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Abstract. We provide a family of isolated tangent to the identity germs f : (C3, 0) →
(C3, 0) which possess only degenerate characteristic directions, and for which the lift
of f to any modification (with suitable properties) has only degenerate characteristic
directions. This is in sharp contrast with the situation in dimension 2, where any isolated
tangent to the identity germ f admits a modification where the lift of f has a non-
degenerate characteristic direction. We compare this situation with the resolution of
singularities of the infinitesimal generator of f , showing that this phenomenon is not
related to the non-existence of complex separatrices for vector fields of Gomez-Mont and
Luengo. Finally, we describe the set of formal f -invariant curves, and the associated
parabolic manifolds, using the techniques recently developed by López-Hernanz, Raissy,
Ribón, Sanz Sánchez, Vivas.

Introduction

In this paper, we investigate birational properties of tangent to the identity germs in
C3, in relation with the construction of (strong) separatrices and parabolic manifolds.

A holomorphic germ f : (Cd, 0) → (Cd, 0) is tangent to the identity when its dif-
ferential at 0 is the identity. In the one-dimensional case, Leau-Fatou’s flower theo-
rem [Lea97a, Lea97b, Fat19] ensures the existence of simply connected invariant domains
(petals) containing the origin at their boundary, where f is conjugated to a translation.
Petals for f and f−1 cover a pointed neighborhood of the origin, and allow a precise descrip-
tion of the local dynamics of these germs. The properties of tangent to the identity germs
and their petals are fundamental both in the global (see e.g. the monography [Mil06])
and in the local (see e.g. the topological classification of tangent to the identity germs
[Cam78]) aspects of the theory of holomorphic dynamical systems in dimension 1, as well
as for understanding bifurcations via parabolic implosion (see e.g. the survey [Shi00]).

In higher dimensions, it is not possible to give, in general, such a precise description
of the dynamics near the origin, but one can still aim at describing higher dimensional
analogues of the petals, called parabolic manifolds.

They are attached to complex tangent directions at 0, called characteristic directions.
Characteristic directions can be described as either fixed points (non-degenerate case) or
indeterminacy points (degenerate case) for the action induced by f − id on the exceptional
divisor of the blow-up of the origin (or equivalently, of the action of the homogeneous part
H of smallest degree of f − id on Pd−1).

A fundamental result by Hakim [Hak98] shows the existence of parabolic curves tangent
to non-degenerate characteristic directions (in any dimension).

Later, Abate [Aba01] shows the existence of parabolic curves for isolated tangent to
the identity germs in dimension d = 2. In analogy with Camacho-Sad’s construction of
complex separatrices for holomorphic foliations in dimension 2 [CS82], the proof consists in
showing that, after a finite number of blow-ups along characteristic (and in fact singular,
see Definition 1.2) directions, one can always find a regular modification (i.e., a composition
of blow-ups) where the lift of f has at least one non-degenerate characteristic direction.
This allows to apply Hakim’s result to get a parabolic curve for the lifted germs, transversal
to the exceptional divisor of the modification, so that it descends to a parabolic curve for
f . Several authors addressed the problem of finding stable manifolds for (possibly non-
isolated) 2-dimensional tangent to the identity germs, and the picture is quite complete
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now, see e.g. [Éca85, Wei98, Hak98, Aba01, ABT04, BMCLH08, Mol09, Viv12, Ron15,
LHSS18, LHRRSS19, LHR20]. The description of parabolic manifolds has been recently in-
strumental for the construction of examples of wandering domains, see [ABD+16, ABTP21].
(Semi-)parabolic implosion in dimension 2 (or higher) and applications to bifurcation the-
ory can also be found in the literature (see e.g. [BSU17, DL15, Bia19]), and mainly rely
on a careful study of the dynamics on parabolic curves.

We briefly expose here some of the reasons why the study of tangent to the identity
germs and their parabolic manifolds is much harder in higher dimensions. Firstly, the
homogeneous part H introduced above acts on Pd−1: for d = 2 all indeterminacy points
can be avoided by saturation, while they persist when d ≥ 3. Since 2-dimensional mod-
ifications are composition of point blow-ups, most of the phenomenon are combinatorial.
In higher dimensions, we can blow-up higher dimensional centers, and their geometry
needs to be taken into account. Moreover, we only have a weak factorization theorem
(see [AKMW02, Bon02]). Resolution theorems for vector fields are available in dimension
2 (see [Sei68]), and recently dimension 3 (see [Pan06, MP13]): here we need in general
to introduce singularities on the ambient space, by considering weighted blow-ups and
orbifolds. Finally, the infinitesimal generator of a tangent to the identity germ may not
admit complex separatrices when d ≥ 3, as showed by Gomez-Mont and Luengo [GML92].
Adapting their construction to tangent to the identity germs, Abate and Tovena [AT03]
give examples of tangent to the identity germs in dimension 3 that do not admit robust
parabolic curves, i.e., parabolic curves attached to invariant formal curves, the analogue of
(formal) complex separatrices in this setting. In their examples, all characteristic directions
are non-degenerate, and (non-robust) parabolic curves exist thanks to Hakim’s theorem.

In this paper, we investigate the existence of parabolic manifolds attached to degenerate
characteristic directions in dimension 3, by studying the following family of tangent to the
identity germs:

(1) f(x, y, z) = (x+ yz(y − z) + P, y + x(x2 − z2) +Q, z + xz(y − z) +R).

Here P,Q,R are holomorphic germs with order at least 4 at the origin. The coefficients
of the formal power series expansion of P,Q,R are considered as parameters of the family.
We say that a certain property holds for a generic element of the family if it holds for an
open dense subset of the parameters with respect to the Zariski topology over C.

Since characteristic directions are determined only by the homogeneous part of smallest
degree of f − id, all these maps share the same characteristic directions: there are five of
them, which we label v1, v2, v3, v4, v5, all of them degenerate. We denote by p1, p2, p3, p4, p5
the corresponding points on the exceptional divisor of the blow-up of the origin. Other
examples are easy to construct, building on the examples of rational maps in P2 with no
(holomorphic) fixed points given by [Iva11].

For the maps described by (1), we investigate two possible strategies to find parabolic
manifolds. The first strategy, following [Aba01], consists in looking for a suitable bi-
rational model, where we can find non-degenerate characteristic directions (that are non-
exceptional, i.e., transverse to the exceptional divisor). Since non-degenerate characteristic
directions correspond to eigenvectors of the linear part of the saturated infinitesimal gen-
erator χ̂ of f , it is natural to start our study from a birational model π0 : Xπ0 → (C3, 0),
which provides a resolution of the singularities of the infinitesimal generator.

Our example shows that, unlike dimension 2, this first strategy may fail in higher di-
mensions.

Theorem A. A generic element f : (C3, 0) → (C3, 0) of the family (1) satisfies the
following property:

For any regular modification π : X → (C3, 0) strongly adapted to f and
dominating π0, and for any point p ∈ π−1(0) in the exceptional divisor,

the lift f̃ : X → X of f at p has only degenerate characteristic directions.
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Here “regular” means that we only allow sequences of blow-ups of smooth centers, while
“adapted to f” means that we only allow blow-up of centers that are invariants by the
saturated infinitesimal generator χ̂, and with “strongly adapted” we only allow to blow-up
points or curves belonging to the singular locus of χ̂.

We can actually say a little more about this family: one cannot find any non-degenerate
characteristic direction also for any point modification (see Subsection 5.4.2), nor along the
curves C1 and C2 (see below) for regular modifications (not necessarily strongly) adapted
to f above the points p1 and p2 (see Subsection 5.4.1).

The second strategy is in line with the recent works [LHRRSS19, LHR20, LHRSSV]. It
consists in looking for complex separatrices for the dynamics, and study parabolic manifolds
attached to them. While we know that this second strategy may fail in general by [GML92,
AT03], it proves quite fruitful in this case. We are able to find formal invariant curves
tangent to the directions v1, . . . , v4, and deduce the existence of parabolic manifolds by
[LHRSSV].

Theorem B. For generic elements f : (C3, 0) → (C3, 0) of the family (1), there exists
formal invariant curves C1, . . . , C4 tangent to v1, . . . , v4 respectively. These curves are
smooth, and they are the only formal invariant curves tangent to any direction (but possibly
v5). Finally, there are 3 (resp., 5) parabolic manifolds asymptotic to C1 and C2 (resp., C3

and C4), of dimension either 1 or 2.

For a generic choice of parameters, the parabolic manifolds asymptotic to C1 and C2

are of dimension 2, as well as either 2 or 3 out of the 5 asymptotic to C3 and C4, the
others being of dimension 1 (this is a consequence of the computations done in the proof
of Corollary 5.12).

The dynamics above p5 remains more complicated to describe. We are able to exclude
the existence of formal invariant curves that are transverse to the exceptional divisor of
the model Xπ0 , while we are able to find a formal invariant surface S tangent to v5.

Besides being only formal, the surface S is also singular, and [LHR20] cannot be applied

to f |S even if S were convergent. When working on the model Xπ0 , the strict transform S̃

of S is smooth and invariant by the lift f̃ of f . A direct computation shows that f̃ |
S̃
has

only two characteristic directions, corresponding to the tangent space of the exceptional

divisor π−1
0 (0). In general π−1

0 (0) could provide the only separatrices of f̃ , and constructing
parabolic manifolds would require other techniques (similar to [LHR20]).

The techniques used to prove Theorem A are mainly combinatorial. In particular, we
identify three new classes of tangent to the identity germs, namely degenerate spikes, spin-
ning corners and half corners, and show that all singularities in a suitable model dominating
Xπ0 belong to one of these classes (or simple corners introduced in [AT03]). Then we show
that these classes are invariant by (strongly) adapted regular modifications, and they do
not admit non-degenerate non-exceptional characteristic directions.

To prove Theorem B, we use the combinatorial knowledge achieved in the previous
step, and some computations using normal forms, to describe the set of formal invariant
curves attached to the classes introduced above. Moreover, we compute the reduction to
Ramis-Sibuya normal form, and apply the results in [LHRSSV] to deduce the existence of
parabolic manifolds attached to these formal invariant curves.

In both results, the genericity conditions are explicit and easy to check. They are not
essential to the results: they are taken to simplify the birational study and the exposition
of the dynamical properties of germs of the form (1).

Besides giving an explicit way to find formal invariant curves and parabolic manifolds
in a non-trivial example, the identification of classes invariant by (adapted) modifications
provide ideal candidates to replace the final reduced forms ⋆1 and ⋆2 of [Aba01]. The
reduction to these classes would be a fundamental step towards proving in general the
existence of parabolic manifolds in higher dimensions.
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The paper is organized as follows. In Section 1, we recall some basics about tangent to
the identity germs, vector fields, birational geometry and construction of formal curves,
as well as the theory of Ramis-Sibuya normal forms and the construction of parabolic
manifolds in the case of tangent to the identity germs.

In Section 2 we introduce the family of maps (1), study characteristic directions, and
exhibit the resolution π0 : Xπ0 → (C3, 0) of the infinitesimal generator.

In Section 3 we recall the definition of simple corners, and introduce the three new
classes. We then study their combinatorics in terms of point blow-ups.

In Section 4 we study the behaviour of these classes under regular modifications strongly
adapted to the dynamics, and conclude the proof of Theorem A.

Finally, in Section 5 we use the combinatorial picture portrayed in the previous section
to construct formal invariant curves, compute Ramis-Sibuya normal forms, and conclude
the proof of Theorem B. We end this section by some remarks on not strongly adapted
modifications, point modifications, and on the dynamical picture above p5.
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1. Background

1.1. Modifications

We start by some terminology about sequences of blow-ups.

Definition 1.1. A modification of (Cd, 0) is a proper bimeromorphic map π : Xπ → (Cd, 0)
which is a biholomorphism outside the exceptional divisor π−1(0). A modification is called
smooth if Xπ is smooth, regular if Xπ is obtained as a composition of blow-ups of smooth
centers.

If d = 2, any smooth modification is obtained as a finite composition of point blow-ups.
In general, building blocks of modifications are still given by blow-ups, whose centers have
codimension at least 2. In particular for d = 3, we can blow-up both points and curves.
The study of the birational geometry of tangent to the identity germs needs to take into
account the geometry of such curves, and not only the combinatorial data of blow-ups.

Moreover, it is not anymore true that smooth modifications are given by composition of
blow-ups (see [AKMW02, Bon02]), which gives a further technical difficulty to deal with
generic modifications.

Most of the modifications we will consider will be point modifications, i.e., composition
of point blow-ups, since they are more directly related to characteristic directions.

When doing so, we will perform local computations on suitable charts.
Let π : Xπ → (Cd, 0) be the blow-up of the origin, and fix local coordinates (x1, . . . , xd)

at 0 ∈ Cd. The total space Xπ of the blow-up is covered by d charts Uj , with j = 1, . . . , d,
corresponding to the complementary in Xπ of the strict transform of the hyperplane {xj =
0}. With abuse of notation, we denote by (x1, . . . , xd) also the coordinates in Uj , for which
the map π takes the form

π(x1, . . . , xd) = (x1xj , . . . , xj−1xj , xj , xjxj+1, . . . , xjxd).
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In this case, we will say that we work in the xj-chart. A point p corresponding to a direction
v = [a1 : . . . : ad] belongs to Uj if and only if aj ̸= 0. If this is the case, p has coordinates(
a1
aj
, . . . ,

aj−1

aj
, 0,

aj+1

aj
, . . . , adaj

)
in the xj-chart.

1.2. Characteristic directions

We introduce here some terminology about characteristic directions for tangent to the
identity germs in (Cd, 0).

Definition 1.2. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ. Denote by
H the homogeneous part of smallest degree of f − id, by ℓ the greatest common divisor of
the d coordinates of f − id (defined up to units), and let Hℓ be the homogeneous part of

smallest degree of ℓ−1(f − id). A tangent direction v ∈ Pd−1
C is called

• characteristic if there exists λ ∈ C so that H(v) = λv;
• singular if there exists λ ∈ C so that Hℓ(v) = λv.

In both cases, v is called non-degenerate if λ ̸= 0, and degenerate if λ = 0.
The degree of H is called the order of f , while the degree of Hℓ is called the pure order

of f .

Remark 1.3. The value λ in the previous definition is sometimes called multiplier of
the characteristic direction. Notice that such value is not well defined up to change of
coordinates, but its vanishing is.

Notice also that if v is a singular direction, then it is a characteristic direction. In
fact, if L is the homogeneous part of ℓ of smallest degree, then H = LHℓ and H(v) =
L(v)Hℓ(v) = λL(v)v. We also infer that any characteristic direction that is tangent to
{L = 0} (or equivalently to {ℓ = 0}) is automatically degenerate (as a characteristic
direction).

Remark 1.4. Borrowing some terminology from algebraic geometry, one can see charac-
teristic and singular directions as the same object.

Let X be a smooth manifold, p ∈ X, f : (X, p) → (X, p) be a tangent to the identity
germ, and D = {ψ = 0} be an effective divisor. Assume that its support is contained in
Fix(f). Then locally at p we can write

f(x) = x+ ψ(x) · (Hψ(x) + h.o.t.),

where h.o.t. stands for “higher other terms”. In this situation, a D-characteristic direction
(or a singular direction with respect to D) is an element v ∈ P(TpX) such that Hψ(v) = λv
for some λ ∈ C. Characteristic directions are obtained when D = 0 (or equivalently ψ = 1),
while singular directions are obtained when ψ = ℓ as above (in this case the support of
D = div(ℓ) is the pure (d− 1)-dimensional part of Fix(f)).

We need some terminology to describe the interaction between the exceptional divisor
of a given modification and characteristic and singular directions.

Definition 1.5. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ, and π :
Xπ → (Cd, 0) be a smooth modification. Denote by E the exceptional divisor of π, and let
fπ : Xπ 99K Xπ be the lift of f in Xπ. Let p ∈ E be a point in the exceptional divisor so
that the germ of fπ at p defines a tangent to the identity germ. We say that a characteristic
direction of fπ is exceptional if it belongs to the projectivization of the tangent space of E
at p.

In other terms, we can consider the blow-up of p, getting another modification π′ : Xπ′ →
(Cd, 0) dominating π: π′ = π ◦ η with η the blow-up at p. Then a characteristic direction v
of fπ is exceptional if the corresponding point pv in η−1(0) belongs to the strict transform
of the exceptional divisor E. If v is a characteristic (resp., singular) direction for fπ, we
will call the corresponding point pv a characteristic (resp., singular) point.

Clearly, the set of singular points describe an algebraic subvariety of CPd−1. If the
maximal dimension of the irreducible components of this subvariety is k, we say that the
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germ f is k-dicritical. Notice that 0-dicritical germs have only finitely many singular
directions. When f is (d−1)-dicritical, the set of singular points coincide with CPd−1, and
we simply say that f is dicritical.

Remark 1.6. Assume that f : (Cd, 0) → (Cd, 0) is a tangent to the identity germ, with
an isolated fixed point. Let π : Xπ → (Cd, 0) be any modification strongly adapted to f .
Since π defines a local isomorphism outside the exceptional divisor, the lift fπ of f at Xπ

satisfies Fix(fπ) = π−1(0). More generally if Fix(f) has no divisorial components, then
Fix(fπ) has no divisorial components outside the exceptional divisor E = π−1(0).

In the families we will study in the next chapters, we will often consider exceptional
the directions tangent to the divisor F of fixed points of f , since these families arise when
studying the lift of the maps of (1) with respect to some modification.

