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A B S T R A C T   

Clustering is an unsupervised machine learning methodology widely used in several sciences to find groups of 
similar patterns in complex data. The results generated by clustering algorithms generally depend on user- 
defined input parameters such as the number of expected clusters, which can have a great impact on the ho
mogeneity of the identified clusters. 

Clustering validity indices (CVIs) are an effective method for determining the optimal number of clusters that 
best fit the natural partition of a dataset. They do not require any underlying assumption nor a priori knowledge 
about the true dataset structure. Since 1965, many cluster validity indices have been proposed in the literature 
and used in several different applications. 

In this paper, the performance of 68 cluster validity indices was evaluated on 21 real-life research and 
simulated datasets. CVIs were compared on the same partition for each dataset, which was searched for by the k- 
means clustering algorithm. Multivariate chemometric methods were applied to disclose mutual relationships 
among the indices and to select those that are more effective in terms of accuracy and reliability.   

1. Introduction 

In most of data analysis applications, there is no external criterion or 
knowledge to define some meaningful categories of the objects to study. 
They are characterized by a set of measurements and on the basis of the 
similarity between data points one can only attempt to characterize the 
structure of the dataset as best as possible. Cluster analysis helps to 
discover the ‘natural’ grouping of a set of data by unsupervised learning 
methods. Clustering approaches are a kind of exploratory data analysis, 
widely used to find groups of similar patterns in several research fields, 
such as science, medicine, engineering and social sciences for different 
purposes such as data categorization, information retrieval, web and 
text mining, image analysis, object recognition. A clustering algorithm 
generates a partition of the objects, which are represented as points in a 
p-dimensional space, into a number K of groups (i.e., commonly referred 
to as the parameter K), generally searching for homogeneity within the 
clusters and heterogeneity among different clusters [1]. 

Clustering algorithms can be divided into crisp and fuzzy methods. 
Crisp clustering (or hard clustering) assigns each data point to one and 
only one of the clusters, while fuzzy clustering allows each data point to 
belong to more than one cluster with a different membership degree. 
Then, in crisp clustering well defined boundaries are assumed among the 

clusters, while in fuzzy clustering they reflect the likely overlap of the 
groups, which can be often encountered in real datasets due to data 
uncertainty. 

In general, there is no a unique “natural” partition of the objects, 
hence a reasonable purpose is to achieve a reliable solution that reveals 
some meaningful data patterns. Thus, the main questions to be answered 
are “how many clusters are there in the dataset?” and “how to find the 
‘natural’ number of clusters?”. Since most of the clustering algorithms 
require this information to be known in advance, the common approach 
is to run the algorithm several times with different values of the 
parameter K, compare the obtained partitions and choose the partition 
that best fits the data structure. This process, which implies a quanti
tative evaluation of the clustering results, is known under the general 
term of cluster validation [2]. There is a distinction between internal 
and external validation depending on the kind of information available 
in the validation process. External validation methods evaluate the 
clustering results by using, if available, the correct partition of the 
objects (i.e., the “true” data classes) and the indices for partition 
comparison, which are commonly referred to as partition similarity 
measures (e.g., Rand index, adjusted Rand index, Jaccard index, 
Fowlkes–Mallows index). Internal validation methods just examine the 
obtained data partition accounting for some specific features of the 
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clusters (e.g., compactness, separation, density, overlap), which are 
used to calculate the internal cluster validity indices (CVIs). Among the 
cluster features considered in these indices, there are the connectedness 
and the external isolation. The former measures the cluster internal 
cohesion or density and relates to the number of connections within the 
cluster, the minimum similarity or the average similarity between the 
objects in the same cluster. The external isolation measures how 
well-separated are the objects within a cluster from the objects in other 
clusters and can be calculated as the distance between the two nearest 
objects that belong to different clusters or as the average distance be
tween all the objects belonging to different clusters or else as the 
smallest distance between the cluster centroids. 

This study focuses on the internal validation since in most of data 
mining applications the underlying structure of the data is unknown. 
The importance of this research field is also evidenced by the large 
number of software packages for cluster validity indices calculation, 
which have been developed in the last 15 years: clValid [3], ccCrit [4], 
cclust [5], clusterSim [6], NbClust [7], clv [8]. 

Previous comparisons among the most common cluster validity 
indices can be found in the papers of Milligan [9,10], Halkidi et al. [11, 
12], Bandyopadhyay et al. [13,14], Pakhira et al. [15], Kim et al. [16], 
Tang et al. [17], Wu et al. [18], Saitta et al. [19], Zhang et al. [20], Saha 
et al. [21], Sengupta et al. [22], Arbelaitz et al. [23], Brito da Silva et al. 
[24], Wiroonsri [25]. In the majority of the cases, only a small number of 
cluster validity indices have been compared and/or on a few number of 
datasets and, in none of these studies, a multivariate comparison has 
been carried out. 

The purpose of our study is to survey most of the validity indices 
(CVIs) that have been proposed so far for crisp clustering and compare 
their performance on a large number of different real-life and simulated 
datasets by a multivariate chemometric perspective. The remainder of 
the paper is structured as follows. The first section deals with the 
theoretical fundamentals and, in particular, it describes the cluster 
validity indices through their formal mathematical definitions and se
lection rules. In the second section, the relevant features of the datasets 
are presented along with the methodology used to generate the set of 
partitions for the calculation of the CVIs. Section three provides the most 
relevant results of the index comparison and an application of the CVIs 
to a real-life dataset with complex data structure. 

2. Materials and methods 

2.1. Theoretical fundamentals of the cluster validity indices 

2.1.1. Algebraic notation and formal definitions 
We will use the following notation to describe the computational 

formulae of the cluster validity indices. 
The cluster validity index (CVI) is a numerical valued function 

defined for all the partitions of the objects into a varying number K of 
clusters; the optimal value K̂ of the number of clusters provided by the 

validity index can be formally represented as a function of three ele
ments: K̂(CVI) = f(P,A,R).  

• The element P is the set P ≡ {P2, P3,…,PKmax} of Kmax − 1 different 
partitions of the objects into a variable number K of clusters, which is 
progressively increased from 2 to an upper user-defined value Kmax. 
The partition with K =1 corresponds to the entire set of objects and it is 
not considered in this study due to the impossibility to calculate most of 
the CVIs and since this case is mainly related to the general problem of 
clusterizability of a dataset, which is out of the scope of this work. 

• The element A is the algorithm applied to the partition PK to calcu
late the K-th value of the cluster validity index: CVIK = A(PK), K = 2,
…, Kmax. 

• The element R is the stopping rule or criterion adopted to automat
ically determine the optimal number of clusters K̂; it involves 
observing the behaviour of the internal measure of cluster validity 
(i.e., CVI) as the number K of clusters is increased from 2 to the 
maximum allowed value and selecting the appropriate value K for 
which the numerical value of the validity index is optimal. 

The rule R is the final and decisive step for selecting the best partition of 
the objects, that is, the partition that best fits the natural data patterns. In 
several cases, depending on the theoretical definition of the index, the 
optimal number of clusters is given by the minimum (or maximum) value 
of the CVI. However, this decision is not always simple due to the mono
tonic (ascending or descending) or degenerative trend of some CVIs. In 
these cases, it is necessary to modify the rule in such a way as trivial so
lutions and/or problems of human subjectivity are avoided. Then, the first 
maximum, or first minimum, is a better alternative than the max/min 
criterion to avoid potential not relevant absolute maxima or minima due to 
some degenerative behaviour of the index after the optimal K value. 
Moreover, the value K at which a marginal change in the index from one 
clustering level to the next is observed to flatten drastically may indicate 
that further division of the clusters is not required since no significant 
improvement of the internal validity measure is obtained. This rule has 
been called max ratio and is formally defined as the following:  

K̂ = argK max
(

CVIK − CVIK− 1

CVIK+1 − CVIK

)

(1) 

The extreme values of the cluster validity index, that is, CVI1 and 
CVIKmax+1, which are necessary to calculate CVI2 and CVIKmax , were esti
mated by a spline interpolation. 

Validity indices aim to quantitatively evaluate the clustering results 
and are useful to select the best partition of the dataset and more spe
cifically the optimal number K of clusters, which is commonly known as 
the parameter K. Validity indices were compared on the same partition 
of each dataset and, thus, the index sensitivity or stability to the different 
data partitions that can result from the clustering method iterations for a 
given K were not considered in this study to avoid an additional source 
of data variation. An optimal data partition should have well separated 
clusters whose members are very similar to each other. Then, cluster 
validity indices are based on two fundamental concepts [12]. The first 
one relies on the cluster homogeneity and is what is usually called 
compactness (or cohesion, tightness, connectedness), that is, the extent to 
which the members of each cluster are close to each other in the 
descriptor space. Common measures of compactness are the 
within-group dispersion, or variance, and the intra-cluster distance, 
which should be minimized. The second concept is separation, that is, the 
extent to which the clusters are far apart in the descriptor space. There 
are some common approaches to measure the separation between two 
clusters: 1) the nearest neighbour distance, that is, the distance between 
the closest members of two different clusters (i.e., single linkage); 2) the 
farthest neighbour distance, that is, the distance between the most 
distant members (i.e., complete linkage); 3) the distance between the 
centroids of the clusters (i.e., average linkage). 

n number of objects 
p number of variables 
K number of clusters 
nk number of objects in the k-th cluster 
Ik the set of the numerical identifiers of the objects belonging to 

the k-th cluster 
X(n × p) data matrix of the entire set of objects 
Xk(nk × p) data matrix of the k-th cluster 
xi p-dimensional row vector of the i-th object 

b =
1
n

⋅
∑n

i=1
xi 

p-dimensional row vector of the variable means of the dataset 
(barycentre) 

ck p-dimensional row vector of the variable means of the k-th 
cluster (centroid) 

c =
1
K

⋅
∑K

k=1
ck 

p-dimensional row vector of the variable means of the global 
centroid 

‖x‖ Euclidean norm of a vector x   
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2.1.2. Indices based on dispersion measures 
Most of the well-known cluster validity indices (Tables 1 and 2) are 

designed to account for some basic dispersion measures that can be 
calculated from the matrices described below. 

The total scatter matrix T measures the dispersion around the bar
ycentre b of the data matrix X:  

T(p × p) = (X − b)T⋅(X − b)

where [T]jq =
∑n

i=1

(
xij − bj

)
⋅
(
xiq − bq

) (2) 

The trace of T is the sum of all the squared Euclidean distances from 
the data barycentre and it is known as the total sum of squares (TSS):  

tr(T)=
∑p

j=1

∑n

i=1

(
xij − bj

)2
=
∑n

i=1
‖xi − b‖2

= TSS (3) 

The within-group scatter matrix WGk accounts for the dispersion of 
the k-th cluster objects around their centroid ck:  

WGk(p × p) = (Xk − ck)
T⋅(Xk − ck)

where [WG]jq =
∑

i∈Ik

(
xij − ckj

)
⋅
(
xiq − ckq

) (4) 

The trace of the within-group scatter matrix, sometimes denoted as 
WGSS, is the sum of the squared Euclidean distances from the cluster 
centroid:  

tr(WGk)=
∑p

j=1

∑

i∈Ik

(
xij − ckj

)2
=
∑

i∈Ik

‖xi − ck‖
2
=WGSS (5) 

The division of WGSS by nk (i.e., the number of objects in the cluster) 
provides the average squared intra-cluster distance or cluster variance. 

