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Martin boundaries and asymptotic behavior of
branching random walks*
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Abstract

Let G be an infinite, locally finite graph. We investigate the relation between super-
critical, transient branching random walk and the Martin boundary of its underlying
random walk. We show results regarding the typical asymptotic directions taken
by the particles, and as a consequence we find a new connection between t-Martin
boundaries and standard Martin boundaries. Moreover, given a subgraph U we study
two aspects of branching random walks on U : when the trajectories visit U infinitely
often (survival) and when they stay inside U forever (persistence). We show that there
are cases, when U is not connected, where the branching random walk almost surely
does not survive in U , but the random walk on G converges to the boundary of U with
positive probability. In contrast, the branching random walk can survive with positive
probability in U even though the random walk eventually exits U almost surely. We
provide several examples and counterexamples.
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1 Introduction

The remarkable connection between the asymptotic behavior of a random walk
(RW) on a graph and its Martin boundary is now a classical fact in the probabilistic
literature (see e.g. [16], [21], [22, Chapter IV], [23] and references therein). Since a
branching random walk (BRW) is defined using a RW transition kernel, it is natural to ask
what connections there are between the asymptotic behavior of a BRW and the Martin
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Martin boundaries and asymptotic behavior of branching random walks

boundary of the associated RW. Great interest has been given to the study of Martin
boundaries in several settings, for example, in the case of branching processes (without
transition kernel) we recall the results in [15] and [17], that study the convergence
of space-time Martin kernels. For more recent results we refer the reader to [1] and
references therein.

Lately there has been increasing interest in the study of the long-time behavior of
BRWs on graphs. Particular attention has been given to the investigation of the limiting
set of the trace, i.e. the random subgraph visited by particles of the BRW, see for example
[9], [10], and [12]. In particular, [12] shows that the number of ends of the trace of a
transient BRW on a Cayley graph of a non-amenable group is infinite.

The first works relating BRWs and Martin boundaries are [8] and [14], which point
out a connection between the Martin boundary of a RW, which we denote byM(P, 1),
and BRWs with the same transition kernel.

In this note we proceed the investigation initiated in [8] by studying the asymptotic
behavior of a supercritical and transient BRW. More precisely, on an infinite, locally
finite graph consider a BRW with transition kernel P and offspring distribution ν: each
individual lives for one unit of time and then produces a random number of offspring
according to ν; the offspring are independently dispersed according to P . We find
conditions that guarantee that there are trajectories of BRW that converge to a subset
of the Martin boundary for RW governed by P (see Theorem 1.1). We consider the
behavior of the BRW on subgraphs U . If U is “regular enough” (in a sense that will be
made precise later), we identify a phase transition in the mean m :=

∑
k≥0 kν(k), in

the following sense. We find a threshold m1(U) > 0 such that, whenever m < m1(U),
then almost surely all trajectories exit U ; whereas when m >m1(U), then with positive
probability there are trajectories that never exit U (see Corollary 1.3).

In order to state our results we need to introduce some notation.

1.1 Notation

The probability measure and the expectation of a BRW depend on the transition
kernel, the offspring distribution and the initial state of the process. To avoid confusion,
sometimes we write these dependencies explicitly. More precisely, given a transition
kernel P defined on G we denote the probability measure and expectation of the cor-
responding BRW as PP and EP respectively, unless specified otherwise. From now on,
with a slight abuse of notation, for all graphs X, by x ∈ X we mean that x is a vertex
of X. If the initial state consists of one particle at x ∈ G, then we write Px and Ex.
Furthermore, for every n ≥ 1, Bn ∈ NG corresponds to the infinite-dimensional vector
(with only finitely many non-zero entries), so that each entry in position x ∈ G gives the
number of particles of BRW that are alive at x at time n. In this paper we frequently deal
with RWs as well. Although it is possible to assume that all the processes are defined on
a unique probability space, it is preferable to use separate notations for the probability
measures and expectations related to the BRW (namely P and E) and the probability
measures and expectations related to the RW, P and E.

1.2 Transition matrices

Throughout this work we will use several transition kernels, which we define here.
The “main” one is defined on G and denoted by P :=

(
p(x, y)

)
x,y

. We assume that P
is irreducible and nearest-neighbor, even though our results can be easily modified to
cover the cases of finite-range transition kernels. More precisely, we have that p(x, y) > 0

if and only if x and y are neighbors. Let Pn =
(
p(n)(x, y)

)
x,y

denote the n-th convolution
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Martin boundaries and asymptotic behavior of branching random walks

power of P , then the spectral radius of P is

ρG := lim sup
n

(
p(n)(x, x)

)1/n

. (1.1)

It is well known that if m ≤ 1 then the BRW dies out almost surely, while if m > 1/ρG
then the BRW visits infinitely many times every finite set with positive probability. The
most interesting case for our purposes is when ρG < 1: indeed, if 1 < m ≤ 1/ρG then
the BRW almost surely vacates any finite subset, but with positive probability there are
particles alive at any time; in this case we say that the BRW is transient. From now on, if
not otherwise stated, we assume that ρG < 1 and that 1 <m ≤ 1/ρG.

For every given connected subgraph U ⊆ G define the substochastic matrix
PU :=

(
pU (x, y)

)
x,y

so that pU (x, y) := p(x, y) whenever x, y ∈ U and pU (x, y) := 0

otherwise. The spectral radius of PU is

ρU := lim sup
n

(
p

(n)
U (x, x)

)1/n

. (1.2)

From now on, we tacitly assume the following property for subgraphs U :

∀ x, y ∈ U we have {x, y} ∈ E(U)⇐⇒ {x, y} ∈ E(G), (1.3)

i.e., whenever two vertices in U are neighbors in G, we also assume that they are
neighbors in U . Moreover, we assume that U is not a singleton {x0}, with p(x0, x0) = 0.
Note that δx :=

∑
w∈U pU (x,w) > 0 for all x ∈ U ; we define a new matrix QU :=(

qU (x, y)
)
x,y∈U as follows. For each fixed x ∈ U , qU (x, y) := pU (x, y)/δx. By definition we

have
∑
w∈U qU (x,w) = 1 for all x ∈ U . Each entry qU (x, y) represents the probability that

a RW with transition kernel P moves from x to y, conditional on the event that it cannot
exit U . In fact, whenever the RW is transitioning between internal vertices of U it moves
according to PU (i.e. P ), whereas when it is moving from a vertex on the boundary of U
(thus possibly exiting towards other regions of G), then it is forced to stay inside. The
spectral radius of the walk governed by QU is

φU := lim sup
n

(
q

(n)
U (x, x)

)1/n

. (1.4)

By irreducibility, none of ρG, ρU , φU depend on the starting vertex x. Moreover, by the
supermultiplicative property and Fekete’s Lemma, they are all strictly positive.

1.3 Persistence and survival in subgraphs

In the following we use a concept which will be defined in Section 2.2, but can be
informally understood as follows. Consider the original BRW on G started at a fixed
vertex x ∈ U , but at each step kill all particles exiting U . The resulting process is still a
BRW; we refer to it as the “BRW induced by U” and denote it by {Un}n. Its offspring
distribution depends on the structure of U and in general it is different at different
vertices of U . We say that a BRW defined on G persists globally in U if {Un}n has alive
particles at all times, with positive probability. We speak of local persistence at vertex
x ∈ U if x is visited infinitely often by {Un}n with positive probability (see Definition 2.2).

We say that the BRW starting from x ∈ G survives in a subset U ⊆ G, if {Bn}n has
positive probability of having an infinite number of particles visiting U (see Definition 2.3).
Clearly, persistence implies survival. For all U ⊆ G and all x ∈ U we denote by q(x, U)

the probability that {Bn}n started at x visits U a finite number of times and we call it
extinction probability. We say that there is global survival starting from x if q(x,G) < 1;
we say that there is local survival starting from x if q(x, {y}) < 1 for all y ∈ G.
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It will be important to know when the BRW induced by a fixed neighborhood U is
an F -BRW (see [24], [6] and [3]). Roughly speaking, in this case (see Definition 2.4),
the global behavior of the BRW induced by U is the same as the global behavior of
a multi-type Galton-Watson process with only finitely many types (see [24, Definition
2.2] and the subsequent discussion). Sometimes, for sake of simplicity, we say that an
F -BRW has a finite number of types. Note that {Bn}n has only one type, whereas {Un}n
has only one type if and only if the (induced) offspring distribution of {Un}n does not
depend on the vertex (in this case the amount of “lost” children which would be placed
outside U by {Bn}n at any vertex has the same law everywhere). Note that transitive
and quasi-transitive BRWs are particular cases of F -BRWs. Let us point out that even
if we choose U to be a subset of an infinite, locally finite and transitive graph, and the
BRW induced by U is an F -BRW, that does not imply that U (as a graph), or the induced
BRW, are quasi-transitive. However, if P is the simple RW on G, then any BRW induced
by constant-degree subgraphs is an F -BRW.

Besides survival and persistence in a subgraph U , we are interested in the limiting
behavior of the BRW. This leads us to wonder on the one hand whether there is conver-
gence to the Martin boundary of U , and on the other hand whether, given a subset A of
the Martin boundary of G, there is convergence of trajectories to A.

We need some notation. We denote by M(P, 1) the Martin boundary for RW on G

governed by the transition kernel P . For any Borel set A ⊆M(P, 1), whenever we refer
to a neighborhood U of A, we mean a neighborhood with respect to the usual topology
onM(P, 1), or any equivalent formulation, see e.g. [19] or [20].

Let dG(·, ·) denote the distance in G induced by the graph metric and fix a reference
vertex o. For any set U ⊆ G, let

Û := U ∪ {ξ ∈M(P, 1) : ∃ sequence {yn}n ∈ U s.t. dG(o, yn)→∞, and yn → ξ},

where yn → ξ denotes convergence in the topology of the Martin boundary (see [23,
Chapter 7] for details).

1.4 Main results

Our first result, Theorem 1.1, describes a relation between global persistence of
supercritical BRW in a subset U and the spectral radii ρU and φU . Theorem 1.1 also
investigates the relationship between the underlying RW, the Martin boundaryM(P, 1),
persistence and survival. More precisely, we first take a Borel set A ⊆ M(P, 1), such
that the RW has a positive probability of convergence to A, and show that the BRW
persists in any connected neighborhood of A. Note that, to ensure persistence with
positive probability, we need a neighborhood of A, not just any U such that ∂U = A.
Nevertheless, it is true that on trees, if U is connected and the RW has a positive
probability of convergence to its topological boundary ∂U ⊆ M(P, 1), then there is
positive probability of survival in U .

The probability of convergence to a Borel set A ⊆M(P, 1) for a RW starting from o is
denoted by γo(A), where γo is called the harmonic measure associated to the RW started
at o.

Theorem 1.1.

(i) For a fixed connected subgraph U , let x ∈ U be a fixed vertex. If for all m ∈ (1, ρ−1
G ]

we have positive probability of global persistence in U , then ρU = φU . Furthermore,
if the BRW induced by U is an F -BRW, then also vice versa holds.

(ii) Let A ⊆ M(P, 1) be a Borel set and U a fixed connected neighborhood of A. If
γo(A) > 0, then for all m > 1, there is persistence in U with positive probability
starting from every x ∈ U .
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(iii) Suppose that G is a tree and consider a connected subset U ⊆ G such that
γo(∂U) > 0. Then for all m > 1, there is survival in U with positive probability
starting from every x ∈ G.