1.3. Infinitesimal generators

To any tangent to the identity germ f : (Cd, 0) → (Cd, 0) is associated a unique (formal,
possibly non-convergent) vector field χ, that has multiplicity at 0 at least 2, and satisfying
f = expχ (see e.g. [BMCLH08] for the construction in dimension 2). We recall that if ϕ is
a local coordinate (hence defining a germ of smooth hypersurface {ϕ = 0}) at 0, we have

ϕ ◦ expχ =
∞∑
n=0

χn(ϕ)

n!
,

where χn denotes the derivation χ applied n times. The vector field χ is called the infini-
tesimal generator of f , and denoted by χ = log f .

Remark 1.7. Notice that the homogeneous part of degree k of χ contributes to the factor
χn(ϕ) only starting from order (n− 1)(ord0χ− 1) + k.

In particular, if f is given by the example (1), then ϕ ◦ (f − id) and χ(ϕ) coincide up to
order 4.

Consider now a smooth manifold X, a compact (smooth) submanifold Z ⊂ X of codi-
mension at least 2, and π : Xπ → X the blow-up of X along Z. If χ is a vector field on
X, then χ lifts to a vector field χπ on Xπ, satisfying χq = (dπ)p(χπ)p for any q = f(p),
p ∈ Xπ, as far as χ is tangent to Z. When Z is reduced to a point {p} this happens exactly
when p is a singular point of χ.

Applying this situation to the infinitesimal generator χ of a tangent to the identity germ
f , we get:

Proposition 1.8. Let X be a smooth manifold, Z ⊂ X be a compact smooth submanifold
of codimension at least 2, and π : Xπ → X the blow-up of X along Z. Let f : X → X
be a holomorphic map fixing Z pointwise, and such that the germ of f at any point of Z
is tangent to the identity; denote by χ the infinitesimal generator of f . Finally, denote by
fπ : Xπ → Xπ the lift of f , and by χπ the lift of χ.

Then fπ = expχπ.

Proof. Assume for the moment that χ is analytic. Let Θ be the flow of χ, so that f(z) =
Θ(z, 1). Set z = π(x) and Ω(x, t) = π−1 ◦ Θ(z, t) for any x ̸∈ E. As Ω is analytic and
bounded in a neighborhood of E, it extends holomorphically to E. Now, let us consider
x ∈ Xπ \ E. On the one hand, we get

π ◦ fπ(x) = f(z) = Θ(z, 1) = π ◦ Ω(x, 1) .
On the other hand, we get

χΘ(z,t) = Θ′(z, t) = dππ−1(Θ(z,t))Ω
′(x, t) = dπΩ(x,t)(χπ)Ω(x,t),

and Ω is the flow of χπ. As this holds outside E and all the maps involved extend holo-
morphically to E, we obtain the desired result for χ analytic.

The result for χ formal follows, by applying the previous calculation to truncations, and
by Remark 1.7. □
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1.4. Vector fields and characteristic directions

In more abstract terms, Proposition 1.8 says that the operator associating to a tan-
gent to the identity germ its infinitesimal generator is functorial (with respect to regular
modifications adapted to f).

In order to explicit the link between characteristic/singular directions, and singularities
of the infinitesimal generator, we need to introduce partial saturations.

Definition 1.9. Let X be a complex manifold, Z ⊂ X a compact submanifold of X, and
f : (X,Z) → (X,Z) a germ of holomorphic map fixing Z pointwise, and for which f is a
tangent to the identity germ at any p ∈ Z. Let π : Xπ → (X,Z) be a modification over
Z, adapted to f . Denote by E the exceptional divisor of π, and by fπ the lift of f at Xπ.
Finally, let χπ be the infinitesimal generator of fπ.

The partial saturation of χπ with respect to π−1(D) at a point q ∈ E is the vector field

(xh−1
1 ℓ ◦ π(z))−1χπ,

whereD = {ℓ = 0} locally at p = π(q), E = {x1 = 0} locally at q and h = ordp
(
ℓ−1(f−id)

)
.

Remark 1.10. In the setting of Definition 1.9, denote by F the divisorial part of the
fixed locus of f , and by Fπ the divisorial part of the fixed locus of fπ the lift of f . We
let E = π−1(0) be the exceptional divisor of π; we also set D = F = {ℓ = 0}, and denote
again by h the order at 0 of ℓ−1(f − id).

When f is non-dicritical, then we have that Fπ = π−1F + (h − 1)E, and the partial
saturation χ̂π of χπ corresponds to the saturation of a vector field in the usual sense.

When f is dicritical, then we have that Fπ ≥ π−1F + hE > π−1F + (h − 1)E. In this
case, in the partial saturation we only simplify the factor due to π−1F +(h− 1)E, and not
the one due to Fπ, as the saturation in the usual sense would require.

Notice that by Remark 1.7, the set of singular points of a tangent to the identity germ f
coincides with the set of singular points of the (partially) saturated infinitesimal generator
χ̂π.

Proposition 1.11. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ, and

v ∈ Pd−1
C be a tangent direction at 0. Denote by π : Xπ → (Cd, 0) the blow-up of the

origin, by fπ the lift of f at Xπ, and by χπ the infinitesimal generator of fπ. Let D be
an effective divisor whose support is contained in Fix(f). Then v is a D-characteristic
direction for f if and only if the partial saturation of χπ with respect to π−1D is singular
at the corresponding point pv ∈ π−1(0).

Proof. Fix coordinates x = (x1, . . . , xd) on (Cd, 0) so that v = [1 : 0 : · · · : 0]. Write
D = {ℓ = 0}. Then we can write f as:

f(x) = x+ ℓ(x)
(
H(x) +mh+1

)
,

where m is the maximal ideal at 0, andH := Hℓ is a non-vanishing homogeneous polynomial
of degree h ≥ 0. Then v is D-characteristic if and only if Hℓ(v) = λv for some λ ∈ C. We
work in the x1-chart. The lift fπ of f satisfies

x1 ◦ fπ = x1 + ℓ ◦ π(x)
(
xh1H1(1, x2, . . . , xd) + ⟨xh+1

1 ⟩
)
,

xj ◦ fπ =
xj + ℓ ◦ π(x)

(
xh−1
1 Hj(1, x2, . . . , xd) + ⟨xh1⟩

)
1 + ℓ ◦ π(x)

(
xh−1
1 H1(1, x2, . . . , xd) + ⟨xh1⟩

) ,

where H = (H1, . . . ,Hd) and j = 2, . . . , d. Notice that ord0(ℓ) + h ≥ 2, hence fπ leaves
π−1(0) fixed. By Proposition 1.8, the infinitesimal generator χπ has the following form
when developed near pv (corresponding to the origin in the coordinates (x1, . . . , xd)):

χπ =
(
xh−1
1 ℓ ◦ π(x)

)( d∑
j=2

(Hj − xjH1)(1, x2, . . . , xd)∂j + x1ξ

)
.
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where ξ is a suitable vector field. The partial saturation of χπ with respect to π−1(D) is,

by definition, given by χ̂π =
(
xh−1
1 ℓ ◦ π(x)

)−1
χπ, which coincides with

d∑
j=2

(Hj − xjH1)(1, x2, . . . , xd)∂j

on π−1(0) = {x1 = 0}.
Then, v = [1 : 0 : · · · : 0] is D-characteristic if and only if Hj(1, 0, . . . , 0) = 0 for all

j = 2, . . . , d. But this happens if and only if χ̂π has a singularity at the origin. □

We extend the notion of singular points, using the interpretation in terms of saturated
infinitesimal generator, for models not obtained as point modifications.

Definition 1.12. Let X be a complex manifold, Z ⊂ X a compact submanifold of X, and
f : (X,Z) → (X,Z) a germ of holomorphic map fixing Z pointwise, and for which f is a
tangent to the identity germ at any p ∈ Z. Let π : Xπ → (X,Z) be a modification over
Z, adapted to f . Denote by fπ the lift of f at Xπ, and by χ̂π its saturated infinitesimal
generator (with respect to π−1(Z)). Then we say that fπ is singular at p ∈ π−1(Z) if p is
a singularity of χ̂π.

1.5. Resolution of singularities of vector fields

In [Pan06], the author provides an algorithm to resolve singularities for analytic vector
fields locally defined at the origin of R3. He shows that, up to a finite sequence of weighted
blow-ups, any real analytic vector field can be assumed to have elementary singularities. Up
to further blow-ups, one can get even better final normal forms, called strongly elementary.

In [MP13, Theorem p.281], these results have been transported to the complex-analytic
case. In this case the singularities are classified, following the minimal model problem
for algebraic varieties, according to positivity properties of the canonical bundle of the
associated foliation. Elementary singularities are called here log-canonical (see [MP13,
I.ii.1 Definition]). Again, a further improvement can be achieved, obtaining canonical
singularities.

One of the major difficulties in this setting is that weighted blow-ups don’t preserve
the class of smooth manifolds: one has to consider some mild singularities, namely, cyclic
quotients, which correspond to working with orbifolds.

When studying our example given by (1), we will only need smooth models (see Propo-
sition 2.3). We recall here the definition of log-canonical singularities in this setting.

Definition 1.13. Let X be a smooth 3-fold, D a simple normal crossings (SNC) divisor
on X, and χ a vector field locally defined at a point p ∈ D. Then χ is called log-canonical
if its D-saturation is tangent to D, and either regular, or singular at p with a non-nilpotent
linear part.

In general, when working with a cyclic quotient singularity (X, p), we can see it as the
quotient of (C3, 0) by the action of some finite group Γ. Then a log-canonical foliation
on (X, p) is induced by a log-canonical Γ-invariant foliation on (C3, 0) (see [MP13, I.ii.5
Fact/Definition]).

We also need to recall the definition of (isolated) canonical singularities, (see [MP13,
III.i.2 Definition and III.i.3 Fact]).

Definition 1.14. Let X be a smooth 3-fold, D a SNC divisor on X, and χ a saturated
vector field at X with an isolated singularity at p ∈ D. Then χ is called (D-)radial if it is
tangent to D and its linear part has eigenvalues (λ1, λ2, λ3) ∈ λ(N∗)3 for some λ ̸= 0.

A vector field χ as above is called (D-)canonical if it is (D-)log-canonical, but not
(D-)radial.

The reduction of singularities for vector fields can be then stated as follows.
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Theorem 1.15 ([MP13, Theorem p.281]). Let (X,F) be a holomorphic foliation by curves
on a 3-manifold X. Then there exists a sequence of weighted blow-ups π : (Xπ, Dπ,Fπ) →
(X,F) so that Fπ has only log-canonical singularities.

Moreover, “log-canonical” in the previous statement can be replaced with “canonical”
by [MP13, III.ii.2 Resolution]. In the present paper, both log-canonical and canonical sin-
gularities are considered (without further mention) with respect to the exceptional divisor
D whose support is π−1(0).

1.6. Parabolic manifolds

Definition 1.16. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ. A parabolic
manifold for f is a connected complex manifold ∆ ⊆ Cd of positive dimension such that

• 0 ∈ ∂∆;
• ∆ is f -invariant, and fn(z) → 0 for all z ∈ ∆ as n→ +∞, uniformly on compact
subsets of ∆.

When moreover it has dimension 1 (resp., dimension d), it is called a parabolic curve (resp.,
parabolic domain).

Remark 1.17. Sometimes parabolic manifolds are also asked to be simply connected, and
not simply connected parabolic manifolds are sometimes called stable manifolds. To avoid
confusion with respect to the classical stable/unstable manifolds, we will stick with the
terminology of “parabolic manifolds”, and specify if they are simply connected if necessary.

Parabolic manifolds are often attached to complex directions, in the following sense.

Definition 1.18. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ. Denote by

[·] the canonical projection from Cd \ {0} to Pd−1
C , and let v ∈ Pd−1

C be a tangent direction

at 0. Let p be a point in Cd. We say that its orbit converges to the origin tangent to v if
fn(p) → 0 and [fn(p)] → v when n→ +∞.

We say that a parabolic manifold ∆ for f is tangent to v if the orbit of every point p ∈ ∆
converges to the origin tangent to v.

Proposition 1.19 ([Hak98, Proposition 2.3]). Let f : (Cd, 0) → (Cd, 0) be a tangent to
the identity germ. If the orbit of a point converges to the origin tangent to a direction v
then v is a characteristic direction.

The following result is a geometric reformulation of [AT03, Proposition 3.1].

Proposition 1.20. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ. Suppose
that there exists an effective divisor D with simple normal crossings at 0 and supported in
Fix f , so that the D-saturated infinitesimal generator χ̂ of f is regular at 0, and tangent
to D. Then no infinite orbit for f can stay arbitrarily close to 0.

Proof. In what follows, xa = xa11 · · ·xadd . By our assumptions, we can find local coordinates

at 0 so that D = {xa = 0} for some a ∈ Nd, and

f(x) = (x+ xag(x)).

Here g : (Cd, 0) → Cd is a holomorphic map, with homogeneous part of smallest degree
denoted by G. The multiplication xag(x) is meant as the product of a scalar xa and a
vector g(x).

The saturated infinitesimal generator χ̂ is tangent to D if and only if xk|xk ◦ g for all k
satisfying ak > 0. It is regular if and only if there exists k so that ak = 0 and xk ◦g(0) ̸= 0,
where xk ◦ g is the k-th coordinate of g.

The result follows from [AT03, Proposition 3.1]. □

Suppose we have a tangent to the identity germ f : (Cd, 0) → (Cd, 0). We apply the
previous proposition to the lift of f to the blow-up of 0, obtaining the following.
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Corollary 1.21. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ, and let D
be a (possibly trivial) SNC divisor with support contained in Fix(f). Suppose that f is not
dicritical, and the saturation of the infinitesimal generator χ̂ of f is tangent to D.

If an orbit converges to 0 tangent to a (characteristic) direction v, then v is singular
(with respect to D).

Proof. Let π : Xπ → (Cd, 0) be the blow-up of the origin, and let fπ be the lift of f on
Xπ. The condition on the non-dicriticity of f corresponds to the fact that the saturation
χ̂π of the infinitesimal generator of fπ is tangent to the exceptional divisor E = π−1(0).
Together with the hypothesis of tangency to D, we get that χ̂π is tangent to π−1(D) ∪E.

Finally, a direction v is singular with respect to D if and only if χ̂π is singular at the
associated point p ∈ E.

We conclude by Proposition 1.20. □

Corollary 1.21 can be restated in terms of point blow-ups. Under the same assumptions
(and using the same notations as in the proof), if a orbit converges to a point p ∈ π−1(0),
then p is a singular point for χ̂π.

In general, Proposition 1.20 forces χ̂π to be either singular at p, or regular at p and
transverse to the exceptional divisor. The latter case is excluded thanks to the non-
dicriticity hypothesis on f .

When working with blow-up of curves, we lack the correspondence between characteristic
directions of f and singular points of fπ, so we apply directly Proposition 1.20 in this case.

Verifying these conditions during the proof of Theorem A is straightforward and left to
the reader.

1.7. Invariant curves and point modifications

Point modifications allow to study (formal) curves. We first introduce some terminology.

Definition 1.22. An increasing sequence of infinitely near points (above the origin) is a
sequence p = (pn)n∈N of infinitely near points, which starts with p0 = 0 ∈ Cd and satisfying
the following property: for any n ∈ N, pn+1 is a point in the exceptional divisor of the
blow-up πn : Xn+1 → Xn of pn (where X0 = Cd). We set π̂n = π0 ◦ . . . ◦ πn−1 : Xn → X0.

Proposition 1.23. Let p = (pn)n be an increasing sequence of infinitely near points.
Suppose that for any n, pn is a smooth point of π̂−1

n (0), i.e., it belongs to π−1
n−1(pn−1) but

not to the strict transform of π̂−1
n−1(0).

Then there exists a unique (possibly non-convergent) smooth curve C = Cp, with the
property that the strict transform Cn of C with respect to π̂n passes through pn.

Proof. This can be done explicitly as follows. Without losing generality, we may as-

sume that p1 is the point associated to the direction [a
(1)
1 : · · · : a

(1)
d−1 : 1] for some

a(1) = (a
(1)
1 , . . . , a

(1)
d−1) ∈ Cd−1. This allows us to make computations in the xd-chart,

and write π1(x1, . . . , xd) = (x1xd, . . . , xd−1xd, xd). We now take the local coordinates

(x1−a(1)1 , . . . , xd−1−a
(1)
d−1) at p1. The smoothness hypothesis ensures that p2 is associated

to a point of the form [a(2) : 1] with a(2) ∈ Cd−1. By induction we obtain that pn is

associated to a point of the form (a(n) : 1) for some a(n) ∈ Cd−1, when all computations
for πn are made in the xd-chart (after having translated coordinates as shown above).

We consider the curve C, parametrized by
(
x1(t), . . . , xd−1(t), t

)
, where

xk(t) =

∞∑
n=1

a
(n)
k tn.

It is a simple computation to show that C satisfies the statement. Moreover, a curve C
tangent to a vector of the form (a : 1) is parametrized uniquely as (x1(t), . . . , xd−1(t), t) for
some formal power series xk(t) ∈ CJtK for k = 1, . . . , d− 1, whose linear terms are uniquely
determined by a ∈ Cd−1, from which we infer the uniqueness of C. □
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Remark 1.24. Notice also that if an increasing sequence of infinitely near points does not
satisfy the condition of Proposition 1.23, at least starting from a certain n0, then it does
not identify a curve (not even singular). In fact, any truncation (pn)n≤m identifies a set
Cm of curves tangent to them. If pm is a singular point of π̂−1

m (0), and pm+1 is a smooth
point of π̂−1

m+1(0), then the minimal multiplicity of the curves in Cm+1 is strictly larger than
the analogous quantity for Cm. Since curves are desingularized by blowing-up points (for
irreducible curves, the intersection of the strict transform of the curve with the exceptional
divisor, see e.g. [CC05, Section 3.2]), and smooth curves are characterized by sequences of
smooth infinitely near points, the condition in Proposition 1.23 is also necessary.

