the mediation of the expert knowledge.
Specifically, the major part of the presented techniques rely on image
segmentation, image classification and feature extraction from images
in order to support the diagnosis of the correct disease. Therefore, in the
final part of this section the most influential deep learning techniques
in this context are also covered.

One of the first examples is represented by the work by Pydipati
et al. (2006) where a colour co-occurrence method was used to de-
termine whether texture-based hue, saturation, and intensity colour
features in conjunction with discriminant analysis classification al-
lowed to distinguish between diseased and normal citrus leaves. Simi-
larly, Camargo and Smith (2009) proposed a method, based on image
transformations in order to identify visual symptoms of plant diseases.
The transformed image is segmented by analysing the distribution
in the intensities histogram. An alternative method to hue saturation
intensity and rust colour index for segmenting infected areas in plants
was investigated by Cui et al. (2010). Namely, soybean rust was de-
tected by analysing the centroid of leaf colour distribution in the polar
coordinate system. Greenness identification based on histogram analy-
sis was also proposed (Romeo et al., 2013). The researchers investigated
an additional approach that relies on fuzzy clustering, which achieved
the best results. Another paper aimed at classifying different types of
rice diseases by extracting features from the infected regions of the
rice plant images (Phadikar et al., 2013). Fermi energy segmentation
was used to isolate the infected region, then, diseases’ symptoms were
characterized using features like colour, shape and position of the
infected portion. Finally, rules were mined exploiting these features.
Other methods for leaf image segmentation relied on super-pixels in
combination with Markov random fields (Ye et al., 2015) or K-means
clustering (Zhang et al., 2018). Furthermore, Ma et al. (2017) presented
a more complex image processing technique using colour information
and region growing for segmenting greenhouse vegetable foliar disease
spots images captured under real field conditions. Another method
required the combination of colour histogram and textural features
processed with principal component analysis for the detection of citrus
diseases (Ali et al., 2017).

Other types of approaches were more focused on supervised clas-
sification. For example, artificial neural networks and decision trees
were tested to classify the rottenness caused by Penicillium in cit-
rus fruits (Gómez-Sanchis et al., 2012). Features were extracted from
hyper-spectral images and selected through the Minimum Redundancy
Maximal Relevance method. Finally classifiers were trained on man-
ually labelled pixels to be assigned to the correct class. Automatic
3

detection of citrus diseases was in the focus of another related work
(Stegmayer et al., 2013). Traditional multi-class classification algo-
rithms (i.e., decision tree classifier, multi layer perceptron, and naive
bayes) were applied on engineered features to predict the correct
disease. In the same direction went the work by Chaudhary et al.
(2016), that proposed an improved version of random forest classifier
for disease classification. Johannes et al. (2017) presented a novel
image processing algorithm based on candidate hot-spot detection in
combination with statistical inference methods to tackle wheat diseases
identification in natural conditions, namely, with images taken in fields
through mobile devices. A different methodology was illustrated in
the paper by Zhang et al. (2017). After segmenting images with K-
means clustering and extracting relevant features the leaf disease was
classified using sparse representation.

More recently, the long wave of deep learning, pushed by the
extraordinary successes in some computer vision tasks (He et al., 2016),
swept also the field of agricultural diagnostic systems. One of the
seminal works in the botanic field was Deep-Plant, a framework for
plant species identification (Lee et al., 2015). A Convolutional Neu-
ral Network (CNN) was applied to learn features from leaf images
in a unsupervised manner. An additional module of Deconvolutional
Networks was employed as a visualization and explanation tool on
the learned features. Following up on this, Sladojevic et al. (2016)
presented a Deep Neural Network framework (again based on CNN)
for the classification of 13 different types of plant diseases from leaf
images. The same architecture was explored for the identification of
potato (Oppenheim & Shani, 2017) and rice (Lu et al., 2017b) diseases.
Fuentes et al. (2017) illustrated a robust deep learning framework for
the real-time identification of tomato plant diseases and pests. Three
different deep learning meta-architectures were tested and combined
with two feature extractors. Image areas with disease symptoms were
manually annotated and assigned to one of the 10 classes. Experiments
on a large and heterogeneous image dataset proved the effectiveness
of the proposed method. A similar procedure was performed by Lu
et al. (2017a) for the in-field identification of wheat diseases on plant
leafs. Finally, Ferentinos (2018) provided an extended work in which a
comparison of different deep learning models was performed to predict
58 distinct classes of [plant, disease] combinations on a database of
around 90 000 images.

3. System description

Our presented expert system, named DSSApple,1 is designed to be
an easy-to-use web application that allows also non-expert users to
perform the diagnosis of apple diseases. The interaction with the system
is conducted by simply clicking on pictures, representing the symp-
toms’ variety of different diseases at the different stages of infection.
The system interaction is conceptualized as a sequential process. At
each round of interaction the user provides immediate feedback on
a small set of images, depicting disease symptoms, based on the per-
ceived similarity with the actually diseased target apple. In an earlier
work (Nocker et al., 2018), we already demonstrated the usability of
this design choice. Fig. 1 depicts a round of interaction, where users
can provide feedback on any number of small-scale symptom images,
before submitting their choices to the system. Given this setting, we
could consider different types of feedback. An explicit positive feedback
is provided by the user to suggest a strong similarity between the
target apple and the depicted symptom. An explicit negative feedback,
in contrast, suggests a (strong) dissimilarity between the target apple
and the depicted symptom. Similarly, if a depicted symptom is ignored
(i.e., neither positive nor negative feedback is given), the system also
interprets it as a (weak) dissimilarity between the target apple and the
depicted symptom.

1 http://dssapple.unibz.it.

http://dssapple.unibz.it
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Fig. 1. A round of picture-based interactions with DSSApple.
The images of disease symptoms have been sampled from dis-
eased apples at different storage houses. The ground truth (i.e., the
actual disease) has been determined in a lab using microbiological
and molecular diagnosis techniques. At the end of each round, the
system automatically reloads alternative images based on the feedback
provided by users. We induce some sort of ‘‘dialog’’ between the system
(which suggests a set of images to be evaluated), and the user (who
provides feedback with respect to the proposed pictures). Different
reloading strategies can be applied on top of this interface, where
a stratified random selection strategy, where images from candidate
diseases are equally likely to be displayed, is the baseline. The goal is
to develop an interactive ‘‘conversational’’ system that is able to adapt
the selection of images to be displayed to users’ previous feedback
by exploiting similarities between the depicted candidate symptoms.
The advantage of employing a conversational interaction over multiple
rounds is two-fold: on the one side we reduce the cognitive load on
users by letting them focus on a few depicted symptoms at a time; on
the other side, we increase the capability of the system to adapt to user
feedback. Indeed, after each round, we are able to elicit both explicit
and implicit (i.e., images ignored) feedback to refine the belief of the
system and propose more relevant images in the subsequent round.
After a fixed number of rounds, the system stops feedback collection
and recommends a set of candidate diseases that are ranked based on
the received user feedback on the symptom images. An example is given
in Fig. 2.

4. Discussion

For the task of diagnosing a post-harvest disease of apple, the
employment of fully-automated machine learning techniques for image
recognition appears to be insufficient up to now. The intra-disease
variance is very high: the same pathogen induces different symptoms on
different species, also based on the progression of the diseases (i.e., days
after an infection). At the same time, for a non-expert evaluation, and
even for experts without a microscopic or microbiological analysis, it is
very difficult to understand the subtle differences of symptom appear-
ances just by observing images of external symptoms, particularly at
early stages of an infection.

In Fig. 3 we show three instances of external symptoms. When
comparing these images the difficulty of the classification task clearly
emerges. The two symptoms looking most similar, given also that they
appear on the same apple cultivar, are in fact manifestations of the two
4

different diseases (Neofabrea and Alternaria) (Amaral Carneiro et al.,
2021). On the other hand, two examples of Alternaria symptoms appear
to be largely different, since they manifest themselves on different
cultivars and at different stages of the infection.

Another desired property of our system emerges from the example
shown in Fig. 3. The feedback that the user provides is not related to the
actual disease of the selected images, but to the visual characteristics
of the depicted symptoms. For instance, if the user selects the central
image from the example in Fig. 3, she is requesting the system literally
‘‘show me more pictures of apples with a brownish circular rot of
medium dimension at the top-side of the apple’’ instead of ‘‘show
me more Alternaria images’’. In the next round, it is therefore more
reasonable that DSSApple proposes the left-most image to be evaluated,
rather than the right-most, even if this shares the same ground truth
disease with the previously selected one. This mechanism allows the
system to be more resilient to misleading feedback of users with respect
to the actual ground truth disease and to guide them effectively towards
a diagnosis.