One may ask whether the statements in Theorem 1.1 can be strengthened. Namely,
in (i) we wonder whether ρU = φU = ρG; this is discussed in Remark 4.4 and the answer
is negative: indeed, there are examples where ρ(U) = φ(U) < ρ(G). From (ii) and (iii)

it is natural to conjecture that the extinction probabilities {q(x, U)}x of BRW in U are
related to the properties of ∂U . This is an instance of the more general question of
whether {q(x, U)}x = {q(x, U ′)}x is related to ∂U = ∂U ′ or γo(∂U4∂U ′) = 0. We show
that generic sets with equal boundary may have different extinction probabilities and
there might be survival w.p.p. in one set and a.s. extinction in the other (Proposition 3.5).
However, in the particular case where U is connected this cannot happen (Proposi-
tions 3.7 and 3.9). In a nutshell, we find examples of subgraphs U such that γo(∂U) > 0

and the BRW does not survive in U ; moreover, there are other cases where γo(∂U) = 0

but the BRW persists globally on U (see Section 3.2).
The following theorem finds precise bounds on m for global persistence of BRWs in a

connected subgraph U .

Theorem 1.2. Let U denote a connected subgraph. Whenever m is so that φU

ρU
<m ≤ 1

ρU
,

then the BRW induced by U can persist globally in U , but it cannot persist locally.

Note that the statement does not imply that under the given conditions there is
positive probability of global persistence in U . In order to ensure persistence we need
some extra assumptions (see below) however, if persistence does occur in this regime,
then by Theorem 1.2 it is only global but not local.

For a fixed subset U and a fixed vertex x ∈ U define

m1(U) = m1 := inf
{
m > 1 : Px

(
global persistence in U

)
> 0
}
. (1.5)

Note that, while in this paper we consider only BRWs defined through a breeding law
with the same distribution at all sites, plus a transition matrix P , in general a BRW is
defined by choosing, for each site, a probability distribution on the number of offspring
and their position together (and the positions may not be independent of the number
of children). For these general BRWs, the global behavior does not depend only on the
first moment (see [24] for details); indeed, it is possible to find two such BRWs with the
same first moment and such that one survives globally while the other dies out. Thus, for
a general BRW, m1 might not be a threshold between a null probability of persistence
and a positive one. It is worth noting that even if the BRW {Bn}n on G is constructed
from a breeding law with the same distribution ν at all sites, plus a transition matrix
P , it is not in general true that {Un}n is given by a constant breeding law νU : it may
depend on the vertex (while the transition matrix is clearly PU ). Thus it is not trivial
to establish when m1 is a threshold: this is true if νU does not depend on the vertex
(for instance when P is the simple RW and U is vertex transitive) as a consequence of a
result of [13]. We are able to generalize this statement, and prove that m1(U) is still a
threshold, (whose precise value can be computed, see Proposition 2.6), even when the
offspring distribution depends on the vertex, provided that {Un}n is sufficiently regular,
namely in the case that it is an F -BRW, thanks to Corollary 1.2. Thus in our case (1.5) is
a well-posed threshold, see Section 4.2.

Corollary 1.3. Whenever a connected subgraph U is such that the BRW induced by U is
an F -BRW, then m1 = φU

ρU
. Otherwise, φU

ρU
≤m1 ≤ 1

ρU
.

The next result relates the concepts of Martin boundary M(QU , 1) and t-Martin
boundaryM(PU , t) (see Section 2.1 for the formal definition of these boundaries). In
[8] (and, independently, in [14]) the object of study was a “renormalized version” of the
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process {Bn}n on G. Similarly, on a fixed subgraph U , we rescale the induced BRW by a
suitable factor. For ease of notation, given a subset U , define

ζ = ζ(U) :=
ρU
φU
≤ 1, (1.6)

and for all n ∈ N set

En(U) := {RW takes n consecutive steps in U} . (1.7)

We observe that if
∑
y∈U p(x, y) does not depend on x ∈ U then ζ =

∑
y∈U p(x, y) and

Px(En(U)) = ζn. Note that PU is substochastic, but we construct a stochastic matrix P̃U
which rules a RW on U ∪ {ðU}, where ðU is an absorbing state (the exit from U ). Namely,

p̃U (x, y) :=


pU (x, y) if x, y ∈ U
1− ζ if x ∈ U, y = ðU
1 if x = y = ðU
0 otherwise.

The following result is a version of [8, Theorem 1.1] and [14, Theorems 3.26 and
3.32] (cf. Theorem 2.1) for subgraphs.

Theorem 1.4. Given a nonempty, connected subgraph U , let ζ be as in (1.6) and En(U)

as in (1.7). Suppose that the RW governed by PU is transitive. Then the following hold.

(i) The spaceM(QU , 1) is homeomorphic toM(PU , ζ).

(ii) Suppose that ν is such that E [L logL] <∞, for L ∼ ν. Almost surely, the process
(mζ)−nUn converges weakly to a random measure Wζ on the spaceM(PU , ζ), and
it satisfies

Ex[Wζ(A)] = PP̃U
x (Y∞ ∈ A), for all Borel sets A ⊆M(PU , ζ),

where {Yn}n denotes a RW governed by P̃U and Y∞ := limn Yn.

The paper is organized as follows. In Section 2 we recall some fundamental notions
about Martin boundaries and BRWs, and subsequently we define and analyze an auxiliary
process that will be helpful throughout this work. Section 3 is devoted to the discussion
of the relationship between the extinction probabilities in subgraphs U and their corre-
sponding boundary. We provide several examples on trees, Cartesian products and free
products. We conclude with Section 4 where the reader can find all the proofs of the
results claimed above.

2 Preliminaries

In this section, we define the Martin boundary of a RW and recall its relationship with
the RW and the BRW (on the whole space). We formally construct the BRW and define
survival and persistence. We also recall the definition of F -BRW, which generalizes the
concepts of transitive and quasi-transitive BRW.

2.1 The Martin boundary

Here we only recall the fundamental tools that we need in this work, the interested
reader is referred to [21], [22] and [23] for thorough expositions on Martin boundaries.
Let G denote an infinite, locally finite graph. Consider a (sub)stochastic matrix P :=(
p(x, y)

)
x,y∈G defined on G. Then for z ∈ C let G(x, y | z) :=

∑
n≥0 p

(n)(x, y)zn denote the
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corresponding Green function; fix a reference vertex o and define the associated Martin
kernel by

K(x, y | z−1) :=
G(x, y | z)
G(o, y | z)

.

From now on we shall write G(x, y) := G(x, y|1) and K(x, y) := K(x, y | 1). The compact-
ification of G with respect to the convergence of the Martin kernels K(x, y | 1) is the
Martin boundaryM(P, 1). There are several equivalent ways to construct the Martin
boundary, see for example [21] and [23] for details.

Similarly, for a fixed value t ≥ ρG (as defined in (1.1)), we define the t-Martin
boundary of P , that we denote by M(P, t), as the compactification of G with respect
to the convergence of the Martin kernels K(x, y | t). See [22, Chapter IV] for further
details on t-Martin boundaries.

2.2 Martin boundary and branching random walks

In this paper BRWs are defined by the offspring distribution ν and the transition
matrix P . This suggests to look for relations between a BRW and the Martin boundary of
the RW governed by P . We recall the main result in [8] and [14], which links the Martin
boundary of a RW with transition kernel P , and the BRW (with same transition kernel)
seen as a Markov chain on its space of configurations.

Theorem 2.1 ([8], [14]). Let Y = {Yn}n be a transient, irreducible Markov chain
governed by P , let ν be an offspring distribution with mean m > 1 satisfying the
L logL condition, and let {Bn}n≥0 be a BRW with transition kernel P started at some
vertex o. Then m−nBn almost surely converges weakly to a random measure W on the
Martin compactificationM(P, 1), which satisfies

Eo[W(A)] = PPo (Y∞ ∈ A) (2.1)

for every Borel set A ⊆M(P, 1).

2.3 Construction of the BRW induced by U , survival and persistence

At this point we formally define the BRW, relying on a construction defined in [24].
Let us consider a family of probability measures {µ(G)

x }x∈G defined on the set of finitely
supported functions from G to N

S :=
{
f : G→ N such that

∑
y∈G

f(y) <∞
}
.

Subsequently we define the following update rule, to be applied to each x ∈ G. A particle
at a site x ∈ G lives for one unit of time, then with probability µ

(G)
x a function fx is

chosen from S. Then, the particle at x is replaced by fx(y) particles at each site y ∈ G,

independently for each y. Observe that {µ(G)
x }x∈G can be chosen arbitrarily. By letting

|f | :=
∑
y∈G f(y) and defining

µ(G)
x (f) := ν(|f |) (|f |)!∏

w f(w)!

∏
w

p(x,w)f(w) (2.2)

we have the process {Bn}n.
We construct the process induced by U ⊆ G, which we denote by {Un(x)}n, as follows.

Clearly, whenever U ≡ G then this construction gives {Bn}n. More precisely, consider
a family {fi,n,x}i,n∈N,x∈G of independent S-valued random variables such that for each

x ∈ G the law of {fi,n,x}i,n∈N is µ(G)
x .
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For all n ≥ 0 and all x,w ∈ U we denote by Uxn(w) the number of particles of the
auxiliary BRW started at x that are alive at time n at vertex w. If we do not need to keep
track of the starting vertex we simply write Un(w) for the number of particles alive at w
at time n. The initial condition is Ux0(w) = δx(w) and Uxn(·) is defined inductively as

Uxn+1(w) :=
∑
y∈U

Ux
n(y)∑
i=1

fi,n,y(w) =
∑
y∈U

∑
j≥0

1{Ux
n(y)=j}

j∑
i=1

fi,n,y(w). (2.3)

Then the expected number of particles sent to vertex w ∈ U from one particle at x ∈ U
in one unit of time is defined by

mx,w :=
∑
f∈S

f(w)µ(G)
x (f), (2.4)

and the matrix M := (mx,w)x,w∈U is the matrix whose x, y-entry is mx,y, for all x, y ∈ U .

For n ∈ N consider the power Mn, and for all x,w ∈ U let m(n)
x,w be their corresponding

entry in Mn. For every n ≥ 0 and all x,w ∈ U we have

E [Uxn(w)] = m(n)
x,w. (2.5)

Alternatively, the BRW induced by U can be seen as follows. Define the set SU := {f :

U → N :
∑
y∈U f(y) <∞} and for now let |f | =

∑
y∈U f(y) for all f ∈ SU . For all x ∈ U

let µ(U)
x be a probability measure on SU , such as

µ(U)
x (f) :=

∞∑
n=|f |

ν(n)

(
1−

∑
w∈U

pU (x,w)

)n−|f |
n!

(n− |f |)!
∏
w f(w)!

∏
w

pU (x,w)f(w). (2.6)

This quantity represents the probability that an individual at site x has exactly f(y)

children at site y, for all y ∈ U . The two families {µ(G)
x }x and {µ(U)

x }x are such that for
all f ∈ SU and x ∈ U

µ(U)
x (f) = µ(G)

x

(
f̃ ∈ SG : f̃

∣∣
U

= f
)
.