Given an irreducible curve C, we denote by p = p(C) the increasing sequence of infinitely
near points attached to it, starting with p0 = 0 ∈ Cd.

We want to apply Proposition 1.23 to increasing sequences of infinitely near points which
are singular points for the lifts of a tangent to the identity germ.

Proposition 1.25. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ, and
p = (pn)n be an increasing sequence of infinitely near points satisfying the hypothesis of
Proposition 1.23. Let C = Cp be the formal curve associated to p. If pn are singular points
for the lift of f on Xn for all n ∈ N, then C is f -invariant.

Proof. Denote by fn : Xn 99K Xn the lifts of f with respect to π̂n. Being pn a singular
point for fn, we have in particular that fn(pn) = pn. It follows that f(C) is an irreducible
curve whose strict transform with respect to π̂n passes through pn. By Proposition 1.23,
this is exactly the curve Cp. □

The invariant curves constructed here are sometimes called (strict) separatrices for the
tangent to the identity germ f (see [LHR20] for the analogous in dimension 2). They
are in fact the analogous of separatrices for the (reduced) infinitesimal generator (see
[BMCLH08]).

Remark 1.26. Notice that Proposition 1.23 and Proposition 1.25 do not hold if we replace
point modifications with sequences of blow-ups of centers with positive dimension. The
main reason is that curves are not anymore uniquely determined by the sequence of points
of intersection of their strict transform with the exceptional divisor.

As an example, consider the blow-up of the line {x = z = 0} in C3, and coordinates in
the blown-up space so that the projection takes the form π(x, y, z) = (xz, y, z). Reiterate
the process, so to construct a sequence πn : Xn → (C3, 0), where each element consists
in the blow-up of n lines. In this case, for any curve C parametrized by (0, y(z), z) (with
y ∈ zCJzK a formal power series with vanishing constant term), its strict transform Cn
would intersect π−1

n (0) at the origin pn of the corresponding chart. In particular, if the
points pn are singular for the lifts f of a tangent to the identity germ f : (C3, 0) → (C3, 0)
we could only infer that f(C) is another curve lying in the plane {x = 0}.

We conclude with a version of Corollary 1.21 for invariant curves, which gives a partial
converse to Proposition 1.25.

Proposition 1.27. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ, and let D
be a (possibly trivial) SNC divisor with support contained in Fix(f). Suppose that f is not
dicritical, and the saturation of the infinitesimal generator χ̂ of f is tangent to D.

If C is a (formal) f -invariant curve, then C is tangent to a singular direction of f .

Proof. Let π : Xπ → (Cd, 0) be the blow-up of the origin, and let fπ be the lift of f on Xπ.
The condition on the non-dicriticity of f corresponds to the fact that the saturation χ̂π
with respect to π−1(D) of the infinitesimal generator of fπ is tangent to the exceptional
divisor E = π−1(0). But then invariant curves for χ̂π at non-singular points must be
contained in E. □
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1.8. Parabolic manifolds asymptotic to invariant curves

We have seen how orbits of points converging to the origin must be tangent to a char-
acteristic direction. One could be interested in controlling higher orders of tangency. This
corresponds to imposing conditions on lifts to other birational models. We need here some
terminology to deal with these conditions, which are expressed in terms of asymptoticity
to (formal invariant) curves (see [LHRRSS19, LHRSSV]).

Definition 1.28. Let f : (Cd, 0) → (Cd, 0) be a tangent to the identity germ. Let p = (pn)
be an increasing sequence of infinitely near points above the origin. Denote by π̂n : Xn →
(Cd, 0) the composition of the blow-ups of the points p0, . . . , pn−1, and by fn : Xn 99K Xn

the lift of f to Xn. We say that the orbit of a point p ∈ Cd \ {0} converges to the origin
asymptotic to p if for any n ∈ N, the limit of the fn-orbit of π̂

−1
n (p) is exactly pn.

If p = p(C) for some irreducible curve C, we say that the orbit converges to the origin
asymptotic to C.

We say that a stable manifold ∆ is asymptotic to p (resp., to C)if the orbit of p is
asymptotic to p (resp., to p(C)) for any p ∈ ∆.

We now recall [LHRSSV, Theorem 1], which allows to construct parabolic manifolds
from formal invariant curves.

Theorem 1.29 ([LHRSSV, Theorem 1]). Let f : (Cd, 0) → (Cd, 0) be a tangent to the
identity germ, and let C be a formal invariant curve for f . Then either C is contained in
Fix(f), or there exist finitely many parabolic manifolds asymptotic to C.

1.9. Ramis-Sibuya normal forms

To describe precisely the number and dimension of the parabolic manifolds produced by
Theorem 1.29, we need to introduce some terminology.

We first introduce Ramis-Sibuya normal forms, for tangent to the identity germs in
dimension 3.

Definition 1.30. Let f : (C3, 0) → (C3, 0) be a tangent to the identity germ, and let C
be a smooth f -invariant formal curve. We say that the couple (f, C) is in Ramis-Sibuya
normal form with respect to local coordinates (x, y, z) at the origin, if C is transverse to
{z = 0}, and f takes the form

(2) f(x, y, z) =


exp(d1(z))

(
x(1 + c11z

r) + c12yz
r
)
+ ⟨zr+1⟩

exp(d2(z))
(
y(1 + c22z

r) + c21xz
r
)
+ ⟨zr+1⟩

z − zr+1 + bz2r+1 + ⟨z2r+2⟩

 ,

where d1 and d2 are polynomials of degree at most r − 1 vanishing at the origin, and
c12 = c21 = 0 unless d1 ≡ d2.

Notice that on the z-coordinate, assuming that C has sufficiently high tangency with
{x = y = 0}, we find the formal normal form of the action of f |C . In particular the
existence of such a normal form implies that f |C defines a parabolic 1-dimensional germ
of multiplicity r + 1.

Theorem 1.31 ([LHRSSV, Theorem 5.11]). Let f : (C3, 0) be a tangent to the identity
germ, admitting an (irreducible) f -invariant formal curve C. Suppose that f |C ̸= id. Then
there exists a sequence of weighted blow-ups π : Xπ → (C3, 0) so that the strict transform
Cπ of C is smooth, and, if fπ : (Xπ, p) → (Xπ, p) denotes the lift of f at p = Cπ ∩ π−1(0),
then (fπ, Cπ) is in Ramis-Sibuya normal form.

In [LHRSSV], the authors show the reduction (up to taking iterates) to Ramis-Sibuya
normal form in the more general setting of automorphisms admitting an f -invariant formal
curve where f |C has multiplier 1 (in particular, the linear part of f does not need to be
the identity).
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The reduction process consists in three steps. The first consists in an embedded reso-
lution of C. In the second step, one applies Theorem 1.15 to solve the singularities of the
infinitesimal generator of f . The third step reduces the pair (fπ, Cπ) to the desired normal
form, by performing further blow-ups. Notice that both the second and third steps may
require weighted blow-ups.

Once the couple (f, C) is reduced in Ramis-Sibuya normal form, one can describe ex-
plicitly the number and dimension of the parabolic manifolds provided by Theorem 1.29.

With the notations of (2), write dj for j = 1, 2 as

dj(z) =
r−1∑
k=1

d
(j)
k zk.

Given an attracting direction ξ for f |C (i.e., any complex r-th root of 1, see [LHRSSV,
Section 6]), we set

(3) Rj(ξ) =
(
Re(d

(j)
1 ξ), . . . ,Re(d

(j)
r−1ξ

r−1)
)
.

Definition 1.32. We say that ξ is a node direction for the variable x (resp., y) if R1(ξ) < 0
(resp., R2(ξ) < 0), and a saddle direction otherwise, where < denotes the lexicographic
order.

Theorem 1.33 ([LHRSSV, Theorem 6.1]). Let f : (C3, 0) → (C3, 0) be a tangent to the
identity germ, and let C be an f -invariant formal curve. Suppose that (f, C) is in Ramis-
Sibuya normal form. For any attracting direction ξ for f |Γ, let s = s(ξ) ∈ {0, 1, 2} be the
number of variables for which ξ is a node direction. Then there exists a parabolic manifold
∆(ξ) asymptotic to C, of dimension s(ξ) + 1, which is connected, simply connected, and
which is a fundamental domain for the set of points whose orbit converges to 0 asymptotic
to C and tangent to ξ.

2. The example

2.1. Rational maps with no holomorphic fixed points

We want to start with a tangent to the identity germ f which has a finite number of
characteristic directions, all degenerate.

Recall that if f : (C3, 0) → (C3, 0) is a tangent to the identity germ, its characteristic
directions can be reinterpreted in terms of the action induced by the homogeneous part
of smallest degree of f − id on P2: non-degenerate characteristic directions correspond to
holomorphic fixed points, while degenerate characteristic directions correspond to indeter-
minacy points.

In order to work with a germ with only degenerate characteristic directions, we start
with a rational map in P2 which has no holomorphic fixed points:

(4) H([x : y : z]) =
[
yz(y − z) : x(x2 − z2) : xz(y − z)

]
.

Hence we focus on germs of the form:

(1) f(x, y, z) =

 x+ yz(y − z) + P

y + x(x2 − z2) +Q

z + xz(y − z) +R

 ,

with P,Q,R of order at least 4. Notice that, by abuse of notation, we denote by H both
the homogeneous part of smallest degree of f − id, and the action on P2 induced by it.

Remark 2.1. The choice of H as in equation (4) is inspired by [Iva11, Example 2.1].
In op. cit., the author provides examples of rational maps of P2 without (holomorphic)
fixed points, of any given degree. The word holomorphic is used to distinguish the case of
meromorphic fixed points, i.e., fixed points p with the additional condition H(p) ∋ p. In
other terms, there exists a sequence of non-indeterminacy points pn converging to p whose
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image H(pn) converges to p. The original example [Iva11, Example 2.1] is a rational maps
of P1×P1 without holomorphic fixed points, that we consider in the birationally equivalent
model P2.

The map H acting on P2 still has no holomorphic fixed points, while it has exactly 5
indeterminacy points p1 = [0 : 0 : 1], p2 = [0 : 1 : 1], p3 = [1 : 1 : 1], p4 = [−1 : 1 : 1], and
p5 = [0 : 1 : 0]. Out of these indeterminacy points, one can check that only p3, p4 and p5
are meromorphic fixed points.

When we need to develop P,Q,R in formal power series, we will use the following
notations:

P =
∑
i,j,k

Pijkx
iyjzk, Q =

∑
i,j,k

Qijkx
iyjzk, R =

∑
i,j,k

Rijkx
iyjzk,

where the indices i, j, k vary in N with i + j + k ≥ 4. We will also denote by P (h) (resp.,

Q(h), R(h)) the homogeneous part of degree h of P (resp., Q, R).

2.2. Characteristic directions

As a consequence of Remark 2.1, f has exactly 5 characteristic directions, given by
v1 = [0 : 0 : 1], v2 = [0 : 1 : 1], v3 = [1 : 1 : 1], v4 = [−1 : 1 : 1], v5 = [0 : 1 : 0].
All these directions are degenerate, of multiplicities 1, 1, 3, 3, 5 respectively. We denote by
p1, p2, p3, p4, p5 the corresponding characteristic points.

For a definition the multiplicity µf (v) of a characteristic direction v, see [AT03, p.
278]. For the reader’s convenience, we show here how to compute the multiplicity of
v5. The multiplicity µf ([0 : 1 : 0]) is the local intersection multiplicity at [0 : 1 : 0] of

y(x ◦ f (3)) − x(y ◦ f (3)) and y(z ◦ f (3)) − z(y ◦ f (3)) in P2. We denote by ⟨ϕ, ψ⟩p the
local intersection multiplicity at p of {ϕ = 0} and {ψ = 0}. In this case, computing the
intersection in the chart {y = 1}, we obtain

µf ([0 : 1 : 0]) = ⟨z(1− z)− x2(x2 − z2), xz(1− z)− xz(x2 − z2)⟩0
= ⟨z − z2 − x4 + x2z2, xz(1− z − x2 + z2)⟩0
= ⟨z − z2 − x4 + x2z2, x⟩0 + ⟨z − z2 − x4 + x2z2, z⟩0
= 1 + 4 = 5.

Computations for the other multiplicities are similar and left to the reader.

Remark 2.2. Consider the local diffeomorphism σ(x, y, z) = (−ix, iy, iz). Then we get

σ−1 ◦ f ◦ σ(x, y, z) =

 x+ yz(y − z) + iP ◦ σ

y + x(x2 − z2)− iQ ◦ σ
z + xz(y − z)− iR ◦ σ

 .

In particular, the 3-jet f (≤3) is invariant by this conjugacy. The action of σ on the char-
acteristic directions v1, . . . , v5 is a bijection that fixes v1, v2, v5 while it exchanges v3 and
v4.

It follows that one can recover the birational study of the lifts of f above the point p4
associated to v4 from the behaviour of the lifts of f above p3.

2.3. Resolution of singularities of the infinitesimal generator

In this section, we provide a resolution of the infinitesimal generator χ of a tangent
to the identity germ f : (C3, 0) → (C3, 0) of the form (1), in the sense of [MP13] (see
Proposition 2.3).

In Section 3, we will show that after further blow-up (see Proposition 3.14), all the sin-
gularities will be isolated and belonging to one of three classes (simple corners, degenerate
spikes and spinning corners). We will then study the behaviour of these families under
point modifications (introducing a fourth family, half corners).
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We will finally study the behaviour of these families under general admissible modifica-
tions (strongly adapted to the dynamics) in Section 4.

By Remark 1.7, the infinitesimal generator χ of f takes the form

χ =
(
yz(y − z) + P (4)

)
∂x +

(
x(x2 − z2) +Q(4)

)
∂y +

(
xz(y − z) +R(4)

)
∂z + ξ,

where ξ is a (possibly formal) vector field of multiplicity at least 5.
To study the resolution of χ, we will perform computations from the point of view of

maps instead of vector fields, relying on Proposition 1.8.

2.3.1. First blow-up.

To resolve the singularities of χ, we first blow-up the origin. We write the blow-up
π1 : X1 → (C3, 0), and compute the lift f1 of f with respect to π1. By Proposition 1.11,
the singularities of the saturated infinitesimal generator χ̂1 of f1 are isolated, given by the
points p1, p2, p3, p4, p5.

We first work in the z-chart, for which the map π1 is written as π1(x, y, z) = (xz, yz, z).
We obtain:

(5) f1(x, y, z) =



x− z2y(1− y) + z−1P ◦ π1
1− z2x(1− y) + z−1R ◦ π1

y − z2x(1− x2) + z−1Q ◦ π1
1− z2x(1− y) + z−1R ◦ π1

z
(
1− z2x(1− y) + z−1R ◦ π1

)


.

We rewrite f1 developing around a point in {z = 0}, obtaining

(6) f1(x, y, z) =


x+ z2(−y + x2 + y2 − x2y) + z3(P (4) − xR(4))(x, y, 1) + ⟨z4⟩

y + z2x(−1 + y + x2 − y2) + z3(Q(4) − yR(4))(x, y, 1) + ⟨z4⟩

z + z3x(−1 + y) + z4R(4)(x, y, 1) + ⟨z5⟩

 .

We study f1 around the characteristic points p1, . . . , p4. The point p1 corresponds to
the origin in this chart. In this case the linear part of the reduced infinitesimal generator
is:

(−y + P004z)∂x + (−x+Q004z)∂y.

Hence χ̂1 has a canonical singularity at p1, with eigenvalues of the linear part given by 1,
−1 and 0.

Similarly, the point p2 corresponds to (0, 1, 0) in this chart. By setting y = 1+ v, we get
(7)

f1(x, v, z) =


x+ z2v(1 + v − x2) + z3(P (4) − xR(4))(x, 1 + v, 1) + ⟨z4⟩

v + z2x(−1− v + x2 − v2) + z3(Q(4) − (1 + v)R(4))(x, 1 + v, 1) + ⟨z4⟩

z + z3xv + z4R(4)(x, 1 + v, 1) + ⟨z5⟩

 .

We get again a canonical singularity, with eigenvalues of the linear part i, −i and 0.
The points p3 and p4 have coordinates (1, 1, 0) and (−1, 1, 0) respectively in the z-chart.

We treat p3, the case of p4 being completely analogous by Remark 2.2. By setting x = 1+u,
we get
(8)

f1(u, v, z) =


u+ z2v(−2u+ v − u2) + z3(P (4) − (1 + u)R(4))(1 + u, 1 + v, 1) + ⟨z4⟩

v + z2(1 + u)(2u− v + u2 − v2) + z3(Q(4) − (1 + v)R(4))(1 + u, 1 + v, 1) + ⟨z4⟩

z + z3(1 + u)v + z4R(4)(1 + u, 1 + v, 1) + ⟨z5⟩

 .
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In this case the linear part of χ̂1 is

z
(
P (4) −R(4)

)
(1, 1, 1)∂u +

(
2u− v + z

(
Q(4) −R(4)

)
(1, 1, 1)

)
∂v,

which gives an isolated canonical singularity with eigenvalues −1, and 0 (of multiplicity 2).
It remains to study the characteristic direction v5 = [0 : 1 : 0]. In this case we work in

the y-chart, and write π1(x, y, z) = (xy, y, yz). The lift f1 of f takes the form

(9) f1(x, y, z) =



x+ y2z(1− z) + y−1P ◦ π1
1 + y2x(x2 − z2) + y−1Q ◦ π1

y
(
1 + y2x(x2 − z2) + y−1Q ◦ π1

)
z + y2xz(1− z) + y−1R ◦ π1
1 + y2x(x2 − z2) + y−1Q ◦ π1

 .