Therefore, we believe that this problem needs to be approached by
combining automated image processing with user-in-the-loop feedback
elicitation. The decision support system thus guides the users towards
correct diagnoses by proposing more refined choices, based on previous
feedback and automated image-similarity computation.

5. Methodology

In this section we deepen the methodology behind the computa-
tional aspects of DSSApple. Namely, we present the Contextual Multi-
Armed Bandit (CMAB) algorithm devoted to the sampling of images
after each conversational round. Furthermore, we present and discuss
the proposed method to produce a fast-to-compute contextual vector
for each diseased apple image within the system.

5.1. Contextual multi-armed bandit

Foremost, we highlight that the bandit algorithm is not used as a
predictive engine to directly map the user feedback to a diagnosis. This
methodology is, instead, exploited to take advantage of user feedback
and propose more relevant images (i.e., more significant for the current
diagnosis task) in every future round of interaction. The multi-armed
bandit also ensures a certain degree of exploration (i.e., tolerance to
incorrect feedback). Thus, we formalize the sampling of the 𝑘 images
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Fig. 2. List of recommended diagnosis.
Fig. 3. How difficult is it to classify the correct disease? — The left-most apple is infected by Neofabrea, while the others are infected by Alternaria.
per round as a CMAB problem. Each of the 𝑁 candidate symptom
images is associated with an arm. In analogy to human perception, the
arms are not independent, but every arm, indexed by 𝑖, is associated
with a 𝑑-dimensional vector 𝒃𝑖 (i.e., the context) defined by the visual
representation of symptoms termed features such as fructification of
spores, shape and dimension of rotten spots, etc. We assume that a user,
given an instance of an infected target apple to be diagnosed, embeds
a 𝑑-dimensional parameter 𝝁∗ which drives her selection strategy with
respect to the 𝑑 components of the context. Furthermore, when the 𝑖th
image is shown to a user, she provides a stochastic reward 𝑟𝑖 to the
associated context 𝒃𝑖, that could be positive (i.e., the image is selected)
or negative (i.e., the image is ignored or discarded). Thus, we use a
Gaussian likelihood function to update the belief of the system towards
the optimal parameter 𝝁∗. More formally, at each round 𝑡, the system
updates a Gaussian multivariate distribution  (�̂�(𝑡),𝑩(𝑡)−1), where the
parameter �̂�(𝑡) represents an online-learned approximation of 𝝁∗ and
𝑩(𝑡) is the variance–covariance matrix of the distribution. The posterior
update of the parameters �̂�(𝑡) and 𝑩(𝑡) is achieved similarly to the
Gaussian update described by Agrawal and Goyal (2013). Intuitively,
the update of �̂�(𝑡) depends on the user reward 𝑟𝑖 given to every shown
context vector 𝒃𝑖 up to round 𝑡. Namely, a positive reward will move
�̂�(𝑡) into the direction of 𝒃𝑖, while a negative one will move it into the
opposite direction. We decided to consider also a negative reward to let
the update function converge faster (i.e., with less interactions) to the
optimal choice parameter 𝝁∗. The equation for the iterative parameters
update at time 𝑡 + 1 and are formally expressed as follows.

𝑩(𝑡 + 1) = 𝑩(𝑡) + 𝒃 𝒃⊺,
5

𝑖 𝑖
𝒇 (𝑡 + 1) = 𝒇 (𝑡) + 𝒃𝑖𝑟𝑖,

�̂�(𝑡 + 1) = 𝑩(𝑡 + 1)−1𝒇 (𝑡 + 1),

where 𝒃𝑖 is the context associated to the 𝑖th image for which a new
feedback reward 𝑟𝑖 is provided at time 𝑡 + 1.

Thus, the problem of sampling a set of 𝑘 arms 𝐴(𝑡+1) = {𝑎(𝑡+1)1, 𝑎(𝑡+
1)2,… , 𝑎(𝑡+1)𝑘} for round 𝑡+1 is translated into an optimization prob-
lem. A simple linear payoff is considered in our model: the expected
reward for sampling arm 𝑖 = 𝑎(𝑡+ 1)𝑗 , with 𝑗 = 1,… , 𝑘, associated with
context 𝒃𝑖 given the parameter �̂�(𝑡) is computed as:

𝐸[𝑟(𝑡 + 1)𝑖] = 𝒃⊺𝑖 �̂�(𝑡).

Finally, we select the 𝑘 arms such that:

𝑎(𝑡 + 1)𝑗 ← argmax
𝑖

𝐸[𝑟(𝑡 + 1)𝑖].

In the literature two main policies of CMAB are known that differ
in how they achieve the exploration–exploitation trade-off. The two
methods are Thompson Sampling (TS) (Agrawal & Goyal, 2013) and
Upper Confidence Bound (UCB) (Li et al., 2010). In the former, �̃�(𝑡) ∼
 (�̂�(𝑡),𝑩(𝑡)−1), sampled from the Gaussian distribution at each round
𝑡, substitutes �̂� as an heuristic for the expected reward computation.
The TS formulation of the expected reward becomes:

𝐸[𝑟(𝑡 + 1) ] = 𝒃⊺�̃�(𝑡).
𝑖 𝑇𝑆 𝑖
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In the latter, the predictive standard deviation of the expected reward
𝒃⊺𝑖 �̂�(𝑡), expressed by

√

𝒃⊺𝑖𝑩(𝑡)−1𝒃𝑖, is considered. The UCB formulation
for the expected reward becomes

𝐸[𝑟(𝑡 + 1)𝑖]𝑈𝐶𝐵 = 𝒃⊺𝑖 �̂�(𝑡) + 𝛼
√

𝒃⊺𝑖𝑩(𝑡)−1𝒃𝑖,

where 𝛼 is the only free parameter of the model which controls the
exploration–exploitation trade-off.

5.2. Image-based context computation

In a CMAB setting the context is an important component for the
model. In the proposed application, the desired property of the context
is the one of representing images in a multidimensional space where
closer vectors are mapped to symptoms that are considered visually
similar by users. This is a non-trivial task, since similar symptoms may
appear with varying shapes in different areas of the apple. Different
cultivar types add additional variety to the appearance of symptoms.
In principle the task of computing a reliable context should require the
mediation of expert knowledge. On the other hand, we need to process
hundreds of images and adapt our model to new incoming images from
the lab, which makes the creation of expert-defined features hardly
feasible. Thus, we adopt a fast to implement and easy to generalize
method that simulates in an effective way the perception of users. The
whole process is summarized in Fig. 4. We start with a set of RGB
1000 × 1000 images converted to grey-scale. We apply histogram nor-
malization in order to maximize image contrast and equalize lighting.
We resize the images to 32 × 32 pixels and flatten them into a set
of vectors of dimension 1024, rescaled to [0, 1]. Finally, we apply a
Principal Component Analysis (PCA) with L2-norm (Tipping & Bishop,
1999) in order to further reduce the dimensionality of the vectors while
maintaining most of the information.

A similar approach for the automated computation of the context
would employ deep learning techniques for image processing, namely
Convolutional Neural Networks and Autoencoders (Goodfellow et al.,
2016). We favoured the simpler approach described so far over a
deep learning one, mainly due to the dimensionality of the dataset.
With just a few hundred instances of apple disease symptoms it has
been unfeasible to build a reliable highly parameterized model, able
to learn a significant representation of the data structure. Finally, an
alternative process for the context computation would be to exploit
collected data about users’ perceived similarities. This method aims to
infer the similarities among different symptom images from past user
interactions and derive the context from these observational data. This
method has been implemented and will be described in Section 6.3.

