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Abstract: The zero-form and one-form global symmetries of the Aharony-Bergman-

Jafferis (ABJ) and related theories, with at least N = 6 supersymmetry in three

dimensions, are examined in detail. Starting from well-known dualities between theories

with orthogonal and symplectic gauge groups and those with unitary gauge groups, we

gauge their one-form symmetries or their subgroups and obtain new dualities. One side

of the latter involves theories with special orthogonal and symplectic gauge groups, and

the other side involves theories with unitary gauge groups; there is a discrete quotient

on one or both sides of the duality. We study the refined superconformal indices of such

theories and map the symmetries across the dualities, with particular attention to their

discrete part. As a generalisation, we also find a new duality between a circular quiver

with a discrete quotient of alternating special orthogonal and symplectic gauge groups

and a three-dimensional N = 4 circular (Kronheimer-Nakajima) quiver with unitary

gauge groups, whose Higgs or Coulomb branch describes an instanton on a singular

orbifold.
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1 Introduction

The Aharony-Bergman-Jafferis-Maldacena (ABJM) U(N)k×U(N)−k theories1 [1] and

the Aharony-Bergman-Jafferis (ABJ) U(N + x)k × U(N)−k theories [2] constitute a

1In this paper, Gk denotes gauge group G with Chern-Simons level k.
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large class of three-dimensional superconformal field theories (SCFTs) with N = 6 and

in some special cases N = 8 supersymmetry. As observed in [2] and further studied in

[3], some of these theories are dual to the ABJ theories with orthogonal and symplectic

gauge groups:

O(2N)2 × USp(2N)−1 ←→ U(N)4 × U(N)−4

O(2N + 2)2 × USp(2N)−1 ←→ U(N + 2)4 × U(N)−4

O(2N + 1)2 × USp(2N)−1 ←→ U(N + 1)4 × U(N)−4

(1.1)

In this paper, we revisit the theories and dualities in (1.1) in the context of gen-

eralised global symmetries. In particular, we investigate one-form symmetries in such

theories and gaugings thereof. As pointed out in [4, 5], the study of higher-form sym-

metries and extended operators leads to new insight on several structures of the theory,

especially distinctions between theories with the same gauge algebra but with different

global structures of the gauge group. This turns out to be the case here. In particular,

by gauging the one-form symmetries (or their subgroups) of theories in (1.1), we find

the following new dualities:

SO(2N)2 × USp(2N)−1 ←→ [U(N)4 × U(N)−4]/Z2

[SO(2N)2 × USp(2N)−1]/Z2 ←→ [U(N)4 × U(N)−4]/Z4

SO(2N + 2)2 × USp(2N)−1 ←→ [U(N + 2)4 × U(N)−4]/Z2

(1.2)

We point out that the left hand side of each duality involves a special orthogonal

gauge group. The discrete zero-form and one-form global symmetries of each theory

are studied in-depth in this paper. We find that the matching of global symmetries

across duality is rather intricate, e.g. for the theories in the first line, the Z2 zero-form

charge conjugation symmetry of the left theory becomes a subgroup of the U(1) ×
ZGCD(N,4) zero-form symmetry of the right theory, where the latter was pointed out

in [6]. However, not all global symmetries of the unitary theory are manifest in the

(special) orthogonal symplectic theory. We discuss this point, as well as the map of the

symmetries across the duality, extensively in the main text of the paper.

Note that, in three spacetime dimensions, gauging of a one-form symmetry yields

a zero-form symmetry, and vice-versa [5]. In many cases, this observation allows us to

indirectly study the one-form symmetry in the original theory via the zero-form sym-

metry in another theory where such a one-form symmetry is gauged. The (refined) su-

perconformal index [7–12] serves as a particularly useful tool for studying the zero-form

symmetry of the latter and thus contains information about the one-form symmetry

of the original theory. The superconformal index in 3d is also sensitive to the global

structure of the gauge groups and this makes it powerful to determine the correct ones
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in order for dualities, such as those in (1.1) and (1.2), to hold. Moreover, as we shall

comment again momentarily, it can also be used to detect topological sectors, which

usually bring along one-form symmetries, by turning on background magnetic fluxes for

zero-form global symmetries. It was already observed in [13] that the Witten index is

an observable that in 3d is sensitive to the higher form symmetries of the theory. The

superconformal index that we will use extensively in our analysis is a generalisation

of the Witten index refined with fugacities for the R-symmetry and for the zero-form

global symmetries.

We also study theories with odd (special) orthogonal and symplectic gauge groups.

We find that the following four theories have the same refined superconformal indices:

O(2N + 1)2 × USp(2N)−1 U(N + 1)4 × U(N)−4

SO(2N + 1)2 × USp(2N)−1 [U(N + 1)4 × U(N)−4]/Z2

(1.3)

where the duality of the theories in the first line is known (see the last line of (1.1))

and the duality in the second line follows from the first line by gauging the one-form

symmetry of the latter. The equality of these indices leads us to conclude that the

one-form symmetry of the theories in the first line acts trivially on the spectrum of

line operators, and the zero-form charge conjugation symmetry acts trivially on the

theories in the second line. The former conclusion leads to the proposal that a certain

set of line operators is absent from the theories in the first line.

We generalise the above result by considering a circular quiver with alternating spe-

cial orthogonal and symplectic gauge groups. Specifically, we find the duality between

the following two theories: (1) the Z2 discrete quotient of the circular quiver with al-

ternating SO(2)2 and USp(2)−1 gauge groups and bifundamental half-hypermultiplets

between each pair of such groups, and (2) a 3d N = 4 circular quiver with a collec-

tion of U(1) gauge groups, bifundamental hypermultiplets between each pair of such

gauge groups, and a hypermultiplet with charge 1 under each gauge group. The latter

is also known as a Kronheimer–Nakajima quiver [14] and its Higgs or Coulomb branch

describes an instanton on a singular orbifold.

The paper is organised as follows. In Section 2, we gauge one-form symmetries

(or their subgroups) of the theories in the first two lines of (1.1) in order to obtain

the theories in (1.2). Mixed anomalies and non-trivial extensions of zero-form and

one-form symmetries of such theories are discussed in detail. We also present some

interesting special cases that relate these theories to other known theories, such as

N = 8 super-Yang-Mills. In Section 3, we study the superconformal indices of all of

the aforementioned theories and match them across the dualities. We point out the

symmetries that are not manifest, especially in the (special) orthogonal symplectic

theories, and cannot be refined in the index. For the unitary theories, we study the
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relevant and marginal operators in detail, as well as the extra supersymmetry currents

leading to N = 6 or N = 8. We conclude the paper and propose some directions for

further study in Section 4. The conventions for the superconformal index adopted in

this paper are summarised in Appendix A. In Appendix B we demonstrate, via an

example of the duality appetiser [15], that the superconformal index can be sensitive

to the topological sector when the background magnetic flux for a zero-form global

symmetry is turned on.

Notation and convention

• We denote the ABJM theory [1] by U(N)k × U(N)−k, where the four chiral

multiplets in the bifundamental representation and the superpotential are im-

plicit. Similarly, the ABJ theories [2] are denoted by U(N + x)k × U(N)k and

O(2N + x)2k × USp(2N)−k. They can be subject to a discrete quotient and the

orthogonal group can be replaced by a special orthogonal group, depending on

the theory we are considering.

We use a similar notation for a circular quiver, e.g. SO(2)2×USp(2)−1×SO(2)2×
USp(2)−1 denotes a quiver gauge theory with four gauge groups and the chiral

multiplets in the bifundamental representation of each SO(2)× USp(2) pair.

• Whenever we would like to emphasise the type of symmetries, the (ordinary)

zero-form global symmetry is denoted by a superscript [0] and the one-form global

symmetry is denoted by a superscript [1].

• We denote by a subscript the type of global symmetries, for example, the zero-

form charge conjugation symmetry is denoted by (Z[0]
2 )C. Unless stated otherwise,

we label the symmetry according to the notation of the fugacity in the super-

conformal index, e.g. the fugacity for the zero-form magnetic symmetry of an

orthogonal group is ζ, and so we denote such a symmetry by (Z[0]
2 )ζ .
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2 General discussion

One of the main objectives of this paper is to study the interrelation between the

following dualities:

←→

←→

←→

I: O(2N)2 × USp(2N)−1

II: SO(2N)2 × USp(2N)−1

III: [SO(2N)2 × USp(2N)−1]/Z2

Z[1]
2

Z[1]
2

U(N)4 × U(N)−4

[U(N)4 × U(N)−4]/Z2

[U(N)4 × U(N)−4]/Z4

Z[0]
2

Z[0]
2

(2.1)

where a downwards arrow with the label Z[1]
2 denotes the gauging of the Z[1]

2 one-form

symmetry and an upwards arrow with the label Z[0]
2 denotes the gauging of the Z[0]

2

zero-form symmetry. For convenience, we respectively use (L) and (R) to denote the

left and right descriptions of each duality I, II or III; for example, II(L) denotes the

left description of the duality II. To the best of our knowledge, dualities II and III are

new, whereas duality I was conjectured in [2] and studied in more detail in [3].

Let us discuss each theory in detail. As pointed out in [6, Section 2.1], the theory

I(R) has a U(1)
[0]
top topological symmetry and a Z[1]

4 one-form global symmetry, with a

mixed anomaly characterised by the following short exact sequence:

I(R) : 0 → Z[1]
4 → Z[1]

4 × U(1)
[0]
top → U(1)

[0]
top → 0 (2.2)

Note that there is no non-trivial extension between these two symmetries. On the other

hand, the U(1)
[0]
top is not manifest in the description I(L). As explained in [16, Sections

2.3 and 2.4] and [17, Section 6.2], the Z[1]
4 one-form symmetry of the theory I(L) arises

from a non-trivial extension between the centre (Z[1]
2 )centre one-form symmetry2 and the

(Z[1]
2 )Ĉ one-form symmetry controlled by the dynamical gauge fields for the zero-form

charge conjugation symmetry. We denote the latter by (Z[1]
2 )Ĉ. This is characterised by

the short exact sequence:

I(L) : 0 → (Z[1]
2 )Ĉ → Z[1]

4 → (Z[1]
2 )centre → 0 (2.3)

Let us now gauge the one-form symmetry in each theory in the duality I. In the

theory I(L), this is identified as gauging (Z[1]
2 )Ĉ, whereas in the theory I(R), this cor-

responds to gauging a Z[1]
2 subgroup of the Z[1]

4 one-form symmetry. As a result, we

2Both O(2N) and USp(2N) gauge groups have a Z2 centre (see e.g. [16, Table 3]) . However, the

half-hypermultiplets in the bifundamental representation screen the diagonal combination of Z2 ×Z2,

and so we are left with one Z2 centre symmetry, which we denoted by (Z[1]
2 )centre.
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obtain a Z[0]
2 zero-form symmetry in each description of the duality II. In the descrip-

tion II(L) this is identified as the zero-form charge conjugation symmetry (Z[0]
2 )C, and

in the description II(R) this is identified with the zero-form discrete topological sym-

metry, denoted by (Z[0]
2 )g′′ ,

3 arising from the Z2 discrete gauging. We thus have the

correspondence

(Z[0]
2 )C ←→ (Z[0]

2 )g′′ . (2.4)

After gauging, each description of the duality II also has a Z[1]
4 /(Z

[1]
2 )Ĉ = Z[1]

2 one-form

symmetry. As pointed out in [6, Section 2.5], the theory II(R) has a U(1)[0]×Z[0]
GCD(N,2)

zero-form symmetry. Similarly to [6, (2.18)], the latter can be viewed as a non-trivial

extension of the U(1)
[0]
top topological symmetry and the zero-form charge conjugation

symmetry (Z[0]
2 )g′′ . This is characterised by the short exact sequence:

II(R) : 0 → (Z[0]
2 )g′′ → U(1)[0] × Z[0]

GCD(N,2) → U(1)
[0]
top → 0 . (2.5)

Following the discussion in [18], if we start from (2.3) and gauge the (Z[1]
2 )Ĉ one-form

symmetry, we obtain

II(L) : 0 → (Z[0]
2 )C → (Z[0]

2 )C × (Z[1]
2 )centre → (Z[1]

2 )centre → 0 (2.6)

with a mixed anomaly between the zero-form charge conjugation symmetry (Z[0]
2 )C and

the centre Z[1]
2 centre one-form symmetry (as discussed in [16, Section 2.4]). Since there

is no mixed anomaly between (Z[1]
2 )Ĉ and (Z[1]

2 )centre in (2.3), there is no non-trivial

extension between (Z[0]
2 )C and (Z[1]

2 )centre (and so the exact sequence (2.6) is split).

Given that we identified (Z[0]
2 )C ≡ (Z[0]

2 )g′′ , the same statements hold on the side of

theory II(R) between (Z[0]
2 )g′′ and (Z[1]

2 )centre. This is consistent with the fact that the

description II(R) has a Z[1]
2 one-form symmetry [6], without any extension with a zero-

form symmetry. We will describe how to see the relation between (Z[0]
2 )C ≡ (Z[0]

2 )g′′ and

U(1)[0] × Z[0]
GCD(N,2) in terms of the index around (3.33).

Finally, we gauge the Z[1]
2 one-form symmetry in each description of the duality II.

As a result, we gain a Z[0]
2 zero-form symmetry in both descriptions of the duality III.

For convenience, let us denote it by (Z[0]
2 )g. For theory III(L), there is also a magnetic

zero-form symmetry, denoted by (Z[0]
2 )ζ .