The pooled within-group scatter matrix WG is the within-cluster sum 
of squares and cross products matrix; it can be calculated by adding the 
individual cluster scatter matrices WGk over all the clusters as:  

WG(p× p)=
∑K

k=1
WGk (6) 

The matrix WG encodes the pooled amount of data variation that is 
present in each cluster and thus, it provides information on the degree of 
similarity or homogeneity of the objects in each cluster. More specif
ically, the trace of WG gives the within-group sum of squares (WSS), 
which measures the pooled within-cluster cohesion, that is, the sum of 
the squared distances of the objects from the centroid of the cluster they 
belong to:  

tr(WG)=
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2
= WSS (7) 

Finally, the between-group scatter matrix BG is the between-cluster 
sum of squares and cross products matrix; this matrix gives information 
about the extent to which clusters are different from each other and can 
be simply obtained as the difference between the total and the within- 
group scatter matrices as:  

BG(p × p) = T − WG

where [BG]jq =
∑K

k=1
nk⋅
(
ckj − bj

)
⋅
(
ckq − bq

) (8)  

tr(BG)=
∑p

j=1

∑K

k=1
nk ⋅
(
ckj − bj

)2
=
∑K

k=1
nk ⋅ ‖ck − b‖2

=BSS (9)  

where BSS is the between-group sum of squares. 

The first two cluster validity indices of Table 1 date back to 1965. 
The index Trace_W (1) is the total cluster dispersion measured by the 
within-group sum of squares (WSS) and over the years it has been one of 
the most common validity indices in clustering applications [26]; 
Ball-Hall BH index (2) is its average counterpart [27]. The 
Banfield-Raftery BR index (3) was proposed in 1993 [28] as an alter
native to the sum of squares criterion (WSS). While WSS is likely to 
perform well when all the clusters have the same dispersion [29], the 
index BR, which is based on the sum of the average squared distances 
from the cluster centroids (i.e., cluster variances), tends to be more 
appropriate when the clusters are hyperspherical but of different sizes; 
the size of a cluster is intended as the volume occupied by the cluster in 
the multivariate space rather than the number of objects it contains. 

Calinski-Harabasz CH index (4) is a classical cluster validity index 
proposed in 1974 [30] as the ratio of the between-cluster to the 
within-cluster variance following the rationale of a pseudo ANOVA F 
test. In 1975, Hartigan [31] proposed a logarithmic scale-based variant 
of CH, that is, the LSSR index (6), which is defined as the logarithmic of 
the ratio of the sum of the between-cluster squared distances (BSS) to the 
sum of the squared within-cluster distances (WSS). Ratkowsky-Lance RL 
index (7), proposed in 1979 [32], is based on the ratio of the sum of the 
squared between-cluster distances to the sum of the squared distances in 
the entire dataset, but considering the average of the ratios calculated 
for each variable x of the dataset. Some years later, in 1996, Sharma [33] 
defined a similar index RS (8) as the ratio of BSS to TSS, which ranges 
from 0 (i.e., no difference among groups) to 1 (i.e., maximum difference 
among groups). This index measures the extent to which clusters are 
different from each other or, alternatively, the extent to which they are 
homogeneous, since the larger the BSS the smaller the WSS and vice 
versa. 

A variant of Calinski-Harabasz index (4), which was proposed by Zhu 
et al. in 2019 [34] to more efficiently process datasets with large overlap 
among clusters, is the index WCH (5). This index was designed to ac
count for three features: like the index CH, it measures the cluster 
compactness by the within-cluster variance and the inter-cluster sepa
ration by the between-cluster variance; in addition, a correction factor 
accounts for the inter-cluster overlap of the dataset. 

The Davies-Bouldin index, proposed in 1979 [35] and here denoted 
as DB1 (9), is defined as the average of the overlap measure of each 
cluster with other clusters, which relates the within-cluster dispersion to 
the inter-cluster separation. Each cluster is compared to all the other 
clusters and associated the maximum ratio of the sum of the radii of the 
two considered clusters to the distance between their centroids. The 
radius accounts for the cluster size and is calculated as the average 
distance of the objects in the same cluster from their centroid. A variant 
of this index, denoted as DB2 (10), was proposed in 2005 [16] as the 
average of the sum over all the clusters of the ratio of the largest sum of 
two cluster radii to the smallest distance between two cluster centroids. 

The Pakhira–Bandyopadhyay–Maulik PBM index (11), also called 
the I-index, is based on three factors [15]: 1) the first factor accounts for 
the comparison between the total scatter of the dataset, which is as 
considering all the objects belonging to one single cluster, and the total 
within-cluster dispersion after the objects are partitioned into a number 
of clusters; the ratio of these two quantities tends to increase with the 
increasing of the number of clusters; 2) the second factor is the 
maximum distance between cluster centroids, which remains constant 
after a certain value of K; 3) the third factor is the inverse of the number 
K of clusters, which was introduced to compensate for the growth of the 
dispersion ratio with further data partitioning. 

The Fukuyama-Sugeno FS index (16) was proposed in 1989 as a new 
validity index for the fuzzy c-means method [36]. It is defined as the 
difference between two terms; the first term is a compactness measure 
(i.e., WSS) and the second term is the degree of separation between each 
cluster and the mean of the cluster centroids (c). 
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Table 1 
Cluster validity indices based on dispersion measures. The second to last column reports the rule to search for the optimal index value.  

ID Index (pub. year) Formula Rule Ref. 

1 Trace_W (1965)  trW ≡ WSS =
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2   max ratio [26] 

2 Ball-Hall (1965)  BH =
1
K

⋅
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2 / nk   max ratio [27] 

3 Banfield-Raftery (1993)  BR =
∑K

k=1
nk⋅log

(
∑

i∈Ik

‖xi − ck‖
2 / nk

)

max ratio [28] 

4 Calinski-Harabasz (1974)  CH =
BSS/(K − 1)
WSS/(n − K)

first max [30] 

5 WCH (2019)  

WCH =
BSS/(K − 1)

WSS/(n − K) +
∑K− 1

k=1

∑K

k′=k+1

fkk′
/

n   

max [34]  

fkk′ =

⎧
⎨

⎩

1 if ‖ck − ck′‖
2
<
∑

s∈Ik

‖xs − ck‖
2/nk +

∑

t∈I
k′

‖xt − ck′‖
2/nk′

0 otherwise   

6 Hartigan (1975)  LSSR = log
(

BSS
WSS

)

max ratio [31] 

7 Ratkowsky-Lance (1978)  RL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K⋅p

⋅
∑p

j=1

∑K

k=1
nk⋅
(
ckj − bj

)2

∑n

i=1

(
xij − bj

)2

√
√
√
√
√
√
√
√
√

max ratio [32] 

8 R-Squared (1996)  RS =
BSS
TSS

=
BSS

WSS + BSS   
max ratio [33] 

9 Davies-Bouldin (1979)  DB1 =
1
K

⋅
∑K

k=1
maxk′∕=k

⎛

⎜
⎜
⎜
⎝

∑

s∈Ik

‖xs − ck‖/nk +
∑

t∈Ik′

‖xt − ck′‖/nk′

‖ck − ck′‖

⎞

⎟
⎟
⎟
⎠

min [35] 

10 Davies-Bouldin* (2005)  
DB2 =

1
K

⋅
∑K

k=1

maxk′∕=k

(
∑

s∈Ik

‖xs − ck‖/nk +
∑

t∈I
k′

‖xt − ck′‖/nk′

)

mink′∕=k‖ck − ck′‖

min [16] 

11 Pakhira-Bandyopadhyay-Maulik (2001)  PBM =

⎛

⎜
⎜
⎜
⎝

1
K

⋅

∑n

i=1
‖xi − b‖

∑K

k=1

∑

i∈Ik

‖xi − ck‖

⋅ maxk∕=k′‖ck − ck′‖

⎞

⎟
⎟
⎟
⎠

2   

max [15] 

12 Žalik SV (2011)  SV =

∑K

k=1
mink′∕=k‖ck′ − ck‖

∑K

k=1
maxi∈Ik ‖xi − ck‖

first max [41] 

13 Wemmert-Gancarski (2013)  WG1 =
1
n

⋅
∑K

k=1
max

(

0, nk −
∑

i∈Ik

‖xi − ck‖

mink′∕=k‖xi − ck′‖

)

max [4] 

14 Wemmert-Gancarski* (2023)  WG2 =
1
K

⋅
∑K

k=1

1
nk

⋅
∑

i∈Ik

(

1 −
‖xi − ck‖

mink′∕=k‖xi − ck′‖

)

max This work 

15 Score Function (2007)  SF = 1 −

{

exp

[

exp

(
1

n⋅K
⋅
∑K

k=1
nk⋅‖ck − c‖ −

∑K

k=1

1
nk

⋅
∑

i∈Ik

‖xi − ck‖

)]}− 1   

max [19] 

16 Fukuyama-Sugeno (1989)  FS =
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2
−
∑K

k=1
‖ck − c‖2   max ratio [36] 

17 Xie-Beni (1991) – Ray-Turi (1999)  XB1 ≡ RT =
WSS/n

mink∕=k′‖ck − ck′‖
2   min [37,38] 

(continued on next page) 
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The Xie-Beni index, here denoted as XB1 (17), is another ratio-type 
validity index originally proposed in 1991 [37] for fuzzy clustering, 
which uses the global average squared distance of the objects from their 
cluster centroid as the measure of cluster cohesion in the numerator and 
the minimum squared distance between pairs of clusters as the 
inter-cluster separation measure in the denominator. The Ray-Turi index 
RT has the same definition as the Xie-Beni index but it does not consider 
the fuzzy membership of objects [38]. In the case of crisp clustering, the 
two indices coincide and for this reason, only one of them (i.e., XB1) has 
been considered in this comparative study. 

In 1998, Kwon [39] proposed the index Kw (19) as a modification of 
the Xie-Beni index (17) to overcome its monotonic decreasing tendency 

as the number of clusters becomes very large and near the number of 
objects, by introducing an ad hoc penalty function defined as the average 
squared distance of the clusters from the barycentre. Following the same 
idea as Kwon, the Tang index (20) is another variant of the Xie-Beni 
index with the introduction of two penalty functions [17]: 1) a first 
penalty function, defined as the average squared distance between the 
cluster centroids, is added to the term in the numerator to adjust the 
decreasing tendency and 2) a second penalty function, defined as the 
reciprocal of the number of clusters, is added to the term in the de
nominator with the aim to strengthen the numerical stability as the 
membership weighting exponent increases when the index is used in the 
fuzzy version. The variant of the Xie-Beni index proposed by Kim and 

Table 1 (continued ) 

ID Index (pub. year) Formula Rule Ref. 

