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Abstract
Regular black holes with nonsingular cores have been considered in several approaches to quan-

tum gravity, and as agnostic frameworks to address the singularity problem and Hawking’s infor-

mation paradox. While in a recent work we argued that the inner core is destabilized by linear

perturbations, opposite claims were raised that regular black holes have in fact stable cores. To rec-

oncile these arguments, we discuss a generalization of the geometrical framework, originally applied

to Reissner–Nordtsröm black holes by Ori, and show that regular black holes have an exponentially

growing Misner–Sharp mass at the inner horizon. This result can be taken as an indication that

stable nonsingular black hole spacetimes are not the definitive endpoint of a quantum gravity reg-

ularization mechanism, and that nonperturbative backreation effects must be taken into account

in order to provide a consistent description of the quantum-gravitational endpoint of gravitational

stellar collapse.
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I. INTRODUCTION

Singularity theorems [1, 2] demonstrate that, within the framework of standard classical

general relativity, singular black holes are unavoidably formed as the end-state of gravita-

tional collapse [3]. Observational tests of black hole spacetimes coming from the detection

of gravitational waves emitted by binary black hole mergers [4–8] are so far in perfect agree-

ment with the predictions of classical general relativity. Nonetheless, there is still room for

alternatives to the classical black holes of general relativity [9, 10], a consideration that be-

comes more pertinent given that it is reasonable to assume that singularities will be tamed

once quantum gravity effects are taken into account [11, 12].

A conservative approach consists of replacing the singularity with a regular core, without

necessarily introducing substantial long-range modifications to the geometry [13]. Regular

black holes emerge in several approaches to quantum gravity such as asymptotic safety

[14, 15] and loop quantum gravity [16, 17], while they have also been proposed as an agnostic

framework to address Hawking’s information paradox [18, 19].

It can be shown that regular black holes, even when they are non-rotating, possess an

inner horizon besides the more conventional trapping horizon [11–13]. It is known that inner

horizons in general relativity are generically unstable under small perturbations and give rise

to the so called mass-inflation instability [20–22], a fact which is not necessarily problematic

given that general relativistic black holes are known to be singular. On the other hand,

this opens to the possibility that the inner horizons of regular black holes are also unstable.

If confirmed, this would make their physical justification less straightforward, while at the

same time it would call for increased theoretical efforts to produce consistent regular models.

In fact, such inner-core instabilities have been derived in the context of a particular model

of regular black hole [23, 24]. Recently, we produced arguments supporting the generic

conclusion that regular black hole cores are unstable [25]. While the latter analysis captures

the main physical ingredients, it considers a somewhat idealized scenario consisting of two

non-interacting null shells on top of a static background. In contrast to these results, a recent

work [26] — which is based on a single perturbing null shell, and takes the backreaction

of the metric into account — extends Ori’s work for Reissner–Nordström black holes [21]

to regular spacetimes and claims that regular black holes have stable cores. This claim

contradicts the result found under the same assumptions for the specific regular black hole

considered in the Appendix of [23].

The aim of the present work is to clarify the issue of regular black hole instabilities, by a

reanalysis of the contradictory results in [25] and [26]. In particular, we revisit the extension

of Ori’s model to a generic spherically symmetric metric. By expressing the equations of

motion in terms of the Misner–Sharp mass, which is a physically motivated quantity [27, 28],

we are able to derive a key equation for its evolution in terms of the initial perturbation.

We conduct both an analytical and a numerical study, and we show that a generic regular

black hole has an unstable core. Therefore, our work makes the conclusions of [25] robust,
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while in contrast it rejects the claims in [26].

The paper is organized as follows. In sec. II we present an extended version of Ori’s

perturbation model to generic spherically symmetric metrics, and we derive the equation

governing the growth of the Misner–Sharp mass. In sec. III we show how this equation

generically predicts an indefinite growth for both singular and regular black holes, and we

discuss the functional form of the growth rate. In sec. IV we numerically solve the differen-

tial equations governing the growth of instability for several specific black hole spacetimes,

showing that the solutions are in agreement with the analytical treatment. In sec. V we

analyze how the presence of a non-zero cosmological constant affects the conclusions of the

previous sections. Concluding remarks are made in sec. VI.