Definition 2.2. We call global persistence in U of the BRW {Bn}n the event
{
∑
w∈U Un(w) > 0, ∀n ≥ 1}. Analogously, we call local persistence at x ∈ U the event

{lim supnUn(x) > 0}. When we say that there is local persistence without specifying the
vertex, we mean that there is local persistence at every vertex.

If not otherwise specified, when we say that the process persists (locally/globally) or
that there is (local/global) persistence, we tacitly imply that the corresponding event has
positive probability.

Roughly speaking, global persistence of {Bn}n on U means that the induced BRW
{Uxn}n has some particles somewhere in U for all n ≥ 0. Local persistence of {Bn}n in U
means that there are infinitely many times n ≥ 0 such that at least a particle of {Un}n is
at x.

Definition 2.3. We call survival in U of the BRW {Bn}n the event {lim supn
∑
x∈U Bn(x)

> 0}. If U = G we speak of global survival; while if U = {x} is a singleton, we speak of
local survival at x (or, simply, local survival if it holds for every singleton). Extinction in
U is the complement event, that is, when there are a finite number of visits in U .

If not otherwise specified, when we say that the process survives (locally/globally) or
that there is (local/global) survival, we tacitly imply that the corresponding event has
positive probability. Conversely, when we say that the process dies out, we mean that
the extinction event has probability 1.

Clearly, since
∑
w∈U U

x
n(w) ≤

∑
w∈U Bn(w) uniformly in x, then global persistence in

U implies global survival in U .
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2.4 F-BRWs

Now we introduce the fundamental concept of F -BRW, relying on [24] and [3].

Definition 2.4. We say that a BRW with state space X and reproduction rule governed
by {µx}x∈X is projected on a BRW with state space Y and reproduction rule governed
by {µ̃y}y∈Y if there exists a surjective map g : X → Y such that

∀ f ∈ SY , µ̃g(x)(f) = µx

{
h ∈ SX : ∀y ∈ Y, f(y) =

∑
z∈g−1(y)

h(z)
}
.

The map g is called the projection map. Furthermore, whenever Y is finite, we will
say that the BRW with state space X and reproduction rule governed by {µx}x∈X is an
F -BRW.

The fact that {Un}n is an F -BRW does not depend on the offspring distribution ν,
as we show in the next proposition which is a corollary of a more general result (see
Proposition 4.8 in Section 4.4).

Proposition 2.5. The following are equivalent.

(a) The BRW induced by U is an F -BRW for all offspring distributions ν.

(b) The BRW induced by U is an F -BRW for some offspring distribution ν0 such that
ν0(0) < 1.

(c) There exists a surjective map g : U → Y , with Y finite set, such that the quantity∑
w : g(w)=y pU (x,w) only depends on g(x) and y.

In the case when Un is an F -BRW, we are able to give an explicit expression for
m1(U).

Proposition 2.6. Suppose that the BRW induced by U is an F -BRW, then there is positive
probability of global persistence on U starting from x if and only if

m >
1

lim infn→∞
n

√∑
y∈U p

(n)
U (x, y)

= m1(U).

In particular if there is global persistence in U , starting from x, for the process with an
offspring law ν1 with mean ν̄1, then there is global persistence in U , starting from x, for
any process with offspring law ν2 with mean ν̄2 ≥ ν̄1.

3 Survival, persistence and boundary measure

In this section we answer several questions on the relationship between the Martin
boundary and the concepts of survival and persistence. To this aim we construct various
examples, mainly on trees, which are a natural setting since on the one hand, the simple
RW on trees gives rise to Martin boundaries with a geometrical construction, and on the
other hand, in many cases, ρG < 1, which implies that the RW is transient and, when
1 < m ≤ 1/ρG, the BRW is transient as well. In Section 3.1 we focus on the topology
of the Martin boundary of a nearest neighbor RW P on a tree. In Sections 3.2 and 3.3
we provide examples showing that the natural intuition that a BRW and the underlying
RW might show very similar asymptotic behaviors is misleading. More precisely, in
Section 3.2 we find examples of subgraphs U whose boundaries have harmonic measure
0, nevertheless the BRW persists in U . Conversely, in Section 3.3 we find examples of
subgraphs U whose boundaries have positive harmonic measure, but the BRW neither
survives nor persists in U . Furthermore, in Section 3.3 we investigate the relationship
between some properties of the boundary of a subset U and the extinction probabilities
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of the BRW in U . In Section 3.4 we deal with the relationship between extinction
probabilities in subset and the boundary of the subset.

Unless otherwise specified, in this section we consider edge-breeding BRWs, which
are defined as follows. Given λ > 0, every particle at x ∈ G has n children (n ∈ N)
with probability νx(n) := (λdx)n/(1 + λdx)n+1, where x has exactly dx neighbors. Each
child is placed independently and uniformly on the neighbors. This is the discrete-time
counterpart of the continuous-time edge-breeding BRW on G. The offspring law at x
is a geometric distribution with parameter λdx and P is the transition kernel of the
simple RW on G. In particular, when G is the homogeneous tree Td, then ν does not
depend on x and when λ ∈ (1/d, 1/2

√
d− 1] there is global survival w.p.p and a.s. local

extinction; unless told otherwise, this will be our choice in the rest of this section every
time we deal with a homogeneous tree. These critical parameters can be deduced from
[4, Proposition 4.33] and in this case m = λd ∈ (1, 1/ρG]. Note that the restriction of an
edge-breeding BRW to a subgraph is the edge-breeding BRW on that subgraph; thus if
we consider G = Td and U ⊆ Td, the breeding law ν is constant on G and is given by the
above expression νx on U , provided that dx identifies the number of neighbors of x in U .

3.1 The topology and the Martin boundary of a tree

Given a tree T, let P be a nearest neighbor transition matrix (take for instance the
transition matrix P of a simple RW). We fix a reference vertex o ∈ T and call it the root
of the tree. Paths in the tree are maps ϕ ∈ TN such that (ϕ(i), ϕ(i + 1)) is an edge for
all i ∈ N. With a slight abuse of notation, we also write ϕ ⊆ A ⊆ T, meaning that we
identify ϕ with its image. We denote by ϕx,y the shortest path from x to y and by d(x, y)

its length (that is, the distance between x and y); the shortest path from x to y in a tree
is the only path from x to y without repeated vertices. Sometimes, it is also referred to
as the geodesic path.

The Martin boundary of T can equivalently (up to homeomorphisms) be defined as
the collection of all the infinite injective paths from o (thus ϕ(0) = o). These paths are
called (geodesic) rays. This construction does not depend (up to homeomorphisms) on
the choice of the root o (see [23, Chapter 9] and references therein). Since every vertex
x in T can be identified with ϕo,x we have that the Martin compactification is (up to
homeomorphisms) the collection of all finite or infinite injective paths from o. We denote
the Martin compactification of T by T̂ = T ∪M(P, 1).

Since our goal is to describe the behavior of the BRW in sets U with a certain boundary,
or in sets which are neighbors of fixed subsets ofM(P, 1), we need to understand the
topology of T̂.

Given a subset A ⊆ T̂ we denote by Â its topological closure and by ∂A its boundary
(which is the intersection of its closure and the closure of its complement). It is clear
that ∂T = M(P, 1) and ∂A = Â ∩M(P, 1). Moreover, ∂A is always closed in M(P, 1)

with the induced topology; conversely, any closed subset ofM(P, 1) is the boundary of a
subset of T (see Lemma 4.12).

Define Tx ⊆ T as the subtree given by the vertices y such that x belongs to the path
ϕo,y. A countable base for the topology of T̂ is the collection {{x} : x ∈ T} ∪ {T̂x : x ∈ T}.
As a consequence, a countable base for the induced topology onM(P, 1) is the family
{∂Tx : x ∈ T}. Given two basic open sets A and B, then either A ⊆ B or B ⊆ A or
A ∩ B = ∅; therefore, every open set of T̂ (resp. ∂T) is a countable union of pairwise
disjoint elements of the base. Note that T̂x (resp. ∂Tx) and the elements of the base are
both open and closed. A generic open neighborhood of ∂T is T̂ \ A where A is a finite
subset of T. Moreover, if A is such that, for every x ∈ T, there exists y ∈ A such that
y ∈ Tx, then ∂A = ∂T.

The subtree Tx ⊆ T branching from x is the set of vertices y such that x belongs
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to the path ϕo,y. We denote the Martin compactification by T̂ = T ∪M(P, 1). Given a

subset A ⊆ T̂ we denote by Â its topological closure and by ∂A = Â ∩ Â{ its boundary
(where the complement is taken in the set T̂). Since the induced topology on T is the
discrete topology, then it is clear that ∂A = Â ∩M(P, 1). Clearly ∂A is always closed
inM(P, 1) with the induced topology; conversely, any closed subset ofM(P, 1) is the
boundary of a subset of T (see Lemma 4.12).

3.2 Null measure at the boundary and persistence

In this section we find examples of infinite sets U where the BRW persists in a subset
U , but the RW has zero probability of staying there forever. In other words, there are
infinitely (uncountably) many trajectories of BRW that are not typical trajectories of the
underlying RW.

Example 3.1 (GW tree in Td). Consider a tree T{ni}i where every vertex at distance i
from the root o has ni ≥ 1 neighbors at distance i+ 1. Let Si denote the set of vertices
at distance i from o; clearly |Si| =

∏i−1
j=0 nj .

Suppose that the simple RW on T{ni}i is transient and let γ̃o be the associated
measure on the Martin boundary ∂T{ni}i . In this case the value of γ̃o on the borders of
subtrees branching from fixed vertices is γ̃o(∂Tx) = 1/|Si| for every x ∈ Si.
Fix p ∈ [0, 1] and denote by Υ the GW tree with root o identified by the connected
component (containing o) of a p-Bernoulli percolation on T{ni}i . Clearly, if x ∈ Si, then
the probability that x ∈ Υ is pj . Suppose that p is sufficiently large so that the percolation
cluster is infinite with positive probability.
It is easy to show, by induction on j, that Ẽ[γ̃o(∂Υ)] ≤ pj (where Ẽ is the expectation with
respect to the GW distribution). This implies that E[γ̃o(∂Υ)] = 0, therefore γ̃o(∂Υ) = 0

for almost every realization of the GW tree. We observe that the same result holds if we
open edges from Si to Si+1 independently with probability pi where

∑∞
i=0(1− pi) = +∞.

Now take ni := d − 1, d ≥ 3. Then T{ni}i is a subtree of the homogeneous tree Td
(the root o has d− 1 neighbors, all other vertices have d neighbors). Denote by γo the
harmonic measure associated to the simple RW on Td; clearly γo(∂A) = (1− 1/d)γ̃o(∂A)

for all A ⊆ T{ni}i (where γ̃o is the measure on ∂T{ni}i defined above). We consider
the edge-breeding BRW on Td (which is an F -BRW). It is easy to prove, by a coupling
argument, that if λ ≤ 1/2

√
d− 1 then almost surely there is no local persistence at

any x for almost every realization of Υ. Furthermore, according to [18, Proposition
2.6], if λ ≥ 1/(1 + (d − 1)p) then there is global persistence with positive probability
on almost every infinite realization of Υ (by using the notation of [18, Proposition
2.6], the value of m in our case is (d − 1)p). Thus if (2

√
d− 1 − 1)/(d − 1) < p < 1

and λ ∈ [1/(1 + (d − 1)p), 1/2
√
d− 1] then Υ is infinite with positive probability and,

in almost every infinite realization of Υ, there is global persistence (hence survival)
w.p.p.; nevertheless, γ̃o(∂Υ) = 0, that is γo(∂Υ) = 0 (since Υ ⊆ T{ni}i). Note that every
realization of Υ is connected and its boundary ∂Υ is almost surely nowhere dense.