18 Xie-Beni* (2005)  
XB2 =

maxk

(
∑

i∈Ik

‖xi − ck‖
2
/nk

)

mink∕=k′‖ck − ck′‖
2   

min [16] 

19 Kwon (1998)  
Kw =

WSS +
∑K

k=1
‖ck − b‖2/K

mink∕=k′‖ck − ck′‖
2   

min [39] 

20 Tang (2005)  
Tn=

WSS +
2

K⋅(K − 1)
⋅
∑K

k=1

∑K− 1

k′=k+1

‖ck − ck′‖
2

mink∕=k′‖ck − ck′‖
2
+ 1/K   

min [17] 

21 Partition Separation (2001)  PS =
∑K

k=1

⎛

⎜
⎜
⎜
⎜
⎝

nk

maxk′(nk′)
− exp

⎡

⎢
⎢
⎢
⎢
⎣
−

mink′∕=k‖ck − ck′‖
2

1
K

⋅
∑K

k=1
‖ck − c‖2

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

max [40] 

22 Rezaee-Lelieveldt-Reiber (1998)  

SD1 = α⋅Scat + Dis α = Dis(Kmax)

min [43]  
Scat =

1
K

⋅
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2/nk

∑n

i=1
‖xi − b‖2/n    

Dis =
maxk∕=k′‖ck − ck′‖

mink∕=k′‖ck − ck′‖
⋅
∑K

k=1

(
∑K

k′=1;k′∕=k

‖ck − ck′‖

)− 1   

23 Kim-Ramakrishna SD* (2005)  

SD2 = α⋅Scat∗ + Dis α = Dis(Kmax)

min [16]  
Scat∗ = maxk

⎛

⎜
⎜
⎝

∑

i∈Ik

‖xi − ck‖
2/nk

∑n

i=1
‖xi − b‖2/n

⎞

⎟
⎟
⎠

24 Halkidi (2001)  

SDbw = Scat + Dis∗

first min [12]  

Dis∗ =
1

K⋅(K − 1)
⋅
∑K

k=1

∑K

k′=1;k′∕=k

N
(
ckk′
)

max(N(ck),N(ck′))
ckk′ =

ck + ck′

2    

N(ck) =
∑

i∈Ik

fi(ck) N
(
ckk′
)
=

∑

i∈Ik∪I
k′

fi
(
ckk′
)

fi(ck) =

{
1 if ‖xi − ck‖ ≤ σ
0 if ‖xi − ck‖ > σ σ =

1
K

⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

k=1

∑

i∈Ik

‖xi − ck‖
2/nk

√
√
√
√

25 Kim-Park vsv (2001)  

Vsv1 = vuN + voN   

first min [16,44]  
vu =

1
K

⋅
∑K

k=1

∑

i∈Ik

|xi − ck |
/

nk vo =
K

mink∕=k′ |ck − ck′ |

26 Kim-Ramakrishna vsv* (2005)  

Vsv2 = v∗uN + voN   

first min [16]  
v∗u = maxk

(
∑

i∈Ik

|xi − ck |
/

nk

)
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Ramakrishna [16], here denoted as XB2 (18), replaces the global 
average measure of cluster compactness at the numerator with the 
maximum cluster variance since averaging generally tends to hide the 
effect due to unnecessary merging of clusters. 

The partition separation PS index (21) was proposed in 2001 [40] for 
fuzzy clustering and here proposed in its crisp version. For each cluster, it 
combines a measure of cluster size, which is the proportion of cluster 
objects with respect to the cluster with the largest number of objects, and 
an exponential normalized separation measure defined in terms of the 
minimum squared distance from the other cluster centroids. In the original 
version for fuzzy clustering, the first factor was a normalized partition 
coefficient accounting for the cluster membership values of all the objects. 

The index SV (12) was proposed with the aim to efficiently validate 
data partitions characterized by the presence of clusters that widely 
differ in size and density [41]. Like Dunn’s index GDI11 (42) it is 
calculated as the ratio of an inter-cluster separation measure to a 
compactness measure; the compactness is evaluated considering the 
average distance of only the ten percent of the objects that are the 
farthest objects from the cluster centroids, while the separation measure 
is the sum of the smallest pairwise distances between cluster centroids. 

The Wemmert-Gancarski WG1 index (13) has been described by 
Desgraupes [4]. It is based on a cluster score that accounts for the 
number of objects that are closer to their cluster centroid than to the 
centroids of other clusters. A variant of this index, denoted by WG2 (14), 
has been proposed in this study in analogy with the underlying idea of 
the Silhouette index [42], which defines a cluster membership score for 
each object. The membership score is calculated by comparing the dis
tance of each object from the centroid of its cluster and its minimum 
distance from the other cluster centroids. 

The Score Function SF (15) was proposed in 2007 by Saitta et al. [19] 
as a bounded validity index able to measure the proximity of the 
calculated partition to the ideal case of highly compacted and 
well-isolated clusters, for which the SF index reaches its maximum value 
of 1. In addition, unlike some other CVIs, it can handle the particular 
case of one cluster partition. This index is an exponential function of the 
difference between the separation measure, which is the cluster 
size-weighted average distance of the clusters from the overall cluster 
centroid, and the compactness measure, which is the sum over all the 
clusters of the average within-cluster distances. 

The index SD1 (22) was proposed in 1998 by Rezaee, Lelieveldt and 
Reiber [43] in the framework of fuzzy c-means clustering and originally 

denoted by VCWB, where the subscript CWB means Compose Within and 
Between scattering; it is a summation-type index that combines in an 
additive way the measures of cluster compactness (Scat) and separation 
(Dis). It was later adapted to crisp clustering and called SD by Halkidi, 
Vazirgiannis and Batistakis [12]. The first term Scat of this index repre
sents the average of normalized variances within the clusters. The second 
term Dis indicates the total separation between the clusters and, gener
ally, it is sensitive to both the number of clusters and the geometry of the 
cluster centres. Since the two terms vary in a different range of values, the 
weighting factor α, which is the term Dis at the maximum allowed number 
of clusters Kmax, has been introduced in order to counterbalance both 
terms in a proper way. In ideal conditions, this index assumes that the 
measure of cluster compactness has a steep increase when the number K of 
clusters decreases from the optimal K∗ value to K∗ − 1 due to unnecessary 
cluster merging, while the inter-cluster separation decreases sharply 
when K decreases from K∗ + 1 to K∗. Hence, the summation of these two 
terms has a minimum at K∗ [16]. Based on the same design principles, 
variants of the index SD were later proposed using different measures of 
cluster compactness and separation [44]. SDbw (24) replaced the total 
separation with the density of the objects in the middle of two clusters and 
omitted the weighting factor [11]. The index Vsv1 (25) uses the average 
of the cluster mean absolute deviations as the first term vu and the mini
mum inter-cluster distance as the second term vo; vuN and voN are the 
min–max normalized versions of vu and vo, respectively [16,44]. The 
index Vsv2 (26) is a variant of Vsv1, in which the first term representing 
the cluster compactness is calculated as the maximum cluster mean ab
solute deviation [16]. 

In analogy with trace_W (1), the index trWB (27), also called 
Hotelling’s Trace and reported in Table 2, was introduced by Friedman 
and Rubin in 1967 [45] as the trace of the between-group to the 
within-group scatter matrix ratio. The other cluster validity indices 
collected in Table 2 are defined in terms of the determinant of some 
combination of the different scatter matrices. Among these, there is the 
determinant ratio DR (28) still proposed by Friedman and Rubin [45] as 
the ratio of the determinant of the total scatter matrix T to the deter
minant of the within-group scatter matrix WG. Since the determinant of 
the total scatter matrix is constant for a given dataset, they [45] also 
suggested as an alternative criterion the minimization of the determi
nant of the within-group scatter matrix |WG|, which is almost the same 
criterion as the KDW index (31) later used by Marriot [46], who intro
duced the multiplying factor K2 to improve the criterion ability to detect 

Table 2 
Cluster validity indices based on dispersion matrix algebraic operators. Notation tr indicates the matrix trace and |X| refers to the matrix determinant. The second to 
last column indicates the rule to search for the optimal index value.  

ID Index (pub. year) Formula Rule Ref. 

27 Friedman-Rubin 1 (1967)  trWB = tr
(

BG
WG

)

max ratio [45] 

28 Friedman-Rubin 2 (1967)  DR =
|T|

|WG|
max ratio [45] 

29 Scott-Symons 1 (1971)  SS =
∑K

k=1
nk ⋅ log

⃒
⃒
⃒
⃒
WGk

nk

⃒
⃒
⃒
⃒ max ratio [47] 

30 Scott-Symons 2 (1971)  LDR = n⋅log
(

|T|
|WG|

)

max ratio [47] 

31 Marriot (1975)  KDW = K2⋅|WG| first min [46] 

32 Fuzzy HyperVolume (1989)  FHV =
∑K

k=1

⃒
⃒
⃒
⃒
WGk

nk

⃒
⃒
⃒
⃒

1/2   

first min [48] 

33 Negentropy Increment (2010)  NI =
1
2

⋅
∑K

k=1

nk

n
⋅ log

⃒
⃒
⃒
⃒

WGk

nk − 1

⃒
⃒
⃒
⃒ −

1
2

⋅ log
⃒
⃒
⃒
⃒

T
n − 1

⃒
⃒
⃒
⃒ −
∑K

k=1

nk

n
⋅ log

(nk

n

)

first min [1]  
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the optimal number of clusters. Friedman and Rubin also suggested the 
use of the logarithmic function of the determinant of the within-group 
scatter matrix, which was revised by Scott and Symons in 1971 [47] 
to define the index LDR (30). In the same study [47], Scott and Symons 
defined a variant of this index, here denoted as SS (29), which accounts 
for the individual cluster scatter matrices instead of the pooled 
within-cluster scatter matrix. The index of Friedman and Rubin, based 
on the assumption that the within-group scatter matrix is the same for 
each cluster, tends to favour partitions with ellipsoidal clusters with the 
same orientation and size, whereas the index of Scott and Symons is able 
to account for clusters of different orientations, shapes, and sizes [28], 
but cannot be properly calculated in the case that clusters are not well 
represented. 

Based on the same rationale of the Scott-Symons index (30), with the 
aim to account for the presence of large variability in cluster shapes, 
densities and number of objects in each cluster, the Fuzzy HyperVolume 
index (32) was proposed in 1989 by Gath and Geva [48]. This index adds 
over all the clusters the square root of the determinant of the cluster 
covariance matrix and was specifically designed for fuzzy clustering but 
here adopted in its crisp version allowing the membership function only 
to be 1 or 0 for objects belonging or not belonging to the cluster, 
respectively. In more recent years (2010), the Negentropy Increment (33) 
was introduced by Lago-Fernández and Corbacho assuming that a nor
mally distributed cluster is optimal [1]. This index is based on the average 
normality of the clusters; the normality of a cluster is defined in terms of 
its negentropy, which measures the cluster deviation from normality and 
is calculated as the difference between the actual cluster entropy and the 
entropy of a normal distribution with the same covariance matrix. 

2.1.3. Pairwise distance-based indices 
Pairwise distance-based cluster validity indices are listed in Table 3. 

Their underlying idea is to describe the cluster compactness and the 
inter-cluster separation in terms of proximity (i.e., similarity/diversity) 
of the objects that belong to the same cluster and the objects belonging 
to different clusters, respectively. Similarity/diversity between objects is 
commonly measured by the Euclidean pairwise distance. Most of these 
distance-based indices do not account for the cluster shape, implicitly 
assuming that clusters are hyper-spheres. 

Indices from ID 34 to 40, which mainly represent various types of 
correlation measures, are based on the following measures calculated 
from the pairwise distance matrix.  