II. GENERALIZED ORI MODEL

In [21] Ori developed a model to describe the dynamical evolution in the neighborhood

of the inner horizon of a Reissner–Nordström black hole under linear perturbations, in order

to explicitly analyze the singularity generated by the well-known mass-inflation instability.

Ori’s model can be easily generalized to any (singular or non-singular) spacetime with a

metric of the form

ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2 . (1)

Most of the derivation can be worked out only using the parameterization f(v, r) = 1 −
2M(v, r)/r in terms of the Misner–Sharp mass M(v, r). At this point in the discussion we

do not need to assume any specific functional form for the Misner–Sharp mass, but only that

its radial dependence is such that the geometry contains an inner horizon: this is equivalent

to assuming that f(v, r) has an even number of zeroes, and that all its dependence on v

enters through a single-variable function m(v) such that

M(v, r) = M(m(v), r), (2)

and m(v) coincides with the value of the Misner–Sharp mass at large values of r, namely

m(v) = lim
r→+∞

M(v, r). (3)

Well-known examples include the Vaidya–Reissner–Nordström spacetime in which

M(m(v), r) = m(v)−e2/2r, or the Hayward spacetime in which M(m(v), r) = m(v)r3/(r3+

2m(v)`2) [19].

Following [21], we now consider a dynamical model of a null shell Σ which divides the

black hole into two subregions R− and R+, such that R− is on the same side of I −, as shown

by the Penrose diagram in fig. 1. Therefore we can parametrize R− by the same advanced

null coordinate v− of I −, while we shall choose a distinct null coordinate v+ to parametrize

R+. By continuity, the radial coordinate r is the same on both regions, while the mass

function m(v) depends on the region, so that we shall distinguish m−(v−) and m+(v+).
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Figure 1: Relevant sections of the Penrose diagram of a regular black hole. The shell Σ divides the

spacetime in two regions R− and R+. H denotes the event horizon while C denotes the Cauchy

horizon.

It can be shown that the matching conditions imply that both v− and v+ can be expressed

on Σ in terms of a single affine coordinate λ [29]. We will define λ in such a way that it is

negative and λ → 0 when v− → ∞. Additionally, the radius of the shell can be expressed

as a function R(λ) of the affine parameter.

The functional form of m−(v−) is dictated by Price’s law [30, 31] to be

m−(v−) = m0 + δm = m0 −
β

vp−
, p ≥ 11 , (4)

where m0 = m−(v →∞). When v− →∞, the shell crosses the corresponding inner horizon

at r0, which is implicitly defined by

lim
λ→0

R = r0 , (5a)

lim
λ→0

f−(λ,R) = 0 . (5b)

Here R ≡ R(λ) is the radius of the shell and f−(λ,R) ≡ f(M(m−(λ), R), R). It is convenient

to define the surface gravity in R− at λ = 0 as

κ0 =
1

2
lim
λ→0

∂f−(λ, r)

∂r

∣∣∣∣
r=R(λ)

. (6)

We now set up the basic ingredients for the discussion of the generalized Ori model. It can

be shown that the matching conditions on Σ in eqs. (7)–(9) of [21] generalize, respectively,
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to

ziR
′ =

R

2
f i(vi, R) , (7a)

vi(λ) =

∫ λ

dλ
R

zi
, (7b)

zi(λ) = Zi +
1

2

∫ λ

dλ

(
f i(λ,R) +R

∂f i
∂r

(λ,R)

)
, (7c)

where zi = R/vi
′, the index i takes two values + and − (for the two regions R+ and R−,

respectively), and a prime denotes differentiation with respect to λ. The quantity Zi is an

integration constant, while we omitted a similar integration constant in (7b) because it is

irrelevant. These equations are valid on both sides of the ingoing null shell. Now, in region

