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Abstract. This paper is devoted to settle two still open problems, connected

with the existence of ample and nef divisors on a Q–factorial complete toric
variety. The first problem is about the existence of ample divisors when the

Picard number is 2: we give a positive answer to this question, by studying

the secondary fan by means of Z–linear Gale duality. The second problem is
about the minimum value of the Picard number allowing the vanishing of the

Nef cone: we present a 3–dimensional example showing that this value cannot

be greater then 3, which, under the previous result, is also the minimum value
guaranteeing the existence of non–projective examples.
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Introduction

It is classically well known that a complete toric variety of dimension ≤ 2 is
projective [8, § 8, Prop. 8.1]. For higher dimension this fact is not true, as shown
by lot of counterexamples, the first of which was given by M. Demazure [5]. For
smooth complete toric varieties, P. Kleinschmidt and B. Sturmfels [7] proved that
for Picard number (in the following also called the rank) r ≤ 3 they are projective
in every dimension. This result cannot be extended to higher values of the rank,
as shown by a famous example given in Oda’s book [9, p.84]: this is a smooth
complete 3–dimensional toric variety X of rank r = 4, such that dim(Nef(X)) = 2
inside Cl(X)⊗R ∼= R4: therefore X admits non–trivial numerically effective classes
(among which the anti–canonical one) but does not admit any ample class.
When dropping the smoothness hypothesis, Kleinschmidt–Sturmfels bound does
no longer hold even for Q–factorial singularities: a counterexample has been given
by F. Berchtold and J. Hausen [2, Ex. 10.2] who produced a Q–factorial complete
3–dimensional toric variety X of rank r = 3 such that Nef(X) is a 1–dimensional
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cone generated by the anti–canonical class. This example is essentially produced
by suppressing a fan generator in the Oda’s example (see Remark 3.1).
Nevertheless, a Q–factorial complete toric variety of rank r = 1 is always projective
as a quotient of a weighed projective space (so called a fake WPS) [3], [1]. It is
then natural to ask what happens for r = 2: surprisingly, the current literature
does not seem to give any answer to this question, at least as far as we know. The
first and main result we are going to present in this paper is a extension of the
Kleinschmidt–Sturmfels result to Q–factorial setup, by decreasing the bound on
the rank r, namely

Theorem 2.2 Every Q–factorial complete toric variety of Picard number r ≤ 2 is
projective.

Our proof is essentially obtained by generalizing a Berchtold–Hausen’s argument
proving the last part of [2, Prop. 10.1], by means of Z–linear Gale duality, as deve-
loped in [10] and [11]. In fact Z–linear Gale duality allows us to observe the general
fact, summarized by Lemma 1.2, about the mutual position of pairs of cones Gale
dually associated with pairs of maximal cones of the fan admitting a common facet.
When the rank is 2, Lemma 1.2 gives rise to strong consequences proving Theorem
2.2. This proof turns out to be very easy and we believe this is a further reason of
interest.

A second result of the present paper is proposed in the last section § 3, by exhi-
biting an example of Q–factorial complete and non–projective 3–dimensional toric
variety X with rank r = 3 and not admitting any non–trivial numerically effective
divisor i.e. such that Nef(X) = 0. More precisely, Theorem 2.2 implies that

(1) Nef(X) = 0 ⇒ r ≥ 3 .

Example given in § 3 then shows that condition (1) is sharp. Actually this is not a
new example. In fact O. Fujino and S. Payne proved that Nef(X) = 0 ⇒ r ≥ 5, for
a smooth and complete toric 3–fold X [6]: their Example 1 is obtained by blowing
up a complete toric variety which turns out to be isomorphic to the one given in
§ 3. This example jointly with Theorem 2.2 allows us to conclude the sharpness of
condition (1), which is a new result. Let us finally notice that this example can
be produced by breaking the symmetry of the above mentioned Berchtold–Hausen
example, just deforming one generator of the effective cone Eff(X) inside Cl(X)⊗R.
For more details see Remark 3.1.

