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ABSTRACT: Synthetic 3D extracellular matrices (ECMs) find
application in cell studies, regenerative medicine, and drug
discovery. While cells cultured in a monolayer may exhibit
unnatural behavior and develop very different phenotypes and
genotypes than in vivo, great efforts in materials chemistry have
been devoted to reproducing in vitro behavior in in vivo cell
microenvironments. This requires fine-tuning the biochemical and
structural actors in synthetic ECMs. This review will present the
fundamentals of the ECM, cover the chemical and structural
features of the scaffolds used to generate ECM mimics, discuss the
nature of the signaling biomolecules required and exploited to
generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in
creating functional 3D ECM mimics.

1. INTRODUCTION

In vitro cell cultures are widely used in different key biomedical
applications such as cellular and organismic biology, drug
discovery, or regenerative medicine. To date, most of the cell
cultures and cell-based assays have been performed in 2D
layers on polymer or glass dishes, yielding the fundamental
knowledge of the biological phenomena that are responsible
for healthy and pathological states. Until recently, cell biology
principles, drug activities, cell responses to endogenous and
exogenous perturbations, mechanisms involved in cell develop-
ment,1 and tissue morphogenesis have been determined by 2D
cell culture studies. Despite 2D cell cultures allowing the study
of the correlation between cell functions and some
components of the microenvironment,2 such a bidimensional
cell environment is obviously unnatural. Consequently, it likely
induces different cell behaviors with respect to the natural
three-dimensional (3D) microenvironment, lacking most of
the interactions occurring in the native 3D tissue. Indeed, in
2D cultures, many cell types develop different phenotypes and
genotypes with respect to what happens in vivo.3,4

Cell macro- and microenvironments are involved in the
modulation of complex signaling pathways that direct cell fate.
It is now clear that, due to the interactions with extracellular
matrices (ECMs), phenotype can supersede genotype.5,6

Consequently, if the cell microenvironment present in vivo
can be mimicked in vitro, it is possible to regulate the cell
behavior, influencing cell survival, shape, migration, prolifer-
ation, and differentiation, thus leading to the morphology and
physiology that occur in vivo.7 This mimicry can be generated
by 3D cell aggregates or as suspensions of cells in 3D hydrogels

made of ECM proteins.8−11 Different environmental factors
contribute to the change of behavior of cells in 3D cultures
versus 2D monolayers. Cells and extracellular matrices are
characterized by an “outside-in” as well as an “inside-out”
signaling process, dynamically modulated by molecular and
geometrical requirements. Changes in the ECM are detected
by cell receptors, which provide signals that finally determine
gene expressions.8,9,12 Differences in the composition of the
extracellular space surrounding the cells influence both the
topology of cell−cell and cell−matrix contacts at the cell
surface and the distribution of the signaling biomolecules.13−15

For example, a tensioned ECM will induce a stretching of both
the cytoskeleton and the nucleus of the cells, while compressed
ECM will result in altered local charge density and ion
concentrations, which affect the ion channels.16 Cell growth
and differentiation, both in vitro and in vivo, are strongly
influenced not only by mechanical but also by biomolecular
stimuli.17−21 Cells cultured in 3D are characterized by different
interactions with both the ECM components and the other
cells; these interactions influence cell organization and cell
regulatory pathways.22 Starting from these observations, it is
clear that an accurate study of the different mechanisms
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involved in disease progressions and the design of efficient cell
culture models for biomedical purposes require the use of 3D
ECM mimics. In this Review, we will first present the
fundamentals of ECM and then cover the most relevant
findings on ECM mimics developed as 3D cell constructs, with
emphasis on synthetic strategies to control the morphology,
the physical properties, and their functionalization with the
different biochemical cues required for cell fate regulation.

2. ECM AND CELL MICROENVIRONMENT: TAKING
INSPIRATION FROM NATURE

For a long time, the ECM has only been considered for its
structural role, providing stability and support to surrounding
cells. However, it is now well-established that it has also
fundamental functional roles, notably by producing a myriad of
dynamic signals that influence the cell fate.23 The biochemical
and structural variability of the ECM, together with its
dynamic and multifactorial nature, exert a functional role.
Despite crucial advances in the field of ECM research, more
work is needed to fully understand the different mechanisms
regulating the cell−ECM interaction.
Each tissue has a certain amount and spatial distribution of

macromolecular components and biochemical motifs, which
are strongly related to some specific functions.21,24 Unravelling
the effects of specific ECM components on cell fate and
clarifying recognition mechanisms are complicated by the fact
that the ECM structure and composition are not static. The
cells themselves secrete ECM components, such as interactor
proteins and tethered and soluble factors, which dynamically
remodel the ECM.25 This dynamic environment must be
analyzed from both physical and biochemical point of views.
The ECM physical properties modulate several adhesion-
related cell functions, such as cell cycle, cell adhesion, cell
proliferation, and cell polarity and migration. The ECM
biochemical composition, made of different signaling bio-
molecules (effectors), also influences the cell fate through
interactions with cell-surface receptors, resulting in bidirec-
tional signaling cascades that control cell development.26

These properties are not independent; they are indeed
interconnected and related to the ability of the ECM to
communicate with cells through molecular recognition events,
mechanical transduction, electrical sensing, and soluble
molecule transfer.
ECM changes in pathological states may result from (a)

variations of the composition and/or organization of the ECM
network due to either altered synthetic processes or eventual
degradation of one or more ECM components, (b) variations
of an individual ECM component due to altered post-
translational modifications, or (c) different spatial arrange-
ments via covalent or non-covalent modifications.27 It is now
clear that changes in the nature, concentration, and topology of
specific ECM components strongly impact the biochemical
and morphological nature of the ECM, leading to a
disorganization that results in a failure of homeostasis and
function of the organ.
2.1. ECM Composition. The ECM of mammals is

composed of about 300 interconnected proteins and is well
organized in 3D structures.28 In 1984, the term “matrisome”
was proposed by Martin and co-workers to obtain a picture of
the functional components of the basal membrane. This
definition has then been extended to the structural proteins of
the ECM.29 On the basis of this matrisome classification, the
ECM comprises several components, among which include

fibrous proteins, glycoproteins, and proteoglycans. Beyond the
core matrisome, other groups of proteins are also associated
with the core constituents, modulating both the ECM
structural organization and biochemical role. These ECM-
affiliated proteins include, for example, mucins, lectins,
semaphorins, and plexins. Here, we will focus our attention
on some examples of ECM components by looking at specific
molecular interactions and recognition events that occur
between components and other less known protein partners.

2.1.1. Collagen. Collagen is one of the major ECM
constituents and represents the most abundant class of
proteins in mammals (∼30% of the total). Collagen functions
are linked to many biological mechanisms involved in
homeostasis maintenance and tissue development.30−32 It
was long believed that the main function of collagen was “just”
structural, but now it is clear that it has also a role at the
biomolecular level, as collagens dictate differential cell signaling
mechanisms, spanning from cell adhesion and survival33 to cell
differentiation34 and paracrine signals induction.35,36 To date,
more than 28 different collagen forms have been identified,
which vary on the basis of tissue and cell specificity, and exert a
structural role for cell adhesion. Each collagen form is made of
homotrimers and heterotrimers that are composed of three α-
chains basic motifs. All forms are characterized by a well-
known triple helix structure, a right-handed helix of three α-
chains. The chains contain one or more regions presenting the
repeating amino acid motif Gly-X-Y, where X and Y can
include any amino acid. The rod-like domain of the protein is
responsible for the self-assembling and the interactions with
cell receptors and other components of the ECM.30 Because of
its involvement in major tissues and organs in the body,
collagen is one of the most used biopolymers in tissue
engineering and 3D cell models.36,37 Despite the advantageous
in vitro and in vivo bioactivity of collagen-based hydrogels and
biomaterials, the major issue for the clinical translation and the
therapeutic use still remain related to the fact that collagen is of
animal origin (i.e., bovine, porcine-derived collagen type I),
with potential pathogenic content (disease transmission).38 To
overcome this limitation, recombinant methods are under
study to produce controlled and safe collagen or derived
materials.39−41

2.1.2. Non-Collagenous Glycoproteins. Several families of
proteins with diverse origins and functions constitute the
noncollagenous glycoproteins of the ECM. Among them,
adhesive glycoproteins are a class of ECM macromolecules that
exist in several variant forms, with multiple binding domains
able to interact with collagen and proteoglycans, and to bind
cell surfaces.31,42 Representative adhesive glycoproteins are
fibronectin (FN), laminin (LM), vitronectin (VN), thrombo-
spondins (TSPs) and tenascin (TN). Most of the ECM
glycoproteins interact with integrins and other receptors
expressed at the cell surface, and with collagen or other
components of the ECM.43 Their role and differential
expression in pathological and healthy conditions span across
a wide range of tissues and between different cell populations.
Here we provide just a brief overview on the structures and
functions of FNs and LMs families, employed and currently
under study as glycoproteins involved in stem cell modulation.
Fibronectins represent one of the main family of ECM

glycoproteins. Different fibronectins have been extensively
studied for their multiple roles in dictating stem cells adhesion,
cell fate and cell−ECM interaction.44,45 For this reason,
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fibronectin is often employed as coating for cell culture in
microfluidic devices,46 in 2D cultures46 or in 3D scaffolds.47,48

