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1Dipartimento di Fisica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
2Sezione INFN Roma1, Roma 00185, Italy

3Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
4INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy

Astrophysical observations of neutron stars have been widely used to infer the properties of the
nuclear matter equation of state. Beside being a source of information on average properties of dense
matter, the data provided by electromagnetic and gravitational wave (GW) facilities are reaching
the accuracy needed to constrain, for the first time, the underlying nuclear dynamics. In this
work we assess the sensitivity of current and future neutron star observations to directly infer the
strength of repulsive three-nucleon forces, which are key to determine the stiffness of the equation
of state. Using a Bayesian approach we focus on the constraints that can be derived on three-
body interactions from binary neutron star mergers observed by second and third-generation of
gravitational wave interferometers. We consider both single and multiple observations. For current
detectors at design sensitivity the analysis suggests that only low mass systems, with large signal-
to-noise ratios (SNR), allow to reliably constrain the three-body forces. However, our results show
that a single observation with a third-generation interferometer, such as the Einstein Telescope or
Cosmic Explorer, will constrain the strength of the repulsive three-nucleon potential with exquisite
accuracy, turning third-generation GW detectors into new laboratories to investigate the properties
of nucleon interactions.

I. INTRODUCTION

Lying at the interface between electromagnetic (EM)
observatories, gravitational wave interferometers, and
Earth based laboratories, multi-messenger astrophysics
has the potential to shape a novel view of both struc-
ture and dynamics of dense nuclear matter. Mass-radius
measurements of rotating pulsars are rapidly improv-
ing thanks to the information provided by the NASA
satellite NICER [1–6], which has recently targeted the
most massive neutron star (NS) known so far. Re-
markably, NICER observations of PSR J0030+0451 and
PSR J0740+662—the inferred masses of which are M =
1.34+0.16

−0.15 (M = 1.44+0.15
−0.14M�) and M = 2.072+0.067

−0.066 M�,
respectively—yield comparable values of the stellar ra-
dius, pointing to a stiff nuclear matter equation of state
(EOS) up to densities around four times nuclear density.
On the other hand, constraints inferred from binary NS
mergers detected by the LIGO/Virgo Collaboration, and
in particular from the landmark discovery of GW170817,
[7–9], have already ruled out some of the stiffest EOSs,
which predict large tidal deformabilities, hinting instead
to a softer matter content [10–15]. In addition, astro-
physical data are being complemented by the informa-
tion coming from terrestrial experiments, such as heavy-
ion collisions or the recent measurement of the neutron
skin thickness of lead, performed at Jefferson Lab by the
PREX-II Collaboration [16–23].

Posterior distributions inferred from space- and
ground-based facilities have been widely exploited in a
variety of multi-messenger analyses, aimed at constrain-
ing models of the EOS or specific properties of neutron
star matter. Examples of this approach include recon-
struction of the EOS within both phenomenological and
non-parametric frameworks, calculations based on micro-

scopic models, and analyses focused on features such as
the occurrence of phase transitions, or the behavior of the
symmetry energy above nuclear density [24–50]; for re-
cent reviews, see also Refs. [51, 52] and references therein.

Recently, some of the authors of this article have pro-
posed a novel approach, aimed at pushing the analyses
based on multimessenger astrophysical information to a
deeper level [53]. They argued that the accuracy of the
currently available data—as well as that expected to be
achieved by operating the existing detectors at design
sensitivity—offer an unprecedented opportunity to con-
strain the microscopic models of nuclear dynamics at
supranuclear density. The results reported in Ref. [53]
show that the data set comprising the GW observation of
the binary NS event GW170817, the spectroscopic obser-
vation of the millisecond pulsars PSR J0030+0451 per-
formed by the NICER satellite, and the high-precision
measurement of the radio pulsars timing of the binary
PSR J0740+6620, providing information on the maxi-
mum NS mass, can, in fact, be exploited to infer quanti-
tative insight on the strength of repulsive three-nucleon
interactions in dense matter.