1. A general Lemma for arbitrary Picard number

In the present paper we deal with Q–factorial complete toric varieties associated
with simplicial and complete fans. For preliminaries and used notation on toric
varieties we refer the reader to [10, § 1.1] and [11, §1]. We will also apply Z–linear
Gale duality as developed in [10, § 3]. Each time the needed nomenclature will be
recalled either directly by giving the necessary definition or by reporting the precise
reference.

Let X(Σ) be a Q–factorial complete toric variety of dimension n and Picard
number r := rk(Pic(X)) (in the following also called the rank of X, r = rk(X)).
Then Σ is a rational, simplicial and complete fan in NR := N ⊗ R, where N is the
dual of the group of characters of the acting torus T ∼= (C∗)n. Its 1–skeleton is given
by Σ(1) = {〈v1〉, . . . , 〈vn+r〉}, where vi ∈ N is a generator of the monoid associated
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with the corresponding ray 〈vi〉. The n× (n+r) integer matrix V = (v1, . . . ,vn+r)
will be called a fan matrix of X and it turns out to be a reduced F–matrix, in the
sense of [10, Def. 3.10] and [11, Def. 1.2].

In the following, given a d × m integer matrix A ∈ M(d,m;Z) and a subset
I ⊆ {1, . . . ,m}, AI will denote the submatrix of A given by the columns indexed
by I, and AI will denote the submatrix of A whose columns are indexed by the
complementary subset {1, . . . ,m}\I.

A maximal cone σ ∈ Σ(n) can be identified with a maximal rank n×n submatrix
VJ = V I of the fan matrix V , assigned by all the columns of V generating some
ray in the 1-skeleton σ(1) of σ: in particular J = {j1, . . . , jn} ⊂ {1, . . . , n + r}
denotes the position of those columns inside V , while I = {1, . . . , n+ r} \ J is the
complementary subset. We will also write σ = σJ = 〈VJ〉 = 〈V I〉 = σI .

Let Q = (q1, . . . ,qn+r) be a maximal rank r × (n + r) Gale dual matrix of V
i.e. such that Q · V T = 0 [10, § 3.1], where V T denotes the transposed matrix of
V . Define the following set of dual cones inside F rR = Cl(X)⊗ R:

BΣ := {〈QI〉 ⊆ F rR | 〈V I〉 ∈ Σ(n)}

where 〈QI〉 is the cone generated by the columns of the submatrix QI . BΣ turns
out to be a bunch of cones in the sense of [2] (see also [4, p. 738]). In particular

Theorem 1.1. [4, Prop.15.2.1(c)] In the above notation, the Kähler cone of the
Q–factorial complete toric variety X(Σ) is given by

Nef(X) = γ :=
⋂
β∈BΣ

β .

In particular X is projective if and only dim(γ) = r.

Let us set

IΣ = {I ⊂ {1, . . . , n+ r} | 〈V I〉 ∈ Σ(n)} = {I ⊂ {1, . . . , n+ r} | 〈QI〉 ∈ BΣ} .

Then we get the following:

Lemma 1.2. With the notation introduced above:

a) if I ∈ IΣ then for every j 6∈ I there exists a unique k ∈ I such that

(2) I ′ = (I \ {k}) ∪ {j} ∈ IΣ

b) let I, I ′ be as in part a): then the vectors qj and qk lie on the same side
with respect to the hyperplane H ⊂ FR generated by {qi | i ∈ I \ {k}}.

Proof. a) This is the dual assertion of the fact that every facet of Σ belongs to
exactly two maximal cones of Σ. Since j 6∈ I, vj ∈ 〈V I〉. Then the facet τ of 〈V I〉
opposite to vj belongs to exactly one other maximal cone 〈V I′〉. If vk is the vector

opposite to τ in 〈V I′〉 then (2) holds.

b) Let L ⊂ NR be the hyperplane supporting the common face τ = 〈V I〉∩〈V I′〉:
it is generated by vectors vt , t 6∈ I ∪ {j}. Since vj and vk lie on opposite sides of
L, the cone generated by vj and vk intersects L giving a relation