Another important class of ECM glycoproteins are
represented by LMs. Fifteen different LMs are known today
as major components of basement membrane (BM).49 LMs
exploit their multifunctional roles in the ECM with the other
macromolecular components, where they are involved in cell
adhesion, differentiation and control of cell function. The
multiple role of LMs is linked to the structural organization
and the posttranslational modifications. Thanks to their
heterotrimeric structure, characterized by the interaction
between α-chain, β-chain and γ-chain, LMs can link and
entrap growth factors and expose oligosaccharides involved in
cell signaling.50,51 LMs are also involved in the physical
organization of tissue areas by modulating the interaction
between cells and cell−ECM and in neurites outgrow in the
nervous system.51−54 As for fibronectins, also LMs were
employed in the entire form or as motif as coating, 3D
scaffolds components or hydrogel to mimic ECM composition
and to induce specific cell fates and functions.55−62

2.1.3. Proteoglycans and Glycosaminoglycans. Proteogly-
cans and glycosaminoglycans (GAGs) constitute another
important class of biomacromolecules of the ECM. Proteogly-
cans are composed of a core protein covalently linked to a
long, linear polysaccharide, made of disaccharidic, anionic
GAGs repeating units.32,43,63,64 Proteoglycans are classified
into subtypes on the basis of: (i) the structure of the GAG
chains, their distribution and density along the core protein;
(ii) their cellular or subcellular location and (iii) their genetic
homology. The most representative GAGs are keratin sulfate,
chondroitin sulfate, heparin sulfate, dermatan sulfate and
hyaluronan. The primary biological function of proteoglycans
comes from their hydrodynamic and swelling properties.
Indeed, GAGs bind water, thus providing hydration and
compressive resistance. It is now well recognized that GAGs
are involved in different biological processes such as tumor
progression, angiogenesis and cell development.65 Polysac-
charide-based biopolymers are key molecules in synthetic
ECM, due to their ability to interact with other ECM
components and cell-surface receptors. Examples of proteo-
glycans extensively expressed in ECM, and involved in the
control of cell fate, are heparan and chondroitin sulfate
proteoglycans (HSPGs and CSPGs), decorin, byglican and
versican. Heparan and chondroitin sulfate proteoglycans,
expressed in ECM and in stem-cell niches, modulate their
action by interacting with other ECM components, dictated by
the molecular weight and the sulfation pattern. Their
biomolecular roles are also integrated with the stiffness of
the hydrogel-like structure of the niche. Decorin and byglican
are both leucin-rich proteoglycans with a pivotal role in ECM
regulation and signaling.66 They show differential expression of
sulfated oligosaccharides depending the tissue in which they
are expressed (i.e., chondroitin sulfate in bone, dermatan
sulfate in soft connective tissues67). Decorin interacts with
ECM components, growth factor and multiple cell-surface
receptors.68 The interaction of decorin with collagen, VEGFR2
and EGFR is involved in stem cell regulation and differ-
entiation for various tissues and organs. In particular, decorin
showed differentiation potential in the hematopoietic niche, in
neuronal differentiation and in kidney and tendon regener-
ation. Byglican is also important for collagen integrity and
functional structure, and cell−ECM interaction.69

2.2. Biochemical and Structural Regulation through
ECM Components and Cell-Surface Receptors. Most of
the studies on ECM architecture have been focused on
macromolecular organization of its components. However, its
role is also strongly influenced by the many molecular
interactions with cell-surface receptors.24−26 One of the most
characterized functions of ECM is to provide an adhesive and
structural substrate to which integrins and other adhesive cell
receptors can bind. These interactions are involved in the
activation and regulation of pro-survival signaling cascades.
Moreover, other bioresponsive molecules, either tethered or in
soluble form, are able to provide signals that modulate not only
cell adhesion, but also cell differentiation and cell development
through cell−cell and cell−ECM interactions.65 It has been
demonstrated that these interactions are mediated by
interactions between ECM components and both soluble
and cell-surface receptors.70,71 Yet we still have an incomplete
vision and understanding of these interactions, because of their
complexity and their synergistic or antagonistic interplay in
vivo. Furthermore, the structural features, mechanical assembly
and physical stimuli of the ECM in general are synergistically
involved in cell microenvironment regulation. The ECM is
dynamically produced by cells in the tissue environments. The
cells are able to release differential components in relation to
the nature of the tissue, the age of the individual and the health
of pathological state. On the other hand, the properties of the
ECM in terms of molecular composition and stiffness, can
influence the cell behavior.72,73 The microenvironment
components are produced by the different cell populations,
the matrix itself is then able to take an active role, by regulating
the production of new ECM and consequently modulate the
cell fate, using different biochemical and mechanical path-
ways.28,31,74−76 Several studies have studied and partially
characterized the functional role of ECM in the regulation and
the development of the stem-cell niche. We know that both
embryonic and adult niches are related to ECM biochemical
and physical interactions.6,66 The knowledge of factors that
regulate ECM production in stem cells niche has a tremendous
potential for tissue regeneration and to understand the cause of
pathological events. For instance, mesenchymal stem cells
(MSC) in 3D collagen hydrogels produce paracrine and
angiogenic factors used in the remodeling of new synthesized
ECM.35 In pathologies such as tumors, inflammation, fibrosis,
different ECMs77,78 in terms of component gradients,79 post-
translational modifications,80,81 and ECM affiliated proteins are
generated by cell populations.82−84 In summary, the
biochemical composition and mechanical stretch of the
microenvironment are the result of a dynamic process that
actively participates to the regulation of cell functions and
physiology.85,86 The mechanical properties of ECM also
influence the cell fate. The stiffness of the ECM is heavily
involved in cell differentiation and viability, and the changes in
stiffness are not just a consequence of pathological states, but
they also play an interactive role in tissue homeostasis or in
disease progression.87−89

2.2.1. Receptors Involved in Cell−ECM Communication.
Integrins are the most studied cell receptors. They are involved
in cell adhesion and control many cell functions. They perform
their actions by binding ECM glycoproteins such as FN, LM,
and collagen, among others.90 The specificity of integrin-ligand
interaction is dictated by different integrin isoforms of their α
and β chains. It is now clear that integrins mediate cell
adhesion by multiple interactions with ECM molecules. There
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is evidence that this mechanism is also involved in cell
deregulation processes, such as cancer progression and
inflammation.91 In addition to adhesion events, integrins are
also involved in signaling processes, like regulation of stress
transmission and bidirectional signaling.92 The rapid and
efficient transduction pathway mediated by integrins is known
as “Inside-Out” signaling and it is involved not just in cell
adhesion or migration, but also in many pivotal cell processes
that affect also cell viability and differentiation by regulation of
different signal pathways.93,94

Integrins’ activity is mediated by other cooperative non-
integrin receptors, and by post-translational modifications
mainly phosphorylation and glycosylation. Furthermore, a wide
range of nonintegrin putative receptors exploit their activities
by interaction with the cell microenvironment, but a limited
number of studies were focused on the role and molecular
recognition processes of these receptors.32,43 Nonintegrin
receptors include, among others, transmembrane discoidin
domain receptors, dystroglycan, syndecans, CD44, and lectins;
all of them being involved in cell−ECM communication and in
cell fate regulation.
Discoidin domain receptors (DDR) DDR1 and DDR2 are

members of the receptor tyrosine kinase family. They can bind
different collagen types playing important roles in embryo
development. DDRs link distinct amino acid sequences of
collagen and are involved in ECM remodeling, influencing cell
survival, migration, proliferation and differentiation. It has been
observed that the deregulation of DDRs functions is associated
with various human diseases progressions, such as cancer,
fibrosis and arthritis.95

Dystroglycan is a glycosylated receptor for ECM proteins
such as the basement membrane proteins LM, agrin, and
perlecan, and the trans membrane proteins neurexins. The
interaction of this receptor with ECM proteins is glycosylation-
dependent; the binding likely involving the carbohydrate side
chains of dystroglycan.96 Mutations in dystroglycan, or its
associated proteins, result in various forms of muscular
dystrophy, due to the loss of the connection with the basement
membrane surrounding the muscle cells.
Syndecans are a family of transmembrane proteoglycans

composed of a cytoplasmic domain, a hydrophobic membrane
domain, and an extracellular domain. Syndecans are able to
bind not only FN, collagen, and TSPs but also β fibroblast
growth factor (βFGF). Colocalization of both ECM molecules
and growth factors at the cell surface makes syndecans unique
molecules capable of assembling signaling complexes in
combination with other receptors and interacting with several
ligands, including ECM glycoproteins.97 Tissue morphogenesis
and cell specialization are induced by the expression of
different syndecans.98,99 Syndecans act as cell-surface recep-
tors, providing a signal cascade inside the cell via the
presentation of a ligand to other receptors upon ectodomain
shedding and as soluble effectors. In conclusion, syndecans
regulate the cell fates in terms of adhesion, proliferation,
migration, and differentiation.100