Unlike the nucleon-nucleon potential, the models of
irreducible three-nucleon interactions are totally uncon-
strained beyond nuclear density. In most models, e.g.
the Urbana IX potential employed to derive the EOS of
Akmal, Pandharipande and Ravenhall (APR) [54], the
strength of the isoscalar repulsive term—which plays a
pivotal role in determining the stiffness of the nuclear
matter EOS in the region relevant to neutron stars—is
determined in such a way as to reproduce the empirical
equilibrium density of isospin-symmetric matter [55, 56].
In this context, the availability of additional information
constraining the three-nucleon potential at larger density
would be a major breakthrough.
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The present work can be seen as a complementary fol-
low up to the pioneering study of Ref. [53]. The anal-
ysis is first extended to consider a near-future scenario,
using current interferometers at design sensitivity and
stacking multiple binary NS observations characterised
by different masses and distances. In addition, we apply,
for the first time, the Bayesian approach to gauge the
sensitivity of the Einstein Telescope (ET), a proposed
third-generation ground-based GW observatory [57–59]

The body of the article is structured as follows. In
Sect. II we outline the dynamical model underlying our
study, as well as the simple parametrisation adopted to
characterise the strength of the repulsive component of
the three-nucleon potential. The datasets considered in
the analysis and the details of numerical simulations are
described in Sections III A and III B, respectively, while
the results are reported and discussed in Sect. IV. Finally,
a summary of our findings and the prospects for future
developments can be found in in Sect. V.

II. MODELLING NUCLEAR DYNAMICS
BEYOND NUCLEAR DENSITY

The EOSs considered in our study have been derived
using the formalism of non-relativistic nuclear many-
body theory (NMBT). Within this framework, nuclear
matter is pictured as a uniform system of point like nu-
cleons, the dynamics of which is completely determined
by the Hamiltonian1

H =
∑
i

p2i
2m

+
∑
i<j

vij +
∑
i<j<k

Vijk , (1)

where m and pi denote the mass and momentum of
the i-th nucleon, respectively. Interactions between
matter constituents are driven by the nucleon-nucleon
(NN) potential vij—providing an accurate description of
the two-nucleon system in both bound and scattering
states—supplemented by the three-nucleon (NNN) po-
tential Vijk, whose inclusion is needed to implicitly take
into account the occurrence of processes involving the
internal structure of the nucleon. As a consequence, the
role of NNN interactions is expected to become more and
more important with increasing density.

Starting from Eq. (1), a number of different EOSs have
been obtained using both different Hamiltonian mod-
els and different many-body techniques to calculate the
ground state energy of nuclear matter as a function of
baryon density. Purely phenomenological Hamiltonians,
fitted to the properties of two- and three-nucleon sys-
tems, have been shown to provide a remarkably accurate
account of the energies of the ground and low-lying ex-
cited states of nuclei with mass number A ≤ 12, as well

1 Unless explicitly stated otherwise, we shall use a the system of
units in which ~ = G = c = 1.

as of their radii [60]. In addition, they allow to reproduce
the empirical value of the equilibrium density of isospin-
symmetric matter (SNM); see, e.g., Ref. [54]

Over the past two decades, a great deal of attention
has been given to a novel generation of nuclear Hamil-
tonians, derived using the formalism of Chiral Effective
Field Theory (χEFT). Within χEFT, the nuclear poten-
tials are obtained from effective Lagrangians comprising
pion and nucleon degrees of freedom, constrained by the
chiral symmetry of strong interactions. The main ad-
vantage of this approach is the capability to determine
two- and many-nucleon potentials in a fully consistent
fashion. However, being based on a low momentum ex-
pansion its applicability is inherently limited to densities
. 2%0, with %0 = 0.16 fm−3 being the saturation density
of SNM [61, 62].

In this study, we have considered purely phenomeno-
logical Hamiltonians, which are expected to be best
suited to describe the properties of nuclear matter in
the density region extending up to ∼ 5%0, relevant to
NS applications. The reference line of our analysis is
the Hamiltonian comprising the Argonne v18 NN po-
tential [63] (AV18) and the Urbana IX NNN poten-
tial [55, 56] (UIX), which has been employed to obtain
the APR EOS [54, 64].