R−, we can expand eq. (7c) around λ = 0 to obtain

z−(λ) = Z− − r0|κ0|λ+ O(λ2) . (8)

However, given that limλ→0 v− = ∞, it follows from eq. (7b) that Z− = 0, otherwise v−
would tend to a constant proportional to 1/Z−. Hereafter, for simplicity, we will use v in

place of v−; therefore

v(λ) = − 1

|κ0|
ln |λ|+ O(λ0) . (9)

Notice that the derivation of (8) and (9) proceeded exactly as in reference [21]. Furthermore,

eq. (7a) in region R− can be written as a differential equation in v as

dR(v)

dv
=

1

2
f−(m−(v), R(v)). (10)

We can perform a Taylor expansion of f− around the values m− = m0 and R = r0 in the

limit v →∞ to obtain
dδR(v)

dv
= −A

r0
δm(v)− |κ0|δR(v), (11)

where we have written R(v) =r0 + δR(v) and A = ∂M−/∂m−|m−=m0,r=r0 , and we neglected

terms of order O(δm2, δmδR, δR2). Taking into account the functional form of δm(v) in

eq. (4), the general solution to the above differential equation is given by

δR(v) = c1e
−|κ0|v +

Aβ

|κ0|r0vp
∞∑
k=0

[
(p+ k − 1)!

(p− 1)!

1

|κ0|kvk

]
=

Aβ

|κ0|r0vp

{
1 +

p

|κ0|v
+
p(p+ 1)

|κ0|2v2
+ O(v−3)

}
.

(12)

Let us now consider the evolution of the metric functions in region R+ on its boundary

Σ, hence as functions of λ only (alternatively, v). One can manipulate eqs. (7a) and (7c)

for i = + to obtain

df+(λ,R)

dλ
= R′

∂f+(λ, r)

∂r

∣∣∣∣
r=R

+
R′′

R′
f+(λ,R), (13)

or equivalently, as a differential equation in v,
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dM+(v,R)

dv
= R,v

∂M+(v, r)

∂r

∣∣∣∣
r=R

−
(
λ,vv
λ,v
− R,vv

R,v

)(
M+(v,R)− R

2

)
= R,v

∂M+(v, r)

∂r

∣∣∣∣
r=R

+

(
|κ0| −

p+ 1

v
+O(v−2)

)(
M+(v,R)− R

2

)
.

(14)

In the equation above the v subindices denote differentiation with respect to this variable.

This is the main equation that we derive in the paper. In the next section we are going to

comment its solutions and show that it predicts unstable cores for regular black holes.

III. INSTABILITY OF REGULAR BLACK HOLES

In the case of Vaidya–Reissner–Nordström spacetime

∂M+(v, r)

∂r

∣∣∣∣
r=R

=
e2

2R2
, (15)

so the first term of the right-hand side of eq. (14) does not depend on M+ and the equation

displays (exponentially) inflating solutions with leading behaviour

M+(v,R(v)) ∝ e|κ0|v

vp+1
. (16)

This is the solution obtained by Ori [21]. More generally, this result is recovered unchanged

for a wider family of geometries satisfying the linear ansatz M+(v, r) = g1(r)m+(v) + g2(r),

which includes for instance the Bardeen metric for a regular black hole [32].

However, if ∂M+/∂r is not linear in M+, the differential equation (14) becomes nonlinear

and the last term on the right-hand side may drive the evolution at late times, thus modifying

the exponential behavior associated with mass-inflation. Crucially, not all the metrics of

interest are covered by a linear ansatz. For instance, in the case of a regular black hole

described by the Hayward metric [19], the functional form of M(m, r) = mr3/(r3 + 2m`2)

implies that
∂M

∂r
=

6`2

r4
M2. (17)

We will be more general and consider the case where ∂M+/∂r is polynomial in M+, i.e.,

∂M+/∂r ∝Mn
+. We then obtain

dM+(v,R(v))

dv
=

(
|κ0| −

p+ 1

v
+O

(
v−2
))(

M+(v,R(v))− r0
2

)
− γ

vp+1
Mn

+ (v,R(v)) (18)

for some given constants γ and n, which depend on the specific metric under consideration.