4 By the same reasoning as in [16, Section 2.4

3This notation is chosen to be consistent with (3.33).
4In the literature, the zero-form magnetic symmetry is usually denoted by M. Since we use the

fugacity ζ for the magnetic symmetry when we discuss superconformal indices, we denote such a

symmetry by (Z[0]
2 )ζ to be consistent with the notation adopted in the subsequent sections of the

paper. Notice also that in the special case of N = 1 this symmetry is actually continuous U(1)
[0]
ζ .
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and Footnote 20], the (abelian) zero-form symmetry of the description III(L) is either

(Z[0]
2 )g × (Z2)

[0]
ζ if 2N in the SO(2N) gauge factor is not equal to 2 mod 4, or the

non-trivial extension Z[0]
4 of the former if 2N in the SO(2N) gauge factor is equal

to 2 mod 4.5 On the other hand, in theory III(R), there is a non-trivial extension

Z[0]
4 zero-form symmetry that arises from the mixed anomaly (2.6) between the discrete

topological symmetry (Z[0]
2 )g′′ of the theory II(R) and the one-form symmetry (Z[1]

2 )centre,

which we gauged. As pointed out in [6, (2.17)], the description III(R) has a U(1)[0] ×
Z[0]

GCD(N,4) zero-form symmetry, which is a further non-trivial extension between the

aforementioned Z[0]
4 zero-form symmetry and the topological symmetry U(1)

[0]
top:6

III(R) : 0 → Z[0]
4 → U(1)[0] × Z[0]

GCD(N,4) → U(1)
[0]
top → 0 (2.7)

Note that the U(1)
[0]
top topological symmetry is not manifest in theory III(L). As a result,

not every generator of the U(1)[0]×Z[0]
GCD(N,4) symmetry is manifest in theory III(L). For

example, in (3.31), we show that in the case of N = 2, the Z[0]
2 subgroup of the U(1)[0]

symmetry of theory III(R) is identified with the Z[0]
2 subgroup of the (Z[0]

2 )g × (Z[0]
2 )ζ

symmetry or the Z[0]
4 symmetry of theory III(L).

Special cases

There are many interesting special cases that can be considered.

1. For N = 1, duality II becomes

SO(2)2 × USp(2)−1 ↔ [U(1)4 × U(1)−4]/Z2 ↔ U(1)2 × U(1)−2 . (2.8)

We discuss the indices of these theories in Section 3.2.1. They are different de-

scriptions of the worldvolume theory of a single M2-brane on C4/Z2 singularity,

and so they all have N = 8 supersymmetry. The second arrow is, in fact, a special

case of the following duality for abelian theories:

[U(1)kp × U(1)−kp]/Zp ←→ U(1)k × U(1)−k . (2.9)

5The above statements hold only for N > 1 since eq. (2.18) of [16] for the anomaly applies only to

discrete symmetries, while the case N = 1 where the magnetic symmetry is U(1)
[0]
ζ should be treated

separately. In (3.10) we show at the level of the index that (Z[0]
2 )g can be absorbed into U(1)

[0]
ζ ,

indicating that the non-trivial extension between the two symmetries occurs also for N = 1.
6For N = 1 the non-trivial extension implies that the symmetry is only U(1)[0]. This is compatible

with what happens on the side of theory III(L) as discussed in Footnote 5. We show that U(1)[0] on

the side III(R) is identified with U(1)
[0]
ζ on the side III(L) at the level of the index in (3.12).
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2. The theories involved in duality III are also related to others as follows.

[SO(2N)2 × USp(2N)−1]/Z2 ←→ [U(N)4 × U(N)−4]/Z4

[6, 19, 20]←→ [SU(N)4 × SU(N)−4]/ZN
(2.10)

(a) For N = 1, we have the theory of two free hypermultiplets:

[SO(2)2 × USp(2)−1]/Z2 ↔ [U(1)4 × U(1)−4]/Z4

↔ 2 free hypermultiplets

(2.9)↔ U(1)1 × U(1)−1

(2.11)

(b) For N = 2, we have

[SO(4)2 × USp(4)−1]/Z2 ↔ [U(2)4 × U(2)−4]/Z4

[6, 19, 20]↔ [SU(2)4 × SU(2)−4]/Z2

[20]↔ U(3)2 × U(2)−2

[20]↔ Spin(5)/Z2 or USp(4)/Z2 SYM

(2.12)

These theories have N = 8 supersymmetry. On the other hand, we find that

the theory SO(4)2 × USp(4)−1, which is dual to [U(2)4 × U(2)−4]/Z2, has

N = 6 supersymmetry; see Section 3.2.2. The Z2 discrete quotient, indeed,

brings about extra operators carrying a non-trivial charge under the new Z2

zero-form topological symmetry. The conserved currents associated to these

operators lead to N = 8 supersymmetry.

(c) On the other hand, for the case of N = 3 in (2.10), from the index computa-

tion, we see that [U(3)4 × U(3)−4]/Z4 possesses N = 6 supersymmetry; see

the comment below (3.28).

Generalisations

The above results can be generalised in many ways. First, we consider the U(3)4×U(1)−4

and its dual O(4)2 × USp(2)−1. According to the discussion around [20, (3.19)], such

theories have a non-anomalous Z2 one-form symmetry. Upon gauging this symmetry,

we obtain a duality pair: [U(3)4 × U(1)−4]/Z2 ↔ SO(4)2 × USp(2)−1. We discuss the

symmetries of these theories in Sections 3.4 and 3.5.

We then generalise (2.10) to a circular quiver with alternating SO(2)2 and USp(2)−1

gauge groups, with a discrete Z2 quotient. It turns out that the theories in this class

are dual to 3d N = 4 gauge theories described by a circular quiver with a collection of
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U(1) gauge groups and with a hypermultiplet with charge 1 under each gauge group;

see (3.88). The detail is provided in Section 3.6.

Finally, we study the dual pair O(2N + 1)2 × USp(2)−1 ↔ U(N + 1)4 × U(N)−4,

as well as the dual pair SO(2N + 1)2 × USp(2)−1 ↔ [U(N + 1)4 × U(N)−4]/Z2. As

a surprise, it turns out that these four theories have the same superconformal indices,

even refined with fugacities for their 0-form discrete symmetries; see Section 3.7. In

particular, the zero-form charge conjugation symmetry in the SO(2N +1)2×USp(2)−1

theory acts trivially and is unfaithful, so as the Z2 zero-form symmetry arising from

the Z2 discrete gauging in the [U(N + 1)4 × U(N)−4]/Z2 theory. We conjecture that

the Z2 one-form symmetry of the first two theories acts trivially on the spectrum of

the line operators.

3 Dualities and superconformal indices

3.1 [SO(2N)2 × USp(2N)−1]/Z2 ↔ [U(N)4 × U(N)−4]/Z4

In this subsection, we consider the duality between these two theories:

III(L): [SO(2N)2 × USp(2N)−1]/Z2 ↔ III(R): [U(N)4 × U(N)−4]/Z4 (3.1)

3.1.1 The case of N = 1

For N = 1, the theory III(R): [U(1)4×U(1)−4]/Z4 is dual to SU(1)4×SU(1)−4 [6, 20].

We expect the latter to be identical to the theory of two free hypermultiplets, which is

also dual to the U(1)1×U(1)−1 theory. Subsequently, we study these theories in detail

with the aid of the superconformal index.

The index of theory III(R) is given by (we summarise our conventions for the index

in Appendix A, see in particular (A.10) for the contribution Zchir of the chiral multiplet)

IN=1
III(R)(u, v, w) =

3∑
p=0

gp
∑

(m1;m2)∈(Z+ p
4)

2

∮
dz1

2πiz1

∮
dz2

2πiz2

z4m1
1 z−4m2

2 wm1
1 wm2

2 ×

∏
s=±1

Zchir(u
sz1z

−1
2 ;m1 −m2; 1/2)Zchir(v

sz2z
−1
1 ;m2 −m1; 1/2)

=
∏
s=±1

Zchir

(
g3usw̃−1/2; 0; 1/2

)
Zchir

(
gvsw̃1/2; 0; 1/2

)
=
∏
s=±1

Zchir

(
w−1us; 0; 1/2

)
Zchir (wvs; 0; 1/2)

(3.2)
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where u and v are the fugacities for the SU(2)u × SU(2)v flavour symmetry and w

is the fugacity for the U(1)
[0]
w zero-form topological symmetry. In the above, g is the

Z4 discrete topological fugacity satisfying g4 = 1, but it can be absorbed into a U(1)

global symmetry by a redefinition. In particular, we have defined

w̃ = (w1w2)1/2 , w = gw̃1/2 = g(w1w2)1/4 . (3.3)

We remark that if one makes a change of variables s1 = z1z2 and s2 = z1z
−1
2 , the

contribution of the matter fields Zchir is independent of s1 and so the integration over

s1 leads to a delta-function that sets (see also [20, (4.15)])

m1 = m2 . (3.4)

This is in agreement with the discussion of [21, Section 4.1.4]. As a result, only the

combination w1w2, but not w1/w2, appears in the index.

The last line of (3.2) is indeed the index of the theory with two free hypermultiplets.

These are identified as the gauge invariant dressed di-baryons, discussed in [6, (2.11)]

(with N = 1 and k = 4 in their notation):

Bα = T{− 1
4

;− 1
4
}Aα , B′α′ = T{ 1

4
; 1
4
}Bα′ ; (3.5)

where T{m;n} denotes a monopole operator with fluxes m and n in the first and second

U(1) gauge groups respectively. Its gauge charge is (km,−kn) under the first and

second U(1) gauge groups. We denote by α, β, . . . = 1, 2 the indices for the SU(2)u
flavour symmetry and by α′, β′, . . . = 1, 2 the indices for the SU(2)v flavour symmetry.

Note that the gauge invariant dressed monopole operators

(M−1)α1···α4 = T{−1;−1}Aα1 · · ·Aα4 ,

(M+1)α′1···α′4 = T{+1;+1}Bα′1
· · ·Bα′4

,
(3.6)

are related to the di-baryons by the relations

(M−1)α1···α4 =
4∏
j=1

Bαj , (M+1)α′1···α′4 =
4∏
j=1

B′α′j . (3.7)

In order to obtain the index for U(1)1×U(1)−1, we proceed as follows. We rewrite

the above index using the variables m̃1 = 4m1 and m̃2 = 4m2. The contribution from

the Chern-Simons levels is therefore zm̃1
1 zm̃2

2 . The summation of (m1,m2) ∈ (Z + p/4)2

is then equivalent to the summation of (m̃1, m̃2) ∈ (4Z+p)2, where p is summed from 0

– 10 –



to 3. The factors corresponding to the topological fugacities are wm1
1 wm2

2 = w
1
4
m̃1

1 w
1
4
m̃2

2 .

We can now shift m̃1,2 → m̃1,2 + p and so, together with gp, we have

(g(w1w2)
1
4 )pw

1
4
m̃1

1 w
1
4
m̃2

2 = wpw
1
4
m̃1

1 w
1
4
m̃2

2
(3.8)

where w = g(w1w2)
1
4 as stated in (3.3). Using (3.4), namely m̃1 = m̃2 ≡ m̃, and writing

w1 = ws and w2 = ws−1, (3.8) becomes wp+
1
2
m̃. Upon shifting m̃ → m̃ − 2p, we are

left with w
1
2
m̃ = w

1
4
m̃1w

1
4
m̃2 . Observe that the discrete fugacity g as well as the factor

wp disappear from the index. At this point, the summation of p ∈ {0, 1, 2, 3} together

with the summation of (m̃1; m̃2) ∈ (4Z + p)2 can be replaced by the summation of

(m̃1; m̃2) ∈ Z2. Moreover, the argument in Zchir depends only on m1 − m2, which is

an integer, and so we can replace it by m̃1 − m̃2. Overall, we obtain the index for

U(1)1 × U(1)−1, as required. This statement can be easily generalised to show duality

(2.9), namely [U(1)kp × U(1)−kp]/Zp ↔ U(1)k × U(1)−k.

The index of theory III(L): [SO(2)2 × USp(2)−1]/Z2 is given by

IN=1
III(L)(f, ω)

=
1∑
p=0

gp
∑

(m1,m2)∈(Z+ p
2)

2

∮
dz1

2πiz1

∮
dz2

2πiz2

z2m1
1 ζm1z−2m2

2 ZUSp(2)
vect (z2,m2)×

∏
s,s1,s2=±1

Zchir(f
szs11 z

s2
2 ; s1m1 + s2m2; 1/2)

=
∏
s=±1

Zchir

(
g ζ

1
2f s; 0; 1/2

)
Zchir

(
g ζ−

1
2f s; 0; 1/2

)
=
∏
s=±1

Zchir (ωf s; 0; 1/2)Zchir

(
ω−1f s; 0; 1/2

)
(3.9)

where ζ is the fugacity of the U(1)
[0]
ζ magnetic (topological) symmetry of SO(2), f is

the fugacity of the SU(2)f flavour symmetry, g is the fugacity associated with the Z2

topological symmetry, the fugacity ω is defined as

ω = g ζ
1
2 , (3.10)

and the contribution ZUSp(2)
vect from the USp(2) vector multiplet is as defined in (A.6).

Observe that the Z2 zero-form symmetry, associated with the fugacity g, can be ab-

sorbed into the magnetic symmetry. This results in the U(1)
[0]
ω zero-form global sym-

metry. The last line of (3.29) is indeed the index of the theory with two free hypermul-

tiplets. These are identified with the gauge invariants dressed di-baryons:

B+
α = T{ 1

2
; 1
2}Aα , B−α = T{− 1

2
;− 1

2}Aα . (3.11)
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where in this case α = 1, 2 is an index for the SU(2)f flavour symmetry.

Comparing (3.2) with (3.29), we see that

IN=1
III(L)(f, ω) = IN=1

III(R)(u = f, v = f, w = ω) . (3.12)

The U(1)
[0]
w zero-form symmetry of theory III(R) is mapped to the U(1)

[0]
ω zero-form

symmetry of theory III(L), whereas the SU(2)f flavour symmetry of theory III(L) is

identified with the diagonal subgroup of the SU(2)u × SU(2)v flavour symmetry of

theory III(R).