6. Experiments

To validate the different aspects of DSSApple, we performed a set of
experiments conducted in the form of user studies. They were designed
in the form of a gamified challenge, called Bad Apple Challenge (Sot-
tocornola et al., 2020), in order to encourage true engagement of
participants. During the challenge users interacted with the applica-
tion to accomplish the diagnostic task, and afterwards, the logged
interaction data of users was analysed. The effects of gamification in
boosting user interaction has been extensively studied by Hamari et al.
(2014). The goal of the challenge is to simulate the in-field usage
of the application without involving costly simulation with domain
experts. These challenges allowed us to collect large-scale data and to
evaluate the performances of the application system. We simulate the
scenario in which a person needs to diagnose the disease of an apple in
her hands. For this purpose, we randomly select an image of a target
infected apple as a proxy for a real target apple to be diagnosed. The
challenge participants have to use the DSSApple application to diagnose
the potential disease of the target apple. A positive score is provided to
users who manage to identify the correct disease. Given the flexibility
6

of the system, we can allow participants to take multiple sessions of the
challenge, where different target apples are requested to be diagnosed.
We conducted the bad apple challenge within different small groups
of people (i.e., with around 50 people). The participants were invited
to enter the challenge at the same time and to complete it within a
given time-frame. At its end we announced the leaderboard with the
best scoring participants within the respective group.

In the remainder of this section three user studies, with different
goals, are illustrated and the collected results are discussed. In the first
set of trials, the impact of different interface invariants is analysed. In
the second, the multi-armed bandit reloading strategies are compared
with baseline strategies to test their effectiveness. Finally, in the third,
the user perception of symptom similarity is measured in order to
generate a better context for symptom images.

6.1. Experiments on user interface configurations

We first implemented a user study to measure the impact of different
interface variants to assess effectiveness and usability of DSSApple. We
utilized the Bad Apple Challenge with the abovely described task to
identify the disease of a target image, randomly sampled from 12 dif-
ferent images taken from a web portal, called Frudistor (Zanella et al.,
2021).2 For this challenge, a set 𝐷 of four different fungal diseases,
namely the pathogen genera Alternaria Botrytis, Mucor, and Penicillium
was employed. The main objective to be investigated was if the num-
ber of images per round, that are displayed to the user, influences
the accuracy in diagnosing the correct disease. We employed in this
experimental study design three different interface configurations that
varied the number of images shown per each round. At the beginning
of each challenge, one of these configurations is randomly assigned
to the participant, ensuring a balance among the three experimental
conditions of 4, 8 and 12 displayed images per round. However, for
three conditions, the total number of displayed images was fixed to
24 in order to control for the potential amount of user feedback on
displayed images for the diagnosis task and leading to a different
numbers of rounds for each condition, namely, 4 × 8, 6 × 4, and 12 × 2
rounds. The images were randomly sampled from the pool of candidate
images exploiting a stratified sampling over all different diseases. This
approach ensured that during each round an equal number of images
belonging to each of the four diseases is shown. For this first experiment
we invited the user to explicitly provide both positive and negative
feedback. The user should use the green ’+’ button to mark the images
with similar symptoms to the target one and the red ‘x’ button to mark
the images with totally different symptoms to the target one. The user
is allowed to provide any number of feedback per round and submit
its selection to forward the challenge to the next round (or to the end
of it if the maximum number of rounds is reached). Fig. 5 shows a
screenshot of the user interface with 12 images per round.

At the end of the selection rounds, a ranked list of diagnoses is
presented to users. The ranking is based on the score for each disease,
which reflects the feedback provided by the user. The score for disease
𝑑𝑖 ∈ 𝐷 is computed as: 𝑆(𝑑𝑖) =

∑

𝑗 𝑓𝑗 (𝑑𝑖). Where 𝑓𝑗 (𝑑𝑖) represents a user
feedback on the 𝑗th displayed image for disease 𝑑𝑖. If the feedback was
positive 𝑓𝑗 (𝑑𝑖) = +1, if the feedback was negative 𝑓𝑗 (𝑑𝑖) = −0.9, and if
no feedback was provided 𝑓𝑗 (𝑑𝑖) = −0.1.

.1.1. Results
The experiment was performed within three classes of Computer

cience students at the Free University of Bozen-Bolzano and the Uni-
ersity of Milano-Bicocca, at the end of November and beginning of
ecember 2018. 133 people participated in this user study, 18 were

emale and 115 were male. The average age of the participants was
3.5, the median age was 23. In total 305 challenges were completed

2 http://www.frudistor.de.

http://www.frudistor.de
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Fig. 4. Automatic context creation from images.
Fig. 5. User interface with 12 images per round.
by all participants, with around 2.3 challenges completed by each
individual.

The collected results of the challenge present an overall success rate
of the diagnosis of 44%. The results show that the different settings
with 4, 8, and 12 images per round have no significant effect on the
diagnosis outcomes. The user interface with 8 images has the highest
success rate with 49%, followed by the 4 images with 43%. The lowest
performance is registered by the setting with 12 images with 41%. In
Table 1 we report the detailed results of the diagnosis task divided for
the different configurations. We performed a 𝜒2-test on the contingency
table to verify that there is no significant difference in the diagnosis
performance among different interface configurations. As expected, the
test does not reject the null hypothesis of the diagnosis outcome (#
success, # failures) being independent of the setting (4-images, 8-images,
12-images) with a significance level of 𝑝 = 0.05.

A System Usability Score (SUS) (Brooke, 1996) analysis was also
performed by a subset of participants, in order to assess the usability
of our application. A standard SUS questionnaire was submitted to 32
users after completing the challenge. The average score achieved by the
system is above 73%, demonstrating the applicability and high usability
of a picture-based approach in this novel application domain (Nocker
et al., 2018).
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Table 1
Challenge results over the different interface configurations.

4-images 8-images 12-images

# success 49 42 43
# failures 65 44 62

success rate 0.43 0.49 0.41

In Fig. 6 we plot the fine-grained results for the precision and
recall of the diagnosis for the four diseases. It becomes immediately
clear that, in this setting, there is a strong bias with respect to the
selected/target disease. Alternaria achieves by far the highest precision
(around 85%) and recall (around 56%). This is an indication of the
higher capability of a user to identify an Alternaria infection by its
symptoms and clearly distinguish it from the 3 other diseases involved
in this first study. Also Botrytis shows a similar recall of around 52%
and a good precision, close to 50%. This means that a Botrytis infected
apple was correctly diagnosed around half of the times, and users
correctly indicated Botrytis as the right disease around half of the times.
Mucor and Penicillium, instead, result in much worse performances.
Namely, both diseases get a similar recall of around 31%; Mucor gets
an acceptable precision of 38%, while Penicillium registers the worst
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Fig. 6. Precision and recall achieved for each disease.

Table 2
Probability of a positive feedback on each disease conditioned on the target disease of
the challenge.
TARGET FEEDBACK

Alternaria Botrytis Mucor Penicillium

Alternaria 0.33 0.16 0.22 0.29
Botrytis 0.13 0.34 0.23 0.30
Mucor 0.13 0.31 0.27 0.29
Penicillium 0.17 0.27 0.27 0.28

precision of 17%. The reason for this is two-fold: on one side Penicillium
was least sampled as target disease during the challenge (namely, 30%
less than the most frequently sampled disease); on the other side, it
was most commonly selected by users, because its symptoms seem to
be very similar to the external appearance of other diseases.

In order to better understand the decision biases of the user we
had a deeper look into the feedback (i.e., positive and negative explicit
feedback) provided by the user conditioned on the target disease 𝑑𝑖 ∈ 𝐷
selected for the challenge. We compute the probability 𝑃 (𝑑+𝑖 |𝑇 = 𝑑𝑖)
of a user providing positive feedback on a candidate apple infected
by disease 𝑑𝑖 given that the target disease is 𝑇 = 𝑑𝑖. The average
probability of a correct positive feedback is 31%. This is significantly
higher than the probability of a wrong positive feedback (i.e., a positive
feedback on any disease other than the target one), which occurs on
average 23% of the times. This is computed as 𝑃 (𝑑+𝑗 |𝑇 = 𝑑𝑖), with
𝑑𝑗 ∈ 𝐷 and 𝑑𝑖 ≠ 𝑑𝑗 . In Table 2 we report the probability of a user
providing positive feedback on each candidate disease given the target
disease.