The behaviour of the solution depends on the sign of γ. It is possible to show that, for γ < 0,

M+(v,R(v)) diverges for a finite value of v. On the other hand, for γ > 0 we can solve this
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differential equation in different regimes. At early times, the first term on the right-hand

side dominates the dynamics, and leads to an exponential growth of M+(v,R(v)), up to a

critical time v0 for which

Mn−1
+ (v0, R(v0))≈

|κ0|
γ
vp+1
0 . (19)

From that point on, the first and the second term of the right-hand side become comparable

and the growth is polynomial rather than exponential,

Mn−1
+ (v,R(v)) ∝ vp+1, v � v0. (20)

As a concrete example, we consider Hayward’s metric and the relation (17), from which it

follows that

dM+(v,R(v))

dv
' |κ0|M+(v,R(v))− γ

M2
+(v,R(v))

vp+1
− r0|κ0|

2
, (21)

where the symbol ' means that we are neglecting subdominant terms in the v →∞ limit,

and

γ =
6pβ`2

|κ0|
r0

(2m0`2 + r30)
2 . (22)

By neglecting the last term on the right hand side, the solution of (21) is given by

M+(v,R(v))≈ e|κ0|vvp

c1vp − (−v)p|κ|p−1γΓ(−p,−|κ0|v)
. (23)

Expanding the incomplete Gamma function at late times we obtain

M+(v,R(v))≈|κ0|
γ
vp+1, (24)

in perfect agreement with eq. (20). Therefore, at late times, the growth rate of the instability

is slowed down, and becomes polynomial rather than exponential.

In the next section, we are going to integrate the perturbative equations of motions

numerically for several regular black hole metrics usually considered in the literature. We

will show that, for all the metrics under consideration, M+ grows indefinitely with v. While

the functional form (exponential or polynomial) of the growth rate depends on the specific

form of the metric, the fact that inflation occurs appears to be a generic phenomenon.

Therefore, we find evidence that regular black holes have unstable cores; while, in principle,

we cannot exclude the existence of a fine-tuned metric avoiding this conclusion, we found

no concrete example of such behaviour and we expect it to be non-generic.

Before closing this section, we provide an argument for the fact that the transition from

the exponential to the polynomial growth of M+, when present, might occur beyond the

regime of validity of the linear analysis. For concreteness, we refer to Hayward’s metric. If

the corrections to the Schwarzschild metric come from quantum regularization effects, it is
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reasonable to expect that the regularization parameter satisfies ` � m0. Therefore, from

eq.s (22) and (24), we find that the transition occurs when

M+(v,R(v)) ≈ |κ0|
2 (2m0`

2 + r30)
2

r0`2
vp+1
0

6pβ

∼ m2
0

`

vp+1
0

6pβ
,

(25)

where we used r0 ∼ |κ0|−1 ∼ `. In turn, this implies

M+(v,R(v))

m0

∼ m0

`

vp+1
0

6pβ
� 1 , (26)

namely, at the transition point the value of M+ is already exponentially large w.r.t. the

initial value m0. Let us stress that this argument reinforces the case for mass-inflation as it

argues that, in the situations of physical interest, the dominant behaviour will be effectively

exponential.

IV. NUMERICAL ANALYSIS

In this section, we provide explicit numerical solutions for the perturbative equations

of motion for several choices of the black hole metric which have been considered in the

literature. We can integrate eqs. (10) and (14) for the variables R(v) and M+(v,R(v)).

However, we will follow an alternative route and integrate the equations for the variables

R(v) and m+ (v). While the main advantage of the first method is the use of the physically

motivated Misner–Sharp mass as one of the variables, the second method will clarify some

subtleties that arise in the interpretation of the mass-inflation phenomenon when the metric

is expressed in terms of the unphysical variable m+(v).