Glycoprotein I (CD44) is another nonintegrin receptor
widely studied for its differential expression during cancer
progression and in inflammation. CD44 is a multifunctional N-
and O-glycosylated protein present at the cell surface, which
interacts with GAGs.101 The affinity of CD44 for GAGs is
linked to post-translational modifications, like glycosylation,
which are specific to the cell line and the growth conditions.
CD44 regulation has a pivotal role in several cellular processes,

including tissue development, neuronal axon guidance,
immune regulation, and hematopoiesis. Interestingly, CD44
can also trigger hyaluronan metabolism and can be itself
involved in the regulation of the pericellular hyaluronan matrix,
thereby providing another mechanism by which adhesion and
deadhesion to the ECM is influenced.102

Lectins are carbohydrate-recognizing proteins expressed in
the plasma membrane or secreted in the extracellular space.
They also interact with the ECM itself and influence its
properties. Lectins are involved in microenvironment remodel-
ing, a process that occurs via an interaction with cell receptor
or with ECM components.28,103 There are several types of
lectins, but the most representative ones involved in ECM−cell
interaction and ECM remodeling are classified as C-, I-, P- and
S-type. All lectins are characterized by a well-defined
carbohydrate recognition domain (CRD), and each one has
a specific recognition ability toward a certain type of glycan
and has a different role in cell development.104 C-type lectins,
involved in cell adhesion,103 specifically recognize carbohy-
drates in a calcium-dependent manner, which means that the
sugar-receptor interaction occurs via complexation of calcium
ions. I-type lectins are also involved in cell adhesion,103

whereas P-type lectins regulate intracellular shuttling and ECM
degradation. S-type lectins, also termed galectins, are involved
in numerous biological functions, such as promotion of cell−
cell adhesion, induction of metabolic changes, and even
apoptosis.105−108 Integrin and lectin complexes act as cell
modulators able to control signaling cascades through
cytoskeletal components. Galectins are one of the most
representative families of lectins, classified into galectin-1 and
galectin-3 subgroups. They are involved in a variety of cellular
events such as cell adhesion and migration,109 cell growth, and
cell differentiation.110,111 Galectin-1 is secreted in the
extracellular medium by many cell types, including malignant
and mesenchymal stem cells; the content of galectin-1 in the
ECM affects cell development.112 Galectin-3 and galectin-8 are
considered as matricellular proteins with both pro- and anti-
adhesive activities, depending on the cell type or their
extracellular concentration.113,114 Galectin-3 is also able to
modulate the adhesion of different cell types to the ECM.115

Galectin-8 has high affinity to cell receptors, in particular
integrins and CD44 variants. As a general starting point, it is
well-established that the N- and O-glycans and their protein
interactors have key physiological roles, not just in cell−cell
communication but also in cell−ECM interactions. It is now
clear that the comprehensive understanding of these events can
spread light to the biomolecular basis of numerous
pathologies.115−117

Glycoprotein IV (CD36) is a glycosylated 88 kDa integral
membrane protein, also commonly referred to as GPIV or FAT
(fatty acid translocase). CD36 is a scavenger receptor
operating in high-affinity tissue uptake of long-chain fatty
acids (FAs). Under excessive fat supply, CD36 contributes to
the accumulation of lipids and to metabolic dysfunction. The
glycoprotein CD36 is expressed on different cell types,
including endothelial cells, macrophages, and myocytes. It
has a high affinity for collagen-I and IV, and these interactions
are involved in cell adhesion and signaling, modulating
multiple cell functions in different cell types.76,118

A plethora of physiological functions of the extracellular
compartment have been assigned to ECM receptor proteins,
and more are yet to be discovered and characterized. Table 1
reports the most representative receptors involved in cell−
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ECM communication, together with their ECM interactors
and the cellular functions exerted.
2.2.2. Recognition Motifs and Bioactive Molecules. The

interaction between ECM components and their receptors is
finely controlled at the molecular level by different signals and
recognition motifs. The ECM directs essential morphological
organization recognition motifs that bind growth factors,
bioactive molecules, and cell-surface receptors.129,130 Exposure
of these bioactive signaling molecules, by direct interaction
with cell receptors or by indirect modification of ECM
components affecting their structural organization, has shown
to be an important regulatory factor in ECM remodeling and
cell processes, including cell-adhesion or angiogenesis. The
bioavailability of these molecules is spatially and temporally
regulated and can elicit signal transduction events or regulate
gene transcription. One of the most explored recognition
motifs found in the ECM is the adhesion peptide Arg-Gly-Asp
(RGD). This sequence, ubiquitous in ECM-proteins, interacts
with integrins, thus promoting cell adhesion.43 Different
peptides and peptidomimetics containing the RGD sequence,
linear or constrained in a cyclic structure, have been generated
and extensively studied for their capacity to regulate cell
adhesion and migration. Some of them have also found
applications as therapeutic agents in cancer research, in tissue
engineering, or even as diagnostic agents.131 Other well-known
examples of ECM peptide sequences that are able to stimulate
cell adhesion through integrin interaction are the LM-derived
motifs IKVAV and YIGSR and the collagen six amino acid
motif GVMGFO (O = hydroxyproline).132 Other short
peptide sequences, mainly derived from circulating proteins,
are currently being studied for their capacity to govern cell
fates, and the research of new peptide sequences is still
ongoing.133−135

Many ECM proteins possess binding sites for both cell
adhesion motifs and growth factors, allowing controlled local
availability of growth factors to cell receptors. Growth factors
can be tethered to ECM components or released as soluble
factors to enhance their activity or alternatively to protect them
from degradation. The interaction between the ECM and
growth factors is bidirectional. Growth factors, such as platelet-
derived growth factor (PDGF) and vascular endothelial growth
factors (VEGFs) are involved in the formation of blood vessels,
which results in tissue vascularization, an essential process for
tissue regeneration.136−138 Other interactions, including ECM
binding with integrins expressed at the cell surface, modulate
growth factor expression139 and promote different processes

such as angiogenesis induced by VEGF. Other soluble ECM
components, such as matrikines, can bind cell-surface receptors
or insoluble ECM components, modulating several cell
functions. ECM components contain binding sites for growth
factors so that they act as reservoir systems that maintain the
availability of growth factors during cell development,
controlling also the gradient of bioactive factors useful for
cell signaling.75 For instance, fibroblast growth factors (FGFs)
and VEGFs are bounded to heparan sulfate proteoglycans
(HSPG) and can, when needed, be released as soluble factors
by the hydrolytic enzyme heparinase.43

HSPGs accommodate FGFs that interact with their
receptors using heparin sulfate (HS) as a cofactor. This
complex remains linked and available to cell-surface receptors
during the signaling process.140 Cell signaling activities are
often modulated by the binding between growth factors and
the ECM through the recognition of specific motifs of ECM
proteins.75 The ECM proteins FN and VN are also able to
interact with and regulate the morphogen hepatocyte growth
factor (HGF) when complexed with Met (the HGF receptor)
and integrins, thus enhancing cell migration.141 Similarly,
FnIII, which is present in both FN and tenascin-C, binds
VEGF and potentiates cell signaling across its receptor
VEGFR2. FnIII is also present in ECM-associated proteins,
such as anosmin-1, where it acts as coligand of FGFR1 to
modulate its activity.142,143

As mentioned before, it is well established that growth
factors can act under their free and linked forms. The ability of
the ECM to present or release growth factors at different
moments of the cell life confers the ECM with a controlling
role in the cell development. The EGF linked to an ECM
component cannot be internalized and degraded, but will
instead provide sustained signaling. Compared to the EGF
soluble form, the tethered form is more potent in its ability to
promote DNA synthesis, MSC survival, and osteogenic
differentiation of multipotent marrow stromal cells.144 On
the other hand, when soluble EGF is added to cells cultured on
tethered EGF, osteogenic differentiation is reduced. Soluble
EGF is involved in downregulation of epidermal growth factor
receptor (EGFR) and human epidermal growth factor receptor
2 (HER2), modulating tethered EGF/EGFR interactions.145

Similarly, in FN-null fibroblast, signaling of platelet-derived
growth factor BB (PDGF-BB) is improved when the FN
domains (FnIII) are tethered. The interaction with VEGF,
PDGF-BB, EGF-2, and TGF-β1 domains occurs via specific
peptide sequences.141 These data demonstrate that tethered

Table 1. Representative Receptor Involved in Cell−ECM Communication

ECM receptors ECM interactors cellular functions references

integrins FN, LM, collagen, soluble galectins, and
several matrix glycoproteins

cell adhesion, regulation of stress transmission and bidirectional signaling,
and angiogenesis

90, 91, 119

discoidin domain
receptors (DD1 and
DD2)

different fibrillar collagen types embryo development, cell migration, cell survival, proliferation and
differentiation, and remodeling of extracellular matrices

95, 120

syndecans collagens, FN and TSP, βFGF, VEGF,
βTGF, and PDGF

growth-factor receptor, activation, cell-adhesion, cell−cell communication,
cell proliferation, differentiation, and adhesion and migration.