While the above example applies to Td for every d ≥ 3, there is a deterministic
example of subtree in Td, which has zero-measure boundary, and where the BRW
persists globally when d ≥ 6.

Example 3.2 (Pruning a homogeneous tree). Given a strictly increasing sequence
of integers {ki}i∈N and a homogeneous tree Td, consider the following construction.
Recursively remove one edge (and the corresponding subtree) going from x ∈ Ski to
Ski+1 for every x ∈ Ski ; let us call T′ the resulting pruned tree. As in the previous
example, denote by γo the harmonic measure associated to the simple RW on Td. By
using a similar argument as in the case of the GW trees, one can prove by induction
that γo(∂T′) ≤ (d − 1)i/di for all i ∈ N, since at every step when we remove one edge
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from each vertex on Ski we reduce the boundary by a multiplicative factor (1 − 1/d);
thus γo(∂T′) = 0. Consider now the tree Td−1 as a subtree of Td; it can be obtained
by the above construction when ki = i for all i ∈ N. As as subset of Td we then have
γo(∂Td−1) = 0. We know that if 1/2

√
d− 1 ≥ λ > 1/(d− 1) then the edge-breeding BRW

on Td persists globally on Td−1 and dies out locally on Td; the existence of such a λ is
guaranteed when d ≥ 6. Again, the subset in this example is a connected subtree and its
boundary is nowhere dense.

Another example is given by the cartesian product of two trees Tk and Tj: in the
product, each component has zero-measure boundary, but for sufficiently large m, one
might have positive probability of persistence in the single component. The particular
choice k = 3, j = 100 guarantees the existence of a range for m such that the BRW
survives globally but not locally (and where we have positive probability of persistence
in at least one of the components).

Example 3.3 (Cartesian product of different trees). Consider the two trees T3

and T100. For j ∈ {3, 100} let ∂Tj denote the end compactification of Tj , and define

T̂j := Tj ∪ ∂Tj . Take G := T3 ×T100 and consider U1 = T̂3 × oT100 and U2 = oT3 × T̂100.
Let P := 3

103P1 + 100
103P2, where Pi denotes the transition kernel of the simple RW on Ui.

With our notation we obtain ρU1
= 3

103φU1
and ρU2

= 100
103φU2

, where φU1
= 2

√
2

3

and φU2 = 2
√

99
100 , and ρG = 3

103φU1 + 100
103φU2 . Thus, ρ−1

G ≈ 4.5, and
φU1

ρU1
= 103

3 and
φU2

ρU2
= 103

100 = 1.03 < ρ−1
G . By what said above, the range φU2

/ρU2
< m ≤ ρ−1

G is non-empty.

Since the BRW induced by U2 is an F -BRW, by Lemma 4.6 we have m1(U2) = φU2
/ρU2

.
As a consequence, for m >m1(U2), we have positive probability of persistence in U2 and
in this regime {Bn}n is still transient.

It is known from [20] that by letting S1 := {(t1, t2) ∈ [φU1
,∞) × [φU2

,∞) : 3
103 t1 +

100
103 t2 = 1}, one has

M(P, 1) = (∂T3 × ∂T100 × S1) ∪ (∂T3 ×T100) ∪ (T3 × ∂T100) ,

with γo(oT3 × ∂T100) = γo(∂U2) = 0.

Finally, one can see the same phenomenon in BRWs on the Cayley graph of a free
product of finitely generated groups.

Example 3.4 (Free product of groups). In this context we recall the basics of the
construction of a free product of two groups, the interested reader is referred to [22] for
more details. Consider two finitely generated groups Γ1,Γ2 (so that |Γ1| ≥ 2, |Γ2| > 2),
with identity elements e1, e2 respectively, and let Si denote the set of generators of Γi,
i ∈ {1, 2}. We see elements of Si as “letters” and concatenation of letters as “words”; we
only consider reduced words, i.e., without cancellations such as aa−1.

The free product Γ := Γ1 ∗ Γ2 is the set of all (reduced) words of the form x1x2 · · ·xn,
where x1, x2, . . . , xn ∈

⋃2
i=1 Γi \{ei} and so that xi ∈ Γ1 (resp. Γ2) ⇒ xi+1 ∈ Γ2 (resp. Γ1)

for all i ∈ {1, . . . , n− 1}. An intuitive way to visualize Γ is as follows: consider a copy of
Γ1 and to each vertex v ∈ Γ1 \ {e1} attach a copy of Γ2 by “gluing” (i.e., identifying) e2

and v into a single vertex. Then, inductively, for every vertex on each copy of Γ2 \ {e2}
attach a copy of Γ1, for every vertex on each copy of Γ1 \ {e1} attach a copy of Γ2 and so
on. This construction gives rise to a “cactus-like” structure, which whenever all factors
{Γi}2i=1 are finite, turns into a tree-like structure. In the latter case, Γ is hyperbolic.

Let Γ1 be a finitely-generated group and Γ2 be an infinite, finitely-generated, non-
amenable group (not a tree, because trees make this discussion less interesting). The
obtained structure is still a group, and it is non-amenable (see e.g. [22]), its identity
element is identified with e1 and e2 and simply denoted by e. Let µ1 and µ2 denote
probability measures defined on the set of generators S1 and S2 respectively, so that
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they induce (irreducible) nearest neighbor RWs on Γ1 and Γ2 respectively. Fix α ∈ (0, 1)

and let µ := αµ1 + (1− α)µ2 define a nearest neighbor RW on Γ = Γ1 ∗ Γ2.

Consider U to be a fixed copy of Γ2. From the definition of the process and Corol-
lary 1.3 (using vertex-transitivity of U ), we have that

m1 = (Pe(E1(U)))
−1

= (1− α)−1.

It is known (cf. [22] and references therein) that γe(∂U) = 0, however, whenever m >

(1− α)−1 there is positive probability of persistence in U .

3.3 Is the boundary of a set related to survival of BRW?

In the previous section we showed that even if the boundary is “small” then we can
have persistence. At this point, one can wonder whether “large” sets imply persistence,
or at least survival for BRW. In this section we find examples where the answer is
negative. More precisely, one may have sets with different boundaries and equal
extinction probability vectors or sets with equal boundary and different extinction
probability vectors (see Proposition 3.5 and Remark 3.6, respectively).

Recall that q(x,A) is the probability of extinction in A starting with one particle at x.
We denote by q(A) the vector (q(x,A))x∈G; note that q(x, ∅) = 1 for all x ∈ G.

The following proposition tells us that, given any subset B of Td, there exists another
subset AB whose boundary is ∂Td with the same extinction probabilities as B.

Proposition 3.5. Consider the edge-breeding BRW on Td with 1/d < λ ≤ 1/2
√
d− 1.

Let B ⊆ Td (including B = ∅) then there exists AB ⊆ Td such that ∂AB = ∂Td and
q(B) = q(AB).

Remark 3.6. Proposition 3.5 shows that there are sets with different boundaries and
equal extinction probabilities. However the same proposition yields the existence of sets
with equal boundaries and different extinction probabilities. Indeed let B1, B2 ⊆ Td such
that q(B1) 6= q(B2). Consider AB1 and AB2 ; q(AB1) 6= q(AB2) but ∂AB1 = ∂Td = ∂AB2 .

It turns out (see Section 4.5) that the set AB might not be connected. If A and B

are connected subsets of a generic tree, then having equal boundaries implies equal
extinction probability vectors as the following proposition shows. A partial converse is
given by Proposition 3.9.

Proposition 3.7. Consider a tree T and a BRW with a nearest neighbor transition kernel.
If A ⊆ T, then there exists a connected subset B ⊆ T such that ∂A = ∂B. Moreover, if A
and B are connected subsets of T and ∂A = ∂B then q(A) = q(B).

The set A∅ in Proposition 3.5 is an example of a set with very large boundary, namely
∂Td, and a.s. extinction (q(A∅) = 1). It is worth pointing out that in a connected subset
of T whose boundary contains an open set (in the topology induced on the boundary)
there is trivially positive probability of persistence. Indeed if a set A is connected and
dense in an open subset of the boundary, it is dense in ∂Tx for some x. Whence, for
all y ∈ Tx there exists ay ∈ Ty ∩ A. Since A is connected, then all vertices {ay}y∈Tx

are connected by a path inside A, thus x ∈ A and y ∈ A for all y ∈ Tx. Since A ⊇ Tx

and there is positive probability of persistence in Tx then there is positive probability
of persistence in A. One can wonder if any closed set on the boundary with positive
measure contains an open set. Surprisingly, the answer is negative; indeed, according
to the following remark, a nowhere dense subset of the boundary can have a measure
arbitrarily close to 1.

Remark 3.8 (Open dense subset with arbitrarily small measure). It is not difficult
to see that a subset of the boundary of a tree T is open and dense if and only if it is equal
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to
⋃
y∈A ∂Ty for some A ⊆ T with the property that for all x ∈ T there exists y ∈ A such

that either x ∈ Ty or y ∈ Tx.
Consider now the tree T := T{ni}i and the measure γo as defined above. Suppose

that ni ≥ 2 for infinitely many i ∈ N. Let us fix ε > 0 and let {n̄i}i∈N be such that∑
i∈N 1/|Sn̄i | ≤ ε. Consider an arbitrary ordering {xi}i∈N of the vertices of T; let

us fix a sequence {yi}i∈N of vertices such that yi ∈ Txi and d(0, yi) ≥ n̄i. The set
B :=

⋃
i∈N ∂Tyi is open and dense and γo(B) ≤

∑
i∈N γo(∂Tyi) ≤

∑
i∈N 1/|Sn̄i | ≤ ε.

Clearly if A :=
⋃
i∈N{yi} then ∂A = ∂T. This means that there exists an open and

dense subset in the boundary with γo-measure arbitrarily close to 0. By taking the
complement set, we obtain a closed, nowhere dense subset in the boundary with γo-
measure arbitrarily close to 1.

For a generic connected subset whose boundary has positive measure, a positive
probability of survival is guaranteed by Theorem 1.1(iii) (generalized by the following
proposition), where, we show that whenever A,B ⊆ T are two connected sets such that
γo(A4B) > 0, then q(A) 6= q(B).

Proposition 3.9. Let us consider a BRW on a tree T which survives globally but not
locally. Let A,B ⊆ T be two connected subsets such that γo(∂A4∂B) > 0. Then
q(A) 6= q(B).