The AV18 potential is written as a sum of eighteen
terms, needed to describe the complex operator structure
of nuclear forces. It provides an accurate fit of the NN
scattering phase-shifts for laboratory-frame energies up
to ∼ 600 MeV, a value typical of NN collisions in strongly
degenerate matter at density % ∼ 4%0 [61]. A comparison
with the central densities obtained from the solution of
the Tolman-Oppenheimer-Volkoff equations [65, 66] with
the APR EOS [67] suggests that this phenomenological
potential is adequate to describe NSs having masses as
large as ∼ 2.1 M�.

The UIX model of the NNN interaction is written as
the sum of an attractive potential first derived by Fujita
and Miyazawa [68]—describing two-pion exchange NNN
processes with excitation of a∆-resonance in the interme-
diate state—and a phenomenological repulsive potential;
the resulting expression is

Vijk = V 2π
ijk + V Rijk . (2)

The strength of the two-pion exchange contribution is
adjusted to reproduce the observed ground state ener-
gies of 3H and 4He, obtained from accurate Monte Carlo
calculations [55], whereas that of the isoscalar repulsive
term is fixed to obtain the empirical saturation density
of SNM—inferred from nuclear data—from variational
calculations carried out using advanced many-body tech-
niques [56].

It should be kept in mind that the repulsive term V Rijk
implicitly takes into account relativistic corrections to
the phenomenological two-nucleon potential vij , which is
determined by fitting NN scattering data in the center-
of-mass reference frame. In the presence of the nuclear
medium, however, the center of mass of the interacting
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nucleon pair is not at rest, and vij must be boosted to
take into account its motion [69].

The authors of Ref. [54] have modified the free-space
AV18 potential to include the boost correction δv, whose
effect is an enhancement of the repulsive contribution
to the potential energy. As a consequence, using the
boosted AV18 potential in calculations of nuclear matter
energy entails the introduction of a modified NNN po-
tential, referred to as UIX∗, which turns out to be con-
siderably softer than the UIX. The impact of relativistic
corrections to the nuclear Hamiltonian on the description
of NS properties has been recently discussed in Ref. [67].

The potentials describing NNN interactions are only
determined by nuclear phenomenology reflecting nucleon
interactions at SNM saturation density. On the other
hand, they are totally unconstrained in the high-density
regime relevant to NSs, in which their contribution is
known to become dominant.

Motivated by the above consideration, in this work
we extend the study of Ref. [53], whose authors have
explored the possibility of inferring the strength of
the repulsive term of the UIX∗ potential from data
collected by multimessenger astrophysical observations,
which carry information on nuclear dynamics at supranu-
clear denisity. Note that to pin down the dynamics of
NNN interactions it is essential that the analysis be car-
ried out using the the boost corrected NN potential.

Our study is based on the use of a set of Hamiltonians,
obtained from the AV18 + δv + UIX∗ model performing
the replacement

〈V Rijk〉 → α〈V Rijk〉 . (3)

The energy-density of nuclear matter at arbitrary
baryon density % and proton fraction xp has been
obtained generalising the parametrisation employed in
Ref.[54], that can be written in the form

ε(%, xp) =

[
~2

2m
+ f(%, xp)

]
τp (4)

+

[
~2

2m
+ f(%, 1− xp)

]
τn + g(%, xp),

where

g(ρ, xp) = g(ρ, 1/2)+[g(ρ, 0)− g(%, 1/2)] (1−2xp)
2. (5)

The explicit expressions of the functions appearing in
Eqs. (4) and (5) can be found in the Appendix. They
involve a set of parameters which were determined by
fitting the energy per nucleon of SNM and pure neu-
tron matter (PNM) computed within the FHNC/SOC
variational approach [70] using the AV18+ δv + UIX∗

Hamiltonian.
The first two terms of Eq. (4) correspond to the pro-

ton and neutron kinetic energy, respectively, whereas the
function g(ρ, xp) describes the contribution arising from
interactions. The assumption of quadratic dependence of
the interaction energy on the neutron excess δ = 1− 2xp

is routinely employed in the literature to obtain the EOS
of β-stable matter from those of SNM and PNM, and has
been shown to be remarkably accurate over a broad range
of values of the proton fraction xp; see, e.g. Ref. [71].