98−, 100,
121

dystroglycan LM, agrin, and perlecan in basement
membranes and neurexins
transmembrane

cell development, basement membrane formation, epithelial morphogenesis,
membrane stability, cell polarization, and adhesion and migration

122, 123

lectins integrins, FN, LM, TSP and VN, and other
glycoproteins and GAGs

cell adhesion and migration and cell growth, apoptosis, and differentiation 110−, 112,
124, 125

CD44 GAGs cellular motility and cell−cell and cell−ECM adhesions 101, 111,
126

CD36 collagen fatty acid uptake, cell adhesion, and angiogenesis 127, 128
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growth factor availability in the extracellular medium is finely
tuned to control and induce cell signals that are different
compared to their soluble forms. In this context, the ECM
represents an organizing center of the signaling complex to
finely tune the cell-surface interactions.
Glycans in the ECM cover a fundamental role regarding

both their mechanical and biochemical properties. GAGs and
proteoglycans are at the basis of higher order ECM structures
in cell media. HSPGs are components of both cell surfaces and
the ECM. They control angiogenesis, embryogenesis, and
homeostasis, and in this way, they modulate cell growth and
differentiation.146,147 HSPGs contain one or more covalently
attached heparan sulfate GAG chains. The different groups of
HSPGs are classified according to their location. Other
proteoglycans are involved in wound healing and cell
development. For instance, chondroitin sulfate (CS) is
responsible for neuronal regeneration and homeostasis.148

Another important component of the ECM involved in cell
fate regulation is hyaluronic acid (HA). HA has been
extensively studied as a major component of the ECM. It
provides hydration and compression strength and regulates cell
adhesion, proliferation, and differentiation, playing an active
biochemical role in different tissues (i.e., in the nervous system,
skin, and cartilage).149−152 The biological function of HA is
strongly related to its molecular weight (MW): low MW HA
fragments (up to 700 kDa) are able to induce angiogenesis
whereas high MW HA fragments limit it.153−155 Poly(sialic
acid) (PSA) is another polysaccharide present in the ECM
involved in several physiological processes, such as neural cell
differentiation and organogenesis.153−155

Glycans involved in ECM−cell interaction are not only
polysaccharides. Smaller oligosaccharides or even monosac-
charides present in the ECM and at the cell surface have an
important role in regulating the cell fate. It is generally
admitted that the signaling glycans are specific requirements of
cells, exerting their role solely at the cell surface. Consequently,
the glyco-components of ECM proteins have been largely
neglected. Nevertheless, ECM proteins, such as collagen, VN,
LM, and FN, undergo dynamic glycosylation, and we have the
first evidence that this event influences the interaction with
cells and consequently the cell fate.81 These glycosylation
processes are often variable across different species and are
strongly dependent on several factors (e.g., age, pathology,
diet, etc.). Recent observations indicate that N- and O-
glycosylation of ECM proteins influences the binding capacity
to cell receptors and, therefore, the impact on cell fate. For
example, glycosylated collagen or LM can interact with the cell
surface integrins, an event strongly related to pathological
states and malignancies (i.e., several cancers).54,156−159 N-
Glycosylation of LM 332 has an impact on cell spreading and
adhesion. O-Glycosylation of FN regulates the expression of
mesenchymal markers and cell adhesion in the epithelial
mesenchymal transition process. The interaction of glycosy-
lated ECM proteins with lectins present in the extracellular
space, such as some galectins,112 contributes to the structural
organization and functional role of the matrix itself.21 The
discussion above is visually summarized in Figure 1.

3. ECM MIMICS
The importance of the ECM, its physical and biochemical
properties in so many fundamental cellular processes, has
stimulated interest in the development of a myriad of tailored
tissue-culture models. These models allow for the studying of

the interplay between the ECM biochemical and biophysical
properties, understanding of the molecular mechanism of
cellular behaviors regulated by ECM properties, and
developing of ECM mimics for cell cultures exploitable for
biomedical applications.
Cell culture studies exploit two different types of scaffolds:

reconstituted matrices containing biomacromolecules isolated
from animal tissue or synthetic ECM mimics.160 Both systems
can be implemented by surface coatings to promote cell
adhesion or utilized to generate 3D scaffolds for embedding
cells in a more in vivo-like environment.9,160−164 A significant
advantage of synthetic ECM is the possibility to tune certain
biophysical parameters, such as the mechanical properties or
the permeability of the matrix, in order to investigate their
influence on the cell fate. ECM mimics have been synthesized
from different polymers of both natural and synthetic origin
(Figure 2).12,160−163,165,166

Among natural materials, several proteins and polysacchar-
ides, such as collagen, gelatin, FN, HA, CS, or PSA, have been
selected167,168 with the aim to generate new functional tissues
or more affordable models for 3D cultures.169 Synthetic
materials have some advantages compared to natural counter-
parts; they are more easily available and can be more easily
modified and formulated with different stiffness, covering also
hard tissue engineering applications (i.e., bone). Examples of
synthetic polymers that have found application as scaffolds for
cell seeding and tissue regeneration are polyethylene glycol
(PEG), polycaprolactone (PCL), poly(lactic acid) (PLA), and
poly(glutamic acid) (PGA). The main disadvantage of using
synthetic polymers as building blocks for ECM mimics is their
inability to provide the biochemical signals needed to
“communicate” with the cell.170 To overcome this limit,
synthetic polymers can be functionalized by adding signaling
biomolecules, such as peptides, growth factors, and glycans.

3.1. ECM Mimic Applications. ECM mimics find
application in cell biology, as models to study drug
biodistribution in specific tissues, and in regenerative medicine.
In such applications, a significant improvement comes from the
development of 3D scaffolds and 3D bioprinting.

3.1.1. Cell Biology and Drug Discovery. In cell biology, the
3D spatial organization allows the architecture of the natural
cell microenvironment to be best mimicked, which significantly
impacts the cell development in physiological and pathological

Figure 1. Graphical representation of ECM−cell microenvironment.
(Left) Cell and schematic cell receptors involved in cell−ECM
interactions, ECM tethered signals, ECM affiliated proteins, and
extracellular interactors (biological mediators). (Right) Different
actors involved in ECM−cell signaling and graphical representation of
the role of ECM physical properties in cell morphology and shape.
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states. This requirement is a major advantage in tissue
engineering and enables the development of tissue models
with personalized features that can be used in pharmacokinetic
studies as an alternative to animal models. This is not only an
ethically preferable “animal free” approach but also potentially
more accurate, providing data closer to what would be
obtained in humans. The nature of the cell microenvironment
strongly influences the pharmacokinetics of a specific drug and,
therefore, the pharmacological response. The activity and
toxicity of well-established drugs have been compared in 2D
and 3D cultures, showing very different drugs efficacies.8,174

The combined progress in biomaterial research, 3D
bioprinting technologies, and stem cell cultures permits the
reproduction of in vitro the in vivo tissue organization and
structure and finally will allow the generation of artificial
functional organoid tissues.175,176

Synthetic 3D cell niches can be “tailored” with specific
structures, stiffness, and bioresponsive molecular cues in order
to mimic a specific human tissue in typical physiological
conditions or those affected by different pathologies.
3.1.2. Tissue Engineering. Tissue engineering is a multi-

disciplinary research based on advancements in chemistry,
materials science, and cell biology. The combination of these
fields provides new opportunities to generate tissues and even
organ substitutes for clinical applications.177−181 Tissue
regeneration is based on two main pillars: the proper stem
cell and the 3D artificial microenvironment (ECM mimic) in
which they are cultured. The ECM mimic must possess the
requirements needed to “induce” differentiation in order to
generate the desired tissue. Biomaterials for tissue engineering
require bioactive motifs to induce specific biological signals
and cells.175 They must be chosen on the basis of the nature of
the organ to be regenerated and its functional role. Other
parameters, including age or comorbidities, must also be taken
into consideration. Two different applications of ECM mimics

in tissue engineering must be considered: (i) the use of a
scaffold for in vitro culture of cells that will be subsequently
transplanted and (ii) the use of a scaffold as a biomaterial to be
implanted in vivo to generate in situ new functional tissue.182

Personalized biomaterial scaffolds are under study in order to
provide them with tailored biological properties once
implanted into the body.176,182,183

4. SYNTHETIC STRATEGIES TO MIMIC
EXTRACELLULAR MATRICES

In order to build up a solid strategy to generate ECM mimics
for both tissue engineering and cell studies, nature remains the
best source of inspiration. Both structural features and
biochemical properties of the natural cell microenvironment
must be taken into consideration.177,178,180,181,184

4.1. Mimicking Stiffness and Geometry. Composition,
stiffness, and topological structure of the ECM scaffold are all
critical to its function and affect the cellular interaction with
the material. The mechanical properties of the ECM influence
embryo development, whereas tissue stiffness affects organ
development. Furthermore, the stiffness influences a variety of
cellular properties, such as cell adhesion, spreading, prolifer-
ation, differentiation, and apoptosis. Tissues in the body are
composed of different ECM components and cells, with a
controlled organization that makes each organ different to the
others in terms of their response to mechanical stimuli. On this
basis, organs have stiffness values that comply with their
physiological and functional roles (Figure 3).
It is now evident that ECM stiffness plays a crucial role in

tissue development and in pathologies. Tissue injuries result in
imbalanced homeostasis, which influences the tissue func-
tion.31,89,185−187 As a consequence of pathological states, the
mechanical properties of the tissues are altered; for example,
fibrous tissues become usually stiffer than the original tissues.
An increase of ECM production is essential for wound-healing

Figure 2. (A and B) Examples of natural polymers (collagen PDB ID, 1BKV;171 fibronectin (fragment) PDB ID, 3M7P172) and (C) synthetic
polymers. (D) Representation of natural, synthetic, or hybrid scaffolds. Modified from Sgambato et al. “Bioresponsive Hydrogels: Chemical
Strategies and Perspectives in Tissue Engineering”.173 Licensed under CC BY 4.0.