Table 2 depicts that there are clear differences in user perceptions
depending on the target disease to be diagnosed. Alternaria and Botrytis
seem to be the most distinguishable diseases, while they have a 33%
and 34% chance to receive a true positive feedback by the user, while
the probability of a false positive feedback is below 23% for all other
diseases except for Penicillium (around 29%). Vice versa, Mucor has a
higher chance to be confused for Botrytis (31%) and Penicillium (29%),
than to be positively clicked itself (27%). Finally, Penicillium is hard to
diagnose and also easy to be mistaken for other diseases. Namely, an
image showing Penicillium symptoms has almost the same chance to be
positively clicked (between 28% and 30%) independently of the target
disease. Similar observations can be drawn from the computed prob-
ability of a user providing negative feedback on an image of disease
𝑑𝑖 ∈ 𝐷, conditioned on the target disease 𝑑𝑗 ∈ 𝐷. This is computed as
the probability 𝑃 (𝑑−𝑖 |𝑇 = 𝑑𝑗 ) of a user assigning negative feedback on
an apple infected by disease 𝑑𝑖 given that the target disease belongs to
another class 𝑇 = 𝑑𝑗 , and 𝑑𝑖 ≠ 𝑑𝑗 . The average probability of a correct
negative feedback is 26%. Nevertheless, the average probability of a
wrong negative feedback (i.e., providing negative feedback on images
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Table 3
Probability of a negative feedback on each disease conditioned on the target disease
of the challenge.
TARGET FEEDBACK

Alternaria Botrytis Mucor Penicillium

Alternaria 0.22 0.29 0.26 0.23
Botrytis 0.32 0.19 0.26 0.23
Mucor 0.30 0.22 0.24 0.24
Penicillium 0.31 0.23 0.22 0.24

sharing the same disease with the target) 𝑃 (𝑑−𝑖 |𝑇 = 𝑑𝑖) is above 22%.
Both probabilities are very close to the random guess of 25%. Results
for each disease are reported in Table 3.

Again, Alternaria appears to be the most distinguishable disease,
since it receives a correct negative feedback in more than 30% of cases
with another target disease. Also Botrytis is well identifiable, since it is
the disease which has an even lower chance to get a wrong negative
feedback (around 19%). Finally, Mucor and Penicillium register the
worst performances (see third and fourth columns), given that they
both have a 24% chance to be wrongly indicated as negative, when
they actually are the target disease.

Furthermore, we measure the impact of positive and negative feed-
back on the final diagnosis outcome. The positive feedback was used
2944 times, while the negative feedback was used even 3872 times.
However, in 82 challenges the negative feedback was not used, which
represented only 27% of all challenges. In challenges where the neg-
ative feedback was used, the average success rate was 43%, while in
challenges where no negative feedback was given, the average success
rate was slightly higher with 48%. Considering these reported obser-
vations, we decided to discard the negative feedback from the future
development of the system due to its marginal or even misleading
effect. This decision will have the positive side effect on users to further
alleviate their cognitive load.

6.2. Experiments on sampling algorithms

In order to understand the effectiveness of a multi-armed bandit
sampling procedure for symptom images we designed another exper-
iment. Based on the Bad Apple Challenge the participants’ goal is to
diagnose the correct disease of target apples. Here we controlled for
five different fungal diseases, each one represented by three target
image instances, depicting different disease symptoms taken again from
the web portal Frudistor (Zanella et al., 2021) to avoid overfitting to
our set of ground truth images. For each challenge one target image
was randomly selected to simulate the real-world diagnostic task. A
variety of 30 symptom images for each disease was selected by a pool
of domain experts. These are displayed to participants over multiple
rounds in order to elicit user feedback as mentioned. We generate a
context of 64 dimensions, such that PCA is able to retain 95% of the
variance of the original vectors. Due to the outcome of the experiments
with different interface configurations, we decided on 8 rounds of
interaction, where in each round a set of 4 images is needed to be
evaluated by the user. Due to its ineffectiveness the negative feedback
option was removed, the users could therefore either provide positive
feedback (i.e., clicking on similar images) or ignore dissimilar images.
The reloading strategy after each round is the main focus of investi-
gation. We include two alternative CMAB policies, namely, UCB (with
𝛼 = 1) and TS, and two baselines, namely a random selection stratified
over diseases, and a greedy policy, that fully exploits user feedback,
without any exploration. The selection strategy is manipulated within
participants and randomly selected for each challenge. The strategy
determines the reloading of images for each round. At the end of
the 8 rounds of feedback elicitation, the users are presented with a
recommendation list of possible diagnoses, which are ranked based
on the number of coherent feedback provided for each disease. From



Expert Systems With Applications 189 (2022) 116052G. Sottocornola et al.
Fig. 7. Precision and recall achieved for each disease.

Table 4
Confusion matrix over the diseases.
SELECTED ACTUAL

Alternaria Botrytis Mucor Neofabraea Penicillium

Alternaria 35 5 5 14 2
Botrytis 3 44 41 6 19
Mucor 8 7 20 12 31
Neofabraea 45 14 7 50 8
Penicillium 20 44 20 13 42

this list, users have to pick one disease as their final diagnosis. Note
that participants can subsequently run multiple challenges and will
therefore experience multiple selection strategies over different target
images.

6.2.1. Results
We ran the controlled user study within two Computer Science

bachelor classes and collected 163 participants in total consisting of
147 males and 16 females. The average age of the participants is 22.25,
the median is 20. The total number of performed challenges is 591
(i.e., 3.6 challenges were on average performed by each individual).
We cleaned the data by removing challenge entries where users did
not provide any explicit feedback (i.e., they did not select any image).
Thus, we ended up with 515 challenges from which we derived the
following reported results.

Out of 515 challenges a total of 191 identified the correct diagnosis,
with a success rate of 37%. In Table 4 we show the confusion matrix
over the five diseases and in Fig. 7 we aggregate average precision and
recall results by each disease.

It becomes clear from Table 4 that, depending on the disease to
be diagnosed, a different degree of difficulty applies. For instance,
Alternaria achieves the highest diagnostic precision of 57%, while the
disease is easily confused with Neofabraea. Botrytis scores an average
success rate of around 39% for both precision and recall and is easily
confused with Penicillium. Mucor has been the hardest to diagnose, it
is frequently mistaken for Botrytis and Penicillium and therefore scores
the lowest average recall (21%) and precision (26%) values. Finally,
Neofabrea is the disease with the highest recall (52%) and Penicillium
the one that is frequently confused with other diseases (139 selections
and a precision of 30%).

In Table 5 we present the results of the study for each algorithm.
What clearly emerges from the online experiment is that the two CMAB
sampling policies significantly improve the capability of the user to
get to the correct disease; 𝜒2-test rejected the null hypothesis of the
diagnosis outcome (# success, # failures) being stochastically indepen-
dent of the algorithm (TS, UCB, greedy, random) with significance level
𝑝 = 0.05. Specifically, UCB gets the best result with a 46% success rate,
9

Table 5
Results of the challenge per selection algorithm.

TS UCB greedy random

# success 55 53 42 41
# failures 80 63 78 103

success rate 0.41 0.46 0.35 0.28

Table 6
Precision for each disease conditioned on the sampling algorithm.

TS UCB greedy random

Alternaria 0.85 0.55 0.30 0.55
Botrytis 0.36 0.29 0.58 0.25
Mucor 0.21 0.45 0.07 0.24
Neofabraea 0.50 0.60 0.45 0.24
Penicillium 0.35 0.48 0.24 0.18

Table 7
Recall for each disease conditioned on the sampling algorithm.

TS UCB greedy random

Alternaria 0.50 0.33 0.43 0.23
Botrytis 0.41 0.56 0.32 0.40
Mucor 0.21 0.27 0.11 0.17
Neofabraea 0.54 0.68 0.47 0.43
Penicillium 0.41 0.56 0.32 0.40

followed by TS, which achieves a diagnostic success rate of 41%. These
two results are significantly better than the 28% success rate that the
system achieves with a simple random stratified reloading technique.
Interesting to note, that a purely greedy strategy, that just exploits user
feedback, does not outperform the bandit strategies (35% success). This
is due to the fact that, in such a sensitive context where symptoms
from different diseases can be easily confused, users are often misled
to provide incorrect feedback. Thus, a purely exploitative strategy does
not pay off and a specific degree of exploration is needed to, at least
partially, alleviate the misleading effect.

A more fine-grained analysis of the results is provided with the
computation of the diagnosis performances for each disease class con-
ditioned on the algorithm used during the challenge.