(3) λjvj + λkvk =
∑

t6∈I∪{j}

λtvt
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Figure 1. Cones of the bunch BΣ as in Lemma 2.1.b)

such that λj , λk > 0. Therefore in the sublattice Lr(Q) ⊆ Zn+r, spanned by the
rows of Q, there is a vector having positive entries at places j and k and 0 at places
in I \ {k}. It corresponds to a vector

n ∈ Rr = Hom(Cl(X),R)) : ∀ i ∈ I \ {k} n · qi = 0 and n · qj > 0 , n · qk > 0

which is clearly a normal vector to the hyperplane H ⊂ F rR. �

Example 1.3. To better understand the argument proving Lemma 1.2 it may be of
some help considering the easy example given by X = P1 × P1. A fan matrix V of
X and a Gale dual Q of V are the following

V = (v1,v2,v3,v4) =

(
1 −1 0 0
0 0 1 −1

)
⇒ Q =

(
1 1 0 0
0 0 1 1

)
.

In this case IΣ = {{2, 4}, {1, 4}, {1, 3}, {2, 3}} and part a) is clear. Let us now
consider the two maximal cones 〈v1,v3〉 =

〈
V {2,4}

〉
and 〈v2,v3〉 =

〈
V {1,4}

〉
, whose

common facet is given by τ = 〈v3〉. In the notation of Lemma 1.2 one has I =
{2, 4}, I ′ = {1, 4}, j = 1, k = 2: the argument proving part b) gives t = 3 and
relation (3) is given by

1 · v1 + 1 · v2 = 0 · v3 ⇒ λ1 = λ2 = 1 > 0 .

The associated vector in Lr(Q) turns out to be the first row of Q, hence giving
n = q1 = q2 = (1 0)T lying on the same side with respect to the hyperplane (i.e.
the line) H spanned by the fourth column q4 = (0 1)T of Q.

2. The case of Picard number r = 2

Given a simplicial and complete fan Σ, if r = 2 then |I| = 2 for every I ∈ IΣ.
The following is a direct application of Lemma 1.2.

Lemma 2.1. Let p,q, r be three distinct vectors giving as many columns of Q,
such that 〈p,q〉 ∈ BΣ.

a) exactly one between 〈p, r〉 and 〈q, r〉 is in BΣ.
b) if p ∈ 〈q, r〉 then 〈q, r〉 ∈ BΣ and 〈p, r〉 6∈ BΣ.
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Figure 2. Cones of the bunch BΣ as in Theorem 2.2

Proof. a) This is a direct consequence of Lemma 1.2.a) by setting QI = 〈p,q〉 and
qj = r.

b) If p ∈ 〈q, r〉 then r /∈ 〈p,q〉 (see Fig. 1). By a) exactly one between 〈p, r〉
and 〈q, r〉 belongs to BΣ and either QI′ = 〈p, r〉 or QI′ = 〈q, r〉. By Lemma 1.2.b)
the former cannot occur, meaning that QI′ = 〈q, r〉 ∈ BΣ. �

We are now in a position to prove the main result of the present paper.

Theorem 2.2. Every Q-factorial complete toric variety with Picard number r = 2
is projective.

Proof. Consider a cone 〈p,q〉 ∈ BΣ. If there exists a further column r of Q such
that r ∈ Relint(〈p,q〉) then Lemma 2.1.a) ensures that either 〈p, r〉 or 〈q, r〉 belongs
to BΣ. Then, by repeatedly applying Lemma 2.1.a), we get a minimal cone γ ∈ BΣ,
in the sense that there are no columns of Q in Relint(γ).
We can then assume γ = 〈p,q〉 ∈ BΣ is a minimal chamber: we claim that γ is
contained in every cone β ∈ BΣ.
In fact, if one of p,q is a ray of β then, up to renaming p and q, we can assume
β = 〈q, r〉. Lemma 1.2.b) guarantees that either p ∈ β and we are done or r ∈ γ,
against the minimality of γ. Then we can assume β = 〈r, s〉, with {p,q} 6= {r, s}.
Assume γ 6⊂ β. By the minimality of γ, the cone generated by p,q, r, s has a ray
in {p,q} and a ray in {r, s}. We may then assume p, s ∈ 〈q, r〉, as in Fig. 2.
Consider the three vectors q,p, s: since γ = 〈p,q〉 ∈ BΣ and p ∈ 〈q, s〉, Lemma
2.1.b) ensures that 〈q, s〉 ∈ BΣ. Finally consider the three vectors q, s, r: since both
〈q, s〉 and β = 〈r, s〉 belong to BΣ we get a contradiction with Lemma 1.2.b).
Then, recalling Theorem 1.1, Nef(X(Σ)) =