Biomacromolecules pubs.acs.org/Biomac Review

https://dx.doi.org/10.1021/acs.biomac.0c00045
Biomacromolecules 2020, 21, 1968−1994

1974

https://pubs.acs.org/doi/10.1021/acs.biomac.0c00045?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.0c00045?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.0c00045?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biomac.0c00045?fig=fig2&ref=pdf
pubs.acs.org/Biomac?ref=pdf
https://dx.doi.org/10.1021/acs.biomac.0c00045?ref=pdf


processes, but an excess of matrix deposition leads to tissue
dysfunction, as observed in fibrotic diseases. Tumor pro-
gression, chronic inflammation, and disorders also result in
changes in ECM production.77 One of the most studied tissue
models is the tumor microenvironment, where the ECM is
continuously remodeled, leading to an increase of stiffness.
Tumor initiation/progression and fibrosis share a common
mechanism, which involves the increased production of
transforming growth factor beta (TGF-β) from myofibroblasts,
derived from fibroblast dedifferentiation. TGF-β acts following
two mechanisms: (i) by binding its own receptor, (TGFβR1)
it is responsible for SMAD pathway activation, which leads to
collagen and fibronectin family genes overexpression, and (ii)
TGF-β interferes in ECM enzymatic degradation by inhibiting
MMPs.188 In addition to its involvement in cancer progression,
lysyl oxidase also plays a crucial role in the increase of ECM
stiffness under pathological conditions by inducing inter- and
intra-cross-linking among ECM proteins by oxidative deami-
nation,.189,190 In addition to the stiffness, the architecture of
the ECM has also a major impact on cell response. Cell
adhesion and migration are strongly influenced by the
geometry of the scaffold. Different geometries of the ECM
mimics influence cell migration based on their structural
organization and density. For instance, thin networks reduce
cell migration, whereas larger ones can result in an increase of
cell migration across the scaffold.
The architecture of ECM mimics can be designed and

produced, exploiting both physical and chemical cross-linking
strategies, in order to obtain the most suitable biomaterials for
a specific tissue formation.191 3D polymer networks can be
formulated in smart hydrogels192 or scaffolds to mimic specific
extracellular microenvironments. With this aim, natural,
synthetic, and hybrid polymers have been cross-linked from
different methodologies to control geometries and matrix
stiffness and consequently to induce the required differ-
entiation of the encapsulated cells (Figure 4).191

With respect to traditional 2D cell cultures, cells
encapsulated in 3D scaffolds will have a more “nature-like”
interaction with ECM mimics, providing more adapted
intracellular signals to the physiological conditions. Therefore,
to finely tune the cell fate and to guide the tissue formation,
ECM mimics must be organized in 3D structures193 composed
of natural or synthetic polymers and decorated with
bioresponsive molecules.170 As a matter of fact, 3D ECM
mimics can be produced using different polymers (both natural
and synthetic) interconnected by physical and ionic
interactions and even covalent linkages.12 Cross-linking
strategies are widely used to control the stiffness and structural
organization of the final 3D scaffold and must be performed

without affecting the cell viability. Cells embedded into natural
biopolymers can take advantage of signaling motifs already
present inside the matrix, whereas synthetic polymers lack
signaling motifs able to modulate the cell fate. Chemists have
developed a variety of chemoselective ligation strategies to
conjugate biomolecules.194 Some chemoselective ligations,
such as bio-orthogonal click reactions, find application in 3D
biomaterials to cross-link the constitutive biopolymers and to
link the bioresponsive molecules.173,183,191 Some examples of
bio-orthogonal click reactions employed in hydrogel cross-
linking and bioconjugation are represented in Table 2. In
general, one of the two functional groups involved in the
chemoselective reaction is introduced in the polymer (if not
already present) and exploited in a reaction with a
complementary functional group present in a bifunctional
linker. The goal is to obtain a controlled cross-linking process
during cell encapsulation without affecting the cell viability.192

To this purpose, several different chemoselective reactions
have been developed to generate smart hydrogels for cell
encapsulation.191 The major problem consists of maintaining
the cell viability during the cross-linking procedures, which
means that experimental conditions (e.g., temperature and pH)
and potential side products must be carefully controlled. The
reactivity and the biocompatibility of a variety of bio-
orthogonal click reactions have been well-studied. Among
those ligation strategies, the most widely used are the thiol−
ene, thiol−yne, and thiol−Michael reactions, together with the
Diels−Alder and the strain-promoted azide−alkyne cyclo-
addition (SPAAC) reactions.191 The best conjugation
strategies depend on several different factors: (a) the nature
of the selected polymer, (b) the cell line to be employed,12 and
(c) the formulation strategy to generate the 3D model.224 The
different reactivities of natural polymers like polysaccharides or
proteins are just one of the limitations to overcome. They must
be functionalized with “unnatural” functional groups, suitable
for subsequent “click chemistry”, in order to create efficient
cross-linking to generate the 3D ECM mimics under
biocompatible experimental conditions without the formation
of side-products. With this aim, Michael and Diels−Alder
additions onto maleimide have been extensively employed in
the past few years, considering that these reactions can occur
under cell-compatible conditions and require neither UV light
nor photo initiators.
Michael addition is one of the most widely used strategies in

biomaterial design and synthesis.223,225,226 Michael addition
with thiols has been employed in the development of many
hydrogels for cell encapsulation and tissue engineer-
ing.193,227,228 The high efficacy in mild experimental conditions

Figure 3. Organ-specific stiffness values. Adapted with permission
from ref 185. Copyright 2015 Taylor & Francis.

Figure 4. 2D coated polymers and 3D cross-linked polymers.
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and the orthogonal nature of the reaction are strong assets for
all applications related to biomedicine.229 Also, Diels−Alder
has been employed to produce biomaterial conjugated with
bioactive factors230 of to control hydrogel networks of natural
and synthetic biomaterials.217,218,231 The Diels−Alder reaction
proceeds under mild conditions with high yields, no side
products, or reagent contamination. In typical Diels−Alder
reactions, an electron-rich diene reacts with an electron-poor
dienophile. The maleimide moiety is a dienophile widely used
in Diels−Alder chemoselective reactions.232 Interestingly, once
the maleimide function is inserted in a biomaterial, it becomes
suitable for both Michael and Diels−Alder chemoselective
ligations. As far as the diene moiety is concerned, furan,
methylfuran, cyclopentadiene, and photogenerated ortho-
quinodimethanes (photoenols) have been used to function-
alize the biopolymers for subsequent Diels−Alder conjugations
with maleimide.217,233

In both Michael and Diels−Alder addition, the possibility to
modulate the coupling kinetics using functional groups with
different reactivities has been studied. It allows for the
exploitation of different formulation methodologies in the
hydrogel fabrication. Cross-linking kinetics are very important
for an efficient 3D printing process and to guarantee high cell
viability and homogeneous cell encapsulation. Typical Michael
acceptors show different kinetic profiles (Figure 5a). In Diels−
Alder reactions, an s-cis-diene is required. Therefore, all the
structural requirements that induce or favor the formation of s-
cis isomers will fasten the cycloaddition reaction. The most
used Michael acceptors/dienofiles and dienes are ranked in
Figure 5 in decreasing reactivity order.
Oxime and hydrazone ligations are based on the chemo-

selective reaction between an aldehyde or a ketone with an
alkoxyamino (H2N−O−R) or a hydrazino (NH2−NH−R)
derivative. Given that proteins do not contain aldehydes and
ketones, this coupling strategy represents a very attractive
methodology.222,223 Oxime/hydrazone ligations result in site-
specific conjugations that do not affect the protein structures,
thus allowing for polymer functionalization while maintaining
the protein bioactivity and biocompatibility.
The study of the cell response to specific geometrical,

mechanical, or morphological physical features and other
general physical features of the ECM needs technologies and
polymeric materials that allow for the generation of patterned
structures with controlled spatial organization. With this aim,
several synthetic materials have been developed.234,235