Implementing the substitution of Eq. (3) is equivalent
to adding a term (α − 1)V R at first order in perturba-
tion theory. The corresponding change of energy density
turns out to be

g(%, xp)→ g(%, xp, α) = g(%, xp) + δg(%, xp, α), (6)

with

δg(%, xp, α) = δg(%, 1/2, α)
[
1− (1− 2xp)

2
]

(7)

+ δg(%, 0, α)(1− 2xp)
2 .

The functions δg can be readily expressed in terms of
expectation values of V R in the nuclear matter ground
state using

δg(%, 1/2, α) =
%

A
(α− 1)〈V Rijk〉SNM , (8)

δg(%, 0, α) =
%

A
(α− 1)〈V Rijk〉PNM . (9)

Tabulated values of 〈V Rijk〉 as a function of density can

be found in Ref. [54]. In our analysis, we have employed
a polynomial fit including powers up to %3

〈V Rijk〉 = a0 + a1 %+ a2 %
2 + a3 %

3 , (10)

which turned out to be very accurate. The values of the
parameters ai are reported in Table I.

Using the analytic expression of the energy density of
nuclear matter at arbitrary proton fraction, composition
and energy density of β-stable matter can be easily de-
termined, by minimising with respect to xp, with the
additional constraints of conservation of baryon number
and charge neutrality. Finally, the matter pressure P ,
derived from standard thermodynamic relations, is used
to obtain the EOS P (ε).

It has to be kept in mind that changing the strength
of V Rijk affects the value of the nuclear saturation density
predicted by the AV18 + δv + UIX∗ Hamiltonian. For
this reason, we have limited the acceptable range of α to
the interval [0.7, 2.0]. Within this range, the departure
from the empirical value of %0 turns out to be ∼ 15%
at most, and the corresponding change of the energy per
particle never exceeds 3%.

Moreover, because the contribution of the repulsive
NNN potential becomes large at supranuclear densities,
the modification of its strength α marginally affect the
ground-state energy of atomic nuclei. Using the results
reported in Ref. [72], obtained from accurate Quantum
Monte Carlo calculations, we have found that changing
α from 1 to 1.3 results in a change of 4% and 6% of the
ground state energies of 4He and 12C, respectively. These
discrepancies appear to be fully acceptable in the context
of our exploratory study.
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TABLE I. Values of the parameters appearing in Eq. (10), corresponding to 〈V R
ijk〉 in MeV and % in fm−3.

a0 a1 a2 a3

[MeV] [MeV fm3] [MeV fm6] [MeV fm9]

SNM 0.754 -16.769 214.164 77.422

PNM 0.949 -27.403 241.407 64.995
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FIG. 1. (Top) Representative ensemble of the mass-radius
profiles for the family of EOS considered in this work. Each
gray curve corresponds to a specific value of α drawn be-
tween the solid violet lines which refer to the lower and upper
bounds of α assumed in the analysis, i.e. α = 0.7 and α = 2,
respectively. The dashed curve identifies the baseline APR
model with α = 1. We also show lines of constant compact-
ness C = M/R. (Bottom) Same as top panel but for the
dimensionless tidal deformability λ/M5 as a function of the
NS mass.

III. METHODS AND OBSERVATIONS

We consider a family of EOS for which the observables
of a neutron star (mass, radius and tidal deformability)
depend uniquely on the three-body coefficient α and on
the central pressure pc:

{α, pc} → {M,R, λ} . (11)

Figure 1 shows the stable stellar configurations in
the mass-radius plane and the mass-tidal deformabil-
ity plane. Given a set Oi=1,...,n of observations, we in-

fer {α, p(1)c . . . p
(m)
c } 2 using a hierarchical Bayesian ap-

proach,

P(α, ~pc| ~O) ∝ P0(α, ~pc)

m∏
i=1

L(Oi|θi) (12)

where ~pc = {p(1)c . . . p
(m)
c }, L(Oi|θi) is the likelihood of

the i-th event (see Sec. III A below) and θi denotes the set
of relevant NS observables — mass and radius for pulsars,
symmetric mass ratio and effective tidal deformability for

GW observations — evaluated at {α, p(i)c } via (11). We
assume that the priors on α and on each central pressure
in Eq. (12) are uncorrelated.