1) N+ is the number of times a distance between two points not 
belonging to the same cluster is strictly greater than the distances 
between two points belonging to the same cluster (i.e., the number of 
concordant comparisons);  

2) N− is the number of times a distance between two points not 
belonging to the same cluster is strictly smaller than the distances 
between two points belonging to the same cluster (i.e., the number of 
discordant comparisons).  

3) nT = n⋅(n − 1)/2 is the total number of pairwise distances in the 
dataset, that is, the total number of distinct pairs of objects.  

4) nW =
∑K

k=1
nk⋅(nk − 1)/2 and nB =

∑K− 1

k=1

∑K

k′=k+1

nk⋅nk′ are the number of 

within-cluster and the number of between-cluster pairwise distances, 
respectively.  

5) SW =
∑K

k=1

∑

s<t∈Ik

‖xs − xt‖ and SB =
∑K− 1

k=1

∑K

k′=k+1

∑

s∈Ik ,t∈Ik′

‖xs − xt‖ are the 

sum of the distances between all the pairs of objects that belong to 
the same cluster and the sum of the distances between all the pairs of 
objects that belong to different clusters, respectively. Smin and Smax 
are the sum of the nW smallest and nW largest distances in the entire 
dataset, respectively [49]; they are used to calculate the C-Index 
(38). 

Indices Tau (34), Gamma (35), G-plus (36) and G-minus (37) were 
first described in Ref. [50] as functions that measure the discrepancy 
between two dissimilarity matrices, that is, the original dissimilarity 
matrix and the cophenetic matrix. The elements of the cophenetic matrix 
are defined as the distance (or similarity) level at which two objects 
become members of the same cluster. These CVIs were proposed in the 
framework of hierarchical clustering methods. In the case of k-means 
partitioning, the cophenetic matrix can be still defined on the basis of 
some threshold value that allows to establish the group membership of 
the objects. Index Tau (34) is Kendall’s rank correlation coefficient be
tween the ranks, which are corrected for ties, assigned to the object pairs 
on the basis of their proximity, where similar object pairs are assigned 
the lower ranks, and the binary vector in which a value of 0 is assigned to 
a pair of objects that belong to the same cluster and a value of 1 to a pair 
of objects that belong to different clusters. The computational formula of 
Tau index is given in Ref. [9], where the term t in the denominator in
dicates the number of comparisons of two pairs of objects such that both 
pairs represent within cluster comparisons (i.e., within-cluster dis
tances) or both pairs arc between cluster comparisons (i.e., 
between-cluster distances). Gamma index (35) is an adaptation of 
Goodman and Kruskal’s Gamma correlation index [51] to be used for 
clustering applications [10]; this is another measure of rank correlation 
whose maximum value 1 is obtained if there is no pair of objects in the 
same cluster, which is less similar than a pair of objects in different 
clusters [51]. Like Tau index, the Point Biserial index (40) represents the 
point-biserial correlation coefficient between the pairwise distance 
matrix and a binary matrix consisting of 0/1 entries that indicate 
whether or not two objects are in the same cluster [10]. 

G-plus (36) and G-minus (37) differ from each other and from the Tau 
index only in the way ties are treated. The C-Index (38) is a normalized 
sum of the distances between all the pairs of objects that belong to the 
same cluster; the normalization scheme, which is based on the minimum 
Smin and maximum Smax distance sums in the dataset, was proposed in 
Ref. [49]. The McClain-Rao MCR index (39) is the ratio of the average 
intra-cluster to the average inter-cluster distance [52]. The reciprocal 
ratio was later (1982) introduced by Good [53] to measure the extent to 
which clusters are separated and called Index of Separateness. 

In 2021, Wiroonsri [25] proposed two indices, here denoted as NC1 
(41) and NC2 (42), with the aim to capture all the potential optimal and 
sub-optimal partitions for a given dataset to provide the user with more 
than one solution. Indeed, these cluster validity indices always provide 
several peaks with different heights, which can be ranked and used to 
choose the number of clusters that is more appropriate for the specific 
application. They are based on a correlation measure that is quite similar 
to the point-biserial correlation (40) with the binary entries 0/1 for 
same/different cluster replaced by the actual distances between the 
centroids of the clusters where the two objects are located in. More 
specifically, considering the equation of NC1 (41) in Table 3, dX is the 
vector of length nT collecting the distances between all the pairs of ob
jects in the dataset; dC is a vector of the same length with the distances 
between the corresponding centroids of the clusters the two objects 
belong to. Then, both vectors used for the calculation of the correlation 
have a size of nT = n⋅(n − 1)/2. We adopted the Pearson correlation 
coefficient to calculate these indices. NC1 (41) and NC2 (42) are the 
proportion and the difference, respectively, of the same two quantities: 
the first quantity is the normalized correlation increment from K–1 to K 
clusters while the second quantity is the normalized correlation incre
ment from K to K+1 clusters. 

The Dunn’s GDI11 index (43) is another classical validity index, 
which dates back to 1973 [54], proposed to identify partitions with 
compact and well separated clusters. Unlike most of the ratio-type val
idity indices, Dunn’s index has the minimum inter-cluster separation 
(i.e., the smallest distance between two objects from different clusters or 
the nearest neighbour distance) in the numerator and the maximum 
intra-cluster distance, which is sometimes referred to as the cluster 
diameter and is defined as the largest distance between two objects from 
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Table 3 
Cluster validity indices based on intra- and inter-cluster pairwise distances. The second to last column indicates the applied rule to search for the optimal index value. 
The quantities N+, N− , nT , nW , nB, t, SW , SB, Smin, Smax, dX, dC are explained in the text.  

ID Index (pub. year) Formula Rule Ref. 

34 Tau (1974)  Tau =
N+ − N−

[(nT (nT − 1)/2 − t)⋅(nT (nT − 1)/2)]1/2 =
N+ − N−

[(nB⋅nW )⋅(nT (nT − 1)/2)]1/2   first max [9,50] 

35 Gamma (1975)  GI ≡ Γ =
N+ − N−

N+ + N−
first max [9,51] 

36 G-plus (1974)  G+ =
2⋅N−

nT (nT − 1) first min [50] 

37 G-minus (1974)  G− = 1 −
2⋅N+

nT (nT − 1)
first min [50] 

38 C-Index (1976)  CI =
SW − Smin

Smax − Smin   
first min [49] 

39 McClain-Rao (1975)  MCR =
SW/nW

SB/nB   
max ratio [52] 

40 Point Biserial (1981)  PB =

[(
SB

nB
−

SW

nW

)

⋅
̅̅̅̅̅̅̅̅̅̅̅̅nB⋅nW

√

nT

]/

sd   max [9] 

sd = standard deviation of all pairwise distances 

41 NC1 (2021)  

NC1 =
NC(K) − NC(K − 1)

1 − NC(K − 1)

/
NC(K + 1) − NC(K)

1 − NC(K)

max [25]  
NC(K) = corr(dX, dC) K = 2,…, n − 1 − 1 ≤ NC(K) ≤ +1    

NC(1) = 0 NC(n) = 1   

42 NC2 (2021)  NC2 =
NC(K) − NC(K − 1)

1 − NC(K − 1)
−

NC(K + 1) − NC(K)

1 − NC(K)
max [25] 

43–57 Generalized Dunn (1998)  

GDIpq =
mink∕=k′ δkk′(p)
maxkΔk(q)

p = 1, 2,…, 5 q = 1, 2, 3   

max [55]  

δkk′(1) = mins∈Ik ,t∈I
k′
‖xs − xt‖

δkk′(2) = maxs∈Ik ,t∈Ik′
‖xs − xt‖

δkk′(3) =
1

nk⋅nk′
⋅
∑

s∈Ik

∑

t∈I
k′

‖xs − xt‖

δkk′(4) = ‖ck − ck′‖

δkk′(5) =
1

nk + nk′
⋅

[
∑

s∈Ik

‖xs − ck‖+
∑

t∈I
k′

‖xt − ck′‖

]

Δk(1) = maxs,t∈Ik ‖xs − xt‖

Δk(2) =
1

nk(nk − 1)
⋅
∑

s,t∈Ik ;s∕=t

‖xs − xt‖

Δk(3) =
2
nk

⋅
∑

s∈Ik

‖xs − ck‖

Note that GDI11 is the original Dunn’s index [54] 

58 Chou-Su-Lai (2004)  CSL =

∑K

k=1

∑

s∈Ik

maxt∈Ik ‖xs − xt‖
/

nk

∑K

k=1
mink′∕=k‖ck − ck′‖

min [56] 

59 COP (2010)  COP =
1
n

⋅
∑K

k=1
nk ⋅

∑

s∈Ik

‖xs − ck‖/nk

mint∕∈Ik maxs∈Ik ‖xs − xt‖

min [57] 

60 Silhouette (1987)  

Sil =
1
K

⋅
∑K

k=1

1
nk

⋅
∑

s∈Ik

bs − as

max(as, bs)

as =
1

nk − 1
⋅
∑

t∈Ik ;t∕=s

‖xs − xt‖ bs = mink′∕=k

(
1
nk′

⋅
∑

t∈I
k′

‖xs − xt‖

) max [42] 

(continued on next page) 
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the same cluster, in the denominator. Bezdek and Pal [55] later gener
alized Dunn’s index by defining five different measures of distance be
tween clusters and three different measures of cluster diameter. 15 
different generalized Dunn indices (43 to 57) have been considered in 
this work, including the original Dunn’s index. 

Proposed in 1987 by Rousseeuw [42], the silhouette coefficient (60) 
is among the most well-known and widely used validity indices. It is 
based on the so called silhouette width, which is a measure of the 
confidence on the membership of each object to its own cluster, ob
tained from the similarity of the objects in the same cluster compared to 
other clusters. The silhouette width is the normalized difference be
tween the distance of the object to its ‘neighbouring cluster’ (i.e., the 
smallest average distance of the object to the objects belonging to any 
other cluster) and its average distance to the other objects of the same 
cluster; it takes values close to 1 when the object lies well within its 
cluster, values near 0 when it is on the border of two clusters and values 
close to − 1 when it would be more appropriate to be assigned the 
neighbouring cluster. The silhouette width allows the user to 

graphically visualize how good a partition is on a point by point and 
cluster by cluster base. 

The Chou-Su_Lai index (58) was proposed in 2004 [56] to handle with 
clusters of different densities and sizes; it is a ratio-type index with the 
numerator equal to the sum over all the clusters of the average maximum 
intra-cluster distance (i.e., the measure of cluster cohesion) and the de
nominator equal to the sum of the minimum inter-cluster separation of 
each cluster (i.e., the measure of cluster separation). In 2010, based on a 
similar definition Gurrutxaga et al. introduced the index COP (59), where 
COP stands for Context-independent Optimality and Partiality properties 
[57]. This index is the weighted mean of ratio-type quantities that char
acterize each individual cluster, calculated dividing the average distance 
of the objects in the cluster from the centroid by the distance between the 
cluster and its nearest object. 

Still with the aim to efficiently validate data partitions characterized 
by the presence of clusters that widely differ in size and density, the 
index OS (61) combines an inter-cluster separation measure with an 
overlap measure [41]. The separation measure, which is the sum of the 

Table 4 
Cluster validity indices based on the point-symmetry distance. The second to last column indicates the applied rule to search for the optimal index value.  

ID Index (pub. year) Formula Rule Ref. 