An equation for m+(v) can be derived following the treatment in [26], apart for the

correction of a mistake, which explains the opposite conclusions we reach in our work. The

starting point is the junction condition at the shell Σ [29]

[Tµ
νsµsν ] = 0, (27)

where Tµ
ν is the effective stress energy tensor obtained by imposing Einstein’s equations on

both regions R{+,−} of the spacetime, and

sµ = (2/f±, 1, 0, 0) (28)

is the outgoing null normal to the shell. The relevant components of the stress energy tensor

are

Tv
v = −4πr2

∂M

∂r
, (29a)

Tv
r = 4πr2

∂M

∂v
, (29b)

Tr
r = −4πr2

∂M

∂v
. (29c)
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metric M(v, r)

Reissner-Nordström m(v)− e2

2r

Hayward [19] m(v)r3

r3+2m(v)`2

Bardeen [32] m(v)r3

(r2+l2)3/2

Dymnikova [33] m(v)
(

1− e−r3/`2m(v)
)

Table I: Black hole parametrizations used for the numerical integrations in sec. IV.

Then eq. (27) becomes

1

f 2
+

∂M+(v+, r)

∂v+

∣∣∣∣
r=R(v+)

=
1

f 2
−

∂M−(v−, r)

∂v−

∣∣∣∣
r=R(v−)

. (30)

We can eliminate the v+ dependence from this equation noting that, along a null trajectory,

dv+
dv−

=
f−
f+

(31)

and expressing everything in terms of v ≡ v−

1

f+

∂M+

∂v

∣∣∣∣
r=R(v)

=
1

f−

∂M−
∂v

∣∣∣∣
r=R(v)

. (32)

Given that the evolution of m−(v) is dictated by (4) and that M+ is implicitly a function

of m+, the system of eq.s (32) and (10) can be solved in terms of m+(v) and R(v). In

ref. [26] eq. (32) was interpreted as if the partial derivatives in v are evaluated after imposing

r = R(v) on Σ. This is inconsistent with how (32) is derived and, crucially, it is the reason

why [26] reaches the conclusion that regular black holes have stable cores.

We shall now present some explicit examples of solutions for the metric coefficients dis-

played in table I. We will also show the corresponding evolution of M+, as deduced from the

solutions of m+.

a. Reissner-Nordström metric First, as a sanity check, we integrate the system for the

Reissner-Nordström black hole, for which eq. (32) becomes

m′+(v)

R2 − 2Rm+(v) + e2
=

m′−(v)

R2 − 2Rm−(v) + e2
. (33)

The results of the numerical integration are plotted in fig. 2. As expected, the system

develops a mass inflation instability and the Misner–Sharp mass diverges exponentially, see

fig. 2 (right). At the same time, as it is also apparent from the functional form of the metric,

the functions m+ and f+ exhibit corresponding divergences, see fig. 2 (left).

b. Hayward metric The case of Hayward metric is less trivial. Indeed, as shown in

fig. 3 (left), the integration for m+ breaks down at a finite value of v, for which m+ diverges.

However, the integration can be continued from the opposite side of the discontinuity, where

9



Figure 2: Left: Numerical evolution of the mass parameter m+ and of the metric functions f± of

a Reissner–Nordström black hole. Right: Comparison between the numerical and the analytical

evolution of the Misner–Sharp mass M+. In both plots we have used the parameters β = 1, p = 12,

m0 = 10, e = 5 with the initial conditions R(v = 1) = 5 and m+(v = 1) = m0 + 1.