The Taylor expansion at the origin gives the following expression for f1(x, y, z):

(10)
x+ y2

(
z − z2 − x4 + x2z2 + P040y + (P130 −Q040)xy + P031yz + P050y

2 + ym2
)

y + y3
(
x3 − xz2 +Q040y + ym

)
z + y2

(
xz − xz2 − x3z + xz3 +R040y +R130xy + (R031 −Q040)yz +R050y

2 + ym2
)
 .

The linear part of the reduced infinitesimal generator is:

(P040y + z)∂x +R040y∂z.

We get a nilpotent linear part (of rank 1 if R040 = 0, and of rank 2 otherwise). In this case
the singularity is not log-canonical, and we need to keep blowing-up.

2.3.2. Second blow-up.

For simplicity, we will assume R040 ̸= 0. In this case, f1 has only one singular direction
v5,1 = [1 : 0 : 0]. Consider the blow-up π2 : X2 → X1 of the point p5. In the x-chart we
have π2(x, y, z) = (x, xy, xz). Set π̂2(x, y, z) = π1 ◦ π2(x, y, z) = (x2y, xy, x2yz). The lift
f2 of f in X2 is given by

(11) f2(x, y, z) =



x
1 + x2y2z(1− xz) + x−2y−1P ◦ π̂2
1 + x5y2(1− z2) + x−1y−1Q ◦ π̂2

y

(
1 + x5y2(1− z2) + x−1y−1Q ◦ π̂2

)2
1 + x2y2z(1− xz) + x−2y−1P ◦ π̂2

z + x3y2z(1− xz) + x−2y−1R ◦ π̂2
1 + x2y2z(1− xz) + x−2y−1P ◦ π̂2


.

We rewrite f2 developing around the origin, obtaining
(12)

f2(x, y, z) =


x+ x3y2

(
P040y + z +

(
P130 −Q040

)
xy − x3 − xz2 + x3z2 + ⟨xy⟩m

)
y + x2y3

(
− P040y − z +

(
2Q040 − P130

)
xy + 2x3 + xz2 − 2x3z2 + ⟨xy⟩m

)
z + x2y2

(
R040y +R130xy + xz − z2 − P040yz − x2z2 + xz3 + ⟨xy⟩m

)
 .
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2.3.3. Third blow-up.

Let π3 : X3 → X2 be the blow-up of the point p5,1 corresponding to the origin in the
last coordinate chart we considered. To study the singular points associated to f2, we will
need to consider two different charts.

First, in the x-chart we get
(13)

f3(x, y, z) =


x+ x6y2

(
P040y + z − x2 +

(
P130 −Q040

)
xy − x2z2 + x4z2 + ⟨x2y⟩

)
y + x5y3

(
− 2P040y − 2z + 3x2 +

(
3Q040 − 2P130

)
xy + 2x2z2 − 3x4z2 + ⟨x2y⟩

)
z + x4y2

(
R040y +R130xy + xz − 2P040xyz − 2xz2 + x2⟨x, y⟩

)
 .

For any z0 ∈ C, the saturated infinitesimal generator χ̂3 of f3 has a singularity at (0, 0, z0),
with nilpotent linear part of rank 2. In this case the singular directions of f3 form the line
[pR040 : pz0(2z0 − 1) : r] with [p : r] varying in P1

C.
We now work in the z-chart, so that π3(x, y, z) = (xz, yz, z), and get

(14) f3(x, y, z) =


x+ x3y2z4

(
−R040y + 2z − xz + 2P040yz −R130xyz + z2⟨y, z⟩

)
y + x2y3z4

(
−R040y − xz −R130xyz + z2⟨y, z⟩

)
z + x2y2z5

(
R040y − z + xz − P040yz +R130xyz + z2⟨y, z⟩

)
 .

In this case χ̂3 has a singularity of order 2 at the origin (and of order 1 with nilpotent linear
part at (x0, 0, 0), with x0 ̸= 0, that we already know about from the previous computation).

2.3.4. Fourth blow-up.

Finally, we consider the blow-up π4 : X4 → X3 along the line L of singular points of χ̂3.
The line L is covered by two charts in X3, the one where the exceptional divisor is

{x = 0} and the line is given by L = {x = y = 0}, and the one where the exceptional
divisor is {z = 0} and the line is given by L = {y = z = 0}. This gives a total of four
charts to be considered on X4, to cover the exceptional divisor π−1

4 (L).
We first consider the chart in X3 that gives (13), so that L = {x = y = 0}.
We put ourselves in the chart of X4 not intersecting the strict transform of the excep-

tional divisor E3 = {x = 0} of π3, obtaining π4(x, y, z) = (x, xy, z). Computing the lift of
f3, we get

(15) f4(x, y, z) =


x+ x8y2

(
z + P040xy + ⟨x2⟩

)
y + x7y3

(
− 3z − 3P040xy + ⟨x2⟩

)
z + x7y2

(
R040y + z − 2z2 +R130xy − 2P040xyz + ⟨x2⟩

)
 .

The saturation χ̂x4 of the infinitesimal generator of f4 with respect to {x = 0} takes the
form

χ̂x4 = xy2z∂x+ y3
(
− 3z− 3P040xy

)
∂y + y2

(
R040y+ z− 2z2 +R130xy− 2P040xyz

)
∂z + x2ξ,

where ξ is a suitable vector field. We study this vector field on the point (0, y0, z0).
If y0 ̸= 0, we have that (0, y0, z0) is singular if and only if{

−3y0z0 = 0,

R040y0 + z0 − 2z20 = 0.

Since R040 ̸= 0, this system does not have solutions.
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Suppose now y0 = 0. Then the saturation χ̂4 with respect to the exceptional divisor,
locally given by {xy = 0}, gives

χ̂4 = xz∂x − 3yz∂y +
(
R040y + z − 2z2

)
∂z + ξ′,

where ξ′ is a vector field whose coefficients belong to x⟨x, y⟩. First notice that χ̂4 is regular
unless z0(1− 2z0) = 0.

At the point q1 corresponding to the value z0 = 0, χ̂4 has a linear part with a non-
vanishing eigenvalue (of eigenspace generated by ∂z): hence we get an isolated canonical
singularity. Similarly, at the point q2 corresponding to z0 =

1
2 , χ̂4 has an isolated canonical

singularity, with linear part with eigenvalues 1
2(1,−3,−2).

With respect to suitable coordinates in a chart intersecting E3, we get the form π4(x, y, z) =
(xy, y, z). For the lift of f3, we get

(16) f4(x, y, z) =


x+ x6y7

(
3P040y + 3z + ⟨y2⟩

)
y + x5y8

(
− 2P040y − 2z + ⟨y2⟩

)
z + x4y7

(
R040 + x(z − 2z2) + ⟨y⟩

)
 .

The saturation χ̂y4 of the infinitesimal generator of f4 with respect to {y = 0} takes the
form

χ̂y4 = 3x6z∂x + x4
(
R040 + x(z − 2z2)

)
∂z + yξ,

where ξ is a suitable vector field.
We study χ̂4 at points (x0, 0, z0). The case x0 ̸= 0 corresponds to previous computations,

and we have no singularities here.
When x0 = 0, again we get regular points, hence no singularities arise in this chart.

We finally consider the chart in X3 giving (14), so that L = {y = z = 0}.
We pick the coordinate chart ofX4 not intersecting the strict transform of the exceptional

divisor E3 = {z = 0} of π3, obtaining π4(x, y, z) = (x, yz, z). For the lift of f3, we get

(17) f4(x, y, z) =


x+ x3y2z7

(
2− x−R040y + 2P040yz −R130xyz + ⟨z2⟩

)
y + x2y3z7

(
1− 2x− 2R040y + P040yz − 2R130xyz + ⟨z2⟩

)
z + x2y2z8

(
− 1 + x+R040y − P040yz +R130xyz + ⟨z2⟩

)
 .

As usual, we denote by χ̂4 the saturated infinitesimal generator of f4, and study its germ at
points (x0, y0, 0). At the point q3 corresponding to the origin, we get an isolated canonical
singularity, whose linear part has eigenvalues (2, 1,−1).

When x0 = 0 and y0 ̸= 0, we have a singularity if and only if 1− 2R040y0 = 0, i.e., y0 =
1

2R040
. At the corresponding point q4, consider local coordinates (x, v, z) with y = y0 + v.

In these coordinates, the linear part of χ̂4 takes the form (up to renormalization of a factor
y20):

(18)
3

2
x∂x + (−2y0x− y + y20P040z)∂y −

1

2
z∂z,

hence we get another isolated canonical singularity.
The case x0 ̸= 0 corresponds to the study carried on above: we get again a singularity

when x0 = 2 and y0 = 0, which corresponds to q2.
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To finish our study, we consider a chart of X4 intersecting the strict transform of E3,
getting π4(x, y, z) = (x, y, yz). For the lift of f3, we get

(19) f4(x, y, z) =


x+ x3y7z4

(
−R040 + 2z − xz + ⟨y⟩

)
y + x2y8z4

(
−R040 − xz + ⟨y⟩

)
z + x2y7z5

(
2R040 − z + 2xz + ⟨y⟩

)
 .

The only point q5 that remains to be studied corresponds to the origin in this chart,
and χ̂4 has an isolated canonical singularity there, with linear part having eigenvalues
R040(−1,−1, 2).

To sum up, we proved the following result.

Proposition 2.3. Let f : (C3, 0) → (C3, 0) be a germ of the form (1) with R040 ̸= 0.
Let π0 : Xπ0 → (C3, 0) be the regular modification obtained as the composition π0 =
π1 ◦ π2 ◦ π3 ◦ π4 described above (hence Xπ0 = X4).

Then the reduced infinitesimal generator χ̂π0 of the lift fπ0 of f at Xπ0 has only isolated
canonical singularities, namely p1, . . . , p4, q1, . . . , q5 ∈ Xπ0.

Notice the abuse of notation, where we denote by p1, . . . , p4 both the points in X1, and
their unique preimages through π2 ◦ π3 ◦ π4 in X4.

p5

p1

p2

p3
p4

E1

q1

p1

p2

p3
p4

E1

E2

E3

E4q2

q3
q4
q5

Figure 1. Singular points of the saturated infinitesimal generator at X1

(on the left) and X4 = Xπ0 (on the right).

Remark 2.4. One can check that Panazzolo’s algorithm [Pan07] would perform two
weighted blow-ups to solve χ: the first is the blow-up π1 : X1 → (C3, 0) of the origin,
and the second is the blow-up πτ : Xτ → X1 of the point p5, with respect to the weight
ω = (1, 3, 2). The weighted blow-up πτ produces a divisor that is birationally equivalent
to E4 (meaning that there exists a birational map from X4 to Xτ sending E4 to π−1

τ (p5)).
To compute ω, notice that the Newton polyhedron (see [Pan07, Section 3] for a definition)

associated to the saturated infinitesimal generator of f1 given by (10) is generated by

(1, 0, 0), (0, 1,−1), (−1, 0, 1), (−1, 1, 0).

It has two bounded faces (generated by the first and last three vertices in the list respec-
tively), and the one generated by the first three vertices has ω as normal vector.

3. Birational study above the resolution

In this section, we study the dynamics of f and its behaviour under point modifications,
starting from the model π0 given by Proposition 2.3.
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3.1. Special families

First, we introduce some special families of tangent to the identity germs that will appear
in the birational models. We describe here a few notations that we will use all long the
rest of the paper. Any family f of germs will be introduced by giving a name and a code.
For example simple corners [R0]. The code will be used in all the diagrams below. The
letter R in the codes refers to the saturated infinitesimal generator of these families being
reduced (see also Subsection 5.4.2). As for the names, they were inspired by the geometric
characteristic of the germs. For example, degenerate spikes possess only one degenerate
characteristic direction, pointing out from the exceptional divisor.

Any family is described in some special coordinates, and there will be some formal power
series P,Q,R, belonging to suitable ideals (that will be explicited according to cases). We
will always develop, without further mention, P,Q,R in formal power series, as:

P =
∑
i,j,k

aijkx
iyjzk, Q =

∑
i,j,k

bijkx
iyjzk, R =

∑
i,j,k

cijkx
iyjzk.

Unless otherwise specified, we will also replace a100 with ax, a010 with ay and a001 with az,
and analogously for Q and R. Finally, we will often replace a000, b000 and c000 with a0, b0,
c0, or with α, β, γ, according to the situation.

Recall also that P,Q,R denote also the parts of degree 4 of higher or the maps f of the
form (1) that we are studying. In this case we will keep developing them with coefficients
Pijk, Qijk, Rijk, to avoid confusion.

3.1.1. Simple corners

We start from simple corners, introduced for vector fields in [GML92] and adapted to
tangent to the identity germs in [AT03].

Definition 3.1 ([AT03, p. 288]). A tangent to the identity germ f : (C3, 0) → (C3, 0)
is a simple corner [R0] if there are a, b ∈ N∗, c ∈ N, λ ∈ C∗, µ ∈ C \ (λQ>0), and local
coordinates (x, y, z) so that

(20) f(x, y, z) =

x+ (xaybzc)x
(
λ+ P

)
y + (xaybzc)y

(
µ+Q

)
z + (xaybzc)R

 ,

with P,Q,R ∈ m, and z|R if c > 0.

Remark 3.2. We will discuss singular and exceptional directions with respect to the
divisor D = {xaybzc = 0}, whose support is the union or two or three coordinates planes,
depending on the vanishing of c.

The saturated infinitesimal generator χ̂ of f has the following properties:

(a) χ̂ is tangent to D;
(b) χ̂ is a canonical singularity,

where we recall that a canonical singularity is a non-radial log-canonical singularity (the
non-radial behavior is ensured by the condition on the eigenvalues λ, µ). These properties
completely characterize simple corners when c ≥ 1 (among tangent to the identity germs
fixing pointwise a set of the form {xyz = 0}).

In order to characterize simple corners with c = 0, one would have to ask for additional
properties on the foliation induced on the normal bundle of the curve {x = y = 0} obtained
intersecting the two irreducible components of D.

3.1.2. Degenerate spikes

Definition 3.3. A tangent to the identity germ f : (C3, 0) → (C3, 0) is a degenerate spike
[R1] (of Siegel type) if there are c ∈ N∗, and local coordinates (x, y, z) so that

(21) f(x, y, z) =

x+ zc
(
λx+ P

)
y + zc

(
µy +Q

)
z + zc+1R

 ,
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where λ ∈ C∗, µ ∈ λR<0, while P,Q ∈ m2 and R ∈ m.

Remark 3.4. Notice that any germ of the form

(22)

x+ zc
(
ayy + azz + P

)
y + zc

(
bxx+ bzz +Q

)
z + zc+1R

 ,

with aybx ̸= 0, az, bz ∈ C, P,Q ∈ m2, and R ∈ m is a degenerate spike, associated to

λ = −µ =
√
aybx.

Remark 3.5. Degenerate spikes will appear at points belonging to a unique irreducible
component of the exceptional divisor D = {z = 0} on blown-up models.

In terms of the saturated infinitesimal generator χ̂ of f , degenerate spikes are charac-
terized by the following properties:

(a) χ̂ is tangent to D;
(b) the induced foliation on D has a Siegel singularity;
(c) the linear part of χ̂ has exactly one vanishing eigenvalue.

In particular, by the classical Briot-Bouquet’s theorem, χ̂|D has no invariant curves
passing through p but for the two complex separatrices, tangent to {x = 0} and {y = 0}
when f is given by (21).

Clearly the Siegel type refers to condition (b) above. In general we could ask only for
the non-resonance condition µ/λ ̸∈ Q≥0, i.e., the induced foliation on D is canonical (and
with invertible linear part). In this paper, without further mention, all degenerate spikes
are of Siegel type.

3.1.3. Spinning corners

Definition 3.6. A tangent to the identity germ f : (C3, 0) → (C3, 0) is a spinning corner
[R2] if there are local coordinates (x, y, z) such that f can be written as

(23) f(x, y, z) =

x+ ybzc(x+ P )
y + yb+1zcQ
z + ybzc+1R


where b, c ∈ N∗, Q, R ∈ m and P ∈ m2.

Remark 3.7. A germ which can be written, in local coordinates (x, y, z), as

(24) f(x, y, z) =

x+ ybzc(axx+ ayy + azz + P )
y + yb+1zcQ
z + ybzc+1R


with ax ∈ C∗, ay, az ∈ C, and b, c, P, Q, R as above, is in fact a spinning corner. Indeed,

by a linear change of coordinates (x, y, z) 7→ (x, µy, νz) with µ, ν satisfying µbνc = ax, one
may assume ax = 1. Moreover, in new coordinates u = axx+ ayy + azz, y and z, we get

f(u, y, z) =

u+ ybzc(axu+ P̃ ◦ ϕ−1)
y + yb+1zcQ ◦ ϕ−1

z + ybzc+1R ◦ ϕ−1

 ,

with P̃ = axP + ayyQ+ azzR and ϕ−1(u, y, z) =
(
a−1
x (u− ayy − azz), y, z

)
.

If we denote Q = bxx + byy + bzz + m and R = cxx + cyy + czz + m for the germ f ,
and an analogous expression with tildes over the coefficients for the same germ in the new

coordinates, we have that b̃y = by − ay
ax
bx, and analogously for b̃z, c̃y and c̃x.

Remark 3.8. Spinning corners will appear in the intersection of two irreducible compo-
nents D1 and D2 of the exceptional divisor D, given in local coordinates by {yz = 0}.

In terms of the reduced infinitesimal generator χ̂ of f , degenerate spikes are characterized
by the following properties:
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(a) χ̂ is tangent to D;
(b) the linear part of χ̂ has rank 1, with the eigenspace of non-zero eigenvalue tangent

to D1 ∩D2.