62 Sym (2008)  
Sym =

1
K

⋅
maxk∕=k′‖ck − ck′‖

∑K

k=1

∑

i∈Ik

dPS(xi, ck)
max [14] 

63 Sym-Davies-Bouldin (2009)  SymDB =
1
K

⋅
∑K

k=1
maxk′∕=k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

s∈k
dPS(xs , ck)

/
nk +

∑

t∈k′

dPS(xt , ck′)
/

nk′

‖ck − ck′‖

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

min [21] 

64 Sym-Dunn (2009)  SymD =
mink∕=k′

(
mins∈Ik ,t∈I

k′
‖xs − xt‖

)

maxk
(
maxi∈Ik dPS(xi , ck)

) max [21] 

65 Sym-Generalized Dunn (2009)  SymGD =

mink∕=k′

(
1

nk⋅nk′
⋅
∑

s∈Ik ;t∈I
k′

‖xs − xt‖

)

maxk

(
2
nk

⋅
∑

i∈Ik

dPS(xi, ck)

) max [21] 

66 Sym-Fukuyama-Sugeno (2009)  SymFS =
∑K

k=1

∑

i∈Ik

d2
PS(xi, ck) −

∑K

k=1
‖ck − c‖2   max ratio [21] 

67 Sym-Xie-Beni (2009)  
SymXB =

∑K

k=1

∑

i∈Ik

d2
PS(xi , ck)

n⋅mink∕=k′‖ck − ck′‖
2   

min [21] 

68 Sym-Kwon (2009)  SymKw =

∑K

k=1

∑

i∈Ik

d2
PS(xi, ck) +

∑K

k=1
‖ck − b‖2/K

mink∕=k′‖ck − ck′‖
2     

min [21]  

Table 3 (continued ) 

ID Index (pub. year) Formula Rule Ref. 

61 Žalik OS (2011)  

OS =

∑K

k=1

∑

s∈Ik

os

∑K

k=1
mink′∕=k‖ck′ − ck‖

os =

⎧
⎪⎨

⎪⎩

as

bs
if

bs − as

bs + as
< 0.4

0 otherwise   

first min [41]  as =
∑

s,t∈Ik ;t∕=s

‖xs − xt‖
/

nin
s ‖xs − xt‖ < ‖xs − ck‖

bs =
∑

s∈Ik ;t∕∈Ik

‖xs − xt‖
/

nout
s ‖xs − xt‖ < ‖xs − ck‖

nin
s = number of neighbours of the object s in the same cluster 

nout
s = number of neighbours of the object s in other clusters; if nout

s = 0 then bs = mins∈Ik ;t∕∈Ik ‖xs − xt‖
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smallest pairwise distances between cluster centroids, uses all the data 
objects, while the overlap measure accounts only for the objects that are 
close to one or more other clusters. The overlap measure is based on the 
overlap degree of each object, which depends on the average distance of 
the object to the nearest neighbours in the same cluster and its average 
distance to the nearest neighbours belonging to other clusters. The 
overlap degree should account for the cluster shape and can be modu
lated by the overlap threshold, which was set to 0.4 in this study. Note 

that, in order to make the calculation of this index feasible for any 
partition, we set the term bs equal to the distance of the object s from the 
first nearest neighbour t of any other cluster in the case the condition 
‖xs − xt‖ < ‖xs − ck‖ was not fulfilled. 

2.1.4. Point-symmetry distance indices 
The cluster validity indices based on the point-symmetry distance are 

reported in Table 4. The first one was proposed by Bandyopadhyay and 

Fig. 1. Two-dimensional scatterplots of the 21 datasets. The data points are coloured according to the groups they belong to in the best partition (i.e., the partition 
with the maximum adjusted Rand index). For the real datasets, the objects are projected into the space of the first two dimensions of the multidimensional scaling 
(MDS) analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Saha in 2008 with the name Sym-index [14]. The other indices in this 
category use the same mathematical definition as some classical CVIs 
but replace the Euclidean metric with the point-symmetry distance to 
measure the proximity of the objects to the cluster centroid. 

To calculate the point-symmetry distance, let the symmetrical 
(reflected) point of xi with respect to the centroid ck of its cluster 
k be x∗i = 2⋅ck − xi. Then, the point-symmetry distance of xi from the 
centroid is:  

dPS(xi, ck)= dsym
(
x∗

i , ck
)
⋅‖xi − ck‖ (10)  

where the term dsym is the average Euclidean distance of the first two 
unique nearest neighbours (i.e., x1st

s , x2nd
s ) of the symmetrical point of xi:  

dsym
(
x∗

i , ck
)
=

⃦
⃦x1st

s − x∗
i

⃦
⃦+

⃦
⃦x2nd

t − x∗
i

⃦
⃦

2
(11) 

Note that the nearest neighbours of x∗
i are selected only among the 

objects that are in the same cluster k as the object xi. 

2.2. Datasets 

The selection of the datasets is a fundamental step to perform a 
quantitative comparison of the cluster validity indices. Indeed, for each 
dataset, it is necessary to have a reliable target value for the expected 
number of clusters. While for simulated datasets a reliable target is usually 
handy, except for bizarre cases, for real datasets this is not always the case. 

We used 11 real-life datasets that are well-known benchmark data
sets for supervised learning applications, for which the object partition 
into a number of classes is known in advance, and 10 synthetically 
generated datasets (Fig. 1), which were designed to account for some 
varying factors, such as the number of clusters (K) from 3 to 10, the 
dataset size (n) from 100 to 600 objects, the distance between cluster 
centroids to obtain different cluster overlap, the data distribution within 
clusters and the presence of noise. The main features of the selected 
datasets are reported in Table 5. The real-life datasets are available in 
the UCI repository [58]. 

2.3. Software 

The calculations of all the cluster validity indices and their analysis 
were performed in MATLAB software, using home-written scripts and 
appropriate packages. The software Pajek [70] was used to calculate the 
Minimum Spanning Tree (MST) and the Maximally Regular Graph (MRG). 

3. Results 

Calculation of cluster validity indices requires that a clustering al
gorithm be iteratively run over a dataset increasing at each iteration the 
value of the parameter K, that is, the number of clusters, from a mini
mum to a maximum value. For each value of K, a different object 
partition is obtained and a corresponding value of the CVI is computed. 
Then, the CVI values computed for all the partitions are evaluated to 
select the optimal CVI value and, accordingly, estimate the number of 
clusters for the dataset in analysis. This calculated value is finally 
compared with the expected number of clusters, in order to evaluate the 
CVI predictive ability. 

3.1. Setting a common reference for CVI comparison 

The set of partitions used to calculate the validity index has a rele
vant impact on the CVI values and, hence, on the evaluation of its pre
diction ability. However, several different partitions of the objects can 
be obtained for a dataset depending on the specific configuration of the 
clustering algorithm. Thus, we decided to define a common reference set 
of partitions for each of the selected datasets to have a fair comparison of 
the performance of all the indices. 

The reference partitions were computed by the k-means clustering 
algorithm, which is one of the most used clustering methods due to its 
simple mathematical background and easy implementation. The k- 
means algorithm determines a partition of the objects into K groups such 
that the objects within each cluster are more similar to each other than 
to the objects belonging to the other clusters; the resulting clusters are 
usually centered in high-density regions of the data space. Similarities 
among the objects were evaluated by the Euclidean metric after data 
autoscaling. For each dataset, the set of partitions was determined with 
the parameter K ranging from 2 to the maximum number of clusters 
defined as Kmax =

̅̅̅
n

√
, where n is the total number of objects in the 

considered dataset [50]. 
The major limitation of k-means is the accuracy of the initial location 

of the random centroids of the clusters, which strongly influences the 
final partition of a dataset. To avoid this drawback and render the final 
partition as most reproducible as possible, for each value of the 
parameter K, the k-means algorithm was repeated 1000 times and the 
partition with the minimum sum of the within-cluster pairwise distances 
was retained as the best partition in order to avoid an additional source 
of data variation in the index comparison. 

3.2. Defining the number of expected clusters 

Following the comparative methodology proposed by Gurrutxaga 
et al. [2], to evaluate the performance of CVIs we did not use as the 
reference the “true” number of clusters (i.e., classes) but the best 
partition for each dataset, which was defined as the most similar parti
tion to the natural partition of the dataset. This reference partition, 
which is not always the one with the “true” number of clusters [23], was 
searched for within the set of all the available partitions of a dataset by 
using the so-called partition similarity measures. 

In particular, to perform this task, the adjusted Rand index r [71] has 
been calculated to evaluate the congruity of the partition provided by 
the clustering algorithm with the “true” partition formed by the known 
classes of the objects. According to the approach of Rand [72] (also 
known as simple matching or Sokal-Michener index), one counts the 
number of pairs (a) of objects that are in the same cluster both in the 

Table 5 
Description of the datasets. Each dataset is denoted by an alpha-numerical ID 
label where R is used for the real datasets and S for the simulated datasets. The 
dataset size is defined by the number of objects (n) and the number of variables 
(p). The number of classes refers to the “true” partition of data, while the number 
of expected clusters is derived from the most similar partition to the “true” 
partition, as measured by the adjusted Rand index.  

ID Dataset name n p Classes Expected  
clusters (K∗) 

Ref. 

R01 Coffee 43 13 2 2 [59] 
R02 Tobacco 26 6 2 2 [60] 
R03 Sunflowers 70 21 2 2 [61] 
R04 Membrane 36 2 3 3 [62] 
R05 Iris 150 4 3 3 [63] 
R06 Vinagres 66 20 3 4 [64] 
R07 Wines 178 13 3 3 [65] 
R08 School 45 2 3 3 [66] 
R09 Ruspini 75 2 4 4 [67] 
R10 Vegoil 83 7 4 4 [68] 
R11 Itaoils 572 8 9 6 [69] 
S01 3c A 300 2 3 3 This work 
S02 3c B 250 2 3 3 This work 
S03 4c A 100 2 4 4 This work 
S04 4c B 400 2 4 4 This work 
S05 5c A 500 2 5 5 This work 
S06 5c B 500 2 5 5 This work 
S07 5c C 250 2 5 5 This work 
S08 6c 600 2 6 6 This work 
S09 8c 400 2 8 8 This work 
S10 10c 500 2 10 10 This work  
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calculated and in the “true” partition and the number of pairs (d) of 
objects that are in different clusters in both partitions. The sum of these 
numbers (i.e., a + d) represents the total number of agreements in the 
comparison and, normalized by the total number of distinct pairs of 
objects in the dataset, it ranges from around 0 (i.e., dissimilar partitions) 
to 1 (i.e., identical partitions). This index can be computed on the con
tingency table that compares the pair assignments made by two parti
tions. Hubert and Arabie have suggested a modified form (the modified 
Rand index or adjusted Rand index), which corrects the index for chance 
as shown below [71]. 

Let Q(R×C) be the contingency table with the number R of rows 
equal to the number of clusters in the calculated partition and the 
number C of columns equal to the number of classes of the dataset, 1) qij 
denotes the entry of the contingency table, that is, the number of objects 
that are common to cluster i in the calculated partition and cluster j in 
the “true” partition; 2) using the standard “dot” notation for row and 
column sums, qi⋅ and q⋅j denote the total number of objects in cluster i of 
the calculated partition and the total number of objects in cluster j of the 
“true” partition, respectively; 3) n is the total number of objects in the 
dataset. 