Figure 3: Left: Numerical evolution of the mass parameter m+ and of the metric functions f± of a

Hayward regular black hole. Right: Numerical evolution of the Misner–Sharp mass. In both plots

we picked the parameters β = 1, p = 12, m0 = 10, ` = 0.5 with the initial conditions R(v = 1) = 5

and m+(v = 1) = m0 + 1.

m+ is negative and approaches m+ → −r30/(2`2) asymptotically for v → ∞. We can see

from the form of the metric that the limiting value of m+ is such that M+ diverges, as

expected. While it might seem odd that the variable m+ has a discontinuity and becomes

negative, the reader should take in mind that m+ is not a physical variable and so this

behaviour is an artifact of the parametrization. On the other hand, the physical variable

M+ is well behaved, as shown in fig. 3 (right). Indeed, M+ follows a first phase of exponential

expansion, followed by a phase of polynomial growth. This is in complete agreement with

the analysis of the previous section.

c. Bardeen metric The functional form of the Bardeen metric is such that M+ is linear

in m+. Therefore, from the previous section, we expect an exponential inflation of M+. This
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Figure 4: Left: Numerical evolution of the mass parameter m+ and of the metric functions f± of a

Bardeen regular black hole. Right: Numerical evolution of the Misner–Sharp mass. In both plots

we picked the parameters β = 1, p = 12, m0 = 10, ` = 1 with the initial conditions R(v = 1) = 5

and m+(v = 1) = m0 + 1.

Figure 5: Left: Numerical evolution of the mass parameter m+ and of the metric functions f±

of a Dymnikova regular black hole. Right: Numerical evolution of the Misner–Sharp mass. In

both plots we picked the parameters β = 1, p = 12, m0 = 10, ` = 0.5 with the initial conditions

R(v = 1) = 5 and m+(v = 1) = m0 + 1.

is validated by the numerical results in fig. 4 (right). A direct comparison with fig. 2 also

shows that m+ and f+ behave similarly to the Reissner-Nordström case.

d. Dynmikova metric As our final example, we consider the regular black hole metric

proposed by Dymnikova [33]. Since in this case ∂M+/∂r is not a polynomial, we cannot

apply the reasoning of the previous section and we have no prior expectations. A direct

numerical integration (fig. 5) shows that M+ diverges exponentially. On the other hand, m+

presents a change-of-sign discontinuity analogous to the case of the Hayward metric (fig. 3).

Again, we stress that this is an artifact of the parametrization.
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V. ROLE OF THE COSMOLOGICAL CONSTANT

So far we ignored the role of the cosmological constant. Intuitively, this is justified by

the fact that core instabilities happen at the inner horizon, where the energy density is

Planckian and the role of the cosmological constant is completely negligible. However, in

the presence of a non-zero cosmological constant, Price’s law (4) is modified — it exhibits

an exponential decay of the perturbations at late time [34, 35]

m−(v) = m0 + δm(v) = m0 − αe−ωIv, (34)

where ωI > 0 is the imaginary part of the least damped quasinormal mode of oscillation of

the black hole.

If the cosmological constant is small, the fall-off of the perturbations follow the polynomial

Price’s law of eq. (4) for a very long time and, therefore, the eventual exponential fall-off in

eq. (34) can be ignored. This is certainly the case in our universe, in which therefore core

instabilities will manifest well before the cosmological constant could play any significant

role.

For theoretical completeness, we investigate the scenario in which a non-zero cosmological

constant does play a significant role, to inspect if it can be fine-tuned to suppress the core

instability. We parallel the discussion in sec.s II and III. First, using (34), the solution to

eq. (10) becomes

δR(v) = c1e
−|κ0|v +

Aα

r0(|κ0| − ωI)
e−ωIv (35)

where c1 is an integration constant. This, in turn, results in the following equation for the

evolution of M+

dM+(v,R(v))

dv
' −f+AαωIe−ωIv

(
2|κ0|c1e−|κ0|v +

2ωIAαe
−ωIv

r0(|κ0| − ωI)

)−1
+
f−
2

∂M+(v, r)

∂r

∣∣∣∣
r=R(v)

.