3.1.2 [U(N)4 × U(N)−4]/Z4 with N ≥ 2

The index for theory III(R): [U(N)4 × U(N)−4]/Z4 can be written as

IIII(R)(u, v, w1, w2, g)

=
3∑
p=0

gp
∑
Sp

(
N∏
j=1

∮
dz

(j)
1

2πiz
(j)
1

∮
dz

(j)
2

2πiz
(j)
2

(z
(j)
1 )4m

(j)
1 (z

(j)
2 )−4m

(j)
2

)
×

w
∑N
j=1m

(j)
1

1 w
∑N
j=1 m

(j)
2

2

2∏
`=1

Z
U(N)
vect (z

(1)
` , . . . , z

(N)
` ;m

(1)
` , . . . ,m

(N)
` )×

N∏
i,j=1

∏
s=±1

Zchir(u
sz

(i)
1 /z

(j)
2 ;m

(i)
1 −m

(j)
2 ; 1/2)Zchir(v

sz
(i)
2 /z

(j)
1 ;m

(i)
2 −m

(j)
1 ; 1/2)

(3.13)

where g4 = 1, the notation Sp stands for the summation over

(m
(1)
1 , . . . ,m

(N)
1 ;m

(1)
2 , . . . ,m

(N)
2 ) ∈

(
Z +

p

4

)2N
(3.14)

and the contribution Z
U(N)
vect of the U(N) vector multiplet is as defined in (A.6).

As explained in [21, Section 4.1.4], due to the D-term equations, the gauge invariant

quantities can be formed provided that the magnetic fluxes of the two gauge groups

are paired:7

m
(j)
1 = m

(j)
2 ≡ m(j) , j = 1, . . . , N , (3.15)

provided that we use the Weyl symmetry to order fluxes so that m
(1)
1 ≥ m

(2)
1 ≥ · · · ≥

m
(N)
1 and m

(1)
2 ≥ m

(2)
2 ≥ · · · ≥ m

(N)
2 . As a result, only the combination of w1w2 appears

in the index.

7Note that the integration over the diagonal gauge U(1) leads to a delta-function imposing the

constraint
∑N
j=1m

(j)
1 =

∑N
j=1m

(j)
2 .
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According to [20, Section 2.3], the apparent Z4 zero-form symmetry, associated

with the fugacity g, is actually ZGCD(N,4). More generally, in the [U(N)k×U(N)−k]/Zk
theory part of the Zk zero-form symmetry can be absorbed into the U(1) topological

symmetry and only ZGCD(N,k) remains. By explicitly computing the index, one can

indeed check that it can be rewritten solely in terms of8

w = g(w1w2)N/k , g′ = gk/GCD(N,k) , (3.16)

This means that the actual zero-form global symmetry of the theory is SU(2)u ×
SU(2)v × U(1)

[0]
w ×

(
Z[0]

GCD(N,k)

)
g′

.

The special case of N = 2

After redefining the fugacities as in (3.16)

w = g(w1w2)1/2 , g′ = g2 , (3.17)

the index (3.13) for the case of N = 2 can be written as

IN=2
III(R)(u, v, w, g

′)

= 1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) + w−1χ

SU(2)
[2] (u) + wχ

SU(2)
[2] (v)

]
+ x2

[
(g′ + 1)w−2χ

SU(2)
[4] (u) + (g′ + 1)w−1χ

SU(2)
[3] (u)χ

SU(2)
[1] (v)

+
(
w ↔ w−1, u↔ v

)
+ (g′ + 2)χ

SU(2)
[2] (u)χ

SU(2)
[2] (v) + w2 + w−2

− χSU(2)
[2] (u)− χSU(2)

[2] (v)
]

+ . . . .

(3.18)

The unrefined index is (cf. [22, (4.5)])

IN=2
III(R)(u = 1, v = 1, w = 1, g′ = 1) = 1 + 10x+ 75x2 + 230x3 + 449x4 + . . . . (3.19)

8We normalise the power of w such that the di-baryon operators, which involve the monopole

operators T±{1/k, · · · , 1/k︸ ︷︷ ︸
N

; 1/k, · · · , 1/k︸ ︷︷ ︸
N

}, carry U(1)
[0]
w charge ±1; see (3.20). This explains the power

N/k of w1w2 in (3.16).
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Note that the operators with R-charge 1 are9

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a

w−1χ
SU(2)
[2] (u) : Bαβ = T{− 1

4
,− 1

4
;− 1

4
,− 1

4
}(Aα)ai (Aβ)bjε

ijεab

wχ
SU(2)
[2] (v) : B′α′β′ = T{+ 1

4
,+ 1

4
;+ 1

4
,+ 1

4
}(Bα′)

i
a(Bβ′)

j
bεijε

ab

(3.20)

where the last two are the gauge invariant dressed di-baryons. Here a, b, . . . = 1, 2 and

i, j, . . . = 1, 2 are the gauge indices for each U(2) gauge group, α, β, . . . = 1, 2 are the

indices for the SU(2)u flavour symmetry, and α′, β′, . . . = 1, 2 are the indices for the

SU(2)v flavour symmetry. Let us discuss some examples of marginal operators, con-

tributing at order x2 of the index. The combinations BB transform in the representation

Sym2[2; 0] = [4; 0] + [0; 0] of SU(2)u × SU(2)v and similarly for B′B′:

w−2χ
SU(2)
[4] (u) + w−2 : BαβBγδ

w2χ
SU(2)
[4] (v) + w2 : B′α′β′B′γ′δ′ .

(3.21)

Note that the index (3.18) can be rewritten in terms of characters of SU(4) represen-

tations as follows:

(3.13)N=2 = 1 + xχ
SU(4)
[0,0,2] (s)

+ x2
[
(g′ + 1)χ

SU(4)
[0,0,4] (s) + χ

SU(4)
[0,2,0] (s)− χSU(4)

[1,0,1] (s)
]

+ . . . ,
(3.22)

where we have taken

w = q2 (3.23)

and have used the fugacity map10

s1 = qu , s2 = q2 , s3 = qv . (3.24)

9 As pointed out in [6, 23–26], for a U(N)k gauge group, the monopole operators with the magnetic

fluxes (m1,m2, · · · ,mN ), with m1 ≥ m2 ≥ · · · ≥ mN , transform under the representation of the

SU(N) gauge factor with the Dynkin label [k(m1 −m2), k(m2 −m3), · · · , k(mN−1 −mN )] and carry

U(1) gauge charge k
∑N
i=1mi. Consequently, the monopoles T{± 1

4 ,±
1
4 ;±

1
4 ,±

1
4}

have charge (±2,∓2)

under the U(1) subgroups of the two U(1) ∼= SU(2) × U(1) gauge groups. Moreover, in (3.20) the

ε-tensors are with respect to the SU(2) parts. Hence, the object (Aα)ai (Aβ)bjε
ijεab is invariant under

the SU(2) parts, while it has charge (±2,∓2) under the U(1) parts, making the operator Bαβ gauge

invariant and similarly for B′α′β′ .
10In this convention, the character of the fundamental representation [1, 0, 0] of SU(4) is written as

χ
SU(4)
[1,0,0](s) = s1 + s2s

−1
1 + s3s

−1
2 + s−13 .
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Since this theory is known to be dual to the Bagger-Lambert-Gustavson [27, 28]

theory [SU(2)4×SU(2)−4]/Z2 and the USp(4)/Z2 super-Yang-Mills (see [20, Table 1]),

it has N = 8 supersymmetry. This can be seen from the index (3.13) as follows. (The

argument given below is the same as that of [29, Appendix C.1].11) We rewrite (3.18),

or equivalently (3.22), as an N = 3 index.12 This can be achieved by setting u = v = f

and w = q2 in (3.18), or by using branching rules of representations of SU(4) to those

of a maximal subgroup of USp(4) in (3.22). Either way, we obtain the N = 3 index in

terms of characters of representations of USp(4) as

(3.13)N=2 = 1 + xχ
USp(4)
[2,0] (h) + x2

[
(g′ + 1)χ

USp(4)
[4,0] (h) + χ

USp(4)
[0,2] (h) + 1

+ χ
USp(4)
[0,1] (h)− χUSp(4)

[2,0] (h)− χUSp(4)
[0,1] (h)

]
+ . . .

(3.25)

where we have used the fugacity map13

h1 = qf , h2 = q−1f

s1 = h1 , s2 = h1h
−1
2 , s3 = h1 .

(3.26)

Note that (3.25) satisfies all of the necessary conditions for the enhanced N = 8 super-

symmetry [33]. The blue term in (3.25) is the contribution of 5 marginal operators in

the representation [0, 1] of USp(4), whereas the red term in (3.25) is the contribution of

the extra supersymmetry currents. These two contributions precisely cancel with each

other. Since we have 5 extra supersymmetry currents, supersymmetry gets enhanced

from N = 3 to N = 3 + 5 = 8, as expected. Let us discuss the marginal operators

corresponding to the blue term in (3.25) in detail. First of all, since [0, 1] is a subrep-

resentation of Sym2[2, 0] = [4, 0] ⊕ [0, 2] ⊕ [0, 1] ⊕ [0, 0], we expect that such marginal

operators can be constructed by appropriately multiplying those in (3.20). Secondly,

since the representation [0, 1] of USp(4) decomposes into those of SU(2)f × U(1)q as

[2]0 ⊕ [0]−2 ⊕ [0]2, we propose that the corresponding operators are respectively14

(Tr M)M̂αβ , M̂αβBγδεβγεαδ , M̂αβB′γδεβγεαδ , (3.27)

11See also [30–32] for other examples of supersymmetry enhancements in 3d detected with the index.
12As a requirement of an N = 3 index, the order x receives a contribution solely from the N = 3

flavour current, and so the coefficient of x must be an adjoint representation of the flavour symmetry

of the corresponding N = 3 theory. The index (3.18), or equivalently (3.22), is an N = 2 index, not an

N = 3 index, since the coefficient of order x is not an adjoint representation of SU(4). As can be seen

below, one can rewrite this as an N = 3 index by tuning some fugacities to be equal and reexpressing

the index in terms of characters of representations of USp(4).
13In this convention, the character of the fundamental representation [1, 0] of USp(4) is written as

χ
USp(4)
[1,0] (h) = h1 + h−11 + h2 + h−12 .
14There are other two operators in the representations [0]∓2 of SU(2)f × U(1)q that are contained
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where α, β, γ, δ = 1, 2 are the indices for SU(2)f , which is a diagonal subgroup of

SU(2)u × SU(2)v, and we have defined

Tr M = Mαβε
αβ , M̂αβ = Mαβ −

1

2
(TrM)εαβ . (3.28)

Finally, let us remark that in the case of N = 2 the di-baryon operators B and B′
have R-charge 1 and so they contribute at order x of the index, which makes it fulfil

the condition for having N = 8 supersymmetry. For a general N , the di-baryons have

R-charge N/2, and so for N ≥ 3 they contribute at a higher order of the index. In the

latter case, the only contribution at order x comes from the operators M , which have

4 components. We thus expect the theory with N ≥ 3 to have N = 6 supersymmetry

[33].

3.1.3 [SO(2N)2 × USp(2N)−1]/Z2 with N ≥ 2

The index for the theory III(L): [SO(2N)2 × USp(2N)−1]/Z2 is

IIII(L)(f, g, ζ)

=
1∑
p=0

gp
∑
S′p

(
N∏
j=1

∮
dz

(j)
1

2πiz
(j)
1

∮
dz

(j)
2

2πiz
(j)
2

(z
(j)
1 )2m

(j)
1 (z

(j)
2 )−2m

(j)
1

)
ζ
∑N
j=1 m

(j)
1 ×

ZSO(2N)
vect (z

(1)
1 , . . . , z

(N)
1 ;m

(1)
1 , . . . ,m

(N)
1 )ZUSp(2N)

vect (z
(1)
2 , . . . , z

(N)
2 ;m

(1)
2 , . . . ,m

(N)
2 )×

N∏
i,j=1

∏
s,s1,s2=±1

Zchir

(
f s(z

(i)
1 )s1(z

(j)
2 )s2 ; s1m

(i)
1 + s2m

(j)
2 ; 1/2

)
(3.29)

where S ′p stands for the summation over (m
(1)
1 , . . . ,m

(N)
1 ,m

(1)
2 , . . . ,m

(N)
2 ) ∈

(
Z + p

2

)2N
,

ζ is the fugacity associated with the magnetic symmetry of the SO(2N) gauge group

satisfying ζ2 = 1, and g is the fugacity for the topological Z2 symmetry satisfying

g2 = 1.

Let us provide an explicit expression for N = 2 up to order x2:

IN=2
III(L)(f, g, ζ)

= 1 + x
[
1 + (g + ζ + gζ)χ

SU(2)
[2] (f)

]
+ x2

[
5χ

SU(2)
[4] (f) + 5

+ (g + ζ + gζ)
(

2χ
SU(2)
[4] (f) + 2χ

SU(2)
[2] (f)

)
− χSU(2)

[2] (f)
]

+ . . .

(3.30)

in the branching rule of the representation [4, 0] of USp(4), namely

εαβεγδ(Aα)ai (Aβ)bj(Bγ)ib(Aδ)
c
kε
jkεacT{− 1

4 ,−
1
4 ;−

1
4 ,−

1
4}
,

εαβεγδ(Bα)ia(Bβ)jb(Aγ)bi (Bδ)
k
c εjkε

acT{+ 1
4 ,+

1
4 ;+

1
4 ,+

1
4}
.
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with the unrefined index IN=2
III(L)(f = 1, g = 1, ζ = 1) given by (3.19). Note that it is

not possible to absorb g with a redefinition of ζ as in (3.16). The manifest zero-form

global symmetry of this theory is therefore SU(2)f × (Z[0]
2 )g × (Z[0]

2 )ζ . We can match

the indices (3.18) and (3.30) as follows:

IN=2
III(L)(f, g = ξ, ζ = ξ) = IN=2

III(R)(u = f, v = f, w = ξ, g′ = 1)
∣∣∣
ξ2=1

. (3.31)

In the theory III(L) only the diagonal subgroup SU(2)f of the flavour symmetry

SU(2)u × SU(2)v of the theory III(R) is manifest. Moreover, the U(1)
[0]
w zero-form

symmetry of the theory III(R) is not manifest in the theory III(L), but its Z2 subgroup

is identified with the diagonal Z2 symmetry of (Z[0]
2 )g × (Z[0]

2 )ζ in III(L). Furthermore,

the (Z[0]
2 )g′ symmetry of the theory III(R) is not manifest in the theory III(L). Since

we claim that the theories III(L) and III(R) are dual to each other, the theory III(L) is

expected to have an emergent zero-form symmetry SU(2)u×SU(2)v×U(1)
[0]
w ×(Z[0]

2 )g′ .