3.4 Boundaries and extinction probabilities: a complete description

With the aid of the examples and results of Sections 3.2 and 3.3 we are able to look
into a question raised in some recent papers (see e.g. [7, 2]), namely what conditions
on the subsets A and B imply or are implied by q(A) = q(B), and when one has that
q(A) = 1. By looking at the approach in [7] on trees, one is tempted to look for conditions
on the boundaries ∂A and ∂B. The examples shown in this paper suggest that there is
no such a connection. Consider the following tables. Here implications are denoted by
an arrow; if an implication does not hold we draw a slash on the arrow. When A and
B are connected, we use red, single arrows; otherwise we use black, double arrows.
Clearly 9 is stronger than ; and⇒ is stronger than→. Analogously,⇒ (resp.→) on
the left table are stronger that the corresponding implication on the right one and ;
(resp. 9) on the right table are stronger than on the left one.

q(A) = q(B) ∂A = ∂B

γo(∂A4∂B) = 0

1

4

3

537 1

q(A) = 1 ∂A = ∅

γo(∂A) = 0

1

2

536 1

We start by observing that the two tables are related; indeed, by taking B = ∅ (or
any finite set for that matter) on the left we obtain the corresponding one on the right.
Unless stated otherwise, all the (counter)examples are on Td for d ≥ 3 and o is the root;
moreover λ ∈ (1/d, 1/2

√
d− 1] as in Section 3 in such a way that there is a.s. extinction

on every finite subset but global survival with positive probability.
Here are the (numbered) comments on the above implications.

1 Consider A = {x = ϕ(i) : i ∈ N} where ϕ is a ray. It is known (see for instance [7])
that γo(∂A) = 0 nevertheless ∂A = {ϕ} 6= ∅.
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2 Clearly ∂A = ∅ if and only if A is finite, thus in this case there is a.s. extinction
(hence no persistence).

3 It follows from Proposition 3.5 and Remark 3.6. Indeed take A∅ and Td: they
have the same boundary but different extinction probabilities. Consider now ∅
and A∅: they have the same extinction probabilities but γo(∂∅4∂A∅) = 1. As for
the remaining counterexample (on the right hand side of the table), just take A∅;
γo(∂A∅) = 1 but q(A∅) = 1.

4 See Proposition 3.7.

5 See Examples 3.1 and 3.2 where there is persistence w.p.p. and not just survival.
See also Example 3.3.

6 See Theorem 1.1 which holds for generic trees (or Proposition 3.9 with a finite
connected subset B).

7 See Proposition 3.9 which holds for generic trees.

4 Proofs

4.1 Proof of Theorem 1.1 (i) and (ii)

Theorem 1.1 (i) is a consequence of Lemma 4.3; Theorem 1.1 (ii) follows from
Lemma 4.5; Theorem 1.1 (iii) is a consequence of Proposition 3.7 and its proof is in
Section 4.6.

We start with a preparatory result. Suppose that the RW governed by P has period
d ≥ 1, where d = min{k ≥ 1 : p(k)(x, x) > 0, for all x ∈ G}. Then (if U is connected),
denote by dU the period of the Markov chain induced by U ; dU is a multiple of d. Recall
that En(U) was defined in (1.7).

Lemma 4.1. Let U be a connected subgraph and x ∈ U . Then, limn (Px [En(U)])
1/n

exists and it is equal to ρU
φU

.

Proof. Fix any x ∈ U , choose a sequence of vertices y1, . . . , ydU−1 ∈ U such that for each

yj (j ∈ {1, . . . ,dU − 1}) one has p(j)
U (x, yj) > 0. Since U is connected and U 6= {x0} with

p(x0, x0) = 0, this is always possible. Let {Rn}n denote a nearest-neighbor RW induced
by the kernel P on G. For all k ≥ 0

p
(kdU+j)
U (x, yj) = PPx [RkdU+j = yj ∩ EkdU+j(U)]

= PPx [RkdU+j = yj | EkdU+j(U)]PPx [EkdU+j(U)] = q
(kdU+j)
U (x, yj)P

P
x [EkdU+j(U)] .

(4.1)

Moreover,

ρU = lim sup
n

(
p

(n)
U (x, x)

)1/n

= lim
k

(
p

(kdU )
U (x, x)

)1/(kdU )

= lim sup
n

(
p

(n)
U (x, yj)

)1/n

= lim
k

(
p

(kdU+j)
U (x, yj)

)1/(kdU+j)

,

and a similar reasoning can be done for φU . Thus, by taking the (kdU + j)-th root in (4.1)
and then the limit on k →∞, by (1.4) and (1.2), the above calculation gives the claim.

Recall the process {Uxn}n defined in Section 2.2.

Lemma 4.2. Let U be a connected subgraph and x ∈ U , then

lim
n

[
E[
∑
w∈U

Uxn(w)]

]1/n

= m · ρU
φU

.
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Proof. For all w ∈ U , by (2.5) and by the construction in Section 2.2 we have

E [Ux1(w)] =
∑
fx∈SU

fx(w)µx(fx) = m · pU (x,w).

Hence,

E
[ ∑
w∈U

Ux1(w)
]

=
∑
w∈U

mx,w =
∑
w∈U

m · pU (x,w) = m ·Px (E1(U)) ,

and repeating the same reasoning for all n ≥ 1 we obtain E[
∑
w∈U U

x
n(w)] = mn ·

Px
[
En(U)

]
. By taking the n-th root and limits on both sides, Lemma 4.1 gives the

claim.

Lemma 4.3. Let U be a connected subgraph and x ∈ U . If for all m ∈ (1, ρ−1
G ] there is

positive probability of global persistence on U , then ρU = φU . Furthermore, if {Uxn}n is
an F -BRW, then also vice versa holds.

Proof. Suppose that, for all m ∈ (1, ρ−1
G ], {Bn}n persists globally on U . Then necessarily,

by [24, Theorem 4.1], by Definition 2.2 and Lemma 4.2 we have

lim
n

(
E
[ ∑
w∈U

Uxn(w)
])1/n

= m · ρU
φU
≥ 1.

By assumption, the above must hold for every (fixed) m > 1, hence we can consider

lim
m→1+

[
m · ρU

φU

]
≥ 1,

which can be satisfied only if ρU
φU

= 1.

Suppose now that ρU = φU which, by Lemma 4.1 is equivalent to limn

(
Px
[
En(U)

])1/n
= 1. Since m > 1, then from Lemma 4.2 it follows limn

(
E[
∑
w∈U U

x
n(w)]

)1/n
= m > 1.

If {Uxn}n is an F -BRW, by [24, Theorem 4.3] one has global persistence of {Uxn}n with
positive probability. Thus the claim.

Remark 4.4. It is well known that, when the offspring distribution ν is equal at all sites,
then ρG is related to the local behavior of the BRW; local survival being equivalent to
m > ρ−1

G , see for instance [4, Proposition 4.33]. Given a fixed m, when ρU = φU , then
two BRWs, the one governed by PU and the one governed by QU , either survive locally
or they both die out. It is natural to ask whether ρU = φU implies ρU = ρG. The answer
is negative, even assuming positive probability of global persistence for all m ∈ (1, ρ−1

G ],
as shown by the following example.

Let G be the union of the homogeneous tree Td and an additional singleton {w0}
(w0 6∈ Td) where w0 is connected only to the root o ∈ Td. Consider the following transition
probability matrix

p(x, y) :=


p if x = o, y = w0

1 if x = w0, y = o

(1− p)/d if x = o, y ∼ o
1/d if x 6∈ {o, w0}, y ∼ x

where p ∈ (0, 1) and x ∼ y means that x and y are neighbors. Let U := Td ⊆ G. Denote
by Yn(x) the ball of radius n centered at x in the natural metric of G. According to [24,
Theorem 5.1] the spectral radius of P (resp. PU ) is the limit, from below, of the spectral
radii of PYn(x) (resp. PYn(x)∩U ). Clearly ρG ≥

√
p since p(2n)(o, o) ≥ (p(o, w0)p(w0, o))

n ≥
pn. Moreover ρU ≤ 2

√
d− 1/d since PU is bounded by the transition probability matrix
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of the simple RW on Td. On the other hand, if {xn} is a sequence of vertices in U such
that d(xn, o) > n then ρU ≥ ρU∩Yn(xn) = ρYn(xn) ↑ 2

√
d− 1/d (the last limit comes from

[24, Theorem 5.1] and the transitivity of the simple RW on Td. Whence ρU = 2
√
d− 1/d.

It is not difficult to see that QU is the transition matrix of the simple RW on Td, thus
ρU = φU . However ρG > ρU if p > 4(d− 1)/d2.

Note that there is positive probability of global persistence in U for all m ∈ (1, ρ−1
G ]

(this does not depend on the starting vertex); indeed, let us consider two BRWs: the
one governed by P with p = 0 (BRW1) and the one governed by PU (BRW2). According
to [7, Theorem 2.4], the probability of never visiting o (starting from x 6= w0) is the
same for both BRWs. Moreover, if p = 0 then BRW1 is essentially the BRW on Td
governed by the transition probability matrix of the simple RW and, by our choice of
m, 1 = q1({o, w0}) > q1(G) (we denote by qi the extinction probabilities of BRWi). By
[7, Theorem 2.4] (take A = {o, w0} and B = G) for BRW2 we have q2({o, w0}) > q2(G),
whence there is a positive probability of survival in U starting from x without visiting
o and this implies positive probability of persistence in U (because there is no way to
leave U without visiting o).

Recall that γo is the harmonic measure onM(P, 1) induced by the RW {Yn}n governed
by P : namely, γo(·) = PPo (Y∞ ∈ ·) where Y∞ := limn Yn. Recall the definition of survival
from Definition 2.3.

The next result gives a sufficient condition for survival (resp. persistence) of a BRW
in a neighborhood of a Borel subset of the boundary.

Lemma 4.5. Consider a Borel set A ⊆ M(P, 1) so that PPo (Y∞ ∈ A) > 0, and a fixed
neighborhood U of A. Then for all m > 1, {Bn}n survives in U starting from every x ∈ G.
Moreover, if U is connected, then {Bn}n persists in U starting from every x ∈ U .

Proof. According to [23, 5.34 Fact # 4], if we fix an infinite genealogy tree of the BRW
(that is, the number of children of each descendant, disregarding their position) and one
infinite line of descent, then the (random) sequence of positions of the particles along
this line is a RW with transition matrix P . Then, by definition of γo, the probability of
convergence to A, conditioned on this fixed infinite genealogy tree is positive. Since
there is a positive probability of global survival, that is, a positive probability of an
infinite genealogy tree, then there is a positive probability that a line of descent of
the BRW converges to A. Then the line of descent eventually stays in U with positive
probability and this implies survival in U . In order to have persistence, we must prove
that, with positive probability, there is at least one line of descent which stays in U from
the start. To this aim, suppose that U is connected and fix x ∈ U . Consider all the above
lines of descendants and the (countable) set VU of vertices where they last enter U ; each
one of these vertices can be reached, with positive probability, by a path starting from
x and never exiting U (since U is connected). There is at least one vertex in VU such
that, with positive probability, the RW does not exit U and this vertex can be reached
with positive probability from x without leaving U . This implies positive probability of
persistence from any starting vertex x ∈ U .

4.2 Proof of Theorem 1.2 and well-posedness of (1.5)

We start with an easy auxiliary result.

Lemma 4.6. Fix a connected subgraph U , and let x ∈ U be a fixed vertex. If the induced
process {Uxn}n is an F -BRW, then m1 = φU

ρU
. Otherwise, m1 ≥ φU

ρU
.
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Proof. By Lemmas 4.1 and 4.2 we get that for every starting vertex x ∈ U

lim
n

(
E
[ ∑
w∈U

Uxn(w)
])1/n

= m · lim inf
n

n

√
Px
[
En(U)

]
= m · ρU

φU
.