⋂
β∈BΣ

β = γ is a 2–dimensional cone,
meaning that X is projective. �

3. A 3–dimensional counterexample with r = 3

In this section we are going to exhibit an example of a 3–dimensional Q–factorial
complete toric variety X of Picard number r = 3 not admitting any non–trivial
numerically effective divisor i.e. such that Nef(X) = 0. Therefore such an example
is significant for at least two reasons:
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• it gives a sharp counterexample to the question if Theorem 2.2 is holding
for higher values of r: in this sense it does not say nothing new with respect
to the Berchtold–Hausen example [2, Ex. 10.2];
• for smooth complete toric 3–folds O. Fujino and S. Payne [6] proved that

if Nef(X) = 0 then r ≥ 5 : their Example 1 is produced by performing
a double divisorial blow up of a complete toric variety which turns out to
be isomorphic to the one we are going to present, showing that this last
inequality does no longer hold when the smoothness hypothesis is replaced
by the Q–factorial one, actually giving the sharpness of condition (1) in the
introduction.

Let us start by considering the following positive W–matrix [10, Def. 3.9], [11,
Def. 1.4] in row echelon form

Q :=

 1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 2 1 1


The cone Q = 〈Q〉 spanned by its columns gives the effective cone Eff(X) of a
Q–factorial complete 3–dimensional toric variety X of Picard number r = 3 whose
fan matrix is given by a Gale dual F–matrix V of Q [10, Def. 3.10], [11, Def. 1.2]
e.g.

V =

 1 0 0 0 −1 1
0 1 0 −1 −1 3
0 0 1 −1 0 2

 .

This fan matrix can support 8 different rational, simplicial and complete fans
whose 1–skeletons coincide with the rays spanned by all the columns of V , namely
SF(V ) = {Σi | 1 ≤ i ≤ 8} [10, Def. 1.3] with

Σ1 = {〈3, 4, 5〉, 〈2, 4, 5〉, 〈2, 3, 5〉, 〈1, 3, 4〉, 〈1, 2, 4〉, 〈2, 3, 6〉, 〈1, 3, 6〉, 〈1, 2, 6〉}
Σ2 = {〈2, 4, 5〉, 〈1, 4, 5〉, 〈1, 3, 5〉, 〈3, 5, 6〉, 〈2, 5, 6〉, 〈1, 2, 4〉, 〈1, 3, 6〉, 〈1, 2, 6〉}
Σ3 = {〈2, 4, 5〉, 〈1, 4, 5〉, 〈1, 3, 5〉, 〈3, 5, 6〉, 〈2, 5, 6〉, 〈2, 4, 6〉, 〈1, 4, 6〉, 〈1, 3, 6〉}
Σ4 = {〈2, 4, 5〉, 〈2, 3, 5〉, 〈1, 4, 5〉, 〈1, 3, 5〉, 〈1, 2, 4〉, 〈2, 3, 6〉, 〈1, 3, 6〉, 〈1, 2, 6〉}
Σ5 = {〈3, 4, 5〉, 〈2, 4, 5〉, 〈3, 5, 6〉, 〈2, 5, 6〉, 〈1, 3, 4〉, 〈2, 4, 6〉, 〈1, 4, 6〉, 〈1, 3, 6〉}
Σ6 = {〈3, 4, 5〉, 〈2, 4, 5〉, 〈2, 3, 5〉, 〈1, 3, 4〉, 〈2, 4, 6〉, 〈2, 3, 6〉, 〈1, 4, 6〉, 〈1, 3, 6〉}
Σ7 = {〈3, 4, 5〉, 〈2, 4, 5〉, 〈3, 5, 6〉, 〈2, 5, 6〉, 〈1, 3, 4〉, 〈1, 2, 4〉, 〈1, 3, 6〉, 〈1, 2, 6〉}
Σ8 = {〈2, 4, 5〉, 〈2, 3, 5〉, 〈1, 4, 5〉, 〈1, 3, 5〉, 〈2, 4, 6〉, 〈2, 3, 6〉, 〈1, 4, 6〉, 〈1, 3, 6〉}