(36)

It is convenient to analyze separately the cases |κ0| > ωI and |κ0| < ωI . When |κ0| > ωI we

have

dM+(v,R(v))

dv
'r0(|κ0| − ωI) (2M+(v,R(v))/r0 − 1)

2
+
f−
2

∂M+(v, r)

∂r

∣∣∣∣
r=R(v)

. (37)

Following the same reasoning as in sec. III, if ∂rM+ is linear in M+ then the last term

becomes subdominant and M+ grows exponentially with leading behaviour

M+(v,R(v)) ∝ e(|κ0|−ωI)v. (38)

This is analogous to eq. (16), in which the polynomial fall-off in v is replaced by the exponen-

tial decay of (34). On the other hand, at variance with the flat case, if ∂rM+ is polynomial

in M+, i.e., ∂rM+ ∝Mn
+, we still find that the inflation is governed by an exponential growth

M+(v,R(v)) ∝ eωIv/(n−1) . (39)
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When |κ0| < ωI , eq. (37) becomes

dM+(v,R(v))

dv
'(2M+(v,R(v))/r0 − 1)

2|κ0|
Aαe−(ωI−|κ|0)v − 2|κ0|e−|κ0|v

∂M+(v, r)

∂r

∣∣∣∣
r=R(v)

(40)

and we see that, irrespective of the specific form of the metric, the asymptotic behaviour

is regular. Thus, under this conditions, it might be theoretically possible to avoid mass-

inflation under linear perturbation (although, as we already explained, this is not going to

occur in our universe). Notice, however, that |κ0| < ωI is a property of the single black

hole under consideration and, in general, it will not be satisfied for all black holes in a

gravitational theory [36–41]; therefore, the avoidance of mass-inflation will not be a generic

feature.

VI. CONCLUSIONS

In this paper, we have reanalyzed the issue of the inner horizon instability for regular

black hole spacetimes, in light of recent contradictory results [25, 26]. We extended Ori’s

perturbative model to a generic spherically symmetric spacetime, showing that mass in-

flation at the inner horizon is a robust and very general prediction. In particular, while

the occurrence of mass-inflation might be obscured by the choice of parameterization, the

phenomenon is evident when the equations are expressed in terms of the Misner–Sharp mass.

We found that the Misner–Sharp mass always experiences a period of exponential insta-

bility which can either go on indefinitely (e.g., with the Bardeen metric) or be followed by a

period of polynomial growth (e.g., with the Hayward metric). In both cases, the growth does

not stop. Additionally, we argued that the onset of the polynomial instability is likely to

occur when the approximation of linear perturbations has already broken down. Therefore,

exponential mass-inflation appears to be the leading instability mechanism of regular black

hole cores.

When a nonvanishing cosmological constant is allowed, we found that in principle the

inner core might become stable. However, this occurs case-by-case and it is not a generic

feature of the theory. Furthermore, even when the conditions for stability are realized,

they require the late-time tail of the perturbation (which is sensitive to the presence of the

cosmological constant) to be physically relevant, which is not going to be the case in our

universe due to the very small value of the cosmological constant.

We stress that the instability of the inner horizon does not necessarily imply the formation

of a physical singularity. What we have shown is that an initial linear perturbation has a

huge effect on the geometry and leads to an unbounded growth of the Misner–Sharp mass.

While in general relativity this usually implies the formation of a singularity, we might expect

that, in a full theory of quantum gravity, backreaction drives the geometry to a different

class of non-singular spacetimes [12, 42]. Therefore, in order to address the endpoint of the

inner core instability, a geometrical analysis is not informative enough.

13



A rigorous approach would require to specify the dynamical field equations of the the-

ory leading to the formation of regular black holes. Possible quantum gravity frameworks

explored in the literature are asymptotic safety and loop quantum gravity. Indeed, within

these theories, several studies have argued that the singularity of general relativistic black

holes is replaced by a nonsingular core with an inner horizon [14–17, 43, 44]. While certainly

a demanding task, we hope that our work serves as a stimulus for the quantum gravity com-

munity to address the effects of nonperturbative backreaction on regular spacetimes in a

theoretically consistent framework.
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