Thus, the condition m · ρUφU
< 1 ensures (by [24, Theorem 4.1]) a.s. global extinction of

{Un}n. In other words, {Bn}n started at x will exit U almost surely. Hence m1 ≥ φU

ρU
.

Note that this fact does not imply that for m <m1 the set U is only visited finitely many
times by {Bn}n: there might be trajectories of {Bn}n that enter and exit U infinitely
many times. If, in addition, the auxiliary process {Uxn}n is an F -BRW, by [24, Theorem
4.3], condition m · ρUφU

> 1 implies global persistence of {Uxn}n with positive probability,

hence m1 ≤ φU

ρU
.

We are now able to conclude the proof of the theorem.

Proof of Theorem 1.2. Lemma 4.6 already proves the first inequality; in order to prove
the second one we employ [24, Theorem 4.1]. More precisely, we shall prove that the
BRW started at x and killed upon exiting U persists locally in U if and only if m > ρ−1

U .

We proceed as follows. For any fixed vertex w ∈ U , consider the auxiliary BRW
{Uxn(w)}n. (Note that we are not summing over w here). In particular we shall be
interested in {Uxn(x)}n, with initial condition Ux0(w) = δx(w). That is, we shall investigate
the set of particles of the original BRW on G such that there are descendants of the
initial particle at x, that visit x at some time n ≥ 1, and whose family line has never
exited U . Now, by [24, Theorem 4.1] local persistence occurs with positive probability if
and only if

lim sup
n

(E[Uxn(x)])
1/n

> 1.

By construction, we have that E[Uxn(x)] = mn · p(n)
U (x, x), then the above corresponds to

lim sup
n

(E[Uxn(x)])
1/n

= lim sup
n

(
mnp

(n)
U (x, x)

)1/n

= m ρU > 1,

which implies the statement.

At this point, the proof of the subsequent corollary is an easy fact.

Proof of Corollary 1.3. The first part is a direct consequence of Lemma 4.6. Furthermore,
since local persistence implies global persistence, the second part follows directly from
Lemma 4.6 and Theorem 1.2.

We observe that, in the above result, the possibility φU = 1 is completely ruled out
if we are seeking global but not local persistence in U . Now we show under which
conditions the quantity m1 defined in (1.5) is actually a threshold.

Lemma 4.7. Let X be a generic set and P ′ a substochastic matrix on X. Given an
offspring distribution ν with expected value m, consider the modification of the usual
BRW where each offspring of a particle at x is placed at y (resp. killed) with probability
p′(x, y) (resp. 1 −

∑
y∈X p

′(x, y)). Then there exists mP ′ ∈ [1,+∞) such that m > mP ′

implies global survival w.p.p., while m <mP ′ implies a.s. global extinction. In particular,
for the BRW induced by U ⊆ X, m >m1(U) implies persistence w.p.p., while m <m1(U)

implies a null probability of persistence.
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Proof. Consider the BRW on G×{0, 1} with offspring distribution ν and stochastic matrix
P defined as

p((x, i) , (y, j)) :=


p′(x, y) if i = j = 0

1−
∑
w∈G p

′(x,w) if x = y, i = 0, j = 1

1 if x = y, i = j = 1

0 otherwise.

It is clear that global extinction of {Bn}n is equivalent to extinction of the new BRW in
the set G× {0} or, by using the terminology of [13], to ν-transience of the new BRW in
G× {0}. The result follows from [13, Corollary 1.2].

Consider now the BRW induced by U ⊆ G. It is clear that P ′U is a substochastic
matrix, hence the above arguments apply to the induced BRW as well.

4.3 Proof of Theorem 1.4

The auxiliary process {Uxn}n is, in general, a BRW with infinitely many types. BRWs
with countably many types are yet not well understood, and only recently Hautphenne
et al., and Bertacchi et al. (see e.g. [11] and [2] and references therein) managed to
shed some light into such a difficult topic. However, for F -BRWs, one can prove several
useful results. A particular case that we are interested in, is when U is such that∑
y∈U p(x, y) = ζ does not depend on x ∈ U , which means that, the global behavior of the

BRW induced by U is the same as the global behavior of a BRW with just one type. Then,
for all vertices x ∈ U the following quantity m̃x := E

[∑
w∈U U

x
1(w)

]
= m

∑
y∈U pU (x, y)

does not depend on x, that is m̃x = mζ for all x. As an example, consider the case when
PU is transitive. We are now able to prove Theorem 1.4.

Proof of Theorem 1.4. Proof of (i). By hypothesis we have that
∑
y∈U p(x, y) = ζ and

Px(Ej) = ζj for all x ∈ U and for all j ≥ 1. As a consequence, we have that, for all
x, y ∈ U

GPU
(x, y | ζ) =

∑
j≥0

p
(j)
U (x, y)

1

ζj
=
∑
j≥0

p
(j)
U (x, y)

Px(Ej)
=
∑
j≥0

q
(j)
U (x, y) = GQU

(x, y | 1).

Hence, letting oU be a reference vertex in U ,

KPU
(x, y | ζ) =

GPU
(x, y | ζ)

GPU
(oU , y | ζ)

=
GQU

(x, y | 1)

GQU
(oU , y | 1)

= KQU
(x, y | 1). (4.2)

Now, consider the functions wx(y) := KPU
(x, y | ζ). Each of them can be extended to

a unique continuous function, w̄x onM(PU , ζ). Namely, for each sequence {yn}n ⊆ U

such that yn → ξ ∈ M(PU , ζ), we define w̄x(ξ) := limnKPU
(x, yn | ζ). Then, by (4.2) we

also have that wx(ξ) = limnKQU
(x, yn | 1). In conclusion, since the above is true for all

x ∈ U , then (by uniqueness of the Martin compactification), one has

M(PU , ζ) ⊆M(QU , 1).

The inverse inclusion can be proven in the same way. Notice that we are not allowed
to include the element ðU inM(QU , 1), because a RW governed by QU does not exit U ,
hence it will not get “killed”.

Proof of (ii). Here we use the machinery developed in Section 2.2 together with
Theorem 2.1. Since PU is transitive then

∑
y∈U p(x, y) is constant on U and {Un}n is

an F -BRW with only one type. Moreover, ν satisfies a L logL condition by assumption,
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then the same condition is satisfied by the law of the variables
∑
w∈U U

x
1(w) as well.

Indeed, let ν1 be the common law of the variables
∑
w∈U U

x
1(w); in the induced process

there cannot be more offspring than in the original one, whence it is clear that ν1 is
stochastically dominated by ν. Since f(x) := x log(x) is a nondecreasing map on N then
Eν1 [f ] ≤ Eν [f ] < +∞. Theorem 2.1 applied to this context yields the result.

4.4 Proof of Propositions 2.5 and 2.6

Proposition 2.5 is a direct consequence of the following result, which provides
sufficient conditions on U so that the BRW induced by U is projected on a BRW on a
set Y ; by taking a finite Y we have an F -BRW. Given a family of offspring distributions
{νx}x∈G, we consider the BRW induced by U which is associated with the probability

measures µ(U)
x defined in (2.6), with νx (dependent on x ∈ U ) instead of ν. Henceforth,

given a function g : U 7→ Y , we say that a family of offspring distributions {νx}x∈G is
g-invariant if g(x) = g(y) implies νx = νy for all x, y ∈ U .

Proposition 4.8. The following are equivalent.

(a) There exists a surjective map g : U → Y such that, for every g-invariant family of
offspring distributions, the BRW induced by U is projected on a BRW on Y with
projection g.

(b) There exists a surjective map g : U → Y and a g-invariant family of offspring
distributions {νx}x∈G satisfying νx(0) < 1 for all x ∈ U , such that the BRW induced
by U is projected on a BRW on Y with projection g.

(c) There exists a surjective map g : U → Y such that the quantity
∑
w : g(w)=y pU (x,w)

(x ∈ U ) only depends on g(x) and y.

Finally, suppose that U = G; if the BRW on G is projected on a BRW on Y with projection
g then the family {νx}x∈G is g-invariant.

Suppose, in addition, that νx(0) < 1 for all x ∈ G; then the BRW on G is projected on a
BRW on Y with projection g if and only if (c) holds and the family {νx}x∈G is g-invariant.

Proof. To avoid a cumbersome notation, in this proof we write µx instead of µ(U)
x . By

Definition 2.4, the BRW induced by U is projected on the BRW (Y, {ηy}y∈Y ) (where
{ηy}y∈Y is a collection of probability measures on SY ) if there exists a surjective map
g : U → Y , such that for all h ∈ SY ,

ηg(x)(h) = µx(π−1
g (h)), (4.3)

where πg : SU → SY , πg(f)(y) =
∑
z∈g−1(y) f(z). (a)⇒ (b). It is straightforward, once we

prove that there exists at least one g-invariant family {νx}x∈G such that νx(0) < 1 for all
x ∈ U . Take νx = ν for all x ∈ G, where ν is a probability measure on N with ν(0) < 1.
(b)⇒ (c). Let g and {νx}x be as in (b). By hypothesis (4.3) holds for a suitable offspring
family {ηy}y∈Y . Let us compute µx(π−1

g (h)) for a generic h ∈ SY ; observe that if πg(f) = h

then |f | = |h| (where |f | =
∑
x∈G f(x)). We have

ηg(x)(h) = µx(π−1
g (h)) =

∑
f∈π−1

g (h)

µx(f)

=
∑

f∈π−1
g (h)

∞∑
n=|f |

νx(n)
(

1−
∑
w∈U

pU (x,w))
)n−|f |( n

|f |

)
|f |!∏
w f(w)!

∏
w∈U

pU (x,w)f(w)

=

∞∑
n=|h|

νx(n)
(

1−
∑
w∈U

pU (x,w))
)n−|h|( n

|h|

) ∑
f∈π−1

g (h)

|h|!∏
w∈U f(w)!

∏
w∈U

pU (x,w)f(w).

EJP 29 (2024), paper 138.
Page 20/27

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1201
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Martin boundaries and asymptotic behavior of branching random walks

Observe that if f ∈ π−1
g (h) and fy := f |g−1(y) then |fy| = h(y) for all y ∈ Y . Let us

consider the last sum in the above equation∑
f∈π−1

g (h)

|h|!∏
w∈U f(w)!

∏
w∈U

pU (x,w)f(w) =
∑

f∈π−1
g (h)

|h|!∏
w∈U f(w)!

∏
y∈Y

∏
w : g(w)=y

pU (x,w)f(w)

=
∑

f∈π−1
g (h)

|h|!∏
y∈Y h(y)!

∏
y∈Y

[ h(y)!∏
w : g(w)=y f(w)!

∏
w : g(w)=y

pU (x,w)f(w)
]

=
|h|!∏

y∈Y h(y)!

∑
{fy}y∈Y :

fy∈Sg−1(y),|fy|=|h(y)|,∀y∈Y

∏
y∈Y

[ |fy|!∏
w : g(w)=y fy(w)!

∏
w : g(w)=y

pU (x,w)fy(w)
]

=
|h|!∏

y∈Y h(y)!

∏
y∈Y

( ∑
w : g(w)=y

pU (x,w)
)h(y)

.