Then, the adjusted Rand index r is calculated from the contingency 
table Q as [49,73]:  

r =
(a + d) − Nc

n(n − 1)
2

− Nc
≈ 0 ≤ r ≤ 1 (12)  

where, (a + d) and Nc (i.e., the chance correction term), are defined as:  

a+ d =
n⋅(n − 1)

2
+
∑R

i=1

∑C

j=1
q2

ij −
1
2

(
∑R

i=1
q2

i⋅ +
∑C

j=1
q2

⋅j

)

(13)  

Nc=
n⋅(n − 1)

2
+

∑R

i=1

∑C

j=1
q2

i⋅⋅q
2
⋅j

n⋅(n − 1)
−

1
2

(
∑R

i=1
q2

i⋅ +
∑C

j=1
q2

⋅j

)

(14) 

If the relationship between two partitions is comparable to that of 
partitions picked at random, the adjusted Rand index returns a value 
close to 0. Small negative values can be obtained for cases where the 
partition agreement is less than expected by chance. In all the datasets in 
analysis and for all the calculated partitions, the adjusted Rand index 
was greater than 0.2; this value was proposed as threshold for random 
partitions. The partition with the maximum value of this index was 

selected as the best partition for the dataset and the number of clusters in 
that partition was taken as the target for the CVI quality evaluation. 
Table 5 collects the expected number of clusters for all the datasets, 
which was defined according to this approach. The target value for the 
parameter K coincides with the number of known classes in the “true” 
partition for all the datasets with only two exceptions: Vinagres and 
Itaoils. For the dataset Vinagres (R06), which has 3 classes of objects, the 
expected number of cluster is 4; this is a quite reasonable result 
considering that this dataset shows four main high-density regions in the 
data space (Fig. 1). The same consideration holds for the dataset Itaoils 
(R11), for which the data structure is complex with a large overlap be
tween classes. 

3.3. Analysing the performance of cluster validity indices 

Although the partition sets were specifically determined by the k- 
means algorithm, the validity indices surveyed in the present study are 
quite general and can be adopted to estimate the number of clusters for 
any clustering method. Indeed, we preferred to examine only those 
indices that were method independent. Moreover, the indices requiring 
external information or tuning parameters were not considered. Finally, 
we selected those indices that are formulated in such a way an automatic 
decision rule can be used to provide an objective prediction and, hence, 
avoid the problem of human subjectivity. The adopted rules to search for 
the optimal index value and, accordingly, the optimal number of clusters 
for each dataset are reported in the same tables as the mathematical 
definitions of the indices (Tables 1–4). Fig. 2 shows the characteristic 
behaviours of some indices for each type of adopted decision rule. 

Before index calculation, data were autoscaled to avoid the influence 
of the different measurement scales of the variables on the similarity 
metrics, as it often happens in real datasets. For the majority of the CVIs, 
the similarity between objects and cluster centroids was evaluated by 
the Euclidean metric. 

Each index was allowed to adopt the most favourable conditions to 
optimize its performance. In addition, the index behaviour was analysed 
by increasing the number of clusters up to the maximum value equal to 
the square root of the total number of objects in the dataset. This choice 
stems from the consideration that some indices exhibited degenerative 
behaviour when the number of clusters approaches the number of ob
jects in the dataset and such behaviour may lead to misleading pre
dictions. For the same reason, in some cases, the decision rules ‘the first 
minimum’ and ‘the first maximum’ were preferred and adopted instead 
of the absolute minimum and maximum of the index. The calculated 

Fig. 2. Examples of six different behaviours of CVIs for the simulated dataset S07 with five expected clusters: CVI value (vertical axis) vs number K of clusters (horizontal 
axis). The red dot indicates the estimated number of clusters. The corresponding rules to search for the optimal K parameter are: ‘max ratio’ for the indices trace_W (trW) 
and Hartigan (LSSR); absolute ‘min’ for Davies-Bouldin index (DB1); ‘first min’ for FuzzyHyperVolume index (FHV); ‘first max’ for the Gamma index (GI); absolute ‘max’ 
for Silhoutte index (Sil). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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values of all the CVIs for each dataset are provided as supplementary 
material both in the tabular (Table S1) and graphical format (Fig. S1). 

3.4. Correlations between cluster validity indices 

In order to disclose the main linear relationships among the CVIs, we 
calculated the Pearson correlation coefficient between all the pairs of 
indices for each dataset to evaluate which indices have similar behav
iour and, hence, may predict the same number of clusters. The complete 
correlation matrix, which was obtained by averaging the correlation 
coefficients over all the datasets, is provided in the supplementary mater 
ial (Table S2), while Table 6 highlights the relevant average correlations 
between the pairs of highly correlated indices. 

The RS index (8) is correlated − 1 with trW (1) due to the constraint 
TSS = WSS+ BSS, that is, the total sum of squares, which is constant for 
a given dataset, depends both on the within-group sum of squares and 
the between-group sum of squares. Then, the index RS can be defined as 
function of trW as the following:  

RS=
BSS
TSS

=
TSS − WSS

TSS
= 1 −

WSS
TSS

= 1 −
trW
TSS

(15) 

Moreover, Fukuyama-Sugeno FS index (16), Ball-Hall BH (2), 
Banfield-Raftery BR (3), and Hartigan LSSR (6) are strongly correlated 
each other and with trW (1) since all of them are different functions of the 
within-group sum of squares. The large average correlation (0.975) 
observed between the index WCH (5) and Calinski-Harabasz CH (4) is due 
to the lack of relevant overlapping between clusters in several datasets. 

As expected, the modified Wemmert-Gancarski WG2 index (14) has 
high average correlation (0.958) with the Silhouette Sil index (60), WG2 
being conceptually conceived with the same underlying idea as 
Silhouette. 

The correlation between Xie-Beni XB1 index (17) and Kwon Kw 
index (19) is always greater than 0.960. Indeed, the additional quantity 
present in the Kwon index has the following limit:  

limK→n
1
K

⋅
∑K

k=1
‖ck − b‖2

=
1
n

⋅
∑n

i=1
‖xi − b‖2

=
TSS

n
(16)  

which is a constant. The Kwon index also has a large average correlation 
of 0.953 with Tang Tn index (20). 

Correlations greater than 0.950 are also present in a subset of 
generalized Dunn’s indices, in particular between the GDIp2 and GDIp3 
(p = 1, 2, 3) subsets. Other relevant inverse correlations (<− 0.950) have 
been observed between the pair of CSL (58) and SV (12), and the 
Gamma index GI (35) with G+ (36) and CI (38). 

3.5. Values of CVIs and prediction of the number of clusters 

Through the analysis of the trend of the validity index and applying 
the selected decision rule, we obtained the optimal value of the index 
and the corresponding best partition for each dataset, that is, the optimal 
number of clusters in the dataset. This estimate for the parameter K is 
reported for all the surveyed CVIs and the 21 datasets in the supporting 

material (Table S1), along with the calculated values of each validity 
index for each dataset (Table S2 and Fig. S1). 

Some synthetic indices were calculated to measure the overall 
quality of the CVIs. They are reported in Table 7. The first quality index 
is the overall score, denoted as N(=), that is, the number of datasets for 
which the index prediction matches the expected number of clusters or, 
in other words, the number of correct estimates. It is interesting to note 
the failures of some indices to calculate the correct number of clusters in 
those datasets that have well-distinct clusters and error-free cluster 
structure, such as Ruspini (R07). If an index fails in this straightforward 
case, then it is unlike that it would provide reliable predictions in more 
complex real clustering applications. These indices are WCH (5), RL (7), 
Vsv2 (26), KDW (31), FHV (32), NI (33), G– (37), GDI51 (55), GDI52 
(56), GDI53 (57), Sym (62) and SymD (64). 

It can also be noted that for all the simulated datasets, the correct 
number of clusters has been always obtained by the indices trW (1), BR (3), 
LSSR (6), RS (8), DB2 (10), PBM (11), and WG1 (13). Moreover, for the 
same datasets, the indices CH (4), DB1 (9), WG2 (14), XB2 (18), GDI33 
(51), GDI43 (54), COP (59), MCR (39), Sym (62) behave quite satisfactory, 
providing the expected number of clusters for almost all the simulated 
datsets with only a difference of one cluster in no more than one dataset. 
Among all these indices, only BR (3) and MCR (39) have a generally low 
performance, due to their problematic behaviour on the real datasets. 

Along with the number of successes, we also calculated the number 
of datasets (denoted by N<) for which the index provides a value of K 
smaller than the expected value and, on the opposite, the number of 
datasets (denoted by N>) for which the estimate exceeds the correct 
number of clusters. Some indices resulted to be particularly sensitive to 
the presence of noise in the dataset overestimating the correct number of 
clusters; this is the case of the indices BH (2) and Sym-Dunn (6), which, 
for instance, calculated 14 and 13 clusters, respectively, instead of three 
clusters for the dataset S02. 

The quality of the CVIs has also been evaluated considering how big 
the prediction error is, which was quantified in terms of mean absolute 
deviation as:  

DSi =

∑M

m=1
Δim

M
m = 1,M (17)  

where the summation runs over all the datasets (i.e., M = 21 in this 
study) and accounts for the absolute difference between the number of 
clusters K̂im predicted by the ith index for the mth dataset and the ex
pected number K∗

m:  

Δim =
⃒
⃒K̂ im − K∗

m

⃒
⃒ (18) 

By definition, low values of this score are associated to CVIs with the 
best overall performance. In Table 7, the CVIs are ranked according to this 
score. Then, it can be easily noted that 11 indices are located in the top of 
the list with a DS score lower than 0.6. Among these, there are some of the 
traditional CVIs such as trace_W (1), Hartigan LSSR (6), Davies-Bouldin 
(9), the generalized Dunn’s index GDI33 (51) and Fukuyama-Sugeno 

Table 6 
Relevant correlations between pairs of cluster validity indices. Correlation coefficients larger than 0.9 and smaller than − 0.9 are highlighted in italics.  

Index BH (2) BR (3) LSSR (6) RL (7) FS (16) trWB (27) SS (29) LDR (30) SymFS (66) 

trW (1) 0.994 0.951 − 0.966 0.837 0.995 − 0.799 0.889 − 0.931 0.920 
BH (2)  0.947 − 0.959 0.839 0.992 − 0.798 0.889 − 0.927 0.915 
BR (3)   − 0.994 0.949 0.970 − 0.929 0.962 − 0.992 0.965 
LSSR (6)    − 0.931 − 0.980 0.912 − 0.951 0.988 − 0.963 
RL (7)     0.872 − 0.957 0.936 − 0.961 0.916 
FS (16)      − 0.841 0.924 − 0.955 0.942 
trWB (27)       − 0.929 0.950 − 0.915 
SS (29)        − 0.964 0.934 
LDR (30)         − 0.961  
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Table 7 
Quality scores used for the index comparison. The CVIs are ranked according to their overall performance as quantified by the mean absolute deviation score DS. N(=): 
number of datasets for which the calculated number of clusters equals the expected value; N(<): number of underestimates; N(>): number of overestimates; μ: 
sensitivity index (μ = 0 indicates invariance to the total number of allowed partitions).  