3.2 SO(2N)2 × USp(2N)−1 ↔ [U(N)4 × U(N)−4]/Z2

In this subsection, we consider the duality between the following two theories:

II(L): SO(2N)2 × USp(2N)−1 ↔ II(R): [U(N)4 × U(N)−4]/Z2 . (3.32)

The theory II(L) can be obtained by gauging the (Z[0]
2 )g zero-form symmetry of

the theory III(L), where at the level of the index this corresponds to summing over

g ∈ {±1} in (3.29). Note also that in the description II(L) there is also a zero-form

(Z[0]
2 )C charge conjugation symmetry, whose fugacity will be denoted by χ.

On the other hand, we can obtain the theory II(R) from the theory III(R) by

gauging a Z2 subgroup of the zero-form symmetry U(1)
[0]
w × (Z[0]

GCD(N,4))g′ . From the

perspective of the index, this can be done as follows. First, we rewrite the index (3.13)

using the variables w and g′ as indicated in (3.16). For convenience, we represent the

theory II(R) as [U(N)k × U(N)−k]/Zm′ , with k = m′m = 4 and m′ = m = 2. Taking

w = g̃(w1w2)N/k and summing over g̃ ∈ Zm′ = {exp(2πi j/m′)| j = 0, 1, . . . ,m′ − 1}, we

are left with the fugacity (w1w2)N/k and g′ such that (g′)GCD(N,k) = 1. By computing

the index one can check that we can further redefine15

w′ = g′(w1w2)N/m
′
= g′(w1w2)mN/k , g′′ = (g′)

GCD(N,k)

GCD(N,m′) , (3.33)

15Similarly to Footnote 8, we normalise the power of w′ such that the di-baryon operators, which

involve the monopole operators T±{1/m′, · · · , 1/m′︸ ︷︷ ︸
N

; 1/m′, · · · , 1/m′︸ ︷︷ ︸
N

}, carry U(1)
[0]
w charge ±1; see (3.49).

This explains the power N/m′ = mN/k of w1w2 in (3.33).
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where

(g′′)GCD(N,m′) = (g′)GCD(N,k) = 1 . (3.34)

The zero-form symmetry of the theory II(R) is therefore SU(2)u × SU(2)v × U(1)
[0]
w′ ×

(Z[0]
GCD(N,m′))g′′ , in agreement with the discussion in [6, Section 2.5]. The above discussion

can, in fact, be generalised to any k, m and m′.

As a result of gauging a Z[0]
2 zero-form symmetry, both of II(L) and II(R) have a

Z[1]
2 one-form symmetry.

3.2.1 The case of N = 1

Let us examine the theory II(R): [U(1)4×U(1)−4]/Z2. The index of this theory is almost

the same as (3.2), with two exceptions: the summation over (m1,m2) is in (Z + p/2)2,

and the summation over p is from p = 0 to 1. The index, up to order x2, can be written

as

IN=1
II(R) = 1 + x

[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) + w−1χ

SU(2)
[2] (u) + wχ

SU(2)
[2] (v)

]
+ x2

[
w−2χ

SU(2)
[4] (u) + w−1χ

SU(2)
[3] (u)χ

SU(2)
[1] (v) +

(
w ↔ w−1, u↔ v

)
+ χ

SU(2)
[2] (u)χ

SU(2)
[2] (v)− (w + w−1)χ

SU(2)
[1] (u)χ

SU(2)
[1] (v)

− χSU(2)
[2] (u)− χSU(2)

[2] (v)− 2
]

+ . . . .

(3.35)

It turns out that the theory II(R) coincides with the ABJM theory U(1)2 × U(1)−2.

To see this equivalence, we make the following change of variables: m′1 = 2m1 and

m′2 = 2m2. The contribution from the Chern-Simons levels is therefore z
2m′1
1 z

2m′2
2 . The

summation of (m1,m2) ∈ (Z+p/2)2 is then equivalent to the summation of (m′1,m
′
2) ∈

(2Z + p)2, where p is summed over {0, 1}. At this point, we can just set g = 1 since

GCD(N,m) = GCD(1, 2) = 1 and take the summation of (m′1,m
′
2) to be over Z2.

Since Zchir only depends on m1 −m2, which is an integer, we can replace the latter by

m′1 −m′2. Overall, we obtain the index of U(1)2 × U(1)−2. Due to this equivalence, we

conclude that the theory [U(1)4 × U(1)4]/Z2 also has N = 8 supersymmetry.

Let us comments on the operators that contribute to the index (3.35). From the

perspective of the [U(1)4 × U(1)4]/Z2 theory, there are monopole operators

T±m
2
≡ T±m{ 1

2
; 1
2} , m ∈ Z , (3.36)

which carry gauge charges ±m(2,−2) under the gauge group U(1)4 × U(1)−4, due to

the discrete Z2 quotient. On the other hand, the monopole operators T± 1
2

do not exist

in the U(1)2 × U(1)−2 theory, but there are instead the monopole operators

V±m ≡ V±m{1;1} , m ∈ Z , (3.37)
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which carry gauge charges ±m(2,−2) under the gauge group U(1)2 × U(1)−2. The

operators that contribute at order x are

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = AαBα′

w−1χ
SU(2)
[2] (u) : T− 1

2
AαAβ ↔ V−1AαAβ

wχ
SU(2)
[2] (v) : T+ 1

2
Bα′Bβ′ ↔ V+1Bα′Bβ′

(3.38)

Observe that the di-baryon operators in [U(1)4×U(1)4]/Z2 get mapped to the dressed

monopole operators in U(1)2 × U(1)−2. The marginal operators, contributing to order

x2, are

w−2χ
SU(2)
[4] (u) : V−2Aα1Aα2Aα3Aα4

w−1χ
SU(2)
[3] (u)χ

SU(2)
[1] (v) : V−1Aα1Aα2Aα3Bα′1

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Aα1Aα2Bα′1

Bα′2
,

(3.39)

where in the first two lines we can obtain those correspond to the terms w2χ
SU(2)
[4] (v)

and wχ
SU(2)
[3] (v)χ

SU(2)
[1] (u) by simply simultaneously exchanging V−m ↔ V+m and A↔ B.

These gauge invariant combinations are written from the perspective of the U(1)2 ×
U(1)−2 theory. In the [U(1)4 × U(1)4]/Z2 duality frame, one simply needs to replace

V±m by T±m/2 in the above expressions.

Similarly to (3.22) and (3.25), the index of the theory [U(1)4×U(1)4]/Z2
∼= U(1)2×

U(1)−2 can be written in terms of SU(4) characters and USp(4) characters as follows:

IN=1
II(R) = 1 + xχ

SU(4)
[0,0,2] (s) + x2

[
χ
SU(4)
[0,0,4] (s)− χSU(4)

[1,0,1] (s)− 1
]

+ . . .

= 1 + xχ
USp(4)
[2,0] (h) + x2

[
χ
USp(4)
[4,0] (h)− χUSp(4)

[2,0] (h)− χUSp(4)
[0,1] (h)− 1

] (3.40)

where we use the fugacity maps (3.24) and (3.26). The first line should be regarded

as an N = 2 index, whereas the second line should be regarded as an N = 3 index,

since e.g. the coefficient of x is an adjoint representation of the flavour symmetry of

the N = 3 theory. The red term is the contribution of the N = 3 extra supersymmetry

currents. Since there are 5 of them in the representation [0, 1] of USp(4), supersymmetry

gets enhanced from N = 3 to N = 3 + 5 = 8. The term −1 at order x2 worths

some explanations. This corresponds to a conserved current associated with the U(1)

global symmetry that gives charge 1 to all of the chiral multiplets Aα and Bα′ . For

convenience, we shall denote this symmetry by U(1)D. Note that this symmetry is

specific to the abelian ABJM theory, since the superpotential vanishes. In the non-

abelian case, the superpotential εαβεα
′β′AαAβBα′Bβ′ does not vanish and so the U(1)D
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symmetry is explicitly broken. Moreover, the current of the U(1)D symmetry does not

belong to the N = 3 flavour current multiplet and so does not contribute at order x of

the index. This is because the N = 3 superpotential
∑2

j=1(Ajφ1Bj−Ajφ2Bj)+ 4
4π

(φ2
1−

φ2
2), where φ1 and φ2 are complex scalars in the vector multiplets of each gauge group,

of the abelian ABJM theory does not allow such a charge assignment.

Let us now analyse the index of the SO(2)2 × USp(2)−1 theory. This can be com-

puted using (3.29) with two modifications: the summation of (m1,m2) is over Z2, and

the part
∑1

p=0 g
p is removed. The result is the same as (3.35), with u = v = f and

w = ζ. In other words, the SU(2)f flavour symmetry of theory II(L) is identified with

the diagonal subgroup of SU(2)u × SU(2)v of theory II(R), and the U(1) magnetic

symmetry of theory II(L) is identified with the topological symmetry of theory II(R).

In fact, we can also turn on the fugacity χ for the zero-form Z[0]
2 charge conjugation

symmetry [34]. For χ = 1, the index is the same as that of SO(2)2 × USp(2)−1, i.e. as

discussed before. For χ = −1, the index is∑
m2∈Z

∮
dz2

2πiz2

z−2m2
2 ZUSp(2)

vect (z2,m2)
∏

s,s1,s2=±1

Zchir(s1f
szs22 ; s2m2; 1/2)

= 1 +

(
−f 2 − 1

f 2

)
x+

(
f 4 +

1

f 4
+ 1

)
x2 +

(
−f 6 − 1

f 6

)
x3 + . . . .

(3.41)

Let ζ ′ be the fugacity for a Z2 subgroup of the U(1) magnetic symmetry. The index

can be written in terms of the fugacities f , ζ ′ and χ as

1 + x
[
1 + (ζ ′ + χ+ ζ ′χ)χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + χ+ ζ ′χ+ 2)χ

SU(2)
[4] (f)− χSU(2)

[2] (f)− (ζ ′ + χ+ ζ ′χ)
]

+ . . .
(3.42)

where ζ ′2 = χ2 = 1. Note that ζ ′ and χ appear on an equal footing and they can be

interchanged. In this notation, we can match the indices (3.35) and (3.42) as

[(3.35)](u = f, v = f, w = χ)
∣∣∣
χ2=1

= [(3.42)](f, ζ ′ = χ, χ) . (3.43)

The unrefined indices of theories II(L) and II(R) with N = 1 are given by [3, (4.2)]:

1 + 10x+ 19x2 + 26x3 + 49x4 + 26x5 + . . . . (3.44)

3.2.2 [U(2)4 × U(2)4]/Z2

The index of theory II(R): [U(2)4 × U(2)4]/Z2 can be written as

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
(g′′ + 1)w′−1χ

SU(2)
[4] (u) + (g′′ + 1)w′χ

SU(2)
[4] (v)

+ g′′(w′ + w′−1) + (g′′ + 2)χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1

− χSU(2)
[2] (u)− χSU(2)

[2] (v)− 1
]

+ . . .

(3.45)
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where (g′′)2 = 1 and we have used the notation as discussed around (3.33). The corre-

sponding unrefined index is given by

1 + 4x+ 43x2 + 108x3 + 241x4 + . . . . (3.46)

The operators that contribute at order x are

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a . (3.47)

Due to the Z2 quotient, the elementary monopole operators are

T± 1
2
≡ T{± 1

2
,± 1

2
;± 1

2
,± 1

2} . (3.48)

Arising from the discrete gauging, they transform non-trivially under the (Z[0]
2 )g′′ zero-

form symmetry. They carry charges ±1 under the U(1)
[0]
w′ zero-form topological sym-

metry. Moreover, T− 1
2

carries gauge charges 4
(
−1

2
− 1

2
, 1

2
+ 1

2

)
= (−4,+4) under the

U(1)×U(1) gauge subgroup of the U(2)4×U(2)−4 gauge group. Similarly, T+ 1
2

carries

such gauge charges (+4,−4).

Now let us discuss the marginal operators, contributing the positive terms at order

x2. The di-baryon gauge invariant operators are16

g′′w′−1
(
χ
SU(2)
[4] (u) + 1

)
: Bα1...α4 = T− 1

2
(Aα1)a1

i1
(Aα2)a2

i2
(Aα3)a3

i3
(Aα4)a4

i4
εi1i2εa1a2ε

i3i4εa3a4

g′′w′
(
χ
SU(2)
[4] (v) + 1

)
: B′α′1...α′4 = T+ 1

2
(Bα′1

)i1a1
(Bα′2

)i2a2
(Bα′3

)i3a3
(Bα′4

)i4a4
εi1i2ε

a1a2εi3i4ε
a3a4

(3.49)

where the representations [4]⊕ [0] come from the decomposition of Sym2[2] of SU(2)u
or SU(2)v. There are also the following marginal operators:

g′′χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) :

Gαβα′β′ = T{ 1
2
,− 1

2
; 1
2
,− 1

2
}(Aα)a1

i1
(Aβ)a2

i2
(Bα′)

i3
a3

(Bβ′)
i4
a4
εi1i2εa1a2εi3i4ε

a3a4 .
(3.50)

There are gauge invariant dressed monopole operators, contributing w′−1χ
SU(2)
[4] (u) and

w′χ
SU(2)
[4] (v) at order x2,

(M−1)α1...α4 = (T{−1,0;−1,0})
(i1···i4)
(a1···a4)(Aα1)a1

i1
(Aα2)a2

i2
(Aα3)a3

i3
(Aα4)a4

i4

(M+1)α′1...α′4 = (T{+1,0;+1,0})
(a1···a4)
(i1···i4) (Bα′1

)i1a1
(Bα′2

)i2a2
(Bα′3

)i3a3
(Bα′4

)i4a4

(3.51)

16The dressing of the monopole operators works similarly to to what was explained in Footnote 9.
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where, as for the ABJM theory, T±{1,0;1,0} transform in the representation [4±4; 4∓4]

of the U(2)4 × U(2)−4 gauge group.17 Finally, there are also the following marginal

operators:

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1 : Mαα′Mββ′ ,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (Aα)ai (Bα′)

i
b(Aβ)bj(Bβ′)

j
a

(3.52)

where the latter are subject to the relations (3.68) coming from the F -terms. We will

discuss these two operators in more detail around (3.67).