In fact, if D = {yz = 0} then we have ϕ ◦ (f − id) = ybϕzcϕAϕ, with bϕ, cϕ ∈ N
and Aϕ a holomorphic germ that is not a multiple of y or z, with ϕ ∈ {x, y, z}. The
tangency condition on {y = 0} says that by > min{bx, bz}, while the one on {z = 0}
gives cz > min{cx, cy}. The existence of an eigenvalue tangent to D1 ∩ D2 says that

x ◦ (f − id) = ybxzcx(αx+ βy + γz + P ) with α ̸= 0 and P ∈ m2, and bx ≤ bz and cx ≤ cy.

By setting b = bx, c = cx, Q = yby−b−1zcy−cAy, R = ybz−bzcz−c−1Az, and checking the
linear part of χ̂ in extreme cases for the parameters (i.e., if by = b+1 and cy = c, or bz = b
and cz = c+ 1), we get a germ of the form (24).

3.1.4. Half corners

Definition 3.9. A tangent to the identity germ f : (C3, 0) → (C3, 0) is a half corner [R3]
if there are local coordinates (x, y, z) such that f can be written as

(25) f(x, y, z) =

 x+ zc(x+ P )
y + zc+1(β +Q)

z + zc+2R


where c ∈ N∗, β ∈ C, P ∈ m2, Q ∈ m and R ∈ O with γ = R(0, 0, 0) ∈ C.

Remark 3.10. As for the case of spinning corners, one can show that any germ of the
form

(26) f(x, y, z) =

x+ zc(axx+ ayy + azz + P )
y + zc+1(β +Q)

z + zc+2R


with ax ̸= 0, ay, az ∈ C and all other entries as above is indeed a half corner. In fact, we
may assume ax = 1 by a linear change of coordinates (x, y, z) 7→ (x, y, νz) with νc = ax.
Then, one can assume ay = 0 by performing the change of coordinates u = x+ ayy (which
changes the value of az to a′z = az + βay), and finally we can set u′ = x + a′zz and get a
germ of the form (25).

Notice also that when β ̸= 0, we may assume it equals 1, by performing the change of
coordinates (x, y, z) 7→ (x, βy, z).

The value of β (its vanishing) will be important in the sequel. We will say that a half
corner is simple if β ̸= 0, non-simple otherwise.

In fact, we can independently normalize (by conjugating by linear diagonal maps) both
the second and third coordinates, for example by assuming that β ∈ {0, 1} and γ :=
R(0, 0, 0) ∈ {0, 1}.

Remark 3.11. Once in form (25) we still have some freedom up to linear change of
coordinates. Assume β = 0. In this case we can conjugate by a map of the form (x, y, z) 7→
(λx, µy, νz) with νc = 1. In this case we get b̃y = νby, γ̃ = νγ. In particular their ratio is
well defined up to homotheties (and it is in fact an invariant of conjugacy for half corners
in form (25)).

Remark 3.12. Half corners will appear in points contained in a unique irreducible com-
ponent D of the exceptional divisor, which we will assume having local equation {z = 0}.

One can characterize half corners in terms of their infinitesimal generator also in this
case, but the description is more intricated. We just remark that again the saturated
infinitesimal generator is tangent to D. Moreover, its linear part has a non-zero eigenvalue
(whose eigenspace is tangent to D), and:

• either a Jordan block associated to the zero eigenvalue in the simple case, with
the kernel being tangent to D; or

• a kernel of dimension 2 in the non-simple case.
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3.2. From the resolution to special families

We show here how, possibly up to further blow-up, the singularities appearing in the
model π0 : Xπ0 → (C3, 0) given by Proposition 2.3, belong to one of the families described
in Section 3.1

In fact, from the study done in Section 2.3, the lift fπ0 : Xπ0 → Xπ0 satisfies the following
properties.

• At the singularity p1, fπ0 takes the form (6), which is a degenerate spike of the form
(22) with respect to the coordinates (x, y, z), with parameters c = 2, α = β = −1.

• At the singularity p2, fπ0 takes the form (7), which is a degenerate spike of the
form (22) with respect to the coordinates (x, y, z), with parameters c = 2, α = 1,
β = −1.

• At the singularity q1, fπ0 takes the form (15), which is a spinning corner of the
form (24) with respect to coordinates (z, y, x), with parameters ax = 1, ay = R040,
az = 0, b = 2, c = 7.

• At the singularity q2, fπ0 is a simple corner of the form (20) with respect to
coordinates (x, y, w) with w = z − 1

2 (notations of (15)), with parameters a = 7,

b = 2, c = 0, λ = 1
2 and µ = −3

2 .
• At the singularity q3, fπ0 takes the form (17), which is a simple corner of the form
(20) with respect to coordinates (z, y, x), with parameters a = 7, b = 2, c = 2,
λ = −1 and µ = 1.

• At the singularity q4, fπ0 is a simple corner of the form (20) with respect to
coordinates (x, z, v) with v = y− 1

2R040
(notations of (17)), with parameters a = 2,

b = 7, c = 0, λ = 3
2 and µ = −1

2 (up to common factors, see (18)).
• At the singularity q5, fπ0 takes the form (19), which is a simple corner of the form
(20) with respect to coordinates (z, y, x), with parameters a = 4, b = 7, c = 2,
λ = 1 and µ = −1 (up to a common factor R040).

The only singularities not falling in one of the families described in Section 3.1 are p3
and p4. By symmetry (see Remark 2.2), we will only deal with p3, the case of p4 being
completely analogous.

On suitable coordinates (u, v, z) centered at p3, the germ fπ0 takes the form:

(8)

fπ0(u, v, z) =


u+ z2v(−2u+ v − u2) + z3(P (4) − (1 + u)R(4))(1 + u, 1 + v, 1) + ⟨z4⟩

v + z2(1 + u)(2u− v + u2 − v2) + z3(Q(4) − (1 + v)R(4))(1 + u, 1 + v, 1) + ⟨z4⟩

z + z3(1 + u)v + z4R(4)(1 + u, 1 + v, 1) + ⟨z5⟩

 .

In this case, the homogeneous part of smallest degree of z−2(fπ0 − id) is linear, with
associated matrix 0 0 α

2 −1 β
0 0 0

 ,

where α = (P (4) −R(4))(1, 1, 1) and β = (Q(4) −R(4))(1, 1, 1).
The computation of singular directions depend on weather α vanishes or not. In both

cases, v3,1 = [0 : 1 : 0] is a singular direction (associated to the eigenvalue −1), as is
v3,2 = [1 : 2 : 0] (with multiplier 0). If α ̸= 0, the generalized eigenspace associated to
the eigenvalue 0 is associated to a Jordan block of size 2. It follows that v3,1 and v3,2 are
the only singular directions (which are both exceptional). If α = 0, the kernel has rank 2,
which gives a line of degenerate directions, generated by [1 : 2 : 0] and [0 : β : 1].

For simplicity, we will assume that α = P (4)(1, 1, 1)−R(4)(1, 1, 1) ̸= 0.

Blow-up of p3.
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We consider π̃1 : Xπ̃1 → Xπ0 the blow-up of p3 in Xπ0 . We consider the chart in Xπ̃1 so

that π̃1(x, y, z) = (xy, y, yz). The lift f̃1 of fπ0 is given by:

f̃1(x, y, z) =


x+ y2z2

(
x− 2x2 + y(−3x3 + x2 − x+ 1) + z(α− βx) + y⟨y, z⟩

)
y + y3z2

(
− 1 + 2x+ y(3x2 − x− 1) + βz + y⟨y, z⟩

)
z + y2z3

(
1− 2x+ y(2 + x− 3x2)− βz + y⟨y, z⟩

)
 .

This is clearly a simple corner at p3,1 (which corresponds to the origin in this chart). It is
with respect to coordinates (z, y, x), with a = b = 2 and c = 0, λ = 1 and µ = −1.

The point p3,2 corresponds in this chart to (12 , 0, 0). By setting x = 1
2 + u, we get

(27) f̃1(u, y, z) =


u+ y2z2

(
− u+ 3

8y + (α− 1
2β)z +m2

)
y + y3z2

(
2u− 3

4y + βz +m2
)

z + y2z3
(
− 2u+ 7

4y − βz +m2
)

 .

This is a spinning corner of the form (24) with respect to the coordinates (u, y, z), with
parameters b = 2, c = 2.

Remark 3.13. Thanks to Remark 3.7, we can perform the change of coordinate x =
auu + ayy + azz, where au = −1, ay = 3

8 , and az = (α − 1
2β), in order to conjugate the

germ f̃1 given by (27) to an analogous germ with the coefficients ãy = ãz = 0 (coefficients

with a tilde correspond to the new variables). In this case, we get b̃y = 0, c̃y = 1, b̃z = 2α
and c̃z = −2α.

We proved the following:

Proposition 3.14. Let f : (C3, 0) → (C3), 0) be a germ of the form (1) with R040 ̸= 0

and P (4)(±1, 1, 1) ̸= ±R(4)(±1, 1, 1). Let π̃0 : Xπ̃0 → (C3, 0) be the regular modification
obtained as the composition π̃0 = π0 ◦ π̃1 ◦ π̃2, where π̃1 is the blow-up of p3 and π̃2 is the
blow-up of p4.

Then the lift fπ̃0 of f to Xπ̃0 has finitely many singular points, where it is either a simple
corner, a degenerate spike, or a spinning corner.

3.3. Birational study

Here we describe the behaviour of the families introduced in Section 3.1 under point
blow-up.

3.3.1. Simple corners

The situation for simple corners is already known, we summarize here their behaviour
under point blow-up.

Proposition 3.15 ([AT03, Proposition 4.1]). Let f : (C3, 0) → (C3, 0) be a simple corner,

and denote by f̃ the blow-up of f at 0. Then

(i) 0 is never 2-dicritical;

(ii) the singular directions of f are always simple corners of f̃ .

We will need the behavior of simple corners with respect to any admissible blow-up, and
to do so we need to be more explicit on the geometry of the singular directions of a simple
corner.

Proposition 3.16. Let f : (C3, 0) → (C3, 0) be a simple corner of the form (20), write
R = αx + βy + γz + m2, with α = β = 0 if c > 0. Then we get the following singular
directions:
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q1

p1

p2

p4,1

E1

E2

E3

E4q2

q3

q4
q5

p4,2

p3,1p3,2

Figure 2. Singular points of the saturated infinitesimal generator at Xπ̃0 .
We have degenerate spikes at p1 and p2, spinning corners at p3,2, p4,2 and
q1, and simple corners at the other marked points.

• [λ− γ : 0 : α] if α and λ− γ are not both vanishing;
• [p : 0 : r] for all [p : r] ∈ P1

C, if α = λ− γ = 0;
• [0 : µ− γ : β] if β and µ− γ are not both vanishing;
• [0 : q : r] for all [q : r] ∈ P1

C, if β = µ− γ = 0;
• [0 : 0 : 1].

All directions are exceptional, and simple corners.

Proof. The computation of singular directions is straightforward, since it corresponds on
determining the eigenspaces of the linear map represented byλ 0 0

0 µ 0
α β γ

 .

Since we will need this computation later, we verify that the singularities arising are again
simple corners (property we already know from Proposition 3.15), at least for the case of
non-isolated singular directions.

By working on the z-chart, and developing in formal power series, the lift f̃ of f takes
the form

(28) f̃(x, y, z) =


x
(
1 + xaybzs

(
λ− γ − αx− βy + ⟨z⟩

))
y
(
1 + xaybzs

(
µ− γ − αx− βy + ⟨z⟩

))
z
(
1 + xaybzs

(
γ + αx+ βy + ⟨z⟩

))
 ,

where s = a+ b+ c. At the origin, corresponding to the direction [0 : 0 : 1], we get a simple
corner. If γ = 0, we get a simple corner again with respect to (x, y, z); if γ ̸= 0, note that,
if (λ− γ)/γ, (µ− γ)/γ ∈ Q>0, then µ/λ ∈ Q>0, which is impossible, so we obtain a simple
corner with respect to (z, x, y) or (z, y, x).
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If λ = γ and α = 0, we get singularities at all points (x0, 0, 0). By replacing x = x0 + u,
we get simple corners of the form (20) with respect to coordinates (y, z, u). The other cases
are analogous and left to the reader. □

We depict the situation in the next diagram. Exceptional directions are depicted in red,
while non-exceptional (degenerate) directions will be depicted in blue (there are none for
simple corners). We also indicate the type of tangent to the identity germ we get at each
characteristic point (in this case, all simple corners). Finally, we indicate the geometry of
singular points in case they come in a family (in this case, with a parameter z0 ∈ C).

R0

0

R0

[λ− γ : 0 : α] if (λ− γ, α) ̸= (0, 0)GG

R0

[1 : 0 : z0] if λ− γ = α = 0
C

??

R0

[0 : µ− γ : β] if (µ− γ, β) ̸= (0, 0)//

R0

[0 : 1 : z0] if µ− γ = β = 0

C
��

R0

[0 : 0 : 1]��

Remark 3.17. We say that a simple corner is resonant if either λ − γ = α = 0 or
µ− γ = β = 0, where we used the notations of Proposition 3.16. Notice that both istances
cannot happen at the same time, since we would have λ = µ, which is not allowed.

If we are in the first case λ− γ = α = 0, and we apply to (28) the change of coordinates
(x, y, z) 7→ (z, y, x−x0) =: (x′, y′, z′), then we get a germ of the form (20), with R ∈ ⟨x′, y′⟩.
In particular, the linear part α′x′ + β′y′ + γ′z′ of R satisfies γ′ = 0, hence all these simple
corners are not resonant. A similar computation holds in the second case.

Remark 3.18. Suppose C is a formal invariant curve for a simple corner and let p(C) =
(pn) be the increasing sequence of infinitely near points associated to C. By Proposi-
tion 1.27 (and with the notation of Proposition 1.25), we have that pn is a singular direc-
tion for fn−1; by Proposition 3.16, singular directions of a simple corner are again simple
corners and exceptional, i.e. contained in the exceptional divisor. Inductively, we have
that all infinitely near points associated to C are contained in the exceptional divisor of
the corresponding blow-up, therefore C is contained in the exceptional divisor of the simple
corner.

3.3.2. Degenerate spikes

Lemma 3.19. Let f : (C3, 0) → (C3, 0) be a degenerate spike of the form (21). Then f
has three singular directions, given by:

• −→v = [0 : 0 : 1], which is non-exceptional and degenerate;

• −→w1 = [1 : 0 : 0], and −→w2 = [0 : 1 : 0], which are exceptional, with multipliers λ and

µ (seen as singular directions).

Proof. The proof is a direct computation, left to the reader. □

Remark 3.20. For maps of the form (22), we have −→v =
[
− bz
bx

: −az
ay

: 1
]
, and −→wj =[√

ay : (−1)j
√
bx : 0

]
for j = 1, 2 (for some determinations of the square roots of ay and

bx).

Proposition 3.21. Let f : (C3, 0) → (C3, 0) be a degenerate spike of the form (21). Let

π : X → (C3, 0) be the blow-up at the origin in C3. For the lift f̃ of f to X, we have that:

• −→v = [0 : 0 : 1] is a degenerate spike;
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• −→w1= [1 : 0 : 0] and −→w2= [0 : 1 : 0] are simple corners.

The following diagram portrays the situation for degenerate spikes. We recall that
exceptional directions are depicted in red and non-exceptional degenerate directions are
depicted in blue. To help the reader, we also indicate with a subscript the chart in which
we make the computations, i.e., the equation of the exceptional divisor obtained with the
last blow-up.

R1

0

R1−→vz77
R0−→wx2 ''

Proof.

[0 : 0 : 1] We make computations in the z-chart, so that π(x, y, z) = (xz, yz, z). For the

lift f̃ of f , we obtain

(29) f̃(x, y, z) =



x+ zc
(
λx+ z−1P ◦ π

)
1 + zcR ◦ π

y + zc
(
µy + z−1Q ◦ π

)
1 + zcR ◦ π

z
(
1 + zcR ◦ π

)


.

By developing in formal power series, we get

f̃(x, y, z) =

x+ zc
(
λx+ a002z +m2

)
y + zc

(
µy + b002z +m2

)
z + zc+1m

 ,

which is again a degenerate spike.

[1 : 0 : 0], [0 : 1 : 0] We study [1 : 0 : 0], the case [0 : 1 : 0] being obtained by exchanging

the role of x and y. We make computations in the x-chart, so that π(x, y, z) = (x, xy, xz),
and get

f̃(x, y, z) =



x
(
1 + xczc

(
λ+ x−1P ◦ π

))
y + xczc

(
µy + x−1Q ◦ π

)
1 + xczc

(
λ+ x−1P ◦ π

)
z

1 + xczcR ◦ π
1 + xczc

(
λ+ x−1P ◦ π

)


.

By developing in formal power series, we get

f̃(x, y, z) =


x+ xc+1zc

(
λ+ ⟨x⟩

))
y + xczc

(
(µ− λ)y + ⟨x⟩

)
z + xczc+1

(
− λ+ ⟨x⟩

)
 ,

which is a simple corner with respect to coordinates (x, z, y).

□
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3.3.3. Spinning corners

Proposition 3.22. Let f : (C3, 0) → (C3, 0) be a spinning corner of the form (23). The
singular directions of f are [1 : 0 : 0] (non-degenerate) and the points of the line [0 : p : q],
with [p : q] ∈ P1

C (all degenerate).

Let π : X → (C3, 0) be the blow-up at the origin. For the lift f̃ of f to X, we have that:

(i) [1 : 0 : 0] is a simple corner;
(ii) [0 : 1 : 0] and [0 : 0 : 1] are spinning corners;
(iii) [0 : p : q] are half corners for any p, q with pq ̸= 0.

We sum up the situation for spinning corners.

R2

0

R0

[1 : 0 : 0]xDD

R2

[0 : 1 : 0]y77

R2

[0 : 0 : 1]z''

R3

[0 : y0 : 1]z

C∗

��

Proof. The list of singular directions is easily obtained by the fact that the homogeneous

part of smallest degree of f − id is given by ybzc

(
x

0
0

)
.