Index ID Name Symbol DS N(=) N(<) N(>) μ Rule 

6 Hartigan LSSR 0.381 14 4 3 0.13 max ratio 
1 Trace_W trW 0.429 15 2 4 0.13 max ratio 
8 RS RS 0.429 15 2 4 0.13 max ratio 
59 COP COP 0.429 14 6 1 0 min 
10 Davies-Bouldin* DB2 0.476 15 3 3 0.10 min 
13 Wemmert-Gancarski WG1 0.476 15 4 2 0.06 max 
9 Davies-Bouldin DB1 0.524 14 4 3 0.25 min 
16 Fukuyama-Sugeno FS 0.524 15 6 0 0.41 max ratio 
51 Generalized Dunn 33 GDI33 0.524 14 6 1 0.13 max 
54 Generalized Dunn 43 GDI43 0.524 14 5 2 0.10 max 
18 Xie-Beni* XB2 0.571 13 6 2 0.13 min 
4 Calinski-Harabasz CH 0.619 14 5 2 0.06 first max 
11 Pakhira-Bandyopadhyay-Maulik PBM 0.619 14 3 4 0.03 max 
20 Tang Tn 0.619 13 7 1 0 min 
19 Kwon Kw 0.667 12 8 1 0 min 
21 Partition Separation PS 0.714 14 5 2 0.06 max 
25 Kim-Park vsv Vsv1 0.714 12 2 7 0.19 first min 
17 Xie-Beni XB1 0.762 12 7 2 0.03 min 
14 Wemmert-Gancarski* WG2 0.810 13 4 4 0.25 max 
23 Kim-Ramakrishna SD* SD2 0.857 11 8 2 0.32 min 
30 Scott-Symons 2 LDR 0.857 10 11 0 0 max ratio 
50 Generalized Dunn 32 GDI32 0.857 10 10 1 0 max 
53 Generalized Dunn 42 GDI42 0.857 12 5 4 0.25 max 
60 Silhouette Sil 0.857 11 10 0 0 max 
47 Generalized Dunn 22 GDI22 0.905 11 10 0 0 max 
48 Generalized Dunn 23 GDI23 0.905 14 2 5 0.35 max 
65 Sym-Generalized-Dunn SymGD 1.000 10 8 3 0.22 max 
22 Rezaee-Lelieveldt-Reiber SD1 1.048 10 8 3 0.06 min 
26 Kim-Ramakrishna vsv* Vsv2 1.048 11 7 3 0.29 first min 
39 McClain-Rao MCR 1.095 9 10 2 0 max ratio 
68 Sym-Kwon SymKw 1.095 12 1 8 0.63 min 
5 WCH WCH 1.190 11 5 5 0.13 max 
52 Generalized Dunn 41 GDI41 1.190 10 8 3 0.10 max 
62 Sym Sym 1.190 12 4 5 0.38 max 
38 C-Index CI 1.238 12 3 6 0.13 first min 
67 Sym-Xie-Beni SymXB 1.238 10 7 4 0.10 min 
41 NC1 NC1 1.286 10 6 5 0.60 max 
12 Zalik SV SV 1.333 11 8 2 0.06 first max 
32 Fuzzy HyperVolume FHV 1.333 11 2 8 0.13 first min 
40 Point Biserial PB 1.333 7 11 3 0 max 
44 Generalized Dunn 12 GDI12 1.381 11 7 3 0.29 max 
34 Tau Tau 1.429 7 11 3 0.03 first max 
35 Gamma GI 1.429 11 3 7 0.13 first max 
46 Generalized Dunn 21 GDI21 1.429 7 10 4 0 max 
24 Halkidi SDbw 1.524 12 3 6 0.32 first min 
45 Generalized Dunn 13 GDI13 1.524 10 5 6 0.32 max 
29 Scott-Symons 1 SS 1.571 13 0 8 0.06 max ratio 
42 NC2 NC2 1.571 10 11 0 0.10 max 
49 Generalized Dunn 31 GDI31 1.571 9 8 4 0.22 max 
3 Banfield-Raftery BR 1.619 9 12 0 0 max ratio 
15 Score Function SF 1.619 12 1 8 0.57 max 
61 Zalik OS OS 1.762 7 11 3 0.06 first min 
37 G-minus G– 1.810 5 15 1 0 first min 
43 Generalized Dunn 11 GDI11 1.810 9 7 5 0.19 max 
58 Chou-Su-Lai CSL 1.952 10 5 6 0.22 min 
56 Generalized Dunn 52 GDI52 2.000 11 3 7 0.48 max 
57 Generalized Dunn 53 GDI53 2.000 6 15 0 0 max 
7 Ratkowsky-Lance RL 2.048 7 14 0 0 max ratio 
63 Sym-Davies-Bouldin SymDB 2.095 1 11 9 0.03 min 
28 Friedman-Rubin 2 DR 2.143 11 3 7 0.60 max ratio 
36 G-plus G+ 2.333 9 5 7 0.10 first min 
66 Sym-Fukuyama-Sugeno SymFS 2.571 10 3 8 0.32 max ratio 
33 Negentropy Increment NI 2.619 8 5 8 1.02 first min 
27 Friedman-Rubin 1 trWB 2.667 8 2 11 0.41 max ratio 
64 Sym-Dunn SymD 2.857 7 4 10 0.54 max 
2 Ball-Hall BH 3.000 9 1 11 1.43 max ratio 
55 Generalized Dunn 51 GDI51 3.143 1 14 6 0.03 max 
31 Marriot KDW 3.476 6 6 9 0.51 first min  
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(16). More recent indices in the top list are those proposed by Kim et al. 
[16] as variants of Davies-Bouldin index, that is, DB2 (10), and Xie-Beni 
index, that is, XB2 (18), along with the index COP (59) proposed by 
Gurrutxaga et al. [57] and Wemmert-Gancarski WG1 index (13), which 
has been described by Desgraupes [4]. On the opposite side, a large block 
of indices is located at the bottom of the list due to an overall unsatis
factory performance. Fig. 3 shows, for the real and simulated datasets, the 
distribution of the differences between the ith calculated number of 
clusters K̂im and the expected number K∗

m for each dataset. The median of 
the estimation errors is generally zero indicating that most of the CVIs 
correctly provide the expected number of clusters in the dataset. Among 
the simulated datasets, an exception is the dataset S08 for which most of 
the indices predict 4 instead of 6 clusters, thus providing a prediction 
error equal to − 2. Among the real datasets, positive medians are observed 
for the datasets Sunflowers R03, Membrane R04, and Vinagres R06, for 
which on average more clusters than expected are predicted, while 
negative medians are observed for the datasets Iris R05, School R08 and 
Itaoils R11, for which on average less clusters are estimated. The datasets 
with more relevant prediction errors are those with a more complex data 
structure. For instance, most of the CVIs fail to estimate the correct 
number of clusters for the dataset Itaoils R11, giving on average an un
derestimate of the number of clusters. There are a few indices that provide 
a very large number of clusters for this dataset likely due to their 
degenerative behaviour as the parameter K increases, e.g., KDW (31), NI 
(33), BH (2), SymDB (63), BR (3), trWB (27), DR (28). Some of these 

indices are based on the within-group scatter matrix, which cannot be 
properly calculated in the case of clusters with a small number of objects. 
It is noteworthy that among the few indices able to predict the expected 
number of clusters for the dataset Itaoils R11 there are the FuzzyHy
perVolume index (32), the C-Index (38), the original Dunn’s index GDI11 
(43) and all the generalized Dunn indices with the first and third cluster 
separation measure, along with their two variants based on the 
point-symmetry distance, that is, SymD (64) and SymGD (65). 

3.6. Sensitivity analysis of the cluster validity indices 

The validity indices can be calculated for each value of the parameter 
K up to its maximum value that naturally coincides with the number n of 
objects in the dataset. However, the index calculation is usually limited 
to a maximum value Kmax, which is smaller than n and is a-priori decided 
by the user. A simple rule of thumb has been proposed as Kmax =

̅̅̅
n

√
, 

where n is the total number of objects [20,23,74]. In some cases, it has 
been suggested to select a general low value (e.g. 10) for the maximum 
number of clusters, regardless of the total number of objects in the 
dataset [1,19]. Since the calculation of the correct number of clusters 
depends on the index behaviour while increasing the parameter K, the 
choice of the maximum value of K may influence the index estimation. 
This is especially true for those indices that have more than one mini
mum or maximum and for the indices with degenerative trend after a 
certain value of K. Therefore, to test the robustness of the CVI prediction, 
we performed a sensitivity analysis by varying Kmax around the default 
value (i.e., the square root of the number of objects), that is, Kmax =
̅̅̅
n

√
− 1 and Kmax =

̅̅̅
n

√
+ 1. 

The comparison of the results provided by a validity index for the 
three different values of Kmax has been performed by calculating the 
mutual variability μ as:  

μ=
|K̂ − 1 − K̂ | + |K̂ − 1 − K̂+1| + |K̂ − K̂+1|

3
(19)  

where K̂, K̂− 1 and K̂+1 indicate the predicted number of clusters in the 
case of Kmax =

̅̅̅
n

√
, Kmax =

̅̅̅
n

√
− 1 and Kmax =

̅̅̅
n

√
+ 1, respectively. The 

mean mutual variability on the 21 datasets is reported for each CVI in 
Table 7. Only 19% of the validity indices resulted invariant (μ = 0) to 
the variation of the maximum value of the parameter K even if this 
conclusion should be taken with caution since only a small variation 
around the default value has been considered. 

Moreover, for the indices whose performance is more severely 
influenced by the maximum possible number Kmax of clusters, a deeper 
analysis has been performed by comparing the DS scores obtained for 
the different levels of Kmax. In all the cases, the best predictions have 
been obtained setting the maximum value of the parameter K equal to 
̅̅̅
n

√
− 1. This rule seems to be more appropriate for all the datasets with a 

relatively small number of objects. Moreover, a reduced interval of the K 
values limits unreliable predictions due to possible degenerative be
haviours of some indices when the value of K approaches the number of 
dataset objects. 

3.7. Multivariate comparison of CVIs 

Principal Component Analysis (PCA) and the Minimum Spanning 
Tree (MST) approach were applied to the results of the 68 validity 
indices for all the 21 considered datasets to allow an easier overall 
comparison of CVIs and for a deep comprehension of their mutual re
lationships. This multivariate analysis has been carried out on the data 
matrix (68 × 21) collecting the performance of each CVI for each dataset 
as measured by the absolute prediction error, that is, the absolute dif
ference between the optimal number of clusters provided by the CVI and 
the expected number for each dataset. To run PCA, no scaling was 
applied to the data matrix. For MST, the Manhattan metric was selected 

Fig. 3. Box-plots of the CVI estimation errors (i.e., differences between the 
calculated K̂ and the expected number K∗ of clusters) for the a) real datasets 
and b) simulated datasets. 

R. Todeschini et al.                                                                                                                                                                                                                             



Chemometrics and Intelligent Laboratory Systems 251 (2024) 105117

16

to calculate the similarities between all the pairs of CVIs. Moreover, a 
theoretical validity index, called Best and denoted by the symbol B, has 
been added to the set of CVIs. This optimal reference corresponds to a 
theoretical index which is able to predict the correct number of clusters 
for all the datasets and therefore, its absolute prediction error is always 
equal to zero. 