In Table 6 we summarize the precision values for each disease
conditioned on the sampling algorithm. UCB is the best performing
algorithm for three diseases (i.e., Mucor, Neofabraea, and Penicillium),
Thompson Sampling is the most precise one for a single disease (i.e., Al-
ternaria) likewise the greedy algorithm for Botrytis disease. The worst
algorithms for each disease are three times Stratified Sampling and
twice the Greedy algorithm.

In Table 7 we report the recall for each disease conditioned on the
sampling algorithm. UCB is the best algorithm in recalling the correct
disease for all the diseases except for Alternaria, where Thompson
Sampling achieves best recall values. The worst algorithm is three
times Stratified Sampling and once the Greedy algorithm. These results
confirm that the proposed contextual multi-armed bandit algorithms
clearly outperform the baselines in the identification of the correct
diagnosis independently from the disease taken under consideration.

6.3. User study for context computation

While in the previous study we got confirmation that the contextual
multi-armed bandit strategies are superior to the baseline algorithms,
we designed an additional user study to further the develop the context
representation. This study seeks to make the contextual representation
even more accurate in mimicking the users’ perceptions of similar
symptoms. We adapt the Bad Apple Challenge application to let partici-
pants focus more on the similarity of symptoms, rather than identifying
the correct disease. The challenge is organized in a single-round trial, in
which the task is to identify the images that depict symptoms similar
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Fig. 8. System interface for context computation challenge.

to the randomly selected target one. The user can select any number
of symptoms, she considers related to the target one, and then submit
her choices. After the submission, a score is computed based on the
number of coherent symptoms guessed (i.e., symptoms belonging to
the same disease of the target image). We assign +1for each correct
image clicked and −0.2 for each wrong one, thus, discouraging random
clicking to boost the score. The application allows the participants to do
the challenge multiple times with new randomly drawn target images
for each trial. The cumulative score for each participant is reported in
a leaderboard. At the end of a time period of several days the top3
participants were awarded with a symbolic prize.

The number of candidate images that are shown in each challenge
and can be selected is 30, organized in a 6 × 5 matrix of small-scale
images, as depicted in Fig. 8. For this challenge, we added a sixth dis-
ease to the system (i.e., Colletotrichum), in addition to the five diseases
of the previous study (i.e., Alternaria, Botrytis, Mucor, Neofabraea, and
Penicillium). Each disease is represented by a set of 30 images, thus,
the total number of symptom images is 180. We sampled from this set
for both the target image and the candidate images, since our goal is
to estimate the similarity of the symptoms as they are perceived by
the users. We apply a random stratified sampling strategy over the
diseases in order to display five random images of every disease during
each challenge. Furthermore, we remove the a priori bias by ensuring
that each pair of target-candidate image is displayed in a balanced
way across all challenges. Namely, the pairs that have been selected
fewer times up to now have higher chances to be sampled next. By
doing simple math, we identify that the total number of possible pairs
is 32 220. Given that in a single challenge 30 candidate images are
shown (i.e., 30 pairs with the target image), the number of challenges
to be completed in order to have each pair to be shown at least once
is therefore 1074.

6.3.1. Results
The contest was announced in the Free University of Bozen-Bolzano

newsletter, where an email was sent to all the students (i.e., approxi-
mately 4200 people) inviting them to take part in the challenge for the
period of two weeks, from the 2019-06-03 to the 2019-06-17. In total,
175 people participated in the user study and 4357 challenges were
completed. On average around 25 challenges were completed by each
user. Nearly one-third of all challenges were made by two participants.
The median age of the participants is 23 years and their mean age is
24.3 years.

We report the results of this user study in terms of precision and
recall of the user feedback. We define precision as the percentage of
correct feedback (i.e., click on a candidate image that belongs to the
10
Fig. 9. Precision and recall of user feedback, achieved for each disease.

same disease of the target image) on the total number of user feedback.
We define recall as the percentage of correct feedback on the total
number of relevant images (i.e., the number of candidate images that
belong to the same disease of the target image). At the end of the data
collection of this user study, we measured an overall recall of 19%
and an overall precision of 32%. In Fig. 9 we summarize the results of
precision and recall for the six diseases. The images clicked with least
precision are the one related to Alternaria (26%). The other diseases
achieve an average precision above 29%, with a maximum result of
38% for Neofabraea. Similar results are registered for the recall. Again,
Alternaria is the hardest disease to correctly identify for the user, with
a recall of 15%. A set of three diseases, namely Botrytis, Colletotrichum,
and Mucor, get a similar recall between 16% and 19%. Neofabraea and
Penicillium achieve the highest recall, around 22%.

6.3.2. Context improvement
Consequently, the goal of this third round of user study was to create

a reliable context for the symptom images, i.e., a context representation
that properly mimics the users’ perceptions of similar symptoms. Given
the number of challenges completed (i.e., 4357) and the balanced
policy adopted to sample the pairs, we ensured that each pair of images
target-candidate was shown at least four times. Given the log data of
the user study, the similarity matrix of each pair of target-candidate
symptom image is computed as 𝑆(𝑖)𝑗 = 𝑐𝑙𝑖𝑐𝑘(𝑖)𝑗∕𝑠ℎ𝑜𝑤(𝑖)𝑗 . Where 𝑆(𝑖)𝑗
represents the similarity of candidate image 𝑖 to the target image 𝑗,
𝑐𝑙𝑖𝑐𝑘(𝑖)𝑗 represents how many time image 𝑖 was clicked given image
𝑗 as a target, and 𝑠ℎ𝑜𝑤(𝑖)𝑗 represents how many times image 𝑖 was
shown given image 𝑗 as a target. Please notice that this similarity matrix
is not symmetric, since 𝑆(𝑖)𝑗 ≠ 𝑆(𝑗)𝑖. To remove sparsity from the
context matrix we applied PCA and retain 64 principal components,
similarly to the procedure applied for the context derived from image
processing. We ended up with an unbiased and more reliable context,
able to represent the symptoms’ similarity as perceived by the user.

In order to prove this assumption we empirically compare the
effectiveness of the new context (i.e., user-based context) with respect
to the one described in Section 5.2, fully based on image process-
ing (i.e., image-based context). We build a similarity matrix for the
two context representations, by applying cosine similarity on the two
context matrices. Thus, we are able to rank the images according to
their similarities with respect to a target one. We randomly selected
five target images and retrieved the five most similar images for each,
according to the two context representations.

The qualitative improvement of the new context emerges clearly in
this analysis when comparing Figs. 10 with 11. In some cases, namely
for T1 and T4, the image-based context in Fig. 10 struggles to capture
the symptom appearance. A dark-red apple could be mistaken by a
rotten one, and the similarity computation relies more on the external
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Fig. 10. Most similar images by image-based context for five target images.
Fig. 11. Most similar images by user-based context for five target images.
shape of the apple other than the symptom appearance. Nevertheless,
in some cases even the image-based context achieves good results, in
terms of symptom similarity and cultivar diversity (see for instance T3
and T5). Another interesting aspect is caught by the example of T2:
the image-based context computation is somehow dependent on the
enlightenment conditions. In this case all the retrieved results, except
for the first one, show a very strong enlightenment. With the user-based
11
context the qualitative improvement in the capability of represent
symptom characteristics is evident (see Fig. 11). T4 presents the most
interesting results: retrieved images share the same symptom appear-
ance (i.e., a black round slightly-sunken rot), independently from the
cultivar or the specific position of the rot. This capability is hard to
achieve with a fully automated image-processing technique. Also the
enlightenment problem is not present in this case as demonstrated by
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example T2. Nevertheless, also in this case some shortcomings of the
context computation emerge. For instance, the last retrieved images in
the top5 list for T1 and T2 do not represent fully coherent symptoms.
This may be due to the struggle, also for the users, to identify properly
related symptoms during the challenge.