Polyisocyanopeptides were functionalized with oligo(ethylene
glycol) side chains to obtain responsive polymers with helical
hierarchical architectures, in which stiffness and molecular
interactions can be tuned to formulate transparent hydro-
gels.236 Thermoresponsive worm-like synthetic hydrogels have
also been developed through reversible addition−fragmenta-
tion chain-transfer (RAFT) polymerization of styrene in the
presence of poly(N-isopropylacrylamide) (PNIPAM). The
hybrid features of the final biomaterials, characterized by a
hard polystyrene core surrounded by PNIPAM chains, were
employed with PNIPAM-grafted vitronectin fragments to allow
for the formation and the maintenance of human embrionic
bodies (hEB).237 PNIPAM has also been cross-linked to
poly(diacetylene) bis-urea bolaamphiphile (PDA) fibers to
generate thermoresponsive hydrogels with tailored mechanical
properties.238 Poly(α-hydroxy) esters, including their copoly-
mers and hybrid derivatives, have also been extensively
employed and studied to control the morphological and

Table 2. Examples of Chemical Strategies Employed in
Bioconjugation or Hydrogel Crosslinkinga

aAdapted with permission from ref 195. Copyright 2019 Elvesier.
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mechanical properties of the microenvironment in stem cell
control and tissue engineering applications.239,240 The
representative examples of poly(α-hydroxy) esters employable
for 3D ECM mimics include PCL, PGA, and PLA. Copolymers
made of conductive poly(3,4-ethylenedioxythiphene) grafted
with D,L-PLA (PEDOT-co-PDLLA) were synthesized and
tested with embryonic stem cells (ESCs) to obtain
biodegradable biomaterials with electric properties.241 Many
other biomaterials based on poly(α-hydroxy) esters242 and
derived copolymers have been synthesized and investigated,
taking advantage of their approved use in clinical fields and
their processability by different fabrication strategies.243−246

Some examples of synthetic polymers employed for stem cell
encapsulation are reported in Table 3.
4.2. Mimicking Biochemical Signals. Cell events such as

adhesion or subsequent differentiation and proliferation are the
result of interactions between the receptors expressed on the
cell surface and their counterparts founded on close cells and
ECM.24,28,29,31,70,84,99,103,285 These events, mediated by
effector proteins, growth factors, and post-translational protein
modifications such as phosphorylation and glycosylation, play a
fundamental role in cell−cell and cell−ECM communication
and inconsequent signal transduction to the nuclei.21,25,26,193

To mimic cell−ECM biomolecular recognition and commu-
nication events, different approaches have been developed to
enrich ECM mimics with bioactive molecules, such as small
peptides, glycans, and even proteins or polysaccharides,
producing bioactive materials. Considering the dynamic nature
of the ECM and cell microenvironment, the bioresponsiveness
is also a key feature of ECM mimics. The functionalization of
polymers with biomolecules and cross-linkers, which are
cleavable with specific stimuli (e.g., pH, temperature, light,
or enzymes), allows for the modification of the hydrogel
properties in a specific biological environment.286

The functionalization of polymers with bioactive molecules
can be performed by click chemistry, as described before. The
process can exploit functional groups already present in
polymer chains, or more often, the introduction of a functional
group that is more suitable for the chemoselective ligation may
be needed. The functionalization of polymers with bioactive
molecules has, however, some constraints that must be
considered in the synthetic strategy: (i) to be “active”, the
attached molecule must be correctly exposed in order to be
recognized by cell-surface receptors, and (ii) the conjugation

must also be performed in mild conditions, like in click
reactions, to avoid a detrimental effect on the “bioactivated”
polymers and the formation of toxic side products. Many of the
methods used for cross-linking strategies (Table 2), have also
been employed to decorate biomaterials with bioactive
molecules.

4.2.1. Bioresponsive Polymers and Hydrogels. Biorespon-
sive polymers have recently been developed to produce
scaffolds that mimic the mechanical, biophysical, and adaptive
properties of native ECMs via the establishment of direct
interactions with cells.2,287 These materials contain specific
active sites that, under proper stimulation by biochemicals or

Figure 5. (A) Reactivity of the most used Michael acceptors/dienophiles, presented in decreasing order of reactivity. (B) Differential reactivity of
the dienes employed in the Diels−Alder reaction for hydrogel fabrication and cell encapsulation. Adapted with permission from ref 229. Copyright
2014 American Chemical Society.

Table 3. Selected Examples of Synthetic Polymers
Employed to Mimic ECM Architecture and Physical
Behavior
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cells, undergo macroscopic transitions such as localized or bulk
changes in properties. This is of utmost importance to develop
dynamic ECM mimics able to respond to the transient changes
of cells (e.g., spreading, migration, or signaling) and tissues
(e.g., pathology or wound) and direct cell behavior.
Bioresponsive hydrogels have been engineered to allow the

modulation of ECM mimic properties. For instance, to allow
the spread and proliferation of encapsulated cells, degradable
hydrogels have been engineered by incorporating hydrolyti-
cally or cell-mediated enzymatic degradable moieties.287

However, because hydrolytic degradation is not representative
of the various dynamic processes taking place in native
ECMs,267 materials able to respond to cell-mediated cues were
preferred. This was achieved by embedding cross-linkers into
the polymer matrix that degrade under the action of plasmins
or cell-secreted matrix metalloproteinases (MMPs).288 MMPs
are cell-secreted enzymes that are relevant in such a context, as
they can degrade ECM molecules during tissue remodeling
and disease. A typical example is the use of MMP-sensitive
oligopeptide cross-linkers in PEG-based hydrogels. In partic-

ular, Hubbell and co-workers reported Human fibroblasts that
could spread by degradation of MMP substrate GPQG↓IAGQ
sites (where ↓ denotes the peptide cleavage site) after cell-
mediated release of MMPs.289,290 The application of this
system to bone tissue engineering was then investigated by
loading the hydrogel with bone morphogenetic protein-2
(BMP-2), which is known to be involved in bone formation. In
a similar fashion, other PEG-based hydrogels291 embedding
MMP-sensitive sequences were designed. In other studies,
cross-linked cell adhesive and proteolytically degradable PEG
hydrogels289,291−293 were obtained from the reaction between
multiarm PEG derivatives and RGD-containing peptides as
well as enzymatically degradable peptide sequences.
Mechanical properties play an important role in the

evolution of cells. For instance, by tuning the hydrogel
modulus, it was shown that cell proliferation can be
manipulated irrespectively of the sensitivity of the PEG matrix
to proteolysis and the presence of cell adhesion motifs.294

Mechanical properties of bioresponsive hydrogels can be
readily adjusted by changing their different structural

Figure 6. (A) Schematic representation of MMP-sensitive PEG hydrogels. (B) Hydrogel degradation by collagenase (MMPs) but not by plasmin
or buffer solutions. (C) Hydrogel degradation profiles as a function of the polymer weight percentages in the presence of collagenase. (D) Confocal
and bright field images of HUVECs and 10T1/2 cells cultured for 3 and 6 days in hydrogels with varying polymer weight percentages. (E) Total
tubule length formed. (F) Number of branching points after 6 days of culture with varying polymer weight percentages. (G) Compressive moduli
ranging from 30 to 110 kPa were measured in hydrogels with and without encapsulated cells. Scale bars = 50 mm. Reprinted with permission from
ref 295. Copyright 2010 Elvesier.
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parameters. The most representative example is certainly the
influence of the cross-linking density, which can drastically
influence cell fate and dictate 3D cell behavior. Indeed, in
MMP-sensitive PEG hydrogels, the formation of tubules was
witnessed for intermediate PEG contents, whereas their
complete regression was obtained with less cross-linked PEG
matrices295 (Figure 6). Also, the stiffness of the hydrogel296

and its sensitivity to proteolysis can be simultaneously changed
by varying the weight fraction of MMP-sensitive sites, resulting
in the manipulation of hydrogel degradation and the formation
of functional blood vessels.
However, MMP-sensitive substrate sites exhibit relatively

slow degradation kinetics that may limit cellular infiltration
within the scaffold. Also, these peptides can also be cleaved by
a variety of different MMPs, which could result in selectivity
issues. Therefore, recent solutions to circumvent these
limitations have been proposed, including (i) the use of
peptide substrates with increased catalytic activity292,297 to
enhance proteolytic degradation of PEG-based hydrogels or
(ii) the increase of the spatial presentation of such signaling
molecules within the hydrogel.298

Interestingly, bioresponsive hydrogels as ECM mimics have
also been obtained from other polymer scaffolds such as
poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-
AA)) cross-linked with MMP-13/collagenase-3-degradable
peptide sequences.299 Increased cell migration was observed
in MMP-degradable P(NIPAAm-co-AA) hydrogels compared
with nondegradable counterparts, thus emphasizing the benefit
of bioresponsiveness.
Since hydrogel degradation is irreversible in these systems,

the long-term use of such ECM mimics is therefore limited.
More advanced ECM mimics able to exhibit reversible
modulation of their properties have therefore been developed.
This was achieved by designing hydrogels with reversible/
adaptable cross-linking chemistries,300 thus leading to dynamic
nondegradable materials. Two main strategies have been
investigated: covalent and noncovalent adaptable hydrogels.
For the former, biocompatible hydrogels comprising bound
hydrazine301−306 and imine307−309 have been successfully used
to encapsulate cells while maintaining their function and a
good cytocompatibility. For instance, a hydrazine-linked PEG-
based hydrogel was able to mimic the modulus and stress
relaxation properties of different biological tissues,302 thus
making it a valuable tool for designing viscoelastic scaffolds and
for studying cellular responses to scaffold elasticity (Figure 7).
A similar material was mixed with collagen and resulted in
cardiac tissue with enhanced mechanical properties from
encapsulated cardiomyocytes compared with collagen alone.305