where 〈i, j, k〉 denotes the cone spanned in NR by i–th, j–th and k–the columns
of the fan V . Fans Σi, for 1 ≤ i ≤ 7, give rise to projective toric varieties, each
of them being associated with a full dimensional chamber inside the Moving cone
Mov(V ) ⊆ Q of X, which actually depends on the 1–skeleton of the fan, only, i.e.
on the columns of V : the situation is represented in Fig. 3, by cutting out the
positive orthant F 3

+ = Q, inside F 3
R, with the hyperplane x1 + x2 + x3 = 1. On

the contrary the last fan Σ8 does not give rise to a projective toric variety since its
Gale dual bunch of cones is given by

BΣ8 = {〈1, 3, 6〉, 〈1, 4, 6〉, 〈2, 3, 6〉, 〈2, 4, 6〉, 〈1, 3, 5〉, 〈1, 4, 5〉, 〈2, 3, 5〉, 〈2, 4, 5〉}

where now 〈i, j, k〉 denotes the cone spanned in F 3
R by i–th, j–th and k–the columns

of the weight matrix Q. One can easily check that the intersection of all the cones
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Figure 3. The section of the effective divisors cone Q = F 3
+ with the

plane x1 + x2 + x3 = 1.

in the bunch BΣ8
is trivial, hence giving

Nef(X(Σ8)) =
⋂

β∈BΣ8

β = 0 .

For sake of completeness, let us finally observe that, using technics like those given in
[12, Thm. 4], one can check that the anti-canonical class lies on the wall separating
chamber 2 and 7 in Fig. 3: in particular none of the fans in SF(V ) give a Gorenstien
toric varieties but X(Σ2) and X(Σ7) are weak Q-Fano toric varieties.

Remark 3.1. The previous example has been obtained by deforming the Berchtold–
Hausen example [2, Ex. 10.2] in the following sense. The latter can be obtained as
above, by starting from the weight matrix

QBH :=

 1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 1 1 1

 ⇒ VBH =

 1 0 0 0 −1 1
0 1 0 −1 −1 2
0 0 1 −1 0 1


Also in this case we obtain 8 rational, simplicial and complete fans whose fan

matrix is VBH , given by the 23 possible subdivision of the three quadrangular faces
of the prism whose vertexes are given by the columns of VBH (see Fig. 5). But only
6 of them give rise to projective varieties, while the remaining 2 fans originates
two distinct complete and non–projective Q–factorial 3–dimensional varieties of
Picard number 3. The situation is represented in Fig. 5 and Gale dually in Fig. 4.
Explicitly the two non–projective fans are the following:

Σ = {〈2, 4, 5〉, 〈2, 3, 5〉, 〈1, 4, 5〉, 〈1, 3, 5〉, 〈2, 4, 6〉, 〈2, 3, 6〉, 〈1, 4, 6〉, 〈1, 3, 6〉}
Σ′ = {〈3, 4, 5〉, 〈2, 4, 5〉, 〈3, 5, 6〉, 〈2, 5, 6〉, 〈1, 3, 4〉, 〈1, 2, 4〉, 〈1, 3, 6〉, 〈1, 2, 6〉}

whose Gale dual bunches are given by

B = {〈1, 3, 6〉, 〈1, 4, 6〉, 〈2, 3, 6〉, 〈2, 4, 6〉, 〈1, 3, 5〉, 〈1, 4, 5〉, 〈2, 3, 5〉, 〈2, 4, 5〉}
B′ = {〈1, 2, 6〉, 〈1, 3, 6〉, 〈1, 2, 4〉, 〈1, 3, 4〉, 〈2, 5, 6〉, 〈3, 5, 6〉, 〈2, 4, 5〉, 〈3, 4, 5〉} .
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Figure 4. The section of the effective divisors cone QBH = F 3
+, in [2,

Ex. 10.2], with the plane x1 + x2 + x3 = 1.