Theory II(R): [U(2)4 ×U(2)4]/Z2, in fact, has N = 6 supersymmetry. This can be

seen from the index as follows. It is convenient to rewrite (3.45) in terms of an N = 3

index simply by setting u = v = f and using the fact that [2]⊗ [2] = [4]⊕ [2]⊕ [0]:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(g′′ + 1)(w′ + w′−1)χ

SU(2)
[4] (f)

+ g′′(w′ + w′−1) + (g′′ + 2)(χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1) + 1

− χSU(2)
[2] (f)− (χ

SU(2)
[2] (f) + 1)

]
+ . . .

(3.53)

where the contribution of the N = 3 flavour currents is denoted in blue and the the

contribution of the N = 3 extra supersymmetry current is written in red. Since there

are 3 of the latter, we conclude that supersymmetry gets enhanced from N = 3 to

N = 3 + 3 = 6.

3.2.3 SO(4)2 × USp(4)−1

The index of theory II(L): SO(4)2 × USp(4)−1 can be written as

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(1 + 2(1 + χ) + (1 + χ)ζ)χ

SU(2)
[4] (f)

+ (1 + χ)ζχ
SU(2)
[2] (f) + (1 + 2(1 + χ))− (1− χ)ζ − χSU(2)

[2] (f)
]

+ . . . .
(3.54)

with the unrefined index given by (3.46). The indices (3.45) and (3.54) can be matched

as follows:

[(3.45)](u = v = f, w′ = 1, g′′ = χ) = [(3.54)](f, χ, ζ = 1) . (3.55)

In other words, the SU(2)f flavour symmetry of theory II(L) is identified with the

diagonal subgroup of the flavour symmetry SU(2)u × SU(2)v of theory II(R). The

17Here [kq] stands for a U(2) ∼= SU(2)×U(1) representation consisting of the spin k/2 representation

of the SU(2) part and having charge q under the U(1) part.

– 22 –



(Z
[0]
2 )g′′ zero-form symmetry of theory II(R) is identified with the zero-form charge

conjugation symmetry of theory II(L). However, the U(1)
[0]
w′ zero-form symmetry of

theory II(R) is not manifest in theory II(L), whereas the magnetic symmetry (Z[0]
2 )ζ of

theory II(L) is not manifest in theory II(R).

3.3 O(2N)2 × USp(2N)−1 ↔ U(N)4 × U(N)−4

In this subsection, we consider the well-known duality between the following two the-

ories:

I(L): O(2N)2 × USp(2N)−1 ↔ I(R): U(N)4 × U(N)−4 . (3.56)

Theory I(L) can be obtained from theory II(L) by gauging the zero-form charge

conjugation symmetry of the latter. At the level of the index, this can be done by

summing over χ ∈ {−1,+1}. As a result, we are left with the fugacity f for the SU(2)f
flavour symmetry and the fugacity ζ for the zero-form Z2 magnetic symmetry.

On the other hand, theory I(R) can be obtained from theory II(R) by gauging the

zero-form symmetry (Z[0]
GCD(N,2))g′′ of the latter. In particular, given the index of theory

II(R) written in terms of u, v, w′ and g′′, where (g′′)GCD(N,2) = 1, we are summing over

g′′ ∈ {e2πij/GCD(N,2) | j = 0, 1, . . . ,GCD(N, 2) − 1}. As a result, we are left with the

fugacities u and v for the SU(2)u × SU(2)v flavour symmetry and the fugacity w′ for

the U(1) topological symmetry.

3.3.1 The case of N = 1

The N = 2 index for theory I(R): U(1)4 × U(1)−4 is

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w′χ

SU(2)
[4] (v) + w′−1χ

SU(2)
[4] (u)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 2

]
+ . . .

(3.57)

In order to write this in terms of the N = 3 index, we set u = v = f and use the tensor

product decomposition [2]⊗ [2] = [4]⊕ [2]⊕ [0]:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w′ + w′−1)χ

SU(2)
[4] (f)

+ χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)− 1
]

+ . . . ,
(3.58)

where the blue terms denote the contribution of the N = 3 flavour currents in SU(2)f×
U(1)w′ , and the red terms denote the contribution of the N = 3 extra supersymme-

try current. Since there are three of the latter, we conclude that supersymmetry gets
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enhanced from N = 3 to N = 6, as expected. The last −1 term at order x2 is the

contribution of the current of the U(1)D symmetry, discussed below (3.40).

The operators contributing at order x of (3.57) correspond to

Mαα′ = AαBα′ . (3.59)

Those contributing to the positive terms at order x2 (i.e. N = 2 preserving marginal

operators) are gauge invariant dressed monopole operators and the square of M :

w′−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = T{−1;−1}Aα1Aα2Aα3Aα4 ,

w′χ
SU(2)
[4] (v) : (M+1)α′1···α′4 = T{+1;+1}Bα′1

Bα′2
Bα′3

Bα′4
,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (AαAβ)(Bα′Bβ′) = Mαα′Mββ′ .

(3.60)

On the other hand, the index of theory I(L): O(2)2×USp(2)−1 can be obtained by

summing over χ ∈ {−1, 1} in (3.42)

1 + x
[
1 + ζ ′ χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + 1)χ

SU(2)
[4] (f)

+ χ
SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)− ζ ′
]

+ . . .
(3.61)

where (ζ ′)2 = 1.18 The indices (3.57) and (3.61) can be matched as follows:

[(3.57)](u = f, v = f, w′ = 1) = [(3.61)](f, ζ ′ = 1) . (3.62)

In other words, the U(1)
[0]
w′ topological symmetry of theory I(R) is not manifest in theory

I(L), whereas the magnetic symmetry of theory I(L) is not manifest in theory I(R).

As usual, the SU(2)f flavour symmetry of theory I(L) is identified with the diagonal

subgroup of the SU(2)u × SU(2)v flavour symmetry of theory I(R).

The unrefined indices of theories I(L) and I(R) with N = 1 are, of course, equal

and are given by [3, Table 1]:

1 + 4x+ 11x2 + 12x3 + 25x4 + 12x5 + . . . . (3.63)

18The magnetic symmetry of O(2)2 is not U(1)[0], but rather (Z[0]
2 )ζ′ , see for example [16, Appendix

H]. It is interesting to point out that the index is sensitive to this. Indeed, if we compute the index

of the O(2)2 × USp(2)−1 model treating ζ ′ as a U(1)[0] fugacity, that is without imposing (ζ ′)2 = 1

as in (3.61), we would get fractional coefficients such as 1
2 (ζ ′+ 1/ζ ′), which is clearly incosistent. This

signals that the actual symmetry is (Z[0]
2 )ζ′ and by accordingly setting ζ ′ = 1/ζ ′ we get the sensible

result (3.61).
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3.3.2 The case of N = 2

The N = 2 index for theory I(R): U(2)4 × U(2)−4 is

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w′χ

SU(2)
[4] (v) + w′−1χ

SU(2)
[4] (u)

+ 2χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . .

(3.64)

As before, the N = 3 index can be obtain by setting u = v = f :

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w′ + w′−1)χ

SU(2)
[4] (f)

+ 2χ
SU(2)
[4] (f) + 2χ

SU(2)
[2] (f) + 2 + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)
]

+ . . .
(3.65)

The operators contributing at order x is

χ
SU(2)
[1] (u)χ

SU(2)
[1] (v) : Mαα′ = (Aα)ai (Bα′)

i
a . (3.66)

The marginal operators, which contribute to the positive terms at order x2, are19

w′−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = (T{−1,0;−1,0})

(i1···i4)
(a1···a4)(Aα1)a1

i1
· · · (Aα4)a4

i4
,

w′χ
SU(2)
[4] (v) : (M+1)α′1···α′4 = (T{+1,0;+1,0})

(a1···a4)
(i1···i4) (Bα′1

)i1a1
· · · (Bα′4

)i4a4
,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + 1 : Mαα′Mββ′ ,

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = (Aα)ai (Bα′)

i
b(Aβ)bj(Bβ′)

j
a

(3.67)

where we comment on the above operators as follows:

• The monopole operators T{+1,0;+1,0} and T{−1,0;−1,0} transform in the representa-

tions [4+4; 4−4] and [4−4; 4+4] of the gauge group U(2)× U(2), respectively.

• The gauge invariant combinations MM in the third line transform in the repre-

sentation Sym2[1; 1] = [2; 2] + [0; 0] of SU(2)u × SU(2)v.

• The gauge invariant combinationsQαβα′β′ are subject to the F -terms coming from

the superpotential of the ABJM theory, namely εαβεα
′β′(Aα)ai (Bα′)

i
b(Aβ)bj(Bβ′)

j
a,

and so

εαβQαβα′β′ = 0 , εα
′β′Qαβα′β′ = 0 . (3.68)

Thus, Qαβα′β′ transform under the representation [2; 2] of SU(2)u × SU(2)v.

19Notice that the monopoles T{±1,0;±1,0} are in a representation of the U(2)×U(2) gauge group that

have charges (±1/2,∓1/2) under the U(1)× U(1) part and that are in the symmetric representation

of each of the two SU(2) part.
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• Note that one could also consider the following gauge invariant combinations:

(Aα)a1
i1

(Aβ)a2
i2

(Bα′)
j1
b1

(Bβ′)
j2
b2
εa1a2ε

i1i2εb1b2εj1j2

= (Aα)a1
i1

(Aβ)a2
i2

(Bα′)
j1
b1

(Bβ′)
j2
b2
δ[b1
a1
δb2]
a2
δ

[i1
j1
δ
i2]
j2

= (Aα)a1
i1

(Bα′)
i1
a1

(Aβ)a2
i2

(Bβ′)
i2
a2
− (α′ ↔ β′)

= Mαα′Mββ′ − (α′ ↔ β′)

(3.69)

and so they are not independent from those in (3.67).

The index of theory I(L): O(4)2 × USp(4)−1 is

1 + x
[
1 + ζ ′ χ

SU(2)
[2] (f)

]
+ x2

[
(ζ ′ + 1)χ

SU(2)
[4] (f) + 2χ

SU(2)
[4] (f)

+ (1 + ζ ′)χ
SU(2)
[2] (f) + 2 + 1− (χ

SU(2)
[2] (f) + 1)− χSU(2)

[2] (f) + 1− ζ ′
]

+ . . .
(3.70)

Let us discuss the operators, contributing to order x, in this theory. In the following,

i, j = 1, ..., 4 are the O(4) gauge indices; a, b = 1, ..., 4 are the USp(4) gauge indices;

and α, β = 1, 2 are the SU(2)f flavour indices. They are

1 : m[αβ] = (Aα)i1a1
(Aβ)i2b2δi1i2J

a1a2 ,

ζ ′ χ
SU(2)
[2] (f) : M(αβ) = (T{1,0;1,0})

(a1a2)
(i1i2) (Aα)i1a1

(Aβ)i2a2

(3.71)

where m transforms as a singlet under SU(2)f , due to the total antisymmetrisation of

the indices α and β, and M transforms as a triplet under SU(2)f , due to the total

symmetrisation of the gauge indices in the elementary monopole operator T{1,0;1,0}.

These operators are mapped to the mesons (3.66) of the unitary theory I(R). Hence,

from the perspective of the N = 3 theory, these are the moment map operators of the

U(1) × SU(2)f symmetry, whose contribution of the currents is denoted in blue. The

contributions in red are instead identified as the N = 3 extra supersymmetry-currents

that make N = 3 supersymmetry become N = 3 + 3 = 6 supersymmetry20 21.

20It is also interesting to analyse this theory from the perspective of N = 5 theory. For an SCFT

with N = 5 (and not higher) supersymmetry, it is necessary that the coefficient of x in the index

must be 1 [33], whose contribution comes from the N = 5 stress-tensor multiplet decomposed into

one N = 2 multiplet LB1[0]
(1)
1 (in the notation of [35]). However, for an SCFT with N = 6 (and not

higher) supersymmetry, the coefficient of x must be 4 [33], which is the case for (3.70). Observe that

the singlet operator m is present in any O(2N)2k×USp(2N)−k theory, where for k ≥ 2 the theory has

N = 5 supersymmetry [2]. We thus conclude that the operator m resides in the N = 5 stress-tensor

multiplet B1[0]
(1,0)
1 , whereas the triplet operators M reside in the N = 5 extra supersymmetry-current

multiplet B1[0]
(0,2)
1 . The singlet in the tensor product decomposition of [0, 2]⊗ [0, 2], where each [0, 2]

is the representation of the latter multiplet under so(5)R symmetry, corresponds to the U(1) global

symmetry, which must be present in any N = 6 SCFT [36]. This is mapped to the U(1)w′ symmetry

of the unitary theory I(R). We thank Oren Bergman for explaning and pointing this out to us.
21To elucidate further Footnote 20, we provide, as a reference, the index of the O(4)4 × USp(4)−2
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The indices (3.64) and (3.70) can be matched as follows:

(3.64)[u = f, v = f, w = 1] = (3.70)[f, ζ ′ = 1] (3.73)

The fugacity ζ ′ for the magnetic symmetry of theory I(L) cannot be mapped to any

fugacity in theory I(R), and so it is not manifest in theory I(R) and should be considered

as emergent in theory I(R). Similarly, the U(1)
[0]
w zero-form topological symmetry of

theory I(R) should be considered as emergent in theory I(L). As usual, the SU(2)f
flavour symmetry of theory I(L) is identified as a diagonal subgroup of the SU(2)u ×
SU(2)v flavour symmetry of theory I(R).