Whence

µx(π−1
g (h)) =

∞∑
n=|h|

νx(n)
n!
(

1−
∑
w∈U pU (x,w))

)n−|h|
(n− |h|)!

∏
y∈Y h(y)!

∏
y∈Y

( ∑
w : g(w)=y

pU (x,w)
)h(y)

.

(4.4)
Since ηg(x)(h) = µx(π−1

g (h)) then the R.H.S. of (4.4) only depends on g(x) for each fixed
h. If we consider h := 0, then π−1

g (h) = 0 and

µx(π−1
g (h)) = µx(0) =

∞∑
n=0

νx(n)

(
1−

∑
w∈U

pU (x,w)

)n
= ηg(x)(0),

which depends on x only through g(x). Since νx(0) < 1 then z 7→
∑∞
n=0 νx(n)zn is strictly

increasing; moreover νx only depends on g(x), thus
∑
w∈U pU (x,w) only depends on g(x).

If we take now h = kδy, where k > 0 is such that ν(k) > 0, then ηg(x)(kδy) again must
depend only on g(x) and coincide with µx(π−1

g (kδy)). By definition of the map πg,

π−1
g (kδy) = {f ∈ SU : |f | = k, supp(f) ⊆ g−1(y)}.

µx(π−1
g (kδy)) =

∞∑
n=k

νx(n)

(
n

k

)(
1−

∑
z∈U

pU (x, z)

)n−k ∑
w : g(w)=y

pU (x,w)

k

.

This quantity must depend on x only through g(x) and, since
∑
z∈U pU (x, z) only depends

on g(x), then
∑∞
n=k νx(n)

(
n
k

) (
1−

∑
z∈U pU (x, z)

)n−k
> 0 only depends on g(x). In turn,

this implies that
∑
w : g(w)=y pU (x,w) only depends on g(x) and y, which is the claim.

(c) ⇒ (a). Let πg : SU → SY be as in Definition 2.4, consider a fixed family of g-
invariant offspring distributions {νx}x∈G and the related BRW where µx is defined as in
equation (2.6) with νx instead of ν. For any given h ∈ SY , by equation (4.4), we have that

µx(π−1
g (h)) =

∞∑
n=|h|

νx(n)
n!
(

1−
∑
w∈U pU (x,w))

)n−|h|
(n− |h|)!

∏
y∈Y h(y)!

∏
y∈Y

( ∑
w : g(w)=y

pU (x,w)
)h(y)

and from (c) we have that the R.H.S. only depends on g(x). Whence ηg(x)(h) := µx(π−1
g (h))

is a well-posed definition of a family of probability measures {ηy}y∈Y on SY . Thus, the
BRW on U is clearly projected on (Y, {ηy}y∈Y ).
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Finally, suppose that the BRW on G is projected on (Y, {ηy}y∈Y ) with projection g

(here U = G); thus µx = µ
(G)
x and, by using equation (2.2) (with νx instead of ν) for all

n ∈ N, it is easy to see that

νx(n) = µx(f ∈ SG : |f | = n) = µx
(
π−1
g (h ∈ SY : |h| = n)

)
= ηg(x)

(
π−1
g (h ∈ SY : |h| = n)

)
which depends only on g(x). Hence, {νx}x∈G is g-invariant (we do not need here the
additional hypothesis νx(0) < 1 for all x ∈ G). The claim follows from the equivalence
between (a), (b) and (c).

Now we can prove Propositions 2.5 and 2.6.

Proof of Proposition 2.5. When νx does not depend on x ∈ U then, the family {νx}x∈G is
trivially g-invariant, for every function g defined on U . Thus, this condition is unnecessary
and can be removed from the statement of Proposition 4.8 obtaining the statement of
Proposition 2.5 when Y is finite.

Proof of Proposition 2.6. According to [6, Theorem 2.4], positive probability of global

survival for an F -BRW on U is equivalent to lim infn→∞
n

√∑
y∈U m

(n)
x,y > 1. Since here

mx,y = m · pU (x, y), we have the claim.

4.5 Proof of Proposition 3.5

For convenience of the reader, we recall the following result, which will be useful to
prove positive probability of survival in subsets (see [5, Theorem 3.3] and [2, Theorem
4.1] for more details). Here q0(x,B) denotes the probability that the BRW starting with
one particle in x never visits B.

Theorem 4.9. For any BRW on a set X and A,B ⊆ X , the following statements are
equivalent:

(i) there exists x ∈ X such that q(x,A) < q(x,B)

(ii) there exists x ∈ X such that q(x,A) < q0(x,B)

(iii) there exists x ∈ X such that, starting from x there is a positive probability of
survival in A without ever visiting B

(iv) there exists x ∈ X such that, starting from x there is a positive probability of
survival in A and extinction in B starting from x

(v)

inf
x∈X : q(x,A)<1

1− q(x,B)

1− q(x,A)
= 0.

(vi) q(A ∪B) < q(B).

In particular if any of the above holds, then q(A) < 1 and q(X ) < q(B).
Finally, if we replace A by A \B in (i)− (vi) we obtain a set of conditions equivalent to
the above ones.

The starting points x in Theorem 4.9 are related. The vertices x satisfying (i) and (iv)
are the same. The vertices x satisfying (ii) and (iii) are the same. If x satisfies, say, (ii)
then it satisfies (i). On the other hand, it follows from the proof that if x satisfies, say (i)
then every x′ satisfying (ii) must be among the vertices reachable by the progeny of a
particle living at x.

In order to prove Proposition 3.5 we need a lemma regarding the behavior of q0(y, {x})
on Td.
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Lemma 4.10. Consider the edge-breeding BRW on Td with 1/d < λ ≤ 1/2
√
d− 1. For

any fixed y ∈ Td and x1, x2 ∈ Td such that d(y, x1) < d(y, x2) we have q0(y, {x1}) <
q0(y, {x2}). Moreover, there exists c > 0 and δ < 1 such that 1− q0(y, {x}) ≤ cδd(y,x).

Proof. Let us note that, by symmetry, q0(y, {x}) = q0(x, {y}) and this only depends
on d(x, y). Moreover, we know that if y 6= o (where o is the root of the tree Td) then
1 > q(x,Ty) > q(x,Td) for all x ∈ Td. Again by symmetry and using the results of [7], if
we define

r(x, y) :=

{
d(x, y) if x 6∈ Ty

−d(x, y) if x ∈ Ty

then q(x,Ty) is strictly increasing with respect to r(x, y). Moreover, by [2, Corollary 4.2]
we know that supx∈T q(x,Ty) = 1. As a consequence, by the above monotonicity,

lim
r(x,y)→+∞

q(x,Ty) = lim
d(x,y)→+∞, x 6∈Ty

q(x,Ty) = 1. (4.5)

By the symmetry of the tree, it is enough to prove that limx→∂Td
q0(o, {x}) = 1 or,

equivalently, limx→∂Td
q0(x, {o}) = 1. To this aim, let us fix a neighbor x1 of o and the

subtree T := Td \Tx1
. In order to survive in T for a BRW starting with one particle in

x 6∈ T it is necessary to visit o, therefore

1− q(x,T) ≥ (1− q0(x, {o}))(1− q(o,T)).

From the above inequality and equation (4.5), since q(o,T) < 1 we have that
limx→∂Td

q0(x, {o}) = 1.
Let us prove monotonicity. As before, by symmetry, it is enough to prove the result

when y = o. By (2.2) in [7, Section 3.2] we have that G(q0({o})|x) = q0(x) for all
x 6= o, where G is the generating function of the BRW as defined by equation (3.3)
in [24, Section 3.2]. In this case G(v|x) = 1/(1 + M(1 − v)(x)), where M is the 1st
moment matrix of the BRW (see equation (3.4) in [24, Section 3.2]). Whence, if an :=

1− q0(o, {x}) = 1− q0(x, {o}) (where d(o, x) = n) then

an =
λd
(
an−1/d+ (d− 1)an+1/d

)
1 + λd

(
an−1/d+ (d− 1)an+1/d

) . (4.6)

We prove by induction on n that an > an+1. It is clear that if x 6= o then q0(o, {x}) =

q0(o,Tx) > 0 = q0(o, {o}) (by using Theorem 4.9), whence a0 > a1. Suppose that
an−1 > an, then according to the Maximum Principle [5, Proposition 2.1], if G(v|x) ≥ v(x)

then either v(y) = v(x) for all neighbors y of x or there exists a neighbor y of x such
that v(y) > v(x). Now, since 1− an−1 < 1− an then 1− an+1 > 1− an, that is, an > an+1.
If we solve (4.6) for an+1 we have

an+1 =
an

λ(d− 1)(1− an)
− an−1

d− 1
. (4.7)

Since an < an−1 from the previous equation we have

an+1 =
an

λ(d− 1)(1− an)
− an
d− 1

= an
d− (1 + ∆)(1− an)

(1 + ∆)(d− 1)(1− an)
.

where ∆ := dλ− 1 (recall that 1/d < λ ≤ 1/(2
√
d− 1)). Since an → 0 we have (d− (1 +

∆)(1−an))/((1+∆)(d−1)(1−an))→ (1−∆/(d−1))/(1+∆)) < 1 eventually as n→ +∞.
Whence there exists ε > 0 such that (d− (1 + ∆)(1− an))/((1 + ∆)(d− 1)(1− an)) ≤ 1− ε
eventually as n → +∞; thus, by using (4.7), an+1 ≤ an(1 − ε) eventually as n → +∞.
This implies that the sequence an/(1− ε)n is eventually non-increasing as n→ +∞, thus
there exists a finite constant c ≥ an/(1− ε)n for all n ∈ N. The claim follows by taking
δ := 1/(1− ε).
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We can now prove Proposition 3.5 in a constructive way; indeed, the proof explicitly
describes how to find the required set.

Proof of Proposition 3.5. By Lemma 4.10, q0(o, {x}) only depends on (and it is increasing
with respect to) d(o, x) and there exists a sequence {ri}i∈N of natural numbers such
that

∑
i∈N(1 − q0(o, {xi})) < +∞ for all choices of {xi}i with d(o, xi) ≥ ri for all i ∈ N.

Let us enumerate the elements of Td \ {o} = {y1, y2, . . . , yn, . . .}. We choose {xi}i∈N
such that xi ∈ Tyi and d(o, xi) ≥ ri and we define A∅ :=

⋃
i∈N{xi}. Clearly, ∂A∅ = ∂T

by construction. Moreover,
∑
i∈N(1 − q0(o, {xi})) < +∞, thus, by the Borel-Cantelli’s

Lemma, only a finite number of vertices of A∅ are visited almost surely by the BRW
starting with one particle at o.

Observe that, given our choice λ ∈ (1/d, 1/2
√
d− 1] made in Section 3 (right before

Section 3.1), survival in a set is equivalent to visiting an infinite number of vertices of
the set. This implies that 1 = q(o,A∅) which, in turns, implies 1 = q(x,A∅) for all x ∈ Td
since the BRW is irreducible. Then q(A∅) = q(∅) and the proposition is proven if B = ∅.