Looking at Fig. 4, one can easily check that

Nef(X) =
⋂
β∈B

β =

〈 1
1
1

〉
=
⋂
β′∈B′

β′ = Nef(X ′) ,

giving the 1–dimensional cone generated by the class

〈
3
3
3

〉
of the anti–canonical

divisor.
Fig. 4 explains as the anti-canonical class lies on the intersection of all the chambers,
so giving that every fan in SF(VBH) gives a non-Gorestein weak Q-Fano toric
variety.

The two fans Σ and Σ′ corresponds to symmetric subdivisions of the three quad-
rangular faces of the prism generated by the columns of V (see Fig. 5). Such a
symmetry is Gale dually reflected by the position of the anti–canonical class with
respect the subdivision of Mov(VBH) giving the secondary fan. More precisely,
Fig. 4 clearly shows that Mov(VBH) and the secondary fan turn out to be invariant
under the action of the three symmetries with respect to the three axis of the tri-
angle representing the section of Q = F 3

+ with the plane x1 + x2 + x3 = 1, i.e. the
symmetries of F 3

R with respect to the three planes supporting the 2–dimensional
cones 〈1, 4〉, 〈2, 6〉 and 〈3, 5〉. These symmetries correspond to permutations on
the columns of the weight matrix Q given by (2 5)(3 6), (1 3)(4 5) and (1 6)(2 4),
respectively. Notice that bunches B and B′ are related each other by every one
of those permutations. Geometrically this means that X and X ′ are related by
a bi–meromorphic map, still called a flip, given by the contraction of three facets
of the fan, namely the closures of torus orbits O(〈2, 3〉), O(〈1, 5〉) and O(〈4, 6〉),
followed by the small resolution whose exceptional locus is given by the union of
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Figure 5. The two symmetric subdivisions of the prism, whose vertexes
are given by the columns of V , and giving rise to two distinct and
bi–meromorphic Q–factorial complete and non–projective toric varieties
X(Σ) and X(Σ′), respectively. The former is that given by [2, Ex. 10.2].
Notice that all the possible fans in SF(V ) are given by the 23 possible
subdivisions of the quadrangular faces.

the symmetric facets O(〈5, 6〉), O(〈3, 4〉) and O(〈1, 2〉) (compare with Fig. 5). Then
X and X ′ are isomorphic in codimension 1, but not in codimension 2.

If we now consider the weight matrix

Qt :=

 1 1 0 0 1 0
0 1 1 1 0 0
0 0 0 t 1 1

 ⇒ Vt =

 1 0 0 0 −1 1
0 1 0 −1 −1 1 + t
0 0 1 −1 0 t


with t a positive integer number, we get the Berchtold–Hausen example for t = 1,
our example for t = 2 and an infinite number of distinct examples analogous to the
latter, for t > 1. If we look at the evolution of the fan Σ7, hence of the chamber 7
in Fig. 3, we get a countable family X7 → N \ {0} of Q–factorial projective toric
varieties degenerating to a non–projective complete one for t = 1.

Let us finally observe that a similar situation, although with Picard number 4,
can be observed for the Oda’s example [9, p. 84] too, from which the Berchtold–
Hausen one is obtained by suppressing a fan generator. In Oda’s notation, the
symmetric non–projective fan, with respect to the one presented in [9], can be
obtained by exchanging n2 ↔ n3 and n′2 ↔ n′3.

Acknowledgements. We would like to thank Cinzia Casagrande for helpful con-
versations and suggestions. We also thank Daniela Caldini for her contribution in
making the figures of the present paper.
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