The unrefined indices for theories I(L) and I(R) for N = 2 are, of course, equal and

are given by [3, Table 1]:

1 + 4x+ 22x2 + 56x3 + 131x4 + 252x5 + . . . . (3.74)

3.4 SO(4)2 × USp(2)−1 ↔ [U(3)4 × U(1)−4]/Z2

As pointed out in [20, Section 3.3], the consistency conditions of the quotient [U(N +

x)k × U(N)k]/Zp are

p divides k and
kx

p2
∈ Z . (3.75)

In this section, we take N = 1, x = 2, k = 4 and p = 2. Indeed, the theory in question

can be obtained by gauging the Z[1]
2 one-form symmetry of the U(3)4 × U(1)−4 theory.

The index for [U(3)4 × U(1)−4]/Z2 reads (here we define w = (w1w2)
1
4 )

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w−1χ

SU(2)
[4] (u) + wχ

SU(2)
[4] (v)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) + g(w1/2 + w−1/2)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . . .

(3.76)

theory, which has N = 5 supersymmetry:

1 + 1x+ x2
[
2 + (1 + ζ)χ

SU(2)
[4] (f)− χSU(2)

[2] (f)
]

+ . . . (3.72)

From N = 2 perspective, the negative term at order x2 indicates the contribution of the N = 2 SU(2)f

flavour currents in the multiplet A2A2[0]
(0)
1 . From the N = 3 perspective, the three components of

SU(2)f currents split into two parts. Suppose that we write the character of the adjoint representation

of SU(2)f as f2 +1+f−2. Two components (f2, f−2) of this SU(2)f symmetry currents are identified

as the N = 3 extra SUSY-currents in the multiplet A2[0]
(0)
1 ; this makes N = 3 supersymmetry

become N = 3+2 = 5 supersymmetry. The remaining component (corresponding to 1) of this SU(2)f

symmetry currents resides in the N = 3 U(1) flavour current multiplet B1[0]
(2)
1 . The corresponding

moment map operator is the singlet operator m, contributing +1x to the index. Thus, this U(1)

symmetry from the N = 3 perspective is identified as the Cartan subalgebra of SU(2)f .
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As before, we can obtain the N = 3 index by setting u = v = f and compute the

relevant tensor product decompositions:

1 + x
[
1 + χ

SU(2)
[2] (f)

]
+ x2

[
(w + w−1)χ

SU(2)
[4] (f) + χ

SU(2)
[4] (f) + χ

SU(2)
[2] (f) + 1

+ g(w1/2 + w−1/2)− (χ
SU(2)
[2] (f) + 1)− χSU(2)

[2] (f)
]

+ . . .
(3.77)

where the blue terms are the contribution of the N = 3 flavour currents and the red

term is the contribution of the N = 3 extra supersymmetry current. Therefore, N = 3

supersymmetry gets enhanced to N = 6.

As usual, the operators contributing at order x of (3.76) are the mesons,

Mαα′ = (Aα)a(Bα′)a (3.78)

where a, b, c = 1, 2, 3 are the U(3) gauge indices. As usual, the monopole operators

T− ≡ T{−1,0,0;−1} and T+ ≡ T{+1,0,0;+1} transform in the representations [[0, 4]−4; +4]

and [[4, 0]+4;−4] of the gauge symmetry U(3) × U(1) respectively, where [0, 4]−4 and

[4, 0]+4 are from the 4th symmetric power of the antifundamental and fundamental

representation of U(3) respectively.

We can write down the marginal operators, contributing to the positive terms at

order x2, as follows:

w−1χ
SU(2)
[4] (u) : (M−1)α1···α4 = (T−)(a1a2a3a4)(Aα1)a1 · · · (Aα4)a4

wχ
SU(2)
[4] (v) : (M+1)α′1···α′4 = (T+)(a1a2a3a4)(Bα1)a1 · · · (Bα4)a4

χ
SU(2)
[2] (u)χ

SU(2)
[2] (v) : Qαβα′β′ = Mβα′Mαβ′

(3.79)

Moreover, there are marginal operators, associated with the terms gw±1/2 at order x2

in the index, that involve monopole operators T± 1
2
≡ T±{+ 1

2
,+ 1

2
,− 1

2
; 1
2}, arising from the

Z2 discrete quotient. Here Qαβα′β′ is defined as in (3.67) with the absence of the indices

i, j, and M± are the gauge invariant dressed monopole operators.

The index of SO(4)2 × USp(2)−1 reads

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(ζ + 2)χ

SU(2)
[4] (f) + ζχ+ χ+ 1− ζ − χSU(2)

[2] (f)
]

+ . . . .
(3.80)

The indices (3.76) and (3.80) can be matched as follows:

[(3.76)](u = f, v = f, w = 1, g = χ) = [(3.80)](f, ζ = 1, χ) . (3.81)
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The flavour symmetry SU(2)f of the orthosymplectic theory can be identified with the

diagonal subgroup of the flavour symmetry SU(2)u×SU(2)v of the unitary theory. The

(Z[0]
2 )g zero-form symmetry of the unitary theory is identified with the zero-form charge

conjugation symmetry of the orthosymplectic theory. The U(1)
[0]
w zero-form topological

symmetry of the unitary theory is not manifest in the orthosymplectic theory, whereas

the (Z[0]
2 )ζ zero-form magnetic symmetry of the orthosymplectic theory is not manifest

in the unitary theory.

The unrefined indices for both theories are equal to

[(3.76)](u = 1, v = 1, w = 1, g = 1) = [(3.80)](f = 1, ζ = 1, χ = 1)

= 1 + 4x+ 14x2 + 35x4 + . . . .
(3.82)

3.5 O(4)2 × USp(2)−1 ↔ U(3)4 × U(1)−4

The O(4)2×USp(2)−1 theory can be obtained from the SO(4)2×USp(2)−1 theory by

gauging the charge conjugation symmetry of the latter. Correspondingly, the U(3)4 ×
U(1)−4 can be obtained from the [U(3)4 × U(1)−4]/Z2 theory by gauging the (Z[0]

2 )g
zero-form symmetry of the latter.

Summing over g ∈ {±1} in (3.76), we obtain the index for the U(3)4 × U(1)−4

theory as

1 + x
[
χ
SU(2)
[1] (u)χ

SU(2)
[1] (v)

]
+ x2

[
w−1χ

SU(2)
[4] (u) + wχ

SU(2)
[4] (v)

+ χ
SU(2)
[2] (u)χ

SU(2)
[2] (v)− χSU(2)

[2] (u)− χSU(2)
[2] (v)− 1

]
+ . . . .

(3.83)

The operators are as listed in (3.78) and (3.79), except that there are no monopole

operators T± 1
2

due to the absence of the discrete Z2 quotient. By the same argument

as in the precedent subsection, the index indicates that the theory has N = 6 super-

symmetry, in agreement with [2].

Similarly, summing over χ ∈ {±1} in (3.80) gives the index of the O(4)2×USp(2)−1

theory:

1 + x
[
1 + ζχ

SU(2)
[2] (f)

]
+ x2

[
(ζ + 2)χ

SU(2)
[4] (f) + 1− ζ − χSU(2)

[2] (f)
]

+ . . . . (3.84)

The indices (3.83) and (3.84) can be matched as follows:

[(3.83)](u = f, v = f, w = 1) = [(3.84)](f, ζ = 1) . (3.85)

The correspondence between the global symmetries of the U(3)4 × U(1)−4 theory and

theO(4)2×USp(2)−1 are as discussed below (3.80). The SU(2)f flavour symmetry of the
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orthosymplectic theory is identified with the diagonal subgroup of the SU(2)u×SU(2)v
of the unitary theory. The U(1)

[0]
w zero-form topological symmetry of the unitary theory

is not manifest in the orthosymplectic theory, whereas the (Z[0]
2 )ζ zero-form magnetic

symmetry of the orthosymplectic theory is not manifest in the unitary theory. The

unrefined indices for both theories are equal

[(3.83)](u = 1, v = 1, w = 1) = [(3.84)](f = 1, ζ = 1)

= 1 + 4x+ 12x2 + 8x3 + 27x4 + 36x5 + . . . ,
(3.86)

as computed in [3, (2.8)].

3.6 Circular quivers

In this subsection, we examine the following duality for n ≥ 3:

[SO(2)2 × USp(2)−1 × · · · × SO(2)2 × USp(2)−1︸ ︷︷ ︸
2n gauge groups

]/Z2

←→ circular quiver (3.88)

←→ circular quiver U(1)1 × U(1)−1 × · · · × U(1)1 × U(1)−1︸ ︷︷ ︸
2n gauge groups

(3.87)

where the theory on the second line, also known as a Kronheimer–Nakajima quiver [14],

is described by

1

1

11

1

1

1

1

11

1

1

(n circular nodes)

(3.88)

This theory is self-mirror, and its Higgs/Coulomb branch describes one PSU(n) ∼=
U(n)/U(1) instanton on C2/Zn with the holonomy of the gauge field at infinity that

brakes PSU(n) into U(1)n/U(1).

The duality between theories in the second and third lines of (3.87) is well-known

and can be seen from the brane system as follows (see e.g. [37, 38]). Theory (3.88) can

be realised on the worldvolume of a single D3-brane, spanning the directions 0, 1, 2, 3, 6

such that the 6 direction is compactified with a certain radius, with the presence of
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n NS5-branes, each spanning the directions 0, 1, 2, 7, 8, 9 and one D5-brane, spanning

the directions 0, 1, 2, 3, 4, 5, at each N5-brane interval Upon applying the T T = −TST ,

where T and S are the generators of SL(2,Z) such that S2 = −1 and (ST )3 = 1, the

NS5 branes remain invariant but each D5-brane turns into a (1, 1)-brane. The latter

configuration gives rise to the circular quiver in the third line of (3.87).

The case of n = 1

In the case of n = 1, we have seen in Section 3.1.1 that the [SO(2)2 × USp(2)−1]/Z2

theory flows to a theory of two free hypermultiplets. This is indeed dual to the special

case of (3.88) with n = 1, namely

1 1 (3.89)

where the two free hypermultiplets come from the adjoint hypermultiplet of the U(1)

gauge group and the elementary monopole operators T±1. By the above argument and

the discussion in Section 3.1.1, this is also dual to the ABJM theory U(1)1 × U(1)−1

and [U(1)k × U(1)−k]/Zk.

The case of n = 2

The case of n = 2 requires a separate discussion. We find that the

[SO(2)2 × USp(2)−1 × SO(2)2 × USp(2)−1]/Z2 (3.90)

theory is dual to

1 1 2 (3.91)

which is the Kronheimer-Nakajima quiver whose Higgs/Coulomb branch describes one

PSU(2) ∼= U(2)/U(1) instanton on C2/Z2 with the monodromy that preserves the

PSU(2) symmetry. This is also dual to the following circular quiver:

U(1)1 × U(1)0 × U(1)−1 × U(1)0 (3.92)

The duality between (3.91) and (3.92) can be realised by applying the action T T =

−TST on the brane system as discussed above. The N = 2 indices for (3.91) and
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(3.92) can be written in terms of the fugacity d of the U(1)d symmetry and the fugacities

p1, p2, p3, p4 of the SU(2)4 global symmetry as follows:

1 + x

[
d−2

2∑
i=1

χ
SU(2)
[2] (pi) + d2

4∑
i=3

χ
SU(2)
[2] (pi)

]

+ x2

[
d−4

2∑
i=1

χ
SU(2)
[4] (pi) + d4

4∑
i=3

χ
SU(2)
[4] (pi)

+ d−4χ
SU(2)
[2] (p1)χ

SU(2)
[2] (p2) + χ

SU(2)
[2] (p1)χ

SU(2)
[2] (p4)

+ d4χ
SU(2)
[2] (p3)χ

SU(2)
[2] (p4) + χ

SU(2)
[2] (p3)χ

SU(2)
[2] (p2)

−

(
4∑
i=1

χ
SU(2)
[2] (pi)

)
− 2

]
+ . . .

(3.93)

where the origin of the each U(1)d × SU(2)pi in each theory is as follows.

For (3.91), U(1)d is identified with the axial symmetry that assigns charges −1 to

each chiral multiplet and +2 to the scalar fields in the vector multiplet, SU(2)p1 can be

identified with the flavour symmetry that exchanges the two bifundametal hypermulti-

plets, SU(2)p2 can be identified with the flavour symmetry of the two fundamental hy-

permultiplets denoted by the square node, SU(2)p3 can be identified with the enhanced

U(1) topological symmetry of the left gauge node, and SU(2)p4 can be identified with

the enhanced U(1) diagonal subgroup of the U(1) × U(1) symmetry of the left and

right gauge nodes.22. Since the theory is self-mirror, the index is invariant under the

simultaneous exchange of d↔ d−1 and (p1, p2)↔ (p3, p4)

For (3.92), let us label each node to be 1 to 4 from left to right, so that nodes 2 and

4 have zero CS levels. Let w1, . . . , w4 be fugacities for topological symmetries of node

1 to 4 and let ci, c
−1
i to be the fugacities for the U(1) symmetry that gives charge +1

and −1 to the chiral multiplets Qi, Q̃i carrying gauge charges (1,−1), (−1, 1) between

the i-th and the (i+ 1)-th nodes. Then, we have the following fugacity maps:

p2
1 = w4, p2

2 =
c1c2

w1w2w3w4

, p2
3 = c3c4(w1w2w3w4) , p2

4 = w2 . (3.94)

In other words, the U(1) topological symmetries of the two nodes with zero CS levels

get enhanced to SU(2). The operators associated with the currents of the SU(2)p2 and

SU(2)p3 flavour symmetries are, respectively, the dressed monopole operators:

T{−1;−1;−1;−1}Q1Q2 , T{+1;+1;+1;+1}Q̃1Q̃2 ,

T{+1;+1;+1;+1}Q3Q4 , T{−1;−1;−1;−1}Q̃3Q̃4 .
(3.95)

22Note that the monopole operators T{1;0} and T{1;1} have R-charge 1. The former corresponds to

SU(2)p3 symmetry and the latter corresponds to the SU(2)p4 symmetry.
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For (3.92), the U(1)d symmetry assigns the charges −1, −1, +1, +1 to the (Q1, Q̃1),

(Q2, Q̃2), (Q3, Q̃3), (Q4, Q̃4), respectively. Matching of the unrefined indices of theories

(3.91) and (3.92) is demonstrated in [22, (5.3)]:

1 + 12x+ 42x2 + 48x3 + 115x4 + . . . . (3.96)

The N = 3 indices of (3.91) and (3.92) can be obtained from (3.93) by setting d = 1.