[1 : 0 : 0] We make computations in the x-chart, and we obtain

f̃(x, y, z) =



x
(
1 + xsybzc

(
1 + x−1P ◦ π

))
y

1 + xsybzcQ ◦ π
1 + xsybzc

(
1 + x−1P ◦ π

)
z

1 + xsybzcR ◦ π
1 + xsybzc

(
1 + x−1P ◦ π

)


,

where s = b+ c. This gives a simple corner.

[0 : 0 : 1], [0 : 1 : 0] We study [0 : 0 : 1], the case [0 : 1 : 0] being obtained by exchanging

the role of y and z. Making computations in the z-chart, we get

f̃(x, y, z) =



x+ ybzs(x+ z−1P ◦ π)
1 + ybzsR ◦ π

y
1 + ybzsQ ◦ π
1 + ybzsR ◦ π

z
(
1 + ybzsR ◦ π

)


.

We develop in formal power series, obtaining
(30)

f̃(x, y, z) =


x+ ybzs

(
x+ z

(
P (2) − xR(1)

)
(x, y, 1) + ⟨z2⟩

)
y + yb+1zs+1

((
Q(1) −R(1)

)
(x, y, 1) + z

(
Q(2) −R(2)

)
(x, y, 1) + ⟨z2⟩

)
z + ybzs+2

(
R(1)(x, y, 1) + zR(2)(x, y, 1) + ⟨z2⟩

)
 ,

where for any k ∈ N∗, P (k) denotes the homogeneous part of degree k of P (and analogously
for Q and R).

In particular, f̃ is a spinning corner of the form (24) with respect to coordinates (x, y, z).
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[0 : y0 : 1] It remains to study the germ of f̃ at points of the form [0 : y0 : 1], with

y0 ∈ C∗. We write Q = bxx + byy + bzz + Q′, and R = cxx + cyy + czz + R′ with
Q′, R′ ∈ m2. We center coordinates at [0 : y0 : 1] by setting y = y0 + v, and from (30) we
get:
(31)

x+ yb0z
s
(
x+ zP (2)(0, y0, 1) + ⟨x, z⟩m

)
v + yb+1

0 zs+1
(
β̃ + x(bx − cx) + v

(
(b+ 1)y−1

0 β̃ + (by − cy)
)
+ z
(
Q−R

)(2)
(0, y0, 1) +m2

)
z + yb0z

s+2
(
γ̃ + xcx + v

(
by−1

0 γ̃ + cy
)
+ zR(2)(0, y0, 1) +m2

)
 ,

where β̃ = β̃(y0) = bz − cz + y0(by − cy) and γ̃ = γ̃(y0) = cz + y0cy. This is a half corner,

non-simple or simple depending on the vanishing of β̃(y0).

□

Remark 3.23. In what follows, we will be interested in the existence of non-simple half

corners, hence in the vanishing of the coefficient β̃(y0).Three situations can occur:

• if by = cy and bz = cz, then all half corners are non-simple;
• if exactly one of the two equalities above hold, then all half corners are simple;

• if none of the two equalities above hold, then there exists a unique y0 at which f̃
is non-simple, and all the others produce simple half corners.

Notice that the value of β̃(y0) has the same formula for spinning corners of the form
(24) with ay = az = 0 (i.e., where we allow ax to be different from 1).

3.3.4. Half corners

Proposition 3.24. Let f : (C3, 0) → (C3, 0) be a half corner of the form (25). Its singular
directions are given by:

• [1 : 0 : 0], exceptional;
• [0 : 1 : 0], exceptional;
• [0 : y0 : 1] for all y0 ∈ C, non-exceptional degenerate (when f is non-simple).

Let f̃ be the lift of f to the blow-up of the origin in C3. Then

• f̃ is a simple corner at [1 : 0 : 0],

• f̃ is a spinning corner at [0 : 1 : 0],

• if f is non-simple, then f̃ is a half corner at [0 : y0 : 1] for all y0 ∈ C.

Here is a depiction of the situation for half corners.

R3

0

R0

[1 : 0 : 0]x??

R2

[0 : 1 : 0]y//

R3

[0 : y0 : 1]z if β = 0

C
��

Proof. The list of singular directions is easily obtained by the fact that the homogeneous

part of smallest degree of f − id is given by zc

(
x

βz
0

)
.
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[1 : 0 : 0] We make computations in the x-chart, and get

f̃(x, y, z) =



x
(
1 + xczc(1 + x−1P ◦ π)

)
y + xczc+1(β +Q ◦ π)
1 + xczc(1 + x−1P ◦ π)

z
1 + xc+1zc+1R ◦ π

1 + xczc(1 + x−1P ◦ π)


.

Since x2 | P ◦ π, by direct computation we get

f̃(x, y, z) =

x+ xc+1zc(1 +m))
y + xczcm

z + xczc+1(−1 +m)

 ,

which is a simple corner with respect to coordinates (x, z, y).

[0 : 1 : 0] In the y-chart, we get

f̃(x, y, z) =



x+ yczc(x+ y−1P ◦ π)
1 + yczc+1(β +Q ◦ π)

y
(
1 + yczc+1(β +Q ◦ π)

)
z

1 + yc+1zc+1R ◦ π
1 + yczc+1(β +Q ◦ π)


.

By developing in formal power series, we get

(32) f̃(x, y, z) =


x+ yczc

(
x+ a020y +m2

)
y + yc+1zc

(
zβ + ⟨yz⟩

)
z + yczc+1

(
− βz + ⟨yz⟩

)
 ,

and f̃ is a spinning corner at [0 : 1 : 0].

[0 : y0 : 1] Finally, suppose β = 0. By doing computation in the z-chart we get

f̃(x, y, z) =



x+ zc(x+ z−1P ◦ π)
1 + zc+1R ◦ π

y + zcQ ◦ π
1 + zc+1R ◦ π

z
(
1 + zc+1R ◦ π

)


.

Write Q = bxx+ byy + bzz +Q′ and R = γ + cxx+ cyy + czz +R′, with Q′, R′ ∈ m2 and

expand f̃ in formal power series:

f̃(x, y, z) =


x+ zc

(
x+ zP (2)(0, y, 1) + z⟨x, z⟩

)
y + zc+1

(
bz + (by − γ)y + bxx+ z

(
Q(2)(0, y, 1)− czy − cyy

2
)
+ z⟨x, z⟩

)
z + zc+2

(
γ + z(cz + cyy) + z⟨x, z⟩

)
 .

We develop at the direction [0 : y0 : 1] for some y0 ∈ C, by setting y = y0 + v, and we get
(33)

x+ zc
(
x+ zP (2)(0, y0, 1) + zm

)
v + zc+1

(
bz + (by − γ)y0 + bxx+ (by − γ)v + z

(
Q(2)(0, y0, 1)− czy0 − cyy

2
0

)
+ zm

)
z + zc+2

(
γ + z(cz + cyy0) + zm

)
 .
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By Remark 3.10, f̃ is again a half corner, non-simple or simple according to the vanishing

of β̃(y0) = bz + (by − γ)y0.

□

4. Blow-up of singular curves

We study here the behaviour of the families introduced in the previous two sections
when blowing-up curves contained in the singular locus Sπ of fπ the lift of f at a model
Xπ (i.e., the singular locus of its saturated infinitesimal generator).

4.1. Patterns

We start by describing the structure of Sπ when π is a point modification (adapted to
f) dominating Xπ0 . To do so we will use the following terminology.

Definition 4.1. A (rational) pattern is a triple (X,C, f), where X is a smooth 3-fold, C is
a smooth compact rational curve inside X, and f : (X,C) → (X,C) is a holomorphic germ
at C, fixing C pointwise, and defining tangent to the identity germs at p for any p ∈ C.
Moreover, if χ̂ is the saturated infinitesimal generator of f , we impose that its singular set
S contains C. The curve C is called the core of the pattern.

If G is a family of tangent to the identity germs, we say that a pattern (X,C, f) is of
type G (or a G-pattern) if the germ of f at p belongs to G for all but finitely many p ∈ C.
Any such point p is called a generic point of the pattern, while any point at which the
germ of f does not belong to G is called a special point. The generic locus of the pattern
is the set of generic points of C, while the special locus is its complement.

If we need to express the fact that special points of a G-pattern belong to some classes
S, we will talk about S-G-patterns. A G-G-pattern is a G-pattern without special points.

Remark 4.2. One should think of patterns as germs of dynamical systems on germs of
3-dimensional manifolds around the core. These could be also described in more algebraic
geometrical terms (by using formal schemes for example).

Proposition 4.3. Let f : (C3, 0) → (C3, 0) be a germ of the form (1) satisfying the
conditions of Proposition 3.14. Let π : Xπ → (C3, 0) be any point modification adapted to
f and dominating Xπ0. Let Sπ be the singular set of the saturated infinitesimal generator
χ̂π of the lift fπ of f at Xπ. Then any positive-dimensional irreducible component Cπ of
Sπ is a rational curve, and (Xπ, Cπ, fπ) is either a R0-R0-pattern or a R2-R3-pattern.

Proof. By Proposition 3.14, the model Xπ0 has finitely many singularities, which are either
simple corners, degenerate spikes or spinning corners.

By blowing-up points over such families, we either stay in such families, or we obtain half
corners. Non-isolated singularities may arise only when blowing-up simple corners (and in
this case we get R0-R0-patterns), or spinning corners and half corners (and in both cases
we get R2-R3-patterns). To conclude, we need to control the strict transform of the cores
C of such patterns, when blowing-up points p in the core.

Since the singularities above simple corners are themselves simple corners, when we
blow-up points in the core of R0-R0-patterns we still get R0-R0-patterns.

For the case of R3-patterns, we need to determine the equations of the core C at any
point p ∈ C with respect to the local coordinates at p used to describe spinning corners
and half corners.

It is easy to check that for R2-R3-patterns coming from the blow-up of either a spinning
corner or a half corner, the core is given by C = {x = z = 0} (both at the special points
where we have spinning corners, or at generic points where we have half corners), see
Proposition 3.22 and Proposition 3.24.

If we blow-up any point p ∈ C, the strict transform C̃ of C intersects the exceptional
divisor necessarily at the spinning corner at p = [0 : 1 : 0], and it is locally given by

C̃ = {x = y = 0}.
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This situation is stable by further blow-ups, and we are done. □

We now study the behaviour of these patterns under blow-up of their cores.

4.2. Blow-up of R0-R0-patterns

Lemma 4.4. Let (X,C, f) be a R0-R0-pattern given by Proposition 4.3. Then for point
p ∈ C there exists local coordinates (x, y, z) at p so that C = {x = y = 0} and f is of the
form (20), with R ∈ ⟨x, y⟩.

Proof. From Proposition 4.3 R0-patterns arise when blowing up simple corners, and a
direct computation shows that locally f can be written as in (20) with C = {x = y = 0}.
Imposing that points in C are singular for f imply that R vanishes at all points in C, which
is equivalent to asking R ∈ ⟨x, y⟩. □

Proposition 4.5. Let (X,C, f) be a R0-R0-pattern given by Proposition 4.3, and let π :

X̃ → (X,C) be the blow-up of C. Denote by E = π−1(C) the exceptional divisor, and by S̃

the set of singularities of the lift f̃ of f at X̃. Then E ∩ S̃ consists of exactly two sections

C̃0 and C̃∞ of π|E : E → C, not intersecting each-other. Finally, for t = 0 and t = ∞,

(X̃, C̃t, f̃) defines a R0-R0-pattern, satisfying the same conditions as in Lemma 4.4.

Proof. To study the fiber above p, we have to consider two charts of X, where in local
coordinates π acts respectively as π(x, y, z) = (x, xy, z), and π(x, y, z) = (xy, y, z).

In the first case, f̃ takes the form

(34) f̃(x, y, z) =

 x+ (xa+bybzc)x
(
λ+ ⟨x, z⟩

)
y + (xa+bybzc)y

(
µ− λ+ ⟨x, z⟩

)
z + (xa+bybzc)⟨x⟩

 ,

where the rest in the latter coordinate belongs to ⟨xz⟩ whenever c > 0. We study (34) at
points (0, y0, 0) with y0 ∈ C.

At y0 = 0, we have a singular point and we clearly get a simple corner with the wanted
properties. When y0 ̸= 0, we get a regular point, since µ− λ ̸= 0.

The computations on the second chart are completely analogous, and left to the reader.
We get another simple corner at the point associated to the direction [0 : 1]. □

4.3. Blow-up of R2-R3-patterns

Lemma 4.6. Let (X,C, f) be a R2-R3-pattern given by Proposition 4.3. For any point
p ∈ C, there are coordinates (x, y, z) so that C = {x = z = 0}, p = (0, y0, 0) and f has the
form:

(35) f(x, y, z) =

x+ ybzc(x+ P )
y + yBzc+1Q
z + ybzc+2R

 ,

with c ≥ 1 and P ∈ ⟨z⟩. Moreover either B − 1 = b ≥ 1, or b = B = 0.

Proof. From Proposition 4.3, R3-patterns arise when blowing up spinning corners and
(non-simple) half corners. A direct computation shows that there one can find coordinates
(x, y, z) at p so that f is of the form (23) or (25), and C = {x = z = 0}, or C = {x = y = 0}
for spinning corners. Being (23) symmetric on y, z, we may assume we are in the first case.
The statement follows from rewriting (31) of Proposition 3.22 under the form (35), and
from (33) of Proposition 3.24. □

Proposition 4.7. Let (X,C, f) be a R2-R3-pattern given by Proposition 4.3, and let π :

X̃ → (X,C) be the blow-up of C. Denote by E = π−1(C) the exceptional divisor, and by S̃

the set of singularities of the lift f̃ of f at X̃. Then E ∩ S̃ consists of exactly two sections

C̃0 and C̃∞ of π|E : E → C, not intersecting each other. Finally,

• (X̃, C̃∞, f̃) defines a R0-R0-pattern, satisfying the same conditions as in Lemma 4.4;
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• (X̃, C̃0, f̃) defines a R2-R3-pattern, admitting local coordinates of the form (35).

Proof. Let p ∈ C be any point in the core, and pick (x, y, z) local coordinates so that
f is written as in (35). We write P = z

(
α(y) + ⟨x, z⟩

)
. To study the fiber above p,

we have to consider two charts of X, where in local coordinates π acts respectively as
π(x, y, z) = (x, y, xz), and π(x, y, z) = (xz, y, z).

In the first case, f̃ takes the form

(36) f̃(x, y, z) =


x
(
1 + xcybzc

(
1 + zα(y) + ⟨xz⟩

))
y + xc+1yBzc+1Q ◦ π

z
(
1 + xcybzc

(
− 1− zα(y) + ⟨xz⟩

))
 .

The singular points if f̃ in the exceptional divisor E = {x = 0} are of the form (0, y0, z0)
with z0(1 + z0α(y0)) = 0.

When y0 varies, the closure of points z0 = 0 define a rational curve C∞. From (36) we

deduce that (X̃, C∞, f̃) is a R0-R0-pattern satisfying the conditions of Lemma 4.4.
To study the points satisfying z0α(y0) = −1, we work on the second chart. We get

(37) f̃(x, y, z) =

x+ ybzc
(
x+ α(y) + ⟨z⟩

))
y + yBzc+1Q ◦ π
z + ybzc+2R ◦ π

 .

In this chart, the singularities in E = {z = 0} have the form q0 = (x0, y0, 0) with
x0 = −α(y0). These points form a rational curve C0 not intersecting C∞, for which

(X̃, C0, f̃) is a R2-R3-pattern. More precisely, f̃ is a spinning corner at q0 exactly when
y0 = 0 and b ≥ 1, i.e., if and only if f is a spinning corner at p.

By the change of coordinates (x, y, z) 7→ (x + α(y), y, z), we get an expression of the
form (35). □

We sum up the study of blow ups of singular points and patterns in Figure 3.

4.4. Proof of Theorem A

Let f : (C3, 0) → (C3, 0) be a generic germ of the form (1) (i.e., with parameters P,Q,R
satisfying the conditions of Proposition 3.14).

Any regular modification π : Xπ → (C3, 0) adapted to f and dominating π0 is either a
point modification, or it dominates π̃0 given by Proposition 3.14.

By Proposition 4.3, in the first case the only patterns that appear are R0-R0-patterns
or R2-R3-patterns. In the second case, patterns may appear from regular modifications
adapted to the dynamics above simple corners or spinning corners, which are again R0-
R0-patterns or R2-R3-patterns. By Proposition 4.5 and Proposition 4.7, no new patterns
arise when blowing-up cores these two type of patters, and similarly the blow-up of points
doesn’t provide new type of special points in a pattern. Hence for any such modification
π, we have only simple corners, degenerate spikes, spinning corners and half corners, which
admit no non-exceptional non-degenerate singular directions.

5. Invariant curves and parabolic manifolds

5.1. Invariant curves

5.1.1. Degenerate spikes

Proposition 5.1. Let f : (C3, 0) → (C3, 0) be a degenerate spike of the form (21). Then
there exists a unique f -invariant formal curve C not contained in E := {z = 0}. Moreover,
C is smooth and transverse to E.

Proof. By Proposition 3.21 (see also Figure 3), there exists a unique sequence of infinitely
near points p consisting of singular points for the lifts of f . By Proposition 1.25, these
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Figure 3. Blow-up of special families and patterns.

points induce a formal invariant curve Cp which is f -invariant, smooth and transverse to
E.

Let now C be a formal f -invariant curve. Since curves are resolved by point blow-ups,
there exists a point modification π : Xπ → (C3, 0) so that the curve C lifts to Cπ which
is smooth and transverse to the exceptional divisor Eπ of π. Denote by fπ the lift of f at
Xπ.