7. Conclusions

We presented DSSApple, a conversational picture-based expert sys-
tem aiming at supporting users in the identification of post-harvest
apple diseases. The system is designed as an easy-to-use web applica-
tion that allows also non-expert users to perform the diagnosis task.
The interaction with the system is conducted by the user clicking on
pictures, representing the symptoms variety of different diseases at
different stages of infection. We conceptualized an interactive diagnos-
tic session with the system as a sequence of conversational rounds to
avoid cognitive overload of users. At each round of interaction, the user
provides immediate feedback on a small set of images, depicting disease
symptoms, based on the perceived similarity with the actually diseased
target apple. The sequence of rounds allows the system to incrementally
refine its knowledge towards the characteristics of the infected apple.
Thus, the feedback is exploited by the system to ‘‘dialog’’ with the
user by proposing more relevant images in subsequent rounds, while
keeping a certain degree of exploration. This goal is achieved through
an ad-hoc contextual multi-armed bandit algorithm for sampling of
images. We described alternative methods to construct a reliable image
context, based on both image processing and user interactions data.
The effectiveness of the diagnosis support is evaluated throughout three
user studies, designed as gamified challenges, in which users compete
in identifying the correct diseases of target apples by the help of our
system. In the first experiment, different interface configurations are
tested in order to define the best setup (i.e., the one who leads to
better precision, while minimizing the cognitive overload for the user).
In the second experiment, the multi-armed bandit reloading strategy
is compared against greedy and random baselines. The two contextual
multi-armed bandit algorithms were proved to significantly outperform
the baselines. The third and last user study is conducted in order to
construct more reliable image contexts, based on the user perceived
similarity among symptom images.

The proposed approach could be easily adapted and extended to
similar domains where a dynamic interaction of the user with an
image-based knowledge base could be exploited for supporting disease
diagnosis. For instance, in agriculture domain, for the diagnosis of
rice (Lu et al., 2017b), wheat (Lu et al., 2017a), potato (Oppenheim
& Shani, 2017), citrus (Ali et al., 2017), tomato (Fuentes et al., 2017),
olive (Gonzalez-Andujar, 2009), strawberry (Pertot et al., 2012) dis-
eases, or in human healthcare, for the diagnosis of dermatological
diseases (Prabhu et al., 2019) or cancer detection (Lee & Chen, 2015).
Furthermore, the methodological findings and insights are valid and
could be exploited in totally different contexts, where the interaction
with the user is conducted by means of visual or graphical stimuli, to
dynamically elicit her preferences. For example, in the area of tourism
recommendation systems (Neidhardt et al., 2015; Ricci et al., 2005), or
in image-mediated retrieval systems (Goodrum, 2000).

The main open challenge for the future development of the system
concerns the injection of structured expert knowledge to the reasoning
mechanism of DSSApple. The direction of investigation so far concern
the translation of a crafted domain ontology (Niederkofler et al., 2019),
into a Bayesian Network (Koller & Friedman, 2009). The Bayesian
Network will allow the system to include incremental expert-based
evidence provided by the user in order to refine the online belief over
each disease. The reasoning mechanism is based on Bayesian inference
to deal with knowledge uncertainty. An engine founded on mutual
information will be capable of identifying the most discriminative infor-
mation to be asked to the user at a given point in time (i.e., based on the
12

acquired knowledge so far). Furthermore, the likelihood computation
of the evidence provided by the user in the light of the suggested
diagnosis, will naturally converge in a expert-based explanation, in-
creasing the transparency of the system and, hence, better supporting
the decision-making process of the user. The Bayesian model is under
refinement by means of interviews with domain experts (Sottocornola
et al., 2021). This step is required to quantify a set of conditional prob-
ability tables representing the likelihood of observing certain symptoms
under specific diseases and degrees of infection.

CRediT authorship contribution statement

Gabriele Sottocornola: Conceptualization, Methodology, Software,
alidation, Investigation, Writing – original draft, Writing – review &
diting. Sanja Baric: Supervision, Resources, Data curation, Project
dministration, Funding acquisition, Writing – review & editing. Max-
milian Nocker: Software, Investigation, Data curation. Fabio Stella:
ethodology, Supervision, Writing – review & editing.Markus Zanker:

upervision, Validation, Project administration, Funding acquisition,
riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgement

The authors acknowledge the Free University of Bozen-Bolzano,
taly for funding the project ‘‘Development of a decision support system
or the determination of postharvest disorders and diseases of apples –
SSApple’’ (Project Code IN2067 - ID Call 2017) and Greice Amaral
arneiro for providing part of the images and diagnoses necessary
o establish DSSApple. This work was supported by the Open Access
ublishing Fund of the Free University of Bozen-Bolzano, Italy.

eferences

dams, S. S., Stevenson, W. R., Delhotal, P., & Fayet, J. (1990). An expert system
for diagnosis of post-harvest potato diseases. EPPO Bulletin, 20(2), 341–347. http:
//dx.doi.org/10.1111/j.1365-2338.1990.tb01217.x.

grawal, S., & Goyal, N. (2013). Thompson sampling for contextual bandits with linear
payoffs. In Proceedings of the 30th international conference on international conference
on machine learning (pp. 127–135). JMLR.org.

li, H., Lali, M. I., Nawaz, M. Z., Sharif, M., & Saleem, B. A. (2017). Symptom
based automated detection of citrus diseases using color histogram and textural
descriptors. Computers and Electronics in Agriculture, 138, 92–104. http://dx.doi.org/
10.1016/j.compag.2017.04.008.

maral Carneiro, G., Walcher, M., Storti, A., & Baric, S. (2021). Phylogenetic diversity
and phenotypic characterization of Phlyctema vagabunda (syn. Neofabraea alba)
and Neofabraea kienholzii causing postharvest bull’s eye rot of apple in northern
Italy. Plant disease, http://dx.doi.org/10.1094/pdis-04-21-0687-re.

arbedo, J. (2016). Expert systems applied to plant disease diagnosis: Survey and
critical view. IEEE Latin America Transactions, 14, 1910–1922. http://dx.doi.org/
10.1109/TLA.2016.7483534.

oyd, D. W., & Sun, M. K. (1994). Prototyping an expert system for diagnosis of potato
diseases. Computers and Electronics in Agriculture, 10(3), 259–267.

rooke, J. (1996). Usability evaluation in industry. CRC Press.
amargo, A., & Smith, J. S. (2009). An image-processing based algorithm to automat-

ically identify plant disease visual symptoms. Biosystems Engineering, 102(1), 9–21.
http://dx.doi.org/10.1016/j.biosystemseng.2008.09.030.

haudhary, A., Kolhe, S., & Kamal, R. (2016). An improved random forest classifier
for multi-class classification. Information Processing in Agriculture, 3(4), 215–222.
http://dx.doi.org/10.1016/j.inpa.2016.08.002.

hristakopoulou, K., Radlinski, F., & Hofmann, K. (2016). Towards conversational rec-
ommender systems. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 815–824). New York, NY, USA: ACM,
http://dx.doi.org/10.1145/2939672.2939746.

ui, D., Zhang, Q., Li, M., Hartman, G. L., & Zhao, Y. (2010). Image processing methods
for quantitatively detecting soybean rust from multispectral images. Biosystems
Engineering, 107(3), 186–193. http://dx.doi.org/10.1016/j.biosystemseng.2010.06.

004.

http://dx.doi.org/10.1111/j.1365-2338.1990.tb01217.x
http://dx.doi.org/10.1111/j.1365-2338.1990.tb01217.x
http://dx.doi.org/10.1111/j.1365-2338.1990.tb01217.x
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb2
http://dx.doi.org/10.1016/j.compag.2017.04.008
http://dx.doi.org/10.1016/j.compag.2017.04.008
http://dx.doi.org/10.1016/j.compag.2017.04.008
http://dx.doi.org/10.1094/pdis-04-21-0687-re
http://dx.doi.org/10.1109/TLA.2016.7483534
http://dx.doi.org/10.1109/TLA.2016.7483534
http://dx.doi.org/10.1109/TLA.2016.7483534
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb7
http://dx.doi.org/10.1016/j.biosystemseng.2008.09.030
http://dx.doi.org/10.1016/j.inpa.2016.08.002
http://dx.doi.org/10.1145/2939672.2939746
http://dx.doi.org/10.1016/j.biosystemseng.2010.06.004
http://dx.doi.org/10.1016/j.biosystemseng.2010.06.004
http://dx.doi.org/10.1016/j.biosystemseng.2010.06.004


Expert Systems With Applications 189 (2022) 116052G. Sottocornola et al.

F

G

G
G

H

H

J

J

K

K

K

L

L

L

R

R

S

S

S

S

S

S

T

W

Y

Y

Z

Z

Z

Z

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis.
Computers and Electronics in Agriculture, 145(September 2017), 311–318. http://dx.
doi.org/10.1016/j.compag.2018.01.009.

uentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based
detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9),
http://dx.doi.org/10.3390/s17092022.

Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M.,
Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by
Penicillium genus fungi in citrus fruits using machine learning techniques. Expert
Systems with Applications, 39(1), 780–785. http://dx.doi.org/10.1016/j.eswa.2011.
07.073.

Gonzalez-Andujar, J. (2009). Expert system for pests, diseases and weeds identification
in olive crops. Expert Systems with Applications, 36(2), 3278–3283. http://dx.doi.
org/10.1016/j.eswa.2008.01.007.

onzalez-Diaz, L., Martinez-Jimenez, P., Bastida, F., & Gonzalez-Andujar, J. (2009).
Expert system for integrated plant protection in pepper (Capsicum annuun L.).
Expert Systems with Applications, 36(5), 8975–8979. http://dx.doi.org/10.1016/j.
eswa.2008.11.038.

oodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
oodrum, A. (2000). Image information retrieval: An overview of current research.
Informing Science, 3(2), 63–66.

amari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? - a literature
review of empirical studies on gamification. In 47th Hawaii International Conference
on System Sciences (HICSS) (pp. 3025–3034). IEEE Computer Society.

e, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In IEEE conference on computer vision and pattern recognition (pp.
770–778). http://dx.doi.org/10.1109/CVPR.2016.90.

ohannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S.,
Navajas, A. D., & Ortiz-Barredo, A. (2017). Automatic plant disease diagnosis using
mobile capture devices, applied on a wheat use case. Computers and Electronics in
Agriculture, 138, 200–209. http://dx.doi.org/10.1016/j.compag.2017.04.013.

ugovac, M., & Jannach, D. (2017). Interacting with recommenders - overview and
research directions. ACM Trans. Interact. Intell. Syst., 7(3), 10:1–10:46.

olhe, S., Kamal, R., S. Saini, H., & Gupta, G. (2011). A web-based intelligent
disease-diagnosis system using a new fuzzy-logic based approach for drawing
the inferences in crops. Computers and Electronics in Agriculture, 76(1), 16–27.
http://dx.doi.org/10.1016/j.compag.2011.01.002.

oller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. Adaptive computation and machine learning, MIT Press.

ramers, M., Conijn, C., & Bastiaansen, C. (1998). EXSYS, an expert system for diag-
nosing flowerbulb diseases, pests and non-parasitic disorders. Agricultural Systems,
58(1), 57–85. http://dx.doi.org/10.1016/S0308-521X(98)00046-8.

ee, S. H., Chan, C. S., Wilkin, P., & Remagnino, P. (2015). Deep-plant: Plant identi-
fication with convolutional neural networks. Proceedings - International Conference
on Image Processing, ICIP, December, 452–456. http://dx.doi.org/10.1109/ICIP.2015.
7350839.

ee, H., & Chen, Y.-P. P. (2015). Image based computer aided diagnosis system
for cancer detection. Expert Systems with Applications, 42(12), 5356–5365. http:
//dx.doi.org/10.1016/j.eswa.2015.02.005.

i, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international
conference on the world wide web (WWW) (pp. 661–670). New York, NY, USA: ACM,
http://dx.doi.org/10.1145/1772690.1772758.

Li, D., Fu, Z., & Duan, Y. (2002). Fish-expert: a web-based expert system for fish
disease diagnosis. Expert Systems with Applications, 23(3), 311–320. http://dx.doi.
org/10.1016/S0957-4174(02)00050-7.

Lu, J., Hu, J., Zhao, G., Mei, F., & Zhang, C. (2017). An in-field automatic wheat
disease diagnosis system. Computers and Electronics in Agriculture, 142, 369–379.
http://dx.doi.org/10.1016/j.compag.2017.09.012.

Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y. (2017). Identification of rice diseases
using deep convolutional neural networks. Neurocomputing, 267, 378–384. http:
//dx.doi.org/10.1016/j.neucom.2017.06.023.

Ma, J., Du, K., Zhang, L., Zheng, F., Chu, J., & Sun, Z. (2017). A segmentation
method for greenhouse vegetable foliar disease spots images using color information
and region growing. Computers and Electronics in Agriculture, 142, 110–117. http:
//dx.doi.org/10.1016/j.compag.2017.08.023.

Mahaman, B., Passam, H., Sideridis, A., & Yialouris, C. (2003). DIARES-IPM: a
diagnostic advisory rule-based expert system for integrated pest management in
Solanaceous crop systems. Agricultural Systems, 76(3), 1119–1135.

Marakas, G. M. (1998). Decision support systems in the twenty-first century. USA:
Prentice-Hall, Inc..

Neidhardt, J., Seyfang, L., Schuster, R., & Werthner, H. (2015). A picture-based
approach to recommender systems. Journal of IT & Tourism, 15(1), 49–69.

Niederkofler, A., Baric, S., Guizzardi, G., Sottocornola, G., & Zanker, M. (2019).
Knowledge models for diagnosing postharvest diseases of apples. In Proceedings
of the joint ontology workshops (JOWO). http://ceur-ws.org/Vol-2518/paper-ODLS6.
pdf.

Nocker, M., Sottocornola, G., Zanker, M., Baric, S., Carneiro, G. A., & Stella, F.
(2018). Picture-based navigation for diagnosing post-harvest diseases of apple. In
Proceedings of the 12th ACM conference on recommender systems (pp. 506–507). New
York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/
3240323.3241616.
13
Oppenheim, D., & Shani, G. (2017). Potato disease classification using convolution
neural networks. Advances in Animal Biosciences, 8(2), 244–249. http://dx.doi.org/
10.1017/S2040470017001376.

Pertot, I., Kuflik, T., Gordon, I., Freeman, S., & Elad, Y. (2012). Identificator: A web-
based tool for visual plant disease identification, a proof of concept with a case
study on strawberry. Comput. Electron. Agric., 84, 144–154.

Phadikar, S., Sil, J., & Das, A. K. (2013). Rice diseases classification using feature
selection and rule generation techniques. Computers and Electronics in Agriculture,
90, 76–85. http://dx.doi.org/10.1016/j.compag.2012.11.001.

Plant, R. E., & Stone, N. D. (1991). Knowledge-based systems in agriculture. USA:
McGraw-Hill, Inc..

Prabhu, V., Kannan, A., Ravuri, M., Chaplain, M., Sontag, D., & Amatriain, X. (2019).
Few-shot learning for dermatological disease diagnosis. In F. Doshi-Velez, J. Fackler,
K. Jung, D. Kale, R. Ranganath, B. Wallace, & J. Wiens (Eds.), Proceedings of the
4th machine learning for healthcare conference, vol. 106 (pp. 532–552). Ann Arbor,
Michigan: PMLR.

Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color
texture features and discriminant analysis. Computers and Electronics in Agriculture,
52(1–2), 49–59. http://dx.doi.org/10.1016/j.compag.2006.01.004.

Ricci, F., Wöber, K., & Zins, A. (2005). Recommendations by collaborative browsing.
In A. J. Frew (Ed.), Information and communication technologies in tourism 2005 (pp.
172–182). Vienna: Springer Vienna.

Roach, J., Virkar, R., Drake, C., & Weaver, M. (1987). An expert system for helping
apple growers. Computers and Electronics in Agriculture, 2(2), 97–108. http://dx.doi.
org/10.1016/0168-1699(87)90020-2.

omeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., & De La Cruz, J.
M. (2013). A new expert system for greenness identification in agricultural images.
Expert Systems with Applications, 40(6), 2275–2286. http://dx.doi.org/10.1016/j.
eswa.2012.10.033.

ose, D., Sutherland, W., Parker, C., Winter, M., Lobley, M., Morris, C., Twining, S.,
Ffoulkes, C., Amano, T., & Dicks, L. (2016). Decision support tools for agriculture:
Towards effective design and delivery. Agricultural Systems, 149, 165–174. http:
//dx.doi.org/10.1016/j.agsy.2016.09.009.

hahbandeh, M. (2021). Global fruit production in 2019. https://www.statista.com/
statistics/264001/worldwide-production-of-fruit-by-variety/, Accessed: 20 June
2021.

ladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep
neural networks based recognition of plant diseases by leaf image classification.
Computational Intelligence and Neuroscience, 2016, http://dx.doi.org/10.1155/2016/
3289801.