Let us now discuss the theory (3.90). As usual, not all symmetries of the unitary

quivers (3.91) and (3.92) are manifest in the orthosymplectic quiver (3.90). The index

of the theory (3.90) can be obtained from (3.93) by setting p3 = p2 and p4 = p1, where

the origin of U(1)d, SU(2)p1 and SU(2)p2 can be explained as follows. Let ζ1 and ζ2 be

the fugacities for the U(1) magnetic symmetries for the first and the third SO(2) gauge

group respectively. Let g be a Z2 zero-form symmetry arising from the Z2 discrete

gauging, so that g2 = 1. If we denote the half-hypermultiplets in the bifundametal

representations of the gauge groups in (3.90), from left to right, by A1, A2, A3 and A4,

the U(1)d symmetry assigns the charges +1, −1, +1 and −1 to them, respectively. In

this notation, the index can be written as follows

1 + x

[
2d−2 + 2d2 + g

∑
s1,s2,s3=±1

d2s1ζ
1
2
s2

1 ζ
1
2
s3

2

]
+ . . . . (3.97)

However, the index does not really depend on g, since it can be absorbed into a fugacity

for the magnetic symmetry. In particular, ζ1,2 and g are related to the fugacities p1,2 as

follows:

ζ
1/2
1 = gp1p2 , ζ

1/2
2 = p−1

1 p2 . (3.98)

Using this fugacity map, we obtain (3.93) with p3 = p2 and p4 = p1, as required.

The case of n = 3

The N = 2 index of the unitary theories in the second and third lines of (3.87) can be

written as

1 + x(3d2 + 3d−2) + x
3
2

[
d−3
(
p1p2p3 + p−1

1 p−1
2 p−1

3 +
3∑
i=1

(pi + p−1
i )
)

+ d3
(
w1w2w3 + w−1

1 w−1
2 w−1

3 +
3∑
i=1

(wi + w−1
i )
)]

+ x2
[
− 3 + (6d4 + 6d−4) + d−4

∑
1≤i<j≤3

(pipj + p−1
i p−1

j )

+ d4
∑

1≤i<j≤3

(wiwj + w−1
i w−1

j )
]

+ . . .

(3.99)
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where the theory has a U(1)6 × U(1)d global symmetry, where the fugacities for U(1)6

are denoted by p1,2,3 and w1,2,3. The N = 3 index can be obtained by setting d = 1.

For the theory (3.88) with n = 3, the U(1)d symmetry corresponds to the axial

symmetry that gives that assigns charges −1 to each chiral multiplet and +2 to the

scalar fields in the vector multiplet; the fugacities w1,2,3 correspond to the U(1)3 topo-

logical symmetry; and the fugacities p1,2,3 correspond to the U(1)3 flavour symmetry.

Since the theory is self-mirror, the index is invariant under the simultaneous exchange

of d↔ d−1 and (p1, p2, p3)↔ (w1, w2, w3). To specify our parametrisation of p1, p2, p3,

let us first define ci, c
−1
i to be the fugacities for the U(1) symmetry that gives charge +1

and −1 to the chiral multiplets Qi, Q̃i carrying gauge charges (1,−1), (−1, 1) between

the i-th and the (i + 1)-th gauge nodes, and let fi, f
−1
i be the flavour charges of the

fundamental chiral multiplets carrying gauge charge −1 and +1 under the i-th gauge

node. Then, p1,2,3 are related to these fugacities as

p1 = f1 c1 f
−1
2 , p2 = f2 c2 f

−1
3 , p3 = f3 c3 f

−1
1 . (3.100)

For the theory on the third line of (3.87), namely the circular unitary quiver with

alternating CS levels, we label the nodes as 1, . . . , 6 from left to right. The U(1)d assigns

alternating charges (−1)i+1 to the chiral multiplets (Qi, Q̃i) in the bifundamental repre-

sentation of the i-th and the (i+1)-th gauge nodes. Let us define ci (with i = 1, 2, . . . , 6)

as above. Then, p1,2,3 are related to these fugacities as

p1 = c1
w1w2

, p2 = c3
w3w4

, p3 = c5
w5w6

w1 = c2w2w3 , w2 = c4w4w5 , w3 = c6w6w1 .
(3.101)

where wi (with i = 1, 2, . . . , 6) the topological symmetry associated with the i-th node.

As usual, not all symmetries of these unitary quivers are manifest in the orthosym-

plectic quiver in the first line of (3.87). In fact, the index of the latter can be obtained

from (3.99) by setting wi = pi, with i = 1, 2, 3. Indeed, if we denote by ζ1, ζ2, ζ3 the

U(1)3 magnetic symmetry associated with each SO(2) gauge group from left to right,

we then have the fugacity map

ζ
1/2
1 = gp

1/2
2 p

1/2
3 , ζ

1/2
2 = p

1/2
1 p

1/2
2 , ζ

1/2
3 = p

1/2
1 p

1/2
3 , (3.102)

where g is the fugacity associated with a Z2 zero-form symmetry associated with the

Z2 discrete quotient in the first line of (3.87) such that g2 = 1. We emphasise that g

can be absorbed in a redefinition of a fugacity of the magnetic symmetry and so the

index does not really depend on g. The U(1)d symmetry assigns the charges (−1)i+1 to

the half-hypermultiplets Ai, with i = 1, . . . , 6, in the bifundamental representation of

SO(2)× USp(2) from left to right in the circular quiver in the first line of (3.87).
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This discussion can be generalised in a straightforward manner to the cases of

n > 3.

3.7 (S)O(2N + 1)2 × USp(2N)−1 and [U(N + 1)4 × U(N)−4](/Z2)

In this subsection, we demonstrate that the indices of the following four theories are

equal:

O(2N + 1)2 × USp(2N)−1 U(N + 1)4 × U(N)−4

SO(2N + 1)2 × USp(2N)−1 [U(N + 1)4 × U(N)−4]/Z2

(3.103)

The duality of the theories in the first line were pointed out in [2]. The one-form

symmetry of each theory in the first line is Z2, which can be realised as follows. For

the orthosymplectic quiver in the first line, the O(2N + 1) and USp(2N) gauge groups

both have a Z2 centre and the bifundamental matter screens a diagonal combination,

so we are left with one Z2 centre symmetry. For the unitary quiver in the first line,

namely U(N + 1)4 × U(N)−4, the presence of the Z2 one-form symmetry was pointed

out in [20, Section 3.3].

The theories in the second line arise from gauging the Z2 one-form symmetries

of the theories on the first line. This is consistent because the conditions (3.75) are

satisfied. We thus expect that the theories in the second line are also dual to each

other. However, what is surprising is that all of the four theories have the same indices.

Let us demonstrate this point as follows.

We first provide an argument to show that the indices of the U(N + 1)4×U(N)−4

theory and the [U(N + 1)4×U(N)−4]/Z2 theory are equal. We emphasise that, in each

of these theories, there is an overall U(1) that does not act on matter fields. Upon

integrating over such a U(1) fugacity in the index, we obtain a delta-function which

imposes the following condition that the magnetic fluxes of the U(N + 1) gauge group,

m
(i)
L , with i = 1, . . . , N+1, and those of the U(N) gauge group, m

(j)
R , with j = 1, . . . , N :

N+1∑
i=1

m
(i)
L =

N∑
j=1

m
(j)
R (3.104)

In the [U(N + 1)4 × U(N)−4]/Z2 theory, we have to sum over the fluxes

(m
(1)
L , . . . ,m

(N+1)
L ;m

(1)
R , . . . ,m

(N)
R ) ∈ (Z + p/2)2N+1 (3.105)

and sum over p ∈ {0, 1}, whereas in U(N +1)4×U(N)−4 theory there is a contribution

only from the p = 0 sector. Observe that, for p = 1, if one of the two sides of (3.104) is
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half-integral the other is integral.23 This means that there is no contribution from the

p = 1 sector to the index, since it is forbidden by (3.104). As a result, the index of the

[U(N + 1)4 × U(N)−4]/Z2 is the same as that of the U(N + 1)4 × U(N)−4 theory. We

see that the Z2 zero-form symmetry arises from the Z2 discrete gauging of the former

theory acts trivially on the theory and hence it is an unfaithful symmetry. This leads

us to conclude that the Z2 one-form symmetry of the U(N + 1)4×U(N)−4 theory also

acts trivially on the line operators.

Similarly, we can provide an argument to show that the zero-form charge conjuga-

tion symmetry of the SO(2N + 1)2 × USp(2N)−1 theory acts trivially on the theory

and hence it is unfaithful. The index of this theory can be written as

ISO(2N+1)2k×USp(2N ′)k′

=
1

2NN !

∑
m∈ZN

∮ N∏
a=1

dza
2πiza

N∏
a=1

x−|ma|(1− χ(−1)max|ma|z±1
a )

×
N∏
a<b

x−|±ma+mb|(1− (−1)±ma±mbx|±ma±mb|z±1
a z±1

b )
N∏
a=1

z2kma
a ζma

× 1

2N ′N ′!

∑
n∈ZN′

∮ N ′∏
i=1

dui
2πiui

N ′∏
i=1

x−|ni|(1− (−1)nix|ni|u±2
i )

×
N ′∏
i<j

x−|±ni+nj |(1− (−1)±ni±njx|±ni±nj |u±1
i u±1

j )
N ′∏
i=1

u2k′ni
i

×
N ′∏
i=1

x
−|ui|

2

(
(−1)niχu∓1 f∓1 x

3
2

+|ni|;x2
)
∞(

(−1)niχu±1 f±1 x
1
2

+|ni|;x2
)
∞

×
N∏
a=1

N ′∏
i=1

x
−|±za+ui|

2

(
(−1)±ma+niz∓1

a u∓1 f∓1 x
3
2

+|±ma+ni|;x2
)
∞(

(−1)miz±1 u±1 f±1 x
1
2

+|±ma+ni|;x2
)
∞

, (3.106)

where f is the fugacity for the SU(2)f flavour symmetry, ζ is the fugacity for the (Z[0]
2 )ζ

topological symmetry satisfying ζ2 = 1 and χ is the fugacity for the zero-form charge

conjugation symmetry. In the problem at hand, we take N ′ = N , k = 1 and k′ = −1,

but the following argument holds for general N , k and k′. We claim that the charge

conjugation symmetry can be re-absorbed with a gauge transformation. This can be

23This argument can be generalised to any theory of the form [U(N + x)2k × U(N)−2k]/Z2 with x

odd. In such a theory, the Z2 zero-form symmetry arising from the discrete gauging acts trivially.
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seen in the index from the fact that if we simultaneously rescale

za → χza, a = 1, · · · , N ui → χui, i = 1, · · · , N ′ (3.107)

then the fugacity χ completely disappears from the matrix integral since χ is a square

root of unity χ = eiπn with n = 0, 1. What is crucial for this to happen is that the CS

level of the SO(2N + 1)2k group is even.24 This observation leads us to conclude that

the Z2 one-form symmetry of the O(2N + 1)2 × USp(2N)−1 theory also acts trivially

on the spectrum of line operators. Since we can obtain the theories in the second

line of (3.103) from those in the first line by gauging the Z[1]
2 one-from symmetry

in the latter, from the perspective of the U(N + 1)4 × U(N)−4 theory, such gauging

removes from the spectrum Wilson lines in representations that are not multiple of

2 of (N + 1,N). We thus conjecture that there exist only the Wilson lines in the

representation ((N + 1)2m,N2m), with m ≥ 1, in the spectrum of this theory, and so

the action of such a Z[1]
2 one-form symmetry is trivial. We leave the verification of this

statement to future work.

As a final remark, we see that the four theories in (3.103) seem to be dual to each

other, even though the Z2 one-form symmetry seems to be present in the theories in

the first line of (3.103), but not in the theories in second line. One might ask if there

exists a topological field theory that provides the Z2 one-form symmetry in the former.

The answer seems to be no. This is in contrast with, for example, the duality appetiser

[15], which is a duality between the 3d N = 2 SU(2)1 gauge theory with one adjoint

chiral multiplet and a free chiral multiplet together with a topological quantum field

theory (TQFT) given by U(1)−2. Indeed, the SU(2)1 gauge theory has a Z2 one-form

symmetry (as it can be seen from the centre of the gauge group), whereas the theory of a

free chiral multiplet does not have any one-form symmetry; in this case the Z2 one-form

symmetry is provided by the TQFT U(1)−2. The latter can be detected by the index by

turning on an appropriate background magnetic flux, which is the one associated with

the U(1) flavour symmetry, as we demonstrate in Appendix B. However, upon turning

on background magnetic fluxes for the theories on the first line of (3.103), we are not

able to detect the presence of the TQFT that supports the Z2 one-form symmetry. We

thus conclude that such a symmetry acts trivially on the spectrum of the line operators.

Let us report the index of the theories (3.103) when N = 1. It turns out that,

up to order x2, those of the unitary theories are given by (3.83), and those of the

orthosymplectic theories are given by (3.84). Note, however, that from order x5 onwards,

24Indeed, if we consider the index of SO(2N + 1)2k+1 ×USp(2N ′)k′ , the CS factor
∏N
a=1 z

(2k+1)ma
a

would produce odd powers of χ after the shift (3.107), thus leaving a non-trivial χ dependence.
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they are different; see [3, Table 1] for the unrefined indices of these theories:

(3.103)N=1 : 1 + 4x+ 12x2 + 8x3 + 27x4 + 32x5 + . . .