Then Cπ must intersect Eπ transversely at a point p, and fπ must be a degenerate spike
at p. In fact, by Theorem 1.29 fπ admits a parabolic manifold tangent to Cπ, and by
Corollary 1.21 we deduce that p must be a singular point for fπ. Since, by Remark 3.18,
simple corners don’t admit formal invariant curves (not lying in the exceptional divisor),
we must have that p is a degenerate spike.

Since there is a unique sequence q of infinitely near points consisting of singular points
and satisfying the conditions of Proposition 1.23 above a degenerate spike, we deduce that
Cπ ≡ Cq, and by projecting down, we get C ≡ Cp. □

5.1.2. Half corners

Proposition 5.2. Let f : (C3, 0) → (C3, 0) be a half corner of the form (25). Write
Q = bxx+ byy + bzz +Q′, R = γ +R′ with Q′ ∈ m2 and R′ ∈ m. Set E = {z = 0}.

• If β ̸= 0 (i.e., the half corner is simple), then f does not admit any formal f -
invariant curve transverse to E.

• If β = 0 (i.e., the half corner is non-simple), and

(38) by ̸∈ γN∗,

then f admits a unique smooth f -invariant formal curve C transverse to E.
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Proof. Let us write f under the following form:

(39) f(x, y, z) =

 x+ zc(x+ P )
y + zc+1(β +Q)

z + zc+2R


with P =

∑
k≥1 z

kak(y) + ⟨xz⟩.
Step 1 We want to show that up to formal conjugacy, we can suppose that ak ≡ 0 for

all k, hence P ∈ ⟨xz⟩.
When k = 1, the condition a1 ≡ 0 corresponds to having that the R2-R3-pattern obtained

after blowing-up {x = z = 0} has core which corresponds to the intersection of the strict
transform of {x = 0} and the exceptional divisor.

Using (37) and arguing by induction, having a1 ≡ . . . ≡ ak ≡ 0 corresponds to the
analogous statement for the iterated blow-up h-times, h = 1, . . . , j, of the cores of the
R2 −R3-patterns we meet at each step. We set X0 = C3 (as a germ at the origin), and Xk

to be the blow-up of Xk−1 along {x = z = 0}. Since a change of coordinates of the form
x′ = x+α(y) in Xk corresponds to a change of coordinates of the form x′ = x+ zkα(y), in
X0, these change of coordinates converge to a formal change of coordinates x′ = x+A(y, z).

Step 2 By Step 1, we may assume P ∈ ⟨xz⟩. This corresponds to having the surface

S = {x = 0} invariant by f .
Let C be an f -invariant curve. If β ̸= 0, the only singular directions are [1 : 0 : 0] and

[0 : 1 : 0], which are exceptional. By Proposition 1.27, C must be tangent to one of these
directions, hence it cannot be transverse to E.

Suppose now that β = 0 and C is transverse to E. Then, again by Proposition 1.27, C
must be tangent to a direction of the form [0 : y1 : 1] for some y1 ∈ C. Let π1 : X1 → (C3, 0)
be the blow-up of the origin p0 = 0, and let p1 be the point corresponding to [0 : y1 : 1].
By computing the lift fπ1 of f with respect to the z-chart, we get another half corner of
the form

(40) fπ1(x, y, z) =

 x+ zc
(
x+ ⟨xz⟩

)
y + zc+1

(
bz + (by − γ)y + bxx+ ⟨z⟩

)
z + zc+2

(
γ + ⟨z⟩

)
 .

The germ fπ1 cannot be simple at p1, as the strict transform of C cannot be tangent to
the strict transform of E, which is again given by {z = 0} in these coordinates. Hence we
must have bz + (by − γ)y1 = 0.

By induction, we infer that C must be contained in S = {x = 0}.
Step 3 Let pn be the sequence of infinitely near points associated to C, and let

πn : Xn → (C3, 0) be the blow-up of the points p0, . . . , pn−1. The lift fπn of f at pn ∈ Xn

(with computations done always in the z-chart) is a half corner of the form (40), with
second coordinate given by

y + zc+1
(
b(n)z + (by − nγ)y + ⟨x, z⟩

)
,

for some b
(n)
z ∈ C. In particular, if by ̸∈ γN∗, then there exists a unique yn ∈ C so that

b
(n)
z + (by − nγ)yn = 0. We deduce in this case the uniqueness of the f -invariant curve
transverse to E. □

Remark 5.3. Some of the steps in the proof of Proposition 5.2 can be replaced by alter-
native arguments. For example, Step 3 can be replaced by studying directly the action of
g = f |S : S → S, and its saturated infinitesimal generator ξ̂. In fact, ξ̂ has a singularity at
the origin if and only if β = 0 and in this case its linear part is (byy + bzz)∂y + γz∂z. As
long as by and γ do not both vanish, we get a log-canonical singularity. When by ̸∈ γQ>0,
the singularity is in fact canonical, and we have exactly two complex separatrices: one
given by E ∩S, and the other transverse to E in S. The case by ∈ γ(Q>0 \N∗) can be also
treated explicitly using normal forms for 2-dimensional vector fields.
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The existence of formal invariant curves for non-simple half corners can be deduced
directly from Proposition 3.24. In fact, the computations made in the proof, show that
when blowing-up such a germ, we obtain half corners with parameters

β̃(y0) = bz + (by − γ)y0, b̃y = by − γ, γ̃ = γ,

where y0 ∈ C. In particular, as long as by ̸∈ γN∗, we may construct an increasing sequence
of infinitely near points which are non-simple half corners, which identify a formal invariant
curve by Proposition 1.25.

One can also replace Step 3 of Proposition 5.2 by a direct computation, following the
techniques developed in [Rug12, Rug13, Rug15]. This would correspond to parametrize a
curve C transverse to E inside S as (0, ŷ(t), te) for some e ≥ 1 and formal power series
ŷ =

∑
n≥1 ynt

n ∈ CJtK. We then impose the invariance condition

(41) y ◦ f(0, y(t), te) = ŷ
((
z ◦ f(0, y(t), te)

) 1
e

)
,

and solve this equation by expanding everything in formal power series on t.
When β ̸= 0, the contradiction to the existence is obtained by checking (41) at order

e(c+ 1). When β = 0, for e = 1 and for any n > c+ 1, (41) contains a term of the form(
by + (n− c− 1)γ

)
yn−c−1 = l. o. t. ,

where l. o. t. is a polynomial expression depending on yh for h < n− c−1. We deduce from
this the existence and uniqueness of ŷ solution of (41).

5.1.3. Spinning corners

In the following result, we say that an irreducible curve C is transverse to E = {yz = 0}
if the strict transforms of E and C do not intersect on the exceptional divisor of the blow-
up of the origin. Notice that this definition does not coincide with the common definition
of transversality when C is singular.

Corollary 5.4. Let f : (C3, 0) → (C3, 0) be a spinning corner of the form (23). Write
Q = bxx+ byy + bzz +m2, and R = cxx+ cyy + czz +m2. Set E = {yz = 0}.

• If by = cy and bz = cz, and they are not all vanishing, then there exists infinitely
many f -invariant formal smooth curves transverse to E.

• If by ̸= cy and bz ̸= cz, and

(42) (cz − bz)(by − cy) ̸∈ (bycz − bzcy)N∗,

then there exists a unique formal f -invariant curve smooth and transverse to E.
• If exactly one of the two equalities by = cy and bz = cz is satisfied, then there are
no formal f -invariant curves transverse to E.

Proof. Consider the blow-up of the origin. From Proposition 3.22, the points p(y0) corre-
sponding to the directions [0 : y0 : 1] for y0 ∈ C∗ have a non-simple half corner when y0
satisfies bz − cz + y0(by − cy) = 0. The parameters of the half corner are given (up to a

factor yb0) by:

b̃y = y0(by − cy) = cz − bz, γ̃ = cz + y0cy,

see (31).

• If by = cy and bz = cz, then p0 is a non-simple half corner for all values of y0 ∈ C∗,

with parameters b̃y = 0 and γ̃ = cz+ y0cy. As long as we do not have cy = cz = 0,
then for all y0 but at most one special value, the corresponding non-simple half
corner at p(y0) satisfies the non-resonance condition (38), and there exists a unique
invariant curve at p(y0) and transverse to the exceptional divisor.

• If by ̸= cy and bz ̸= cz, the only non-simple half corner is obtained at p(y0) with

y0 =
cz − bz
by − cy

. In this case, we have γ̃ =
δ

by − cy
, where δ = bycz − cybz.
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If δ = 0, being b̃y ̸= 0, the condition (38) is satisfied. If δ ̸= 0, then the condition
(38) gives exactly (42).

• If exactly one of the two equalities by = cy and bz = cz is satisfied, then p(y0) is a
simple half corner for all y0 ∈ C∗. By Proposition 5.2, we have no invariant formal
curves transverse to the exceptional divisor, and hence no f -invariant formal curves
transverse to E.

□

Remark 5.5. Corollary 5.4 does not deal with the existence of formal invariant curves
that may be tangent to the exceptional divisor.

Given a spinning corner in the form (23), and using the notations of Corollary 5.4, we

set A =

(
by bz
cy cz

)
.

Without further mention, germs or patterns that we blow-up will be considered in the
special coordinates used to obtain Figure 3.

Spinning corners may arise either blowing-up other spinning corners, at the point asso-
ciated to [0 : 1 : 0] and [0 : 0 : 1]; or by blowing-up a half corner, at the point associated to
[0 : 1 : 0]. Finally they are also obtained by blowing-up the core of a R2-R3-pattern.

From spinning corners Assume f is a spinning corner, and consider the lift f̃ with respect

to the blow-up of the origin, at the point associated to [0 : 0 : 1]. At this point, f̃ is a

spinning corner, with associated matrix Ã =

(
0 bz − cz
0 cz

)
. We can apply Corollary 5.4,

and deduce that if bz ̸= 2cz, there are no invariant curves transverse to the exceptional

divisor for f̃ , while if bz = 2cz ̸= 0, then there exists infinitely many invariant curves.
By repeating this argument, we get infinitely many invariant curves as long as bz/cz ∈ N∗,

or cy/by ∈ N∗ (this last condition is obtained by exchanging the role of y and z and studying
the direction [0 : 1 : 0]).

From half corners We need to study the direction [0 : 1 : 0]. In this case, we get Ã =(
0 β
0 −β

)
. Hence, for simple half corners, we have β ̸= 0, and no invariant curve transverse

to the exceptional divisor exists. For non-simple half corners, we have β = 0, and the
existence of invariant curves depend on the terms of higher degrees of f .

From R2-R3-patterns In this case, it is easy to check from (37) that the spinning corner

f̃ above a spinning corner of the core of the pattern satisfies Ã = A, and we can apply
directly Corollary 5.4.

One can also use formal computation techniques (see Remark 5.3), which show again
how the existence of invariant curves may depend on the higher order terms of P,Q,R.

5.2. Parabolic manifolds

In this section we describe how to get Ramis-Sibuya normal forms from the special
classes of tangent to the identity germs introduced in the previous sections, and apply
Theorem 1.33 in order to obtain parabolic manifolds attached to such germs.

5.2.1. Degenerate spikes

We start from degenerate spikes, for which we are able to describe explicitly the algorithm
that brings them into Ramis-Sibuya normal form.

Lemma 5.6. Let f : (C3, 0) → (C3, 0) be a degenerate spike. Then f is formally conjugated
to a germ of the form

(43) f̃(x, y, z) =


x+ zc

(
λx
(
1 + P0(z) + ⟨xy⟩

))
y + zc

(
µy
(
1 +Q0(z) + ⟨xy⟩

))
z + zc+1m

 .
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Proof. Firstly, we may assume that f is on the form (21).
The saturated infinitesimal generator χ̂f takes the form

χ̂f =
(
λx+ p(x, y, z)

)
∂x +

(
µy + q(x, y, z)

)
∂y + zr(x, y, z)∂z,

where p, q ∈ m2 and r ∈ m.
We recall that any vector field can be conjugated to a vector field in Poincaré-Dulac

normal form, where only resonant monomials are allowed in the formal power expansion
of the coefficients of the vector field (see, e.g., [IY08, Chapter I.4]). In our case, resonant
monomials for the first, second and third coordinates respectively, are of the form xi+1yjzk,
xiyj+1zk and xiyjzk respectively, where λi+ µj = 0.

When µ/λ ∈ C \ Q, we get i = j = 0, while k ranges among positive integers. When
µ/λ = −n/m ∈ Q<0 (assume m and n coprime), we get that i = hn and j = hm for some
h ∈ N∗.

Since n,m ≥ 1, the Poincaré-Dulac normal forms can be written as

λx
(
1 + p0(z) + ⟨xy⟩

)
∂x + µy

(
1 + q0(z) + ⟨xy⟩

)
∂y +

(
r0(z) + ⟨xy⟩

)
∂z,

where p0, q0, r0 are suitable formal power series vanishing at 0.
In general, the change of coordinates that puts χ̂f in its Poincaré-Dulac normal form

could move the exceptional divisor {z = 0}; in this particular case, however, we content
ourselves with putting f into a slightly less precise form with a change of coordinates
adapted to the exceptional divisor. Let us consider a change of coordinates of the form
Φ(x, y, z) = (x+ ϕ(x, y, z), y + ψ(x, y, z), z) with ϕ, ψ ∈ m2; by suitably choosing ϕ, ψ, we
conjugate χ̂f to a vector field of the form

(44) χ̂ = λx
(
1 + p0(z) + p̃(x, y, z)

)
∂x + µy

(
1 + q0(z) + q̃(x, y, z)

)
∂y +

(
zr̃(x, y, z)

)
∂z,

with p0 and q0 are as above, p̃, q̃ ∈ ⟨xy⟩, and r̃ ∈ m.
Since the exceptional divisor {z = 0} is invariant by Φ, if we conjugate f by Φ, we

obtain a tangent to the identity germ f̃ of the form (43), whose associated vector field will
be χ

f̃
= zcχ̂. □

Remark 5.7. When f has the form (43) then the unique formal invariant curve given by
Proposition 5.1 is given by C = {x = y = 0}.

Notice that by replacing Φ by its truncation at order N in the proof of Lemma 5.6, we
may assume that a degenerate spike germ f is analytically conjugated to a map of the
form (43) up to terms in mM , for M large enough. In this case we may assume that C is
arbitrarily tangent to the z-axis.

Since Ramis-Sibuya normal forms depend only on the truncation at a suitable high order
of a given germ, there is no loss of generality in working with germs up to formal conjugacy.

Proposition 5.8. Let f : (C3, 0) → (C3, 0) be a degenerate spike and let C be the unique
f -invariant formal curve given by Proposition 5.1. Suppose that C is not pointwise fixed
by f .

For any n ∈ N∗, consider πn : Xn → (C3, 0) the point modification, obtained recursively
starting by π1 the blow-up of p0 = 0, and πn obtained from πn−1 by blowing-up the point
pn−1 := π−1

n−1(0) ∩ Cn−1, where Cn−1 is the strict transform of C by πn−1.
Denote by fn the lift of f at Xn, as a germ at pn. Then for n≫ 0, and up to an analytic

change of coordinates, the pair (fn, Cn) is in Ramis-Sibuya normal form.

Proof. By Lemma 5.6, we may assume that C = {x = y = 0}, and f is of the form (43).
We can write the third coordinate of f as

z ◦ f = z + zc+1R = z + zc+1
(
h(z) + ⟨x, y⟩

)
.

Notice that f |C(z) = z+zc+1h(z): up to a polynomial change of coordinates in the variable
z, we may assume that

(45) h(z) = −ze + βzc+2e + ⟨zc+2e+1⟩,
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with e = ord0(h). Notice that performing this change of coordinates changes the values of
λ and µ, but their ratio stays invariant (see Remark 5.9).

The blow-ups πn can be computed with respect to the z-chart, and the point pn corre-
sponds to the origin in this chart. By direct computation we get

(46) fn(x, y, z) =



x+ zc
(
x(λ+ P0(z)) + zn⟨xy⟩⟩

)(
1 + zc

(
h(z) + zn⟨x, y⟩

))n
y + zc

(
y(µ+Q0(z)) + zn⟨xy⟩

)(
1 + zc

(
h(z) + zn⟨x, y⟩

))n
z
(
1 + zc

(
h(z) + zn⟨x, y⟩

))


.

Set r = c+ e ≥ c+ 1, and take n > c+ 2e. Then (46) can be rewritten as

(47) fn(x, y, z) =


x
(
1 + zc(λ+ P0(z)) + nzr)

)
+ ⟨zr+1⟩

y
(
1 + zc(µ+Q0(z)) + nzr)

)
+ ⟨zr+1⟩

z − zr+1 + βz2r+1 + ⟨z2r+2⟩

 ,

which is on the form (2). □

Remark 5.9. When we change coordinates to obtain (45), the values of λ and µ are

replaced by λh
−c/r
e and µh

−c/r
e , where h(z) = hez

e + ⟨ze+1⟩.
Suppose we have a degenerate spike of the form

(48) f(x, y, z) =

 x+ zca(x, y, z)

y + zcb(x, y, z)

z + zc+1R(x, y, z)

 ,

and we want to put it under the form used in the computations of Proposition 5.8. This
boils down to first put the linear part of (a, b) (evaluated in z = 0) in diagonal form, and
then perform a change of coordinates x 7→ x + α(z) and y 7→ y + β(z) for suitable formal
power series α, β ∈ zCJzK. In particular, if we need to know the action of f |C (where C is
the unique formal f -invariant curve transverse to {z = 0}) up to order c+ 1 + e, we only
need to know the values of α and β up to order e.