As for noncovalent adaptable hydrogels, they are usually made
of cross-linked points based on weaker interactions than
covalent linkages, such as calcium coordination,310−312 host−
guest interactions,313−315 hydrogen bonding,316 and
others.317−320

Bioresponsive polymer matrices have also been engineered
to display bioactive ligands (e.g., growth factors) in a dynamic
fashion to modulate the chemical environment of the cells to
mimic native ECMs. This is of high importance, as the
spatiotemporal presentation of growth factors to cells is
connected to numerous in vivo processes.321 To avoid side-
reactions and ensure precise on demand ligand presentation,
biorthogonal chemistry has been developed.322,323 In this field,
light-based chemistries have been extensively used to conjugate
and release ligands to hydrogels, given their mild and rapid

reaction conditions.206,301,324−329 Also, the use of light ensures
accurate spatiotemporal control in both 2D and 3D geo-
metries. Reversible ligation strategies involving light have been
utilized to link small molecules (e.g., dyes, peptides) onto
polymers by using click chemistry-based photoreversible
patterning strategies. For instance, RGD or NTA-amine
functionalized to the NHS moiety can be conjugated through
copper(I)-catalyzed alkyne−azide cycloaddition (CuAAC) to
azide groups localized on prefunctionalized hydrogels via a
photocleavable nitrobenzyl linker, which contains a photo-
cleavable group, leading a photochemical release330 (Figure 8).
This concept can also be applied to larger entities, such as
proteins, for instance, via the use of a prefunctionalized

Figure 7. Structure of hydrazine-linked PEG-based hydrogel showing
reversible gelation. The blue cross-structure represents the hydrazide-
PEG star, the red cross-structure represents the aldehyde-PEG star,
and the blue−red network shows a graphical representation of the
final cross-linked structure. Adapted with permission from ref 300.
Copyright 2012 John Wiley and Sons.

Figure 8. Hydrogel functionalized to bioactive molecules through a
photocleavable linker strategy can be used for the local release of
bioactive molecules with light. Reprinted from Wegner et al.
“Photocleavable Linker for the Patterning of Bioactive Molecules”.330

Licensed under CC BY 4.0.
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hydrogel able to react through a click-type reaction with
proteins,331 such as the stem-cell differentiation factors sonic
hedgehog (SHH) and ciliary neurotrophic factor (CNTF)
(Figure 8).
To avoid denaturation and loss of activity from fragile

macromolecules caused by free radicals, an alternative strategy
relying on an enzyme-catalyzed reaction with the hydrogel by
avoiding light exposure has been reported.332 Sequential light-
mediated reaction procedures have also been investigated to
position and release different proteins using the same
chemistry.329 For instance, the Michael-type addition reaction
has been successfully applied to reversibly photopattern
bioactive peptides into hydrogels, even after numerous cycles
thanks to the double-bond regeneration.
Dynamic ligand presentation can also be achieved by

noncovalent approaches. Among the most used pathways,
the hybridization of leucine zippers333 offered a clever solution
to reversibly display RGD-containing peptides into PAAm-
based hydrogels (Figure 9). Bioactivity could be turned off by

the addition of a PEG chain with a complementary leucine
zipper and turned on again by introducing a competing peptide
able to displace the PEG moieties. Reversible exposition of cell
adhesion sites was also achieved by folding/unfolding via
aptamer hybridization.334

Short oligopeptides, derived from or inspired by ECM
proteins, have been widely studied as bioresponsive and
bioactive molecular cues. Numerous bioactive sequences have
been selected, synthesized, and grafted to polymer chains to
induce specific biological signals. Today, a wide range of
sequences are available to induce different biological responses.
They are selected on the basis of the tissue (cell populations)
and the biological signal of interest and also on the basis of the
polymers employed in the design of ECM mimetics.335,336 The
development of screening strategies to select and decipher the
sequences that must be employed in the design of new
synthetic materials mimicking ECM is of great interest for both
cell biology studies and tissue engineering applications.132

Some examples of peptide sequences employed in dynamic
bioactive bioresponsive hydrogels are summarized in Table 4.
The RGD sequence, discovered in the FN domain III10

(which binds α5β1 and αVβ3 integrins),337 is the most famous
peptide involved in cell adhesion processes. RGD-containing
sequences were also found in LM, fibrinogen, VN, fibronectin,

bone sialoprotein, tenascin, osteopontin, and in some collagen
types.338,339 RGD-containing peptides affect the biological
functions of human induced pluripotent stem cells (IPSs) in
different ways (e.g., cell attachment, self-renewal, and
pluripotency), suggesting that the whole sequence is involved
in the modulation of cell behavior.340 As previously reported, it
has been observed that changes in the RGD peptide
conformation from linear to cyclic significantly modify the
specificity of integrin recognition, stimulating different cellular
responses, such as differentiation and/or phenotype main-
tenance, depending on the conformation.341 Other peptides
used to obtain bioresponsive and bioactive hydrogels are
IKVAV or MMP-sensitive sequences.342−345 IKVAV is a LM-
derived peptide, and it has been extensively studied for its
ability to induce neuronal differentiation and to improve
neurite outgrowth in cortical neurons;346 it has been linked to
different hydrogels, like hyaluronic acid,347,348 polylysines,349

and polyacrylamide.350 Another LM-derived sequence is
YIGSR, which, when linked to different polymers and
hydrogels, is able to induce angiogenesis, promotion of skin
development, and inhibition of tumor growth and meta-
stasis.351 FRHRNRKGY is a peptide derived from VN that
interacts with heparin, and the sequence is specifically involved
in human osteoblast adhesion.352 Other sequences were
identified from ECM proteins and tested for their activity to
induce cell fate under their free form or when linked to
material surfaces or hydrogels.132

4.2.2.2. Glycans. In addition to small peptides, glycans also
exert a relevant role to control and guide cell adhesion or other
cellular processes. The role of glycans in a broad range of
recognition phenomena of biological relevance has been well
established. It is not surprising, therefore, that glycans also
exert a relevant role in the cell microenvironment, influencing
the cell fate. In the complex cell microenvironment, several
glucosaminoglycans (GAGs) and proteoglycans play a
fundamental role. Therefore, a wide number of hybrid GAG-
based materials are currently under investigation.353 Some
polysaccharides present unique hydrogel properties, making
them very suitable as a biomaterial for cell cultures.
Polysaccharides or polysaccharide−protein and polysacchar-
ide−polymer hybrids, such as hyaluronic acid−collagen or
chitosan−collagen, have found application in human stem cell
culture and tissue engineering.354−356 Several cross-linking and
functionalization strategies have been investigated to formulate
hybrid materials but also to study the effect of polysaccharidic
chains as signaling molecules.356

Hyaluronan, polysialic acid, heparin, heparan and chon-
droitin sulfate, chitosan, and cellulose (Figure 10) are the most
widely used polysaccharides that gave rise to a wide range of
smart biomaterials for tissue engineering and cell culture.357

Figure 9. Molecular design of bioactive surfaces capable of
dynamically and reversibly regulating immobilized ligands via
hybridization of leucine zippers. Adapted with permission from ref
333. Copyright 2010 American Chemical Society.

Table 4. Selected Peptide Sequences

sequences/motifs receptor/stimuli

RGD and cyclic
peptides

integrins α5β1, αvβ3/cell adhesion

IKVAV integrin αvβ3/neuronal differentiation
YIGSR integrins α1β1, α3β1/angiogenesis, epidermal

development of skin, and inhibition of tumor growth
and metastasis

FRHRNRKGY heparin/human osteoblast cell adhesion
CGG-
QPPRARITGYII

integrin α4β1, syndecan
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Composites of hyaluronic acid or chondroitin sulfate with
ECM structural proteins, such as collagen, have been
successfully generated and exploited to induce osteochondral
or skin differentiation.358−361 Polysialic acid (PSA) has been
adsorbed and/or linked to other natural or synthetic polymers,
such as hyaluronic acid (natural polysaccharide), polylysine
and polyornithine (synthetic polypeptides), or LM and gelatin
(proteins). The obtained composites were used for neuronal
differentiation in both tissue engineering and cell culture
studies.362−367

Alginate is another widely used polysaccharide for tissue
adaptation, such as cell encapsulation, and for use as a 3D
matrix.368 Several alginate-based hydrogels have been
developed as cell-instructive hydrogels. One of the most
explored applications of alginate is the encapsulation of beta
islets for pancreatic tissue engineering applications.369

After having defined the role of polysaccharides, which are
widely used as the main components of the hydrogel skeleton
for cell cultures, the role of mono- and oligosaccharides in
signaling to induce and control the cell fate is introduced
below.210,370