ottocornola, G., Baric, S., Stella, F., & Zanker, M. (2021). Case study on the
development of a recommender for apple disease diagnosis with a knowledge-
based bayesian network. In V. W. A. et al. (Ed.), Workshop proceedings of the 3rd
edition of knowledge-aware and conversational recommender systems (KaRS) and the
5th edition of recommendation in complex environments (ComplexRec). CEUR-WS.org,
http://ceur-ws.org/Vol-2960/paper13.pdf.

ottocornola, G., Nocker, M., Stella, F., & Zanker, M. (2020). Contextual multi-armed
bandit strategies for diagnosing post-harvest diseases of apple. In Proceedings of the
25th international conference on intelligent user interfaces (pp. 83–87). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3377325.
3377531.

tegmayer, G., Milone, D. H., Garran, S., & Burdyn, L. (2013). Automatic recognition
of quarantine citrus diseases. Expert Systems with Applications, 40(9), 3512–3517.
http://dx.doi.org/10.1016/j.eswa.2012.12.059.

utton, T. B., Aldwinckle, H. S., Agnello, A., & Walgenbach, J. F. (Eds.), (2014).
Compendium of apple and pear diseases and pests (2nd ed.). APS Press.

ipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis.
Journal of the Royal Statistical Society. Series B. Statistical Methodology, 61(3),
611–622.

orkman, D. (2020). Apples exports by country. http://www.worldstopexports.com/
apples-exports-by-country/, Accessed: 20 June 2021.

e, M., Cao, Z., Yu, Z., & Bai, X. (2015). Crop feature extraction from images
with probabilistic superpixel markov random field. Computers and Electronics in
Agriculture, 114, 247–260. http://dx.doi.org/10.1016/j.compag.2015.04.010.

ialouris, C., & Sideridis, A. (1996). An expert system for tomato diseases. Comput-
ers and Electronics in Agriculture, 14(1), 61–76. http://dx.doi.org/10.1016/0168-
1699(95)00037-2.

anella, A., Neuwald, D. A., Bühlmann, A., Folie, I., Kittemann, D., Klein, N.,
Köpcke, D., Prunier, C., Rossi, O., & Stürz, B. (2021). Frudistor: eine app zur
vorbeugung von lagerungsverlusten. Laimburg Journal, 3, http://dx.doi.org/10.
23796/LJ/2021.001.

hai, Z., Martinez, J. F., Beltran, V., & Martinez, N. L. (2020). Decision support systems
for agriculture 4.0: survey and challenges. Computers and Electronics in Agriculture,
170, http://dx.doi.org/10.1016/j.compag.2020.105256.

hang, S., Wang, H., Huang, W., & You, Z. (2018). Plant diseased leaf segmentation
and recognition by fusion of superpixel, k-means and phog. Optik, 157, 866–872.
http://dx.doi.org/10.1016/j.ijleo.2017.11.190.

hang, S., Wu, X., You, Z., & Zhang, L. (2017). Leaf image based cucumber disease
recognition using sparse representation classification. Computers and Electronics in
Agriculture, 134, 135–141. http://dx.doi.org/10.1016/j.compag.2017.01.014.

http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.3390/s17092022
http://dx.doi.org/10.1016/j.eswa.2011.07.073
http://dx.doi.org/10.1016/j.eswa.2011.07.073
http://dx.doi.org/10.1016/j.eswa.2011.07.073
http://dx.doi.org/10.1016/j.eswa.2008.01.007
http://dx.doi.org/10.1016/j.eswa.2008.01.007
http://dx.doi.org/10.1016/j.eswa.2008.01.007
http://dx.doi.org/10.1016/j.eswa.2008.11.038
http://dx.doi.org/10.1016/j.eswa.2008.11.038
http://dx.doi.org/10.1016/j.eswa.2008.11.038
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb19
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb19
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb19
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb19
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb19
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.compag.2017.04.013
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb22
http://dx.doi.org/10.1016/j.compag.2011.01.002
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb24
http://dx.doi.org/10.1016/S0308-521X(98)00046-8
http://dx.doi.org/10.1109/ICIP.2015.7350839
http://dx.doi.org/10.1109/ICIP.2015.7350839
http://dx.doi.org/10.1109/ICIP.2015.7350839
http://dx.doi.org/10.1016/j.eswa.2015.02.005
http://dx.doi.org/10.1016/j.eswa.2015.02.005
http://dx.doi.org/10.1016/j.eswa.2015.02.005
http://dx.doi.org/10.1145/1772690.1772758
http://dx.doi.org/10.1016/S0957-4174(02)00050-7
http://dx.doi.org/10.1016/S0957-4174(02)00050-7
http://dx.doi.org/10.1016/S0957-4174(02)00050-7
http://dx.doi.org/10.1016/j.compag.2017.09.012
http://dx.doi.org/10.1016/j.neucom.2017.06.023
http://dx.doi.org/10.1016/j.neucom.2017.06.023
http://dx.doi.org/10.1016/j.neucom.2017.06.023
http://dx.doi.org/10.1016/j.compag.2017.08.023
http://dx.doi.org/10.1016/j.compag.2017.08.023
http://dx.doi.org/10.1016/j.compag.2017.08.023
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb35
http://ceur-ws.org/Vol-2518/paper-ODLS6.pdf
http://ceur-ws.org/Vol-2518/paper-ODLS6.pdf
http://ceur-ws.org/Vol-2518/paper-ODLS6.pdf
http://dx.doi.org/10.1145/3240323.3241616
http://dx.doi.org/10.1145/3240323.3241616
http://dx.doi.org/10.1145/3240323.3241616
http://dx.doi.org/10.1017/S2040470017001376
http://dx.doi.org/10.1017/S2040470017001376
http://dx.doi.org/10.1017/S2040470017001376
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb39
http://dx.doi.org/10.1016/j.compag.2012.11.001
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb42
http://dx.doi.org/10.1016/j.compag.2006.01.004
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb44
http://dx.doi.org/10.1016/0168-1699(87)90020-2
http://dx.doi.org/10.1016/0168-1699(87)90020-2
http://dx.doi.org/10.1016/0168-1699(87)90020-2
http://dx.doi.org/10.1016/j.eswa.2012.10.033
http://dx.doi.org/10.1016/j.eswa.2012.10.033
http://dx.doi.org/10.1016/j.eswa.2012.10.033
http://dx.doi.org/10.1016/j.agsy.2016.09.009
http://dx.doi.org/10.1016/j.agsy.2016.09.009
http://dx.doi.org/10.1016/j.agsy.2016.09.009
https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/
https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/
https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/
http://dx.doi.org/10.1155/2016/3289801
http://dx.doi.org/10.1155/2016/3289801
http://dx.doi.org/10.1155/2016/3289801
http://ceur-ws.org/Vol-2960/paper13.pdf
http://dx.doi.org/10.1145/3377325.3377531
http://dx.doi.org/10.1145/3377325.3377531
http://dx.doi.org/10.1145/3377325.3377531
http://dx.doi.org/10.1016/j.eswa.2012.12.059
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb53
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb53
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb53
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb54
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb54
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb54
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb54
http://refhub.elsevier.com/S0957-4174(21)01394-4/sb54
http://www.worldstopexports.com/apples-exports-by-country/
http://www.worldstopexports.com/apples-exports-by-country/
http://www.worldstopexports.com/apples-exports-by-country/
http://dx.doi.org/10.1016/j.compag.2015.04.010
http://dx.doi.org/10.1016/0168-1699(95)00037-2
http://dx.doi.org/10.1016/0168-1699(95)00037-2
http://dx.doi.org/10.1016/0168-1699(95)00037-2
http://dx.doi.org/10.23796/LJ/2021.001
http://dx.doi.org/10.23796/LJ/2021.001
http://dx.doi.org/10.23796/LJ/2021.001
http://dx.doi.org/10.1016/j.compag.2020.105256
http://dx.doi.org/10.1016/j.ijleo.2017.11.190
http://dx.doi.org/10.1016/j.compag.2017.01.014

	Picture-based and conversational decision support to diagnose post-harvest apple diseases
	Introduction
	Related work
	Knowledge-based expert systems
	Machine learning classification

	System description
	Discussion
	Methodology
	Contextual multi-armed bandit
	Image-based context computation

	Experiments
	Experiments on user interface configurations
	Results

	Experiments on sampling algorithms
	Results

	User study for context computation
	Results
	Context improvement


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