By Theorem 1.33, we can describe easily the parabolic manifolds attached to a degenerate
spike f . The situation is particularly simple when the multiplicity r + 1 of (f − id)|C at
the origin is minimal, case that covers the study above the points p1 and p2 in the proof
of Theorem B.

Corollary 5.10. Let f : (C3, 0) → (C3, 0) be a degenerate spike (of Siegel type) of the form
(21), and let C be the unique f -invariant formal curve given by Proposition 5.1. Suppose
that C is not pointwise fixed by f , and let r + 1 be the multiplicity of (f − id)|C at the
origin.

Then f admits r parabolic domains ∆k. When e := r − c = 1, these parabolic domains
have dimension 1 or 2.

Proof. This is a direct consequence of Proposition 5.8 and Theorem 1.33. In particular,
when writing (47) under the form (2) when e = 1, we get the values d1(z) = λzc and d2(z) =
µzc. Being λ/µ =: −η ∈ R<0, we deduce that the vectors R1(ξ) and R2(ξ) associated to the
attracting direction ξ for the Ramis-Sibuya normal form (3) satisfy R1(ξ) + ηR2(ξ) = 0.
Hence either Rj(ξ) = 0 for j = 1, 2, and in this case ξ is a saddle direction for both
coordinates, and the dimension of the associated parabolic manifold is 1, or Rj(ξ) ̸= 0, and
in this case ξ is a node direction for exactly one of the two coordinates, and the associated
parabolic manifold has dimension 2. □
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5.2.2. Half corners

For half corners, describing the explicit reduction to Ramis-Sibuya normal forms is more
involved. We describe here the situation where the multiplicity r + 1 of (f − id)|C at the
origin is minimal. This case corresponds exactly to non-simple half corners of the form (25)
with γ ̸= 0, and it covers the study above the points p3 and p4 in the proof of Theorem B.

Proposition 5.11. Let f : (C3, 0) → (C3, 0) be a non-simple half corner of the form (25),
with γ ̸= 0. Suppose that f admits a f -invariant smooth formal curve C transverse to
{z = 0}.

For any n ∈ N∗, consider πn : Xn → (C3, 0) the point modification, obtained recursively
starting by π1 the blow-up of p0 = 0, and πn obtained from πn−1 by blowing-up the point
pn−1 := π−1

n−1(0) ∩ Cn−1, where Cn−1 is the strict transform of C by πn−1.
Denote by fn the lift of f at Xn, as a germ at pn. Then for n≫ 0, and up to an analytic

change of coordinates, the pair (fn, Cn) is in Ramis-Sibuya normal form.

Proof. Up to a formal change of coordinates, we may assume that C = {x = y = 0}, and
f is of the form (25) with P ∈ ⟨x, y⟩m and Q ∈ ⟨x, y⟩. We can write the third coordinate
of f as

z ◦ f = z + zc+2R = z + zc+2
(
h(z) + ⟨x, y⟩

)
,

with h(0) = γ ̸= 0
Notice that f |C(z) = z + zc+2h(z): up to a polynomial change of coordinates in the

variable z, we may assume that

(49) h(z) = −1 + βzc+1 + ⟨zc+2⟩,
which is compatible with the third coordinate of (2) when we set r = c + 1. In this case,
the first coordinate of f becomes x + zc(αcx + ⟨x, y⟩m), where αr = 1/γ. To sum up, we
can write f in the form:

(50) f(x, y, z) =

x+ zc(αcx+ a101xz + a011yz + r)
y + zc+1(bxx+ byy + ⟨x, y⟩m)

z + zc+2(h(z) + ⟨x, y⟩)

 ,

for suitable a101, a011, bx, by ∈ C, and we set r = ⟨x, y⟩(⟨x, y, z2⟩).
The blow-ups πn can be computed with respect to the z-chart, and the point pn corre-

sponds to the origin in this chart. By direct computation we get

(51) fn(x, y, z) =



x+ zc
(
αcx+ a101xz + a011yz + z2⟨x, y⟩

)(
1 + zc+1

(
h(z) + zn⟨x, y⟩

))n
y + zc+1

(
bxx+ byy + z⟨x, y⟩

)(
1 + zc+1

(
h(z) + zn⟨x, y⟩

))n
z
(
1 + zc+1

(
h(z) + zn⟨x, y⟩

))


.

Take n > c+ 1. Then (51) can be rewritten as

(52) fn(x, y, z) =


x
(
1 + (αz)c + (a101 + n)zc+1

)
+ a011yz

c+1 + ⟨zc+2⟩

y
(
1 + (by + n)zc+1

)
+ bxxz

c+1 + ⟨zc+2⟩

z − zc+2 + βz2c+3 + ⟨z2c+4⟩

 ,

which is on the form (2) with r = c + 1, d1(z) = (αz)c and d2(z) ≡ 0, as long as a011 =
bx = 0.

We claim that this last property can be achieved by performing a change of coordinates
(before blowing up) of the form Φ(x, y, z) = (x+ λyz, y + µxz, z). Its inverse is given by

Φ−1(x, y, z) =

(
x− λyz

1− λµz2
,
y − µxz

1− λµz2
, z

)
.
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If f is of the form (50), then we get

Φ−1 ◦ f ◦ Φ(x, y, z) = Φ−1

x+ λyz + zc
(
αcx+ a101xz + (a011 + αcλ)yz + r

)
y + µxz + zc+1(bxx+ byy + ⟨x, y⟩m)

z + zc+2(h(z) + ⟨x, y⟩)



=


x− λµxz2 + zc

(
αcx+ a101xz + (a011 + αcλ)yz + r

)
1− λµz2(1 + ⟨zc+1⟩)

y − λµyz2 + zc+1
(
(bx − µαc)x+ byy + ⟨x, y⟩m

)
1− λµz2(1 + ⟨zc+1⟩)
z + zc+2(h(z) + ⟨x, y⟩)



=

x+ zc
(
αcx+ a101xz + (a011 + αcλ)yz + r

)
y + zc+1

(
(bx − µαc)x+ byy + ⟨x, y⟩m

)
z + zc+2(h(z) + ⟨x, y⟩)

 .

It suffices to set λ = −α−ca011 and µ = α−cbx. □

Corollary 5.12. Let f : (C3, 0) → (C3, 0) be a non-simple half corner satisfying the same
hypotheses of Proposition 5.11.

Then f admits r = c+ 1 parabolic manifolds ∆k, which are of dimension 1 or 2.

Proof. By Proposition 5.8, we may assume up to point blow-ups that f is in the Ramis-
Sibuya normal form (52). Denote by R1 and R2 the invariants associated to the Ramis-

Sibuya normal form given by (3). Let ξ = e2πik/r be a r-th root of unity. Since d2 = 0, then
R2 = 0, and all directions are a saddle in the second coordinate. For the first coordinate,
we get a node or a saddle depending on the sign of the real part of αcξc. We conclude by
Theorem 1.33. □

5.3. Proof of Theorem B

Here we apply the results of the previous sections to our example (1). From Proposi-
tion 3.14, we get a model with 11 singularities. Among those, we get two degenerate spikes
at p1 and p2, and three spinning corners at p3,2, p4,2 and q1. The others are simple corners
and do not give rise to parabolic manifolds, see [AT03].

p1 At p1 the lift of f takes the form (6), which is a degenerate spike. To compute the

parameters appearing in Proposition 5.8 and Corollary 5.10, we need some further change
of coordinates (see Remark 5.9).

After performing the change of coordinates x′ = x+ y, y′ = x− y, we get

(53) f1(x
′, y′, z) =


x′ + z2

(
− x′ + (P004 +Q004)z +m2

)
y′ + z2

(
y′ + (P004 −Q004)z +m2

)
z + z3

(
− 1

2x
′ − 1

2y
′ + zR004 +m2

)
 .

After the change of coordinates x′′ = x′ − (P004 + Q004)z, y
′′ = y′ + (P004 − Q004)z we

finally get

(54) f1(x
′′, y′′, z) =


x′′ + z2

(
− x′′ +m2

)
y′′ + z2

(
y′′ +m2

)
z + z3

(
− 1

2x
′′ − 1

2y
′′ + z(R004 −Q004) +m2

)
 .

The change of coordinates provided by Lemma 5.6, that reduces f1 to the form (43), leaves
the linear part of z−3(z ◦ (f1 − id)) invariant. We deduce from Corollary 5.10 that, if
R004 ̸= Q004, the parameters of Proposition 5.8 are c = 2, e = 1, and we get r = c+ e = 3
parabolic manifolds attached to p1.
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Here λ = −1, µ = 1, he = R004 −Q004, and by a direct check we get that all parabolic
manifolds have dimension 2, unless h2e ∈ iR, in which case one of the three parabolic
manifolds has dimension 1, while the others have dimension 2.
p2 For the degenerate spike at p2, computations are similar and left to the reader.

In this case we get again c = 2, e = 1, and r = 3 parabolic manifolds whenever he :=
R(4)(0, 1, 1) ̸= 0. They are all of dimension 2, unless h2e ∈ R, where one of the three
parabolic manifolds has dimension 1.
p3,2 At the point p3,2 we have a spinning corner of the form (27). According to

Remark 3.13, after a suitable change of coordinates we get the form

f̃1(x, y, z) =


x+ y2z2

(
− x+m2

)
y + y3z2

(
− 2x+ 2αz +m2

)
z + y2z3

(
2x+ y − 2αz +m2

)
 .

In particular, the parameters of Corollary 5.4 are given by by − cy = −1, cz − bz = −4α,
and δ = bycz − cybz = −2α.

The ratio (by − cy)(cz − bz)/δ of (42) equals −2, which is not a positive integer, hence
the conditions of Corollary 5.4 are satisfied, and there exists a unique formal f -invariant
curve smooth and transverse to the exceptional divisor.

If we blow-up the origin via the map π(x, y, z) = (xz, yz, z), we get the lift

f̃2 =


x+ y2z4

(
− x+ ⟨z⟩

)
y + y3z5

(
− 4x− y + 4α+ ⟨z⟩

)
z + y2z6

(
2x+ y − 2α+ ⟨z⟩

)
 .

At the point y0 = 4α we get a non-simple half corner, with parameters c = 4, γ = 2α.
Being α ̸= 0, we get e = 0. By Corollary 5.12, we get r = c+1+e = 5 parabolic manifolds,
which are of dimension 1 or 2.
p4,2 Since the germ f1 at p3 is conjugated to the one at p4 (see Remark 2.2), a similar

situation arises above p4,2.
q1 Finally, at the point q1 we have a spinning corner of the form (15). By conjugating

by the map ϕ(x, y, z) = (z +R040y, x, y), we get

(55) f4(x, y, z) =


x+ y7z2

(
x+m2

)
y + y8z2

(
x−R040z +m2

)
z + y7z3

(
− 3x+ 3R040z +m2

)
 .

In this case we have by = cy = 0 and cz = −3bz ̸= 0. In particular, there are no formal
f4-invariant curves transverse to E by Corollary 5.4 (see also Remark 5.5), but we cannot
exclude f4-invariant curves tangent to E (see Subsection 5.4.3).

5.4. Further remarks

5.4.1. Curve blow-ups over degenerate spikes

When studying resolution of singularities for vector fields, it is often natural to con-
sider (possibly weighted) blow-ups of centers that are invariant by the dynamics (and not
necessarily contained in the singular locus).

In our setting, this would correspond to allowing the blow-up of curves that are invariant
by the saturated infinitesimal generator χ̂ of f (in a given model), and contained in the
exceptional divisor (obtained from previous blow-ups).
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In the case of degenerate spikes (of Siegel type), the study can be easily done, since we
can determine explicitly such curves. In fact, if f is a degenerate spike of the form (21), then
the restriction of the saturated infinitesimal generator χ̂ on E = {z = 0} gives a canonical
singularity of Siegel type, which admits exactly two (strong) complex separatrices. Up
to a (possibly formal, since the coordinates of χ̂ do not converge in general) change of
coordinates, we may assume that these curves are x = 0 and y = 0. Hence we may assume
that the conditions x|P (x, y, 0) and y|Q(x, y, 0) are satisfied. The next proposition gives
the description of the lift of a degenerate spike when we blow-up one of the two complex
separatrices (the other is completely analogous, we just need to interchange the role of x
and y).

Proposition 5.13. Let f : (C3, 0) → (C3, 0) be a degenerate spike of the form

(56) f(x, y, z) =

x+ zc
(
λx(1 + a(x, y)) + zP

)
y + zc

(
µy(1 + b(x, y)) + zQ

)
z + zc+1R

 ,

with a, b ∈ m2, P,Q,R ∈ m. Let π : X → (C3, 0) be the blow-up of the line {x = z = 0} in

C3, and denote by f̃ the lift of f in X.

Then the saturated infinitesimal generator of f̃ has two singularities on the fiber above

the origin, namely [1 : 0] and [0 : 1] Moreover for f̃ we have that:

• [0 : 1] is a degenerate spike.
• [1 : 0] is a simple corner.

Proof. Computations are analogous to the ones performed in the previous sections, and
left to the reader. □

Suppose now that f is a degenerate spike (of Siegel type), and let C be a formal f -
invariant curve. Let π : X → (C3, 0) be a modification. By Remark 3.18, the strict
transform of C on X cannot contain a simple corner. Since C must intersect the singular
points, we infer that for any regular modification π (not necessarily strongly) adapted
to f , C must intersect the (unique) degenerate spike. We infer the uniqueness of the
formal f -invariant curve, and the fact that, for any such modification, the non-exceptional
characteristic directions are always degenerate. This applies in particular to degenerate
spikes that we find at the points p1 and p2.

Notice that, a priori, we cannot exclude the case of non-degenerate non-exceptional
characteristic directions giving rise (via Hakim’s results [Hak98]) to a non-robust parabolic
curve (while we can exclude robust ones by the uniqueness of the f -invariant curve).

5.4.2. Point modifications

With the same techniques adopted in Section 3, it is possible to study characteristic
directions on any model π : Xπ → (C3, 0) obtained via point modifications.

If we only allow point modifications, we cannot resolve the singularities of the infinites-
imal generator χ of f , and this leads to having to deal with singularities of the saturated
infinitesimal generator χ̃π (on a given model Xπ) that are not log-canonical.

We omit definitions and computations in this case because they would stretch the length
of this paper excessively. Just to give a hint of what happens in this case, let us follow the
resolution of singularity above p5. At p5, the map f1 obtained as lift of f by the blow-up
of the origin takes the form (10), for which the linear part of the saturated infinitesimal
generator is nilpotent, of rank 2 if we assume R040 ̸= 0. Let us say that this germ is a
N1-form (N stands for nilpotent).

After blowing-up p5, we get a second form at the point p5,1 corresponding to [1 : 0 : 0]. In
this case the linear part of the infinitesimal generator has still rank 2, but the exceptional
divisor locally consists of two irreducible components. Say that we get a N2-form.

Blowing-up p5,1, we get a line L of singularities, corresponding to the singular directions
[p : 0 : r] with [p : r] ∈ P1

C. In this case, at [1 : 0 : 0] we get another N2-form. At [0 : 0 : 1]
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we obtain a singularity for the saturated infinitesimal generator with vanishing linear part,
that we call H1-form (H stands for higher order). At [p : 0 : r] with p, r ̸= 0, we get
another nilpotent singularity, call it N3-form. In other terms, we got a N3-pattern, special
points N2 and H1, and with core L. If we blow-up L, we get the resolution of singularities
π0 described by Proposition 2.3. If we blow-up points, we need for example to deal with
the blow-up of H1-forms, which is quite intricate. Fundamental for the definition of these
classes is the identification of the right non-resonant conditions, in the same spirit of the
ones appearing for simple corners, as well as suitable conditions on the higher order terms
of the saturated infinitesimal generator.

The birational study can be completed for point modifications, and one can show that no
non-degenerate characteristic directions can appear in this case. However, the additional
forms, and the appearance of several new types of patterns, make the birational study for
all possible modifications (strongly) adapted to f combinatorially much more involved. We
suspect that no non-degenerate characteristic directions can be found in this way either.

5.4.3. Dynamics over q1

We have shown that at the point q1 there are no formal f4-invariant curves transverse to
the exceptional divisor, while the existence of (non-transverse) f4-invariant curves remains
open in this case. Notice that we can construct a formal f4-invariant surface S, transverse
to the exceptional divisor at q1. In fact, the saturated infinitesimal generator χ̂4 of f4
is reduced, and one can proceed as in the proof of Lemma 5.6, and find new coordinates
(x̃, ỹ, z̃) on which χ̂4 is in Poincaré-Dulac normal form. One can check that the Poincaré-
Dulac change of coordinates can be done so that the exceptional divisor is described by
{ỹz̃ = 0}, while the invariant surface S is described by {x̃ = 0}.

By blowing-up the point q1, we find a R2-R3-pattern (denote by f̃4 the lift of f4). If
we compute the blow-up in the z̃-chart, and then translate coordinates at an half corner
point of the pattern, we get a germ as in Proposition 5.2 after Step 1 of the proof, and the
invariant surface built in Step 1 is exactly the strict transform of S.

The map f4|S gives a (formal) 2-dimensional tangent to the identity germ, with sat-

urated infinitesimal generator ξ̂ of order 2. A direct computation shows that f4|S has
exactly two characteristic directions, corresponding to the two irreducible components of
the exceptional divisor. If ξ̂ admits another complex separatrix, we can apply again the
arguments of Subsection 5.2.2 to reduce f in Ramis-Sibuya normal form and find parabolic
manifolds. If ξ̂ has no other complex separatrices, we cannot apply the results [LHRSSV]
in order to find parabolic manifolds attached to q1, and one needs to study the dynamics
of f4 more in details.

Finally, notice that the f -invariant surface S0 := π̃0(S) is not smooth. Hence, even if
S were convergent, we could not apply the results of [LHR20] to find paraboic curves for
f |S0 .
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