The functionalization of protein-based or synthetic polymers
with monosaccharides or oligosaccharides has also been widely
used to improve their properties as functional biomaterials.210

End-functionalized glycopolymers as mimics of chondroitin

sulfate have been synthesized and investigated to study the
effect of the sulfation pattern and multivalency on protein
recognition (Scheme 1a).371 Proteoglycan mimics have been
produced using thiolated hyaluronic acid functionalized with a
bifunctional N-β-maleimidopropionicacid hydrazide bifunc-
tional linker and have subsequently been employed to graft
chondroitin sulfate and heparin (Scheme 1b).372 Other
synthetic or natural polymers have also been employed as
backbones to produce aggrecan-like structures mimicking PGs
of the ECM.373,374,356,375,376

Typical chemoselective functionalization strategies em-
ployed to functionalize hydrogels and biomaterials with
unprotected glycans are reported in Scheme 2.
Reductive amination is one of the most extensively

employed procedures for protein glyco-conjugation. In the
field of biomaterials, reductive amination has been exploited to
perform the functionalization of collagen matrices with several
di- and oligosaccharides.377 For example, the functionalization
of collagen with α-D-glucose by reductive amination involving
the lysine residues and maltose provided interesting results,
influencing the fate of F11 neuroblastoma cells. The exposed
α-glucose residue indeed induced morphological and func-
tional differentiation of nonfunctional F11 neuroblastoma cells.
The glycosylation of collagen with sialylated epitopes influence
osteochondral regeneration.378 Collagen functionalized with
Neu5Acα2−3-Galβ1−4Glc residues induced up-regulation of
chondrogenesis markers, whereas Neu5Acα2−6-Galβ1−4Glc
residues up-regulated the expression of osteogenesis
markers.379

Thiolated collagen matrices have been functionalized with α-
allyl-D-glucoside and β-allyl-D-galactoside by thiol−ene reac-
tion. The choice of α-glucose and β-D-galactose to glycosylate
collagen is dictated by the fact that the two sugar epitopes are
exposed in the native collagen glycosylation pattern in the
ECM. Both glycosylated collagen matrices are able to induce
cartilage repair in osteoarthritic mice.380 Other biomaterials
decorated with simple glycan motifs have been generated and
employed as tools for glycomic studies,381 for 3D liver cell
culture,382−385 or for improving MSCs adhesion on polymeric
scaffolds.386,387

4.3. Artificial ECMS: New Perspectives with 3D
Printing and Bioprinting. 3D printing is becoming a widely
accepted manufacturing technique in biomedicine. It promises
patient-specific personalized tissue design, on-demand fab-
rication, and high reproducibility.388−390 The main applica-
tions span dentistry, medical devices, tissue engineering,
engineered tissue models, and drug formulation.391

Biomaterials for 3D printing can be used alone (inks) or can
encapsulate living cells/spheroids (bioinks for 3D bioprinting).
In both 3D printing and 3D bioprinting for cell culture, the
biomaterials used in the processes must meet usual biomaterial
requirements: biocompatibility, controlled biodegradability,
biofunctionality, controlled mechanical properties, etc. Con-
sequently, most research efforts are devoted to the develop-
ment of 3D printing protocols exploiting already approved
biomaterials, which include natural, synthetic, and hybrid
polymers. The research efforts are devoted to modulating their
chemical and biological features and to controlling the
printability window and cell encapsulation capacity during
the bioprinting process.392 Hydrogel inks formed by the
natural biopolymers agarose, alginate, and hyaluronic acid and
semisynthetic PEG-RGD-functionalized gelatin have been used
in bioprinting and shown to have good cell compatibil-

Figure 10. Polysaccharides employed in hydrogels for cell cultures
and tissue engineering applications.
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ity.389,390,392,393 Other natural materials, such as fibrinogen and
collagen, possess both cell-binding and cell-degradable sites
but suffer from poor mechanical properties. To improve them
in terms of mechanical properties and imparted printability,
synthetic polymeric components have been inserted and cross-
linked. In terms of printability, thermoplastics are one of the
most common polymers for 3D printing, inside and outside of
the medical field. These materials include PLA,394 poly(lactic-

co-glycolic acid) (PLGA),394 PCL,395,396 and all other
biocompatible polymers.
The main advantage of the use of 3D bioprinting to generate

ECM mimics consists of the possibility of personalized design
and precise fabrication, critical requirements for tissue
engineering. 3D bioprinting technology allows for the build
up of a tissue construct by using the layer-by-layer technique
with accurate spatial control of the embedded cell populations,
biomaterials, and grown factors. The combination of proper
biomaterials and both multipotent and mature cells could be
applied to reproduce the phenotype of each tissue. Beyond
setting up the 3D bioprinting process, by adapting different
parameters such as the nature of the injector, cell lines,
microextrusion, and pressure, the implementation of the
vascularization represents the main bottleneck.390,397 To
date, only a few vascularization-free tissues have been
fabricated by 3D bioprinting, such as cartilage and
skin.398−401 The capacity to induce vascularization in a
synthetic 3D ECM mimic would surely open crucial
perspectives in regenerative medicine.

4.4. Decellularized Extracellular Matrix. In recent years,
decellularized extracellular matrices (dECM) have been
considered as a valid alternative for in vitro 3D cultures and
tissue engineering strategies. The decellularized matrices are
usually obtained from animal-derived organs in which cell
populations are eliminated to obtain the bioactive ECM with
natural components and morphology.402 Decellularized organs
and tissues show an impressive capacity to host stem cells and
induce their differentiation. However, there are some
limitations in terms of availability, variability, and potential
immunogenicity due to post-translational modification of the
tissues (i.e., glycosignature).

Scheme 1. Two Strategies to Generate Synthetic Glycopolymers

Scheme 2. Chemoselective Strategies Employed with
Unprotected Natural Oligosaccharides: (A) Hydroxylamine,
(B) Primary Amine by Reductive Amination, (C)
Hydrazine, and (D) Oxyamine Linkers
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The decellularization process often involves physical,
enzymatic, or chemical processes selected on the basis of the
tissue or organ of choice. Irrespective of the organ or tissue, the
treatment affects the physical properties, the biochemical
composition of the matrix, and, consequently, the “host
properties”.
Artificial ECMs made by decellularized material on synthetic

supports have been investigated. Pati and co-workers employed
porcine-derived dECMs (cartilage, heart, or adipose) using
PLC as a polymeric support.403 Different strategies have been
followed by other authors who developed dECMs cross-linked
with gelatin or hyaluronic acid as natural biopolymers to obtain
3D models with tunable stiffness to better mimic soft tissues
properties.404 A cardiac tissue was also developed in vitro by
combining porcine heart dECMs with human cardiac
progenitor cells, where the desired bioprinting stiffness was
tuned by sequential VB2/UVA and thermal cross-linking.405 In
light of these results, decellularization of cell cultures has also
gained interest as an alternative to full-organ or tissue
decellularization. This method has the advantage of producing
matrix entirely derived from one single cell population,
whereas the matrix derived from tissues are the product of
different cell types. Thus, the decellularization of cell cultures
enables the study of only the components of interest secreted
by a single type of cell. For instance, several studies have been
carried out investigating MSCs’ ECM effect during ex vivo
expansion to study the effect of dECM on cell MSC cell
populations.406

Overall, decellularization methods offer promising avenues
in molecular biology and in cell studies in general, but
oftentimes, these methods have limitations and still need
further development in terms of the protocols and formulation
strategies to maximize the translation and the investigation of
the ECM effects. The major challenge of these approaches is to
find the right balance between structural tissue maintenance
and cellular removal. Other limitations are related to the scale-
up for further translation.407

5. CONCLUSION AND FUTURE PERSPECTIVES

Artificial ECMs are promising tools with important perspec-
tives and applications in biomedicine, which may result in
significant improvements in stem cell therapies and in more
efficient pharmacological studies that avoid animal models.
From a scientific point of view, a predictive understanding of
how the physical and biochemical properties of ECMs induce
different cell fates and how such properties are related to
pathologies, age, diet, or environmental changes is of huge
relevance. This knowledge will clear the way for personalized
therapies.
To reach these ambitious goals, tailor-made synthetic 3D

ECMs must be developed, in which the different structural and
biochemical parameters influencing the cell fate can be finely
tuned. Progress in the knowledge of the nature of ECMs in
different tissues, different pathologies, and even different
individuals, together with the capacity to generate increasingly
sophisticated smart 3D biomaterials, may assist in the
generation of artificial organs.
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stem cells; BMC, bone marrow cells; ESCc, embryonic stem
cells; NSCs, neural stem cells; ADSC, adipose-derived Stromal
Cells; hPSC, human pluripotent stem cells; BMSCs, bone
marrow-derived mesenchymal stromal cells; CH, chondro-
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cytes; IPS, induced pluripotent stem cells; MMPs, matrix
metalloproteinases; P(NIPAAm-co-AA), poly(N-isopropylacry-
lamide-co-acrylic acid); PAA, poly(acrylic acid); PLGA,
poly(lactic-co-glycolic acid)
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