Consider now a generic B ⊆ Td. Denote by S(A) the event “survival in A” for
A ⊆ Td; the probability of S(A) for a BRW starting with one particle is 1 − q(x,A).
Observe that S(A ∪ B) = S(A) ∪ S(B), therefore min(q(x,A),q(x,B)) ≥ q(x,A ∪ B) ≥
q(x,A) + q(x,B)− 1 for all x ∈ X. If we define AB := A∅ ∪B then ∂AB = ∂Td and

q(B) = min(q(A∅),q(B)) ≥ q(AB) ≥ q(A∅) + q(B)− 1 = q(B)

and the claim is proven.

Here is another result following from Theorem 4.9. Given x, y ∈ T, by Tx,y we denote
the tree branching from y with respect to the root x, that is, {z ∈ T : y ∈ ϕx,z}. Clearly
y ∈ Tx,y.

Proposition 4.11. Consider a BRW on a tree T. Let A,B ⊆ T such that q(x,A) > q(x,B)

for some x ∈ T. Then there exists y ∈ T such that for the BRW starting from y there is
positive probability of survival in B without ever visiting

⋃
w∈ATy,w.

Proof. According to Theorem 4.9 there exists y ∈ T such that there is positive probability
of survival in B without visiting A. Given the nature of a tree, in order to visit

⋃
w∈ATy,w

the process must visit A, since any path from y to Ty,w visits w. Therefore q0(y,A) =

q0

(
y,
⋃
w∈ATy,w

)
and there is survival in B without visiting

⋃
w∈ATy,w.

This applies, for instance, to the set A = A∅ in Proposition 3.5; in this case it is not
difficult to see that there is positive probability of global survival starting from o without
ever visiting

⋃
y∈A∅ Tx,y.

4.6 Proofs of Proposition 3.7, Proposition 3.9 and Theorem 1.1 (iii)

We start with a useful lemma which characterizes the boundary of subsets of a tree.
We observe that, by using the construction of the Martin boundary of a tree given in
Section 3.1, clearly, ϕ ∈ ∂A (A ⊆ T) if and only if A∩Tϕ(i) 6= ∅ for all i ∈ N; in particular,
ϕ ∈ ∂Tx if and only if x = ϕ(i) for some i ∈ N.

Lemma 4.12. For any subset B ⊆M(P, 1) the following are equivalent:

(1) B is a closed subset

(2) there exists a connected subset A ⊆ T such that B = ∂A.
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Proof. We note that B ⊆M(P, 1) is closed in T̂ if and only if it is closed in the induced
topology onM(P, 1).
(2) =⇒ (1). It follows from the fact that any topological boundary is a closed subset.
(1) =⇒ (2). Let us define A := {x ∈ T : ∃ϕ ∈ B, i ∈ N such that ϕ(i) = x}. It is clear
that ∂A ⊇ B. Suppose that ϕ 6∈ B, since B is closed then there exists y ∈ T such that
ϕ ∈ ∂Ty and ∂Ty ∩ B = ∅. This implies that for every ϕ′ ∈ B, ϕ′ ∩ ∂Ty = ∅. Therefore,
by the definition of A, A ∩Ty = ∅ and then ϕ 6∈ ∂A. A is clearly connected, if nonempty,
since every vertex is connected to ϕ(0) = o.

Remark 4.13. In a tree T with root o there is another way to construct a set whose
boundary is a given closed subset B of ∂T. Since B is closed, ∂T \B =

⋃
x∈I ∂Tx for a

suitable choice of I ⊆ Td such that {Tx}x∈I are mutually disjoint. DefineA := T\
⋃
x∈I Tx

It is easy to see that A is connected and B = ∂A; indeed, ∂A ∩ ∂Tx = ∅ for all x ∈ I,
whence ∂A ⊆ B. However, if ϕ ∈ B, then I ∩ ϕ = ∅ whence ϕ ⊆ B and then ϕ ∈ ∂A.
Clearly, if B = ∅ then A = ∅.

The choice of {Tx}x∈I is not unique and in general A ⊇
⋃
ϕ∈B ϕ, where the latter

is the set constructed in Lemma 4.12. It is easy to prove that there is a unique family
{Tx}x∈I such that ∂T\B =

⋃
x∈I ∂Tx and where each subtree Tx is maximal with respect

to the set inclusion. With this choice it is not difficult to see that T \
⋃
x∈I Tx =

⋃
ϕ∈B ϕ.

We describe now the generic connected subset of a tree in the following lemma.
Recall that a leaf in a graph is a vertex with only one neighbor.

Lemma 4.14. Let A ⊆ T be a connected subset of a tree with root o. Denote by ∂A
the boundary of A, by LA the set of leaves of A and let nA := min{d(o, x) : x ∈ A}. Then
there exists only one vertex x̄ ∈ A such that d(o, x̄) = nA; moreover A = {y ∈ T : y =

ϕx̄,w(i), i ∈ N, w ∈ ∂A ∩ LA}.

Proof. Note that if x, y ∈ A and A is connected then the path ϕx,y is in A. Denote by

Ã := {y ∈ T : y = ϕx̄,w(i), i ∈ N, w ∈ ∂A ∩ LA}.
If nA = 0 then x̄ = o. Let x, y ∈ A such that d(o, x) = d(o, y) ≥ 1, since A is connected

then x ∧ y ∈ A since it belongs to the path ϕx,y. But d(o, x ∧ y) ≤ d(o, x) = nA and by
definition of nA we must have d(o, x ∧ y) = d(o, x) which implies x = x ∧ y = y.

By connection every path ϕx̄,y where y ∈ ∂A ∩ LA is in A, thus Ã ⊆ A. Suppose that

x ∈ A; if x ∈ LA then x is the ending point of the path ϕo,x whence x ∈ Ã. Otherwise
there is a neighbor x1 ∈ A such that d(o, x1) = d(o, x) + 1. Suppose we have xi ∈ A

such that d(o, xi) = d(o, x) + i; either xi ∈ LA (whence xi ∈ Ã) or there exists a neighbor
xi+1 ∈ A such that d(o, xi+1) = d(o, xi) + 1 = d(o, x) + i+ 1. If this iterative construction
ends in a finite number of steps, say n, then xn ∈ LA whence xn ∈ Ã, x belongs to
ϕ(o, xn) thus x ∈ Ã. Otherwise we have and infinite injective path in A converging to
some y ∈ ∂A. Clearly x belongs to ϕo,y whence x ∈ Ã.

Proof of Proposition 3.7. By using Lemma 4.12 or Remark 4.13 we obtain a connected
set B such that ∂B = ∂A.

We prove now the second part of the proposition. Let us start by noting that in a
connected tree, given two distinct vertices x 6= y a path ϕ connects x to y if and only if
ϕ ⊇ ϕx,y, that is, the path ϕ must visit every vertex of the shortest path from x to y. This
implies that if A is connected and x, y ∈ A then ϕx,y ⊆ A.

Moreover, given two connected sets A and B such that A ∩ B 6= ∅, clearly A ∪ B
and A ∩ B are connected; in particular if x, y ∈ A ∩ B then ϕx,y ⊆ A ∩ B. If we take
two disjoint connected components C1, C2 ⊆ A4B and a path ϕ going from C1 to C2

then ϕ ∩ A ∩ B 6= ∅. Indeed, let x and y be the starting and ending vertices of ϕ then
ϕx,y ⊆ A ∪ B. Moreover, let i1 be such that ϕx,y(i1) ∈ C1 and ϕx,y(i) 6∈ C1 for all i > i1;
similarly let i2 be such that ϕx,y(i2) ∈ C2 and ϕx,y(i) 6∈ C2 for all i < i2. Since C1
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and C2 are disjoint connected components and A ∩ B 6= ∅ then i2 − i1 > 1. Clearly,
x1 := ϕx,y(i1 + 1) ∈ A ∩B and y1 := ϕx,y(i2 − 1) ∈ A ∩B; on the other hand they belong
to A ∪B. Moreover {ϕx,y(i1 + 1), . . . ϕx,y(i2 − 1)} is the shortest path ϕx1,y1 thus, since
A∩B is connected ϕx1,y1 ⊆ A∩B, whence {ϕx,y(i1 +1), . . . ϕx,y(i2−1)} ⊆ A∩B. Roughly
speaking, to travel from one connected component of A4B to a different one (when
A ∩B 6= ∅) one needs to visit A ∩B.

Let A and B be two connected subset of the tree such that ∂A = ∂B. If ∂A = ∂B = ∅,
that is, A and B are both finite, then q(A) = q(B) since the process is irreducible.

Suppose now that ∂A = ∂B 6= ∅. If ϕ ∈ ∂A then, since A is connected, ϕ(i) ∈ A

eventually when i→ +∞. A similar argument applies for B, thus ϕ(i) ∈ A∩B eventually
as i → +∞. In particular A ∩ B 6= ∅. Note that A4B is the (possibly infinite) union
of finite connected components otherwise, an infinite connected component in A \ B
(resp. B \ A) would contain a infinite path, whence a cluster point, which belongs to
∂A \ ∂B (resp. ∂B \ ∂A). In this case q(A) = q(B); indeed, since all components are
finite, in order to survive in A4B the BRW must visit an infinite number of components.
We proved that, in order to move from one component to another, the BRW must visit
A ∩B. This means that survival in A4B implies survival in A ∩B. So survival in A ∪B
implies survival in A∩B (the converse is trivial). Whence q(A∪B) = q(A∩B); however,
q(A ∩B) ≤ q(A), q(B) ≤ q(A ∪B), thus q(A) = q(B).

Proof of Theorem 1.1 (iii). As in Remark 4.13, consider ∂G \ ∂U =
⋃
x∈I ∂Tx for a fixed

I ⊆ G such that {Tx}x∈I are mutually disjoint. Clearly γo(∂U) = 1−
∑
x∈I γo(∂Tx); thus

γo(∂U) > 0 if and only if γo
(⋃

x∈I ∂Tx

)
< 1.

Define B := G\
⋃
x∈I Tx; we know from Proposition 3.7 that B is connected, ∂B = ∂U

and q(U) = q(B). Without loss of generality we can prove the result for B.
We know from Lemma 4.5 that with positive probability there is a line of descent of

the BRW converging to ∂B. Due to the tree structure and the definition of B, then in
order to converge to a point of ∂B, this line of descendants must cross B infinitely many
times, whence q(B) < 1.

Proof of Proposition 3.9. If A = ∅ or B = ∅, then Theorem 1.1 (iii) yields the result.
Henceforth, we suppose that they are both nonempty. We know from Lemma 4.12 and
Proposition 3.7 that if we consider the collection of all vertices in the paths from o to
the boundary of A, namely A′ := {ϕ(i) : ϕ ∈ ∂A, i ∈ N}, then ∂A = ∂A′ and q(A′) = q(A).
It is enough to prove the result for A and B of this type. For such A and B clearly
∂(A \B) = ∂A \ ∂B. Moreover if we consider any connected component of A \B, since
we are in a tree, is not difficult to see that it can be disconnected from B by removing a
single edge. Suppose, without loss of generality that γo(∂A \ ∂B) > 0 (otherwise, swap
roles between A and B). Since A \ B is an at-most-countable collection of connected
components, there is at least one component C such that γo(∂C) > 0. According to
Theorem 1.1 (iii) there is positive probability of survival in C while the connecting edge
is crossed a finite number of times. Then, by Theorem 4.9, there is positive probability
of survival in C without crossing the connected edge, that is, without visiting B (starting
from some x). Theorem 4.9 yields q(x,A) ≤ q(x,C) < q(x,B) for some x.
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