(3.86) : 1 + 4x+ 12x2 + 8x3 + 27x4 + 36x5 + . . .
(3.108)

As a final remark, we also observe that the circular quivers SO(3)2 × USp(2)−1 ×
SO(3)2×USp(2)−1 and O(3)2×USp(2)−1×O(3)2×USp(2)−1 have the same indices;

up to order x2, they are

1 + x2
[
(ζ1 + ζ2 + ζ1ζ2 + 2)χ

SU(2)
[4] (f) + ζ1ζ2 + 1

− (ζ1 + ζ2 + ζ1ζ2 + 2)χ
SU(2)
[2] (f)

]
+ . . . ,

(3.109)

where ζ1,2 are fugacities for the magnetic symmetry of the (special)orthogonal gauge

groups. For the theory with special orthogonal gauge groups, the index does not depend

on the fugacity for the charge conjugation symmetry. For reference, we report the

unrefined index up to order x4 as follows:

1 + 12x2 + 4x4 + . . . . (3.110)

4 Conclusions and outlook

We have obtained several new dualities between ABJ and related theories, with at least

N = 6 supersymmetry, by gauging zero-form or one-form symmetries. We analysed in

details the symmetries of these theories and how they are mapped across each duality,

paying particular attention on the discrete symmetries. This result is also generalised

to a circular quiver with alternating SO(2)2 and USp(2)−1 gauge groups and a discrete

Z2 quotient.

There are several interesting directions for further study. First, it would be in-

teresting to generalise these results to theories with orthosymplectic gauge groups

with N = 5 supersymmetry, as well as more general U(N + x)k × U(N)−k and

[U(N + x)k × U(N)−k]/Zp theories with N = 6 supersymmetry. Moreover, regard-

ing the duality involving the circular quivers, it would be nice to find the analog for the

higher ranks theories, such as those involving SO(2N)2 and USp(2N)−1 gauge groups.

Instead, for the theories involving odd orthogonal and symplectic gauge groups, we

observed that certain symmetries act trivially on the spectrum of the theories. It would

be nice to check and understand this further. It would also be interesting to work out

the gravity duals of the theories studied in this paper and understand the dualities

from this perspective.
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One last appealing line of possible future investigation would be to analyse along the

lines of what was done in this paper possible generalised symmetries of 3dN = 2 SCFTs

arising from compactification of 5d N = 1 SCFTs on Riemann surfaces with fluxes

for the global symmetries, a construction that was recently studied in [39, 40]. Various

results have been found for generalised symmetries of 5d SCFTs using both field theory

and geometric engineering methods, see for example [41–47], and it would be interesting

to investigate their imprint on the 3d theories resulting from the compactification.25
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A 3d supersymmetric index conventions

In this appendix we summarise our conventions for the 3d supersymmetric index [7–12]

(which coincides with the superconformal index when computed with the superconfor-

mal R-charge). This index can be expressed with the following integral form:

I({µ,n}) =
∑
m

1

|Wm|

∮
TrkG

rkG∏
i=1

dza
2πiza

Zcl({z,m})Zvec({z,m})Zmat({z,m}; {µ,n}) ,

(A.1)

where we denoted by z the gauge fugacities and by m the corresponding magnetic

fluxes. The integration contour is taken to be the unit circle T for each integration

variable and the prefactor |Wm| is the dimension of the Weyl group of the residual gauge

symmetry in the monopole background labelled by the configuration of magnetic fluxes

m. We also use {µ,n} to denote possible fugacities and fluxes for global symmetries,

respectively. In the following we discuss the different contributions to the integrand of

(A.1) in some details.

The factor Zcl denotes the classical contributions, which can consist of Chern–

Simons interactions and, when the gauge group contains some abelian factor, FI inter-

25See also [13] for a discussion on higher form symmetries of 3d N = 1, 2 theories arising from the

compactification of 6d (2, 0) SCFTs on 3-manifolds.
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actions. For example, for a U(N) gauge group it takes the form

ZU(N)
cl ({z,m}) =

N∏
a=1

zkmaa wma , (A.2)

where k is the CS level and w is the fugacity associated with the U(1)
[0]
w zero-form topo-

logical symmetry. In the main text we consider also USp(2N), SO(2N) and SO(2N+1)

gauge groups, for which we use a different normalisation of the CS level and the topo-

logical symmetry is either discrete or absent:

ZUSp(2N)
cl ({z,m}) =

N∏
a=1

z2kma
a

ZSO(2N+ε)
cl ({z,m}) =

N∏
a=1

z2kma
a ζma , (A.3)

where for compactness we denoted SO(2N + ε) for ε = 0, 1. Moreover, ζ is the fugacity

for the zero-form topological symmetry, which is U(1)
[0]
ζ for SO(2) ∼= U(1), while it is a

(Z[0]
2 )ζ for SO(2N) and SO(2N+1) with N > 1 so in these cases we have the condition

ζ2 = 1.

The factor Zvec denotes the contribution of 3d N = 2 vector multiplets, which

takes the following generic form:

Zvec({z,m}) =
∏

α∈Lie(G)

x−
|α(m)|

2 (1− (−1)α(m)zαx|α(m)|) , (A.4)

where α are roots in the gauge algebra Lie(G) and we are using the short-hand notations

zα =
rkG∏
a=1

zαaa , α(m) =
rkG∑
a=1

αama, |α(m)| =
rkG∑
a=1

αama . (A.5)

Explicitly for the groups of interest in this paper we have

ZU(N)
vec ({z,m}) =

N∏
a<b

x−|ma−mb|(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|)

ZUSp(2N)
vec ({z,m}) =

N∏
a=1

x−2|ma|(1− (−1)2maz2
ax

2|ma|)(1− (−1)2maz−2
a x2|ma|)

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)
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× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|)

ZSO(2N+ε)
vec ({z,m}, χ = +1) =

(
N∏
a=1

x−|ma|(1− (−1)mazax
|ma|)(1− (−1)maz−1

a x|ma|)

)ε

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) , (A.6)

where again ε = 0, 1. Remember that for SO(2N + ε) we also have a discrete zero-

form charge conjugation symmetry (Z[0]
2 )C whose corresponding fugacity in the index

we denote by χ. The above expressions hold for χ = +1, while for χ = −1 we have

[34, 48, 49]

ZSO(2N)
vec ({z,m};χ = −1) =

N−1∏
a=1

x−2|ma|(1− (−1)2maz2
ax

2|ma|)(1− (−1)2maz−2
a x2|ma|)

×
N−1∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) , (A.7)

ZSO(2N+1)
vec ({z,m};χ = −1) =

(
N∏
a=1

x−|ma|(1 + (−1)mazax
|ma|)(1 + (−1)maz−1

a x|ma|)

)ε

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) . (A.8)

In particular, the expression for χ = −1 in the SO(2N) case is obtained by setting

zN = 1, z−1
N = −1 and mN = 0 in the one for χ = +1,26 while the expression for generic

26Notice that such replacement is not possible when ma are all half-integer fluxes, which is what

happens when we take the gauge group (so not just the Lie algebra) to be SO(2N)/Z2. In other words,

for SO(2N)/Z2 there is no χ = −1 sector and the (Z[0]
2 )C charge conjugation symmetry acts trivially.
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χ in the SO(2N + 1) can also be written compactly as

ZSO(2N+1)
vec ({z,m};χ) =

N∏
a=1

x−|ma|(1− (−1)maχzax
|ma|)(1− (−1)maχz−1

a x|ma|)

×
N∏
a<b

x−|ma+mb|−|ma−mb| × (1− (−1)ma+mbzazbx
|ma+mb|)

× (1− (−1)ma−mbz−1
a z−1

b x|ma−mb|)(1− (−1)ma−mbzaz
−1
b x|ma−mb|)

× (1− (−1)ma−mbz−1
a zbx

|ma−mb|) . (A.9)

Finally, we have the contribution of matter fields which come into 3d N = 2 chiral

multiplets. The contribution of a chiral with R-charge r and transforming under a U(1)

symmetry with fugacity and flux z and m respectively is

Zchir(z;m;R) = (x1−Rz−1)|m|/2
∞∏
j=0

1− (−1)mz−1x|m|+2−R+2j

1− (−1)mzx|m|−R+2j
. (A.10)

The full contribution to the index of a set of chirals forming some representation R

and RF of the gauge and the flavour symmetry respectively and with R-charge r is

Zmat({z,m}; {µ,n}) =
∏
ρ∈R

∏
ρF∈RF

Zchir(z
ρµρF ; ρ(m) + ρF (n); r) , (A.11)

where ρ and ρF are the weights of R and RF respectively. Notice that a chiral in the

adjoint representation of the gauge group and with R-charge 1 gives a trivial contri-

bution to the index, so that the index factor for a 3d N = 4 vector multiplet actually

coincides with the one of an N = 2 vector multiplet (A.4). Other examples of matter

fields that we encountered in the main text are 3d N = 4 hypers in the bifundamental

of U(N)× U(M)

ZU(N)×U(M)
mat ({z,m}; {µ,n}) =

N∏
a=1

M∏
b=1

Zchir(za/wb;m
(1)
a −m

(2)
b ; 1/2)

×Zchir(wa/zb;m
(2)
a −m

(1)
b ; 1/2) (A.12)

and hypers in the bifundamental of SO(2N + ε)× USp(2M) for ε = 0, 1

ZSO(2N+ε)×USp(2N)
mat ({z,m}; {µ,n};χ = +1) =

=

(
M∏
b=1

Zchir(1/wb;−m(2)
b ; 1/2)Zchir(wb;m

(2)
b ; 1/2)

)ε
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×
N∏
a=1

M∏
b=1

Zchir(zawb;m
(1)
a +m

(2)
b ; 1/2)Zchir(za/wb;m

(1)
a −m

(2)
b ; 1/2)

×Zchir(wa/zb;m
(2)
a −m

(1)
b ; 1/2)Zchir(1/zawb;−m(1)

a −m
(2)
b ; 1/2) ,

(A.13)

where zare the fugacities of the left node and w those of the right node. The last

expression holds again only for χ = +1. The correct contribution for χ = −1 in the

case ε = 0 is obtained by setting zN = 1, z−1
N = −1 and mN = 0, while when ε = 1 we

have the compact expression for generic χ

ZSO(2N+1)×USp(2N)
mat ({z,m}; {µ,n};χ) =

=
M∏
b=1

(
Zchir(χ/wb;−m(2)

b ; 1/2)Zchir(χwb;m
(2)
b ; 1/2)

)ε
×

N∏
a=1

M∏
b=1

Zchir(zawb;m
(1)
a +m

(2)
b ; 1/2)Zchir(za/wb;m

(1)
a −m

(2)
b ; 1/2)

×Zchir(wa/zb;m
(2)
a −m

(1)
b ; 1/2)Zchir(1/zawb;−m(1)

a −m
(2)
b ; 1/2) .

(A.14)

B Topological sectors and indices: the example of the duality

appetiser

In Section 3.7 we mentioned that the 3d index can be useful for detecting the presence of

topological sectors in a theory. In this appendix we give some details of this for the case

of the duality appetiser of [15]. This is a duality which relates an SU(2)1 gauge theory

with one adjoint chiral to the product theory of a free chiral multiplet plus a topological

sector consisting of a U(1)−2 TQFT. The topological sector was detected in [15] using

the S3 partition function, where it was observed that the U(1)f symmetry acting on

the adjoint chiral on the SU(2)1 side of the duality is mapped to a combination of the

R-symmetry and the topological symmetry of the U(1)−2 TQFT on the dual side. The

topological sector can actually be detected also in the index by turning on a background

magnetic flux mf for the U(1)f symmetry. The duality is indeed represented by the

following identity of indices:

1

2

+∞∑
m=−∞

∮
dz

2πiz
z2mx−2m(1− x2mz±2)(f 2xRΦ−1)−|mf |

(f−2 x2−RΦ+|2mf |;x2)∞
(f 2 xRΦ+|2mf |;x2)∞

× (z±2f 2xRΦ−1)−|±m+mf | (z
∓2 f−2 x2−RΦ+|∓2m+2mf |;x2)∞
(z±2 f 2 xRΦ+|±2m+2mf |;x2)∞

=
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= (f 4x2RΦ−1)−|2mf |
(f−4 x2−2RΦ+|4mf |;x2)∞

(f 4 x2RΦ+|4mf |;x2)∞

+∞∑
m=−∞

∮
dz

2πiz
z2m+2mf

(
xRΦ+1f 2

)m
,

(B.1)

where f , mf are the fugacity and the flux for the U(1)f global symmetry and RΦ is the

R-charge of the adjoint chiral field. The identity holds provided that the background

flux is quantised as mf ∈ Z and for generic values of f and RΦ. Notice that the map

between the U(1)f symmetry acting on Φ and the topological symmetry of the TQFT

is compatible with the one found in [15] at the level of the S3 partition function. The

prefactor to the integral on the right hand side is the index of the free chiral, while the

remaining integral is the index of the U(1)−2 TQFT, which evaluates to

+∞∑
m=−∞

∮
dz

2πiz
z2m+2mf

(
xRΦ+1f 2

)m
=
(
xRΦ+1f 2

)−mf (B.2)

and, as we anticipated, is trivial if we turn off the background magnetic flux mf = 0,

while it is non-trivial if we take mf ∈ Z6=0. In other words, the topological sector is

detectable by the index provided that we introduce such background flux.

The identity (B.1) can be tested by perturbatively expanding both sides in x.

Taking RΦ = 1
4
, which is the value corresponding to the superconformal R-symmetry

[15], we find that the indices of both of the dual theories are for mf = 0

Imf=0 = 1 + f 4x
1
2 +

(
f 12 − f−4

)
x

3
2 + f 8x+ (f 16 − 1)x2 + f 20x

5
2 + f 24x3+

+
(
f 28 − f−4

)
x

7
2 + (f 32 − 2)x4 +

(
f 36 − f 4

)
x

9
2 +

(
f 40 + f−8

)
x5+

+ f 44x
11
2 + (f 48 − 2)x6 +O

(
x

13
2

)
, (B.3)

which is the same result that was found in eq. (9) of [15]. Notice that −1 at order

x2, which represents the fermionic superpartner of the U(1)f conserved current. For

non-trivial mf we find that the two indices still match and that the topological sector

(B.2) is crucial for the matching. For example for mf = 1 we get

Imf=±1 = f−10x−
1
4 + f−6x

17
4 − f−14x

21
4 +O

(
x

25
4

)
, (B.4)

but we also checked (B.1) for several other values of mf and RΦ.
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