The results of PCA are shown in Fig. 4. In the score plot, the validity 
indices are coloured according to their overall performance as quantified 
by the score DS (i.e., the mean absolute prediction error reported in 
Table 7): the indices with the best overall performance are in green, the 
worst indices are in red and the indices with average overall performance 
are in grey. The first principal component (PC1), which explains around 
50% of the total variance, ranks the CVIs from the best (on the right) to the 
worst ones (on the left). The second principal component PC2, with 
around 13% of explained variance, highlights the differences among the 

less performing indices and, in particular, distinguishes between the two 
different types of decision error that can occur. The indices with large 
value of PC2 (e.g., SymDB, DR, trWB, BR, BH, NI and KDW) generally tend 
to overestimate the parameter K and, hence, to predict a data partition 
with too many clusters. In particular, these indices fail to predict the 
correct number of clusters for the most complex datasets with relevant 
overlap among the clusters (e.g. Wines R07 and Itaoils R11). On the 
contrary, the indices with lower PC2 score tend to indicate fewer clusters 
than the clusters actually present in the natural data partition. This sec
ond type of error might be considered more serious in most practical 
applications of cluster analysis due to the information lost when merging 
distinct clusters [10]. It is noteworthy that among these indices with less 
satisfactory results there are the three generalized Dunn’s indices defined 
with the fifth type of cluster separation measure (i.e., GDI51, GDI52, 
GDI53), which takes into account the minimum average joint distance of 

Fig. 4. PCA a) score and b) loading plot of the first two principal components. CVIs are coloured according to the DS quality score: the top-ranked indices are in 
green; the worst indices are in red; the indices with average overall performance are in grey. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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the objects of two different clusters from their centroids. Their prediction 
errors are more relevant for the simulated datasets S09 and S10 with eight 
and ten expected clusters, respectively. 

The relationships among the studied cluster validity indices were 
further investigated by the MST approach. MST has been performed on 
the same data matrix as PCA using the Manhattan metric to calculate the 
similarities between all the pairs of indices (Fig. 5). The advantage of 
MST is the data visualization in the form of a tree graph, where similar 
indices are located in the same tree branch. The most dissimilar indices 
are the terminal nodes of the tree branches, while the indices with more 
mutual relationships are represented by the most branched nodes. 
Although in a different way, the tree structure of MST analysis is in 
accordance with the PCA score plot. However, the CVIs that generally 
overestimate the number of clusters are partitioned into three different 
subgroups, according to their different analogies among the prediction 
errors. The optimality region gathers the best indices already high
lighted in the PCA score plot, but also taking into account their recip
rocal similarities. 

3.8. Application of CVIs to complex data 

As the final evaluation step of the CVIs, we tested their performance 
on data with complex structure. To this aim, we selected a joint 
metabolomics dataset being comprised of fluorescence spectroscopy, 1H 
NMR spectroscopy (CPMG and NOESY-Presat) and biomarker mea
surements (TIMP-1 and CEA) on human plasma from cancer and control 

samples [75]. The dataset includes 94 samples described by 476 vari
ables, which were properly pre-processed in the original study in order 
to avoid the common scaling problem in multiblock modelling. The first 
two variables are the biomarkers, the next 19 are the fluorescence data 
as PARAFAC scores and the last 455 are the NMR peaks. 

Unlike the benchmark datasets used in the previous comparative 
study, which were generally characterized by a small number of 

Fig. 5. Minimum Spanning Tree (MST) by Manhattan metric on the differences between calculated and expected number of clusters for the 21 datasets. CVIs are 
coloured according to the DS quality score: the top-ranked indices are in green; the worst indices are in red; the indices with average overall performance are in grey. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 8 
Estimated number of clusters for the metabolomics dataset according to the 
different CVIs. Indices with rank up to 20 on DS score, excluding those with the 
max ratio rule, are highlighted in boldface.  

Estimated K̂ Cluster Validity Indices 

2 CH (4), WCH (5), SF (15), Vsv1 (25), Vsv2 (26), DR (28), Tau (34), GI 
(35), G+ (36), G– (37), CI (38), PB (40), NC2 (42), GDI11 (43), 
GDI12 (44), GDI13 (45), GDI21 (46), GDI22 (47), GDI23 (48), GDI31 
(49), GDI32 (50), GDI33 (51), GDI51 (55), GDI52 (56), GDI53 (57), 
COP (59), SymD (64), SymGD (65) 

3 PS (21) 
4 LSSR (6), NC1 (41) 
5 SD1 (22), SD2 (23), SS (29) 
6 BH (2), BR (3), RL (7), PBM (11), FHV (32), NI (33), Sil (60) 
7 trW (1), RS (8), FS (16), trWB (27), LDR (30), Sym (62), SymFS (66) 
8 DB1(9), DB2 (10), SV (12), WG2 (14), SDbw (24), MCR (39), CSL 

(58), SymDB (63) 
9 XB1 (17), XB2 (18), Kw (19), Tn (20), GDI42 (53), GDI43 (54), 

SymXB (67), SymKw (68) 
10 WG1 (13), KDW (31), GDI41 (52), OS (61)  
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variables, this dataset better represents the most common real-life sce
narios of complex data that require clustering algorithms to elucidate 
the unknown data structure in presence of high number of variables. 

Since the number of variables is higher than the number of samples, a 
variable reduction has been necessary to allow the calculation of all the 
indices; in effect, the CVIs based on the calculation of the scatter matrix 
determinant cannot be computed when there is an excess of variables, as 
for the indices listed in Table 2. Moreover, some variables may be 
redundant and/or noisy leading to undesired effects on the measures of 
the similarity relationships between samples. Therefore, we performed a 
Principal Component Analysis (PCA) on the autoscaled variables and 
finally retained the first 34 PCs with eigenvalue larger than 1. The 
reference partitions were therefore computed on the final data matrix of 
dimension 94 × 34 by the k-means clustering algorithm; similarities 
between objects were evaluated by the Euclidean metric with no further 
scaling of the variables to preserve the variance explained by each PC 
and the parameter K was tuned from 2 to the maximum number of 
clusters chosen equal to Kmax = int(

̅̅̅̅̅̅
94

√
) = 10. The adjusted Rand index 

was very low (around 10− 2) for all the calculated partitions, meaning 
that there was no congruity between the calculated partitions by k- 
means algorithm and the known partition of cancer and control samples. 
For this reason, the metabolomics dataset was not used in the general 
comparative study of CVIs since it lacks a reliable target for the expected 
number of clusters, which is required to calculate the quality scores used 
to compare the validity indices. Nonetheless, the results on this dataset 
provided further insights into the functioning and performance evalu
ation of CVIs when applied to data with complex structure. Table 8 
shows the estimated number of clusters by each validity index according 
to the automated selection rule as defined in Table 7. The graphical 
visualization of the most frequent partitions, that is, the partitions ob
tained by several CVIs, are provided in Fig. 6 by the Maximally Regular 
Graph (MRG), which is a graph representation of the similarity re
lationships among the samples; MRG is a variant of the Minimum 
Spanning Tree, which is generated optimizing the graph complexity by 
adding back to the original MST, one by one, the missing connections 
previously skipped during the computation of the MST itself [76]. 

Most of the indices provided the 2-cluster partition as the best one 
(Fig. 6a); however, also the partition with 9 (Fig. 6b) clusters is note
worthy since it was selected by several indices that are among the best 
performing indices in the comparative study on the benchmark datasets 

(these indices are highlighted in boldface in Table 8). From a deeper 
exploration of these partitions, it was concluded that while the 2-cluster 
partition roughly divide the samples in two heterogeneous groups, 
which do not correspond to the cancer and control sample groups, the 
many-cluster partitions seem to be more interesting since they provide 
subgroups of more homogenous samples and some apparent outliers. In 
this case, there is no optimal partition but a number of possible parti
tions that need to be evaluated on the basis of additional expert 
knowledge. 

4. Conclusions 

In this paper, 68 cluster validity indices (CVIs) have been surveyed 
and evaluated by comparison on 21 benchmark datasets for which the 
“true” number of clusters was previously known. Some indices showed 
an overall good performance providing the expected number of clusters 
for almost all the datasets in analysis. This group of best CVIs includes 
Harting index LSSR (6), Trace_W index trW (1), R-Squared index RS (8), 
COP (59), the two Davies-Bouldin indices DB1 (9) and DB2 (10), 
Wemmert-Gancarski index WG1 (13), Fukuyama-Sugeno index FS (16) 
and the two Generalized Dunn indices GDI33 (51) and GDI43 (54). 

Other indices, such as the modified Xie-Beni index XB2 (18), 
Calinski-Harabasz index CH (4), Pakhira-Bandyopadhyay-Maulik index 
PBM (11), Kwon index Kw (19), Tang index Tn (20), Partition Separa
tion PS (21), Kim-Park index Vsv1 (25) and the here proposed modified 
Wemmert-Gancarski index WG2 (14) showed a lower but still accept
able overall performance. Also Xie-Beni index XB1 (17) and Silhouette 
(60), which are among the most traditional cluster validity indices, 
behave quite well for all the datasets. In particular, it is noteworthy that 
Silhouette has a very clear trend for all the datasets without fluctuations, 
thus providing an unambiguous optimal point determination (Fig. S1). 

Despite the ranking based on the overall quality index DS, it should be 
considered that the cluster validity indices that use as the decision rule the 
absolute or first min/max of the index, such as COP (59), DB1 (9), DB2 
(10) and WG1 (13), are in principle more reliable in detecting the “nat
ural” number of clusters than those indices based on the max ratio rule, 
such as LSSR (6), trW (1) and FS (16), since the detection of the most 
relevant change in monotonic distributions is not always an easy task and 
involves a certain amount of subjectivity. Indeed, the estimated number 
of clusters for the indices based on monotonic functions strongly depends 

Fig. 6. Graphical representation of the metabolomics dataset by Maximally Regular Graph (MRG) on Euclidean pairwise distances between samples. The graph 
vertices correspond to the human blood samples, which are coloured according to the cluster they belong to; the graph edges represent their similarity relationships: 
a) sample partition in 2 clusters; b) sample partition in 9 clusters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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also on the extrapolated values at K = 1 and K = Kmax + 1, and is thus 
susceptible to significant variation for small variation of the considered 
partition. Moreover, especially for small datasets, their behaviour tends 
to be quite similar to a straight line; in this case, the detection of the 
optimal number of clusters is theoretically unfeasible. 

With respect to the invariance to changes of the maximum allowed 
number of clusters, 14 out of 68 indices (21%) are fully invariant (μ = 0); 
9 of them are based on the max rule, 4 on the min rule and 1 on the first 
min rule. Other 12 indices show a sensitivity less than 0.1 (0 < μ < 0.1), 
and, among these, only two indices are based on the max ratio rule, 
namely BR (3) and RL (7). In quantitative terms, only 15% of the indices 
based on the max ratio rule is almost invariant to the change of the 
maximum allowed number of clusters (2 out of 13), against 44% of the 
indices based on absolute or first min/max rule (24 out of 55). 

Moreover, for complex data such as the considered metabolomics 
dataset, we verified that by doubling the maximum number of allowed 
clusters, that is, Kmax = 2⋅

̅̅̅
n

√
, unreliable values of the optimal K are 

generally obtained due to possible degenerative behaviour of several 
indices, including those invariant to small Kmax changes. Finally, when 
the number of variables is very high with respect to the number of 
samples, it is suggested to reduce the data dimensions because the cor
relation among them can significantly influence the similarity/diversity 
measures and, thus, the clustering outcomes. 
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