The posteriors in Eq. (12) are sampled using the emcee
with stretch move [73]. For each observation we run 100
walkers of 106 samples with a thinning factor of 0.02.
The final distribution for α is obtained by marginalizing
over the central pressures ~pc. When presenting results,
we quote the median alongside the bounds of the 90%
symmetric posterior density intervals.

We sample the central pressures of each star uniformly
in log-space between ln10 p

min
c (α) ' 34.58, where pc is ex-

pressed in dyne/cm2, and ln10 p
max
c (α), where pmax

c cor-
responds to the central pressure of the heaviest stable
configuration for each EOS specified by α. The lower
value pmin

c is chosen such that the nuclear model sup-
ports masses larger than 0.8M�. The values of α are
drawn from a uniform distribution in the range [0.7, 2].
We also impose a causality constraint, requiring that the
speed of sound cs =

√
dp/dε is subluminal at the center

of each NS.

A. Astrophysical datasets

We consider three real datasets corresponding to (i) the
binary coalescence GW170817, (ii) the millisecond pulsar
PSR J0030+0451 and (iii) the heaviest NS observed so
far PSR J0740+6620. Dataset (iii) provides and update
w.r.t. [53], in which PSR J0740+6620 was included only
through the measurement of its mass, while here we also
include the radius. We briefly summarize here the basic
properties of each dataset and the corresponding likeli-
hood functions that enter Eq. (12).

2 In general m 6= n: for binary coalescence events, we must sample
over the pressures of both members of the binary.
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(i) — GW170817 is the first binary neutron star sys-
tem observed by LIGO and Virgo. Under a low spin
prior, the LVC analysis constrained the source compo-
nent masses (m1,m2) between ∼ 1.16M� and ∼ 1.6M�.
GW170817 provided the first evidence that GW signals
from coalescing systems are sensitive to matter effects in-
duced by the NS structure, yielding a measurement for
the effective tidal parameter

Λ̃ =
16

13

[
(m1 + 12m2)m4

1Λ1

(m1 +m2)5
+ 1↔ 2

]
(13)

of Λ̃ = 300+420
−230 within 90% of the highest posterior den-

sity interval, with Λ1,2 = λ1,2/m
5
1,2 being the NS indi-

vidual, dimensionless, tidal deformabilities [7].

We construct the likelihood L(OGW170817|η, Λ̃) from

the joint posterior P(M, η, Λ̃|OGW170817) for Λ̃, the chirp
massM = (m1m2)3/5/(m1 +m2)1/5, and the symmetric
mass ratio η = m1m2/(m1 + m2)5. The calculation can
be simplified by the fact that the chirp mass in the source
frame is measured with ∼ 0.1% precision, which allows
to fix it to its median valueM? = 1.186 M� and restrict

to the conditional probability P(η, Λ̃|M?, OGW170817).
Moreover, as shown in [33], the latter can be replaced

by the marginalized posterior P(η, Λ̃|OGW170817) to very
good accuracy. This choice reduces the number of pa-

rameters to be sampled, since the central pressure p
(2)
c

of the secondary component is uniquely determined by

{M?, p
(1)
c } and α 3, and similarly for the individual

masses m1,2 and tidal deformabilities Λ1,2. The likeli-
hood function4 is then obtained by re-weighting the pos-
terior by the joint prior on η and Λ̃ as derived from [7],

L(OGW170817|η, Λ̃) =
P(η, Λ̃|OGW170817)

P0(η, Λ̃)
. (14)

Note that, although p
(2)
c is not independently sampled,

we still require it to lie within its prior support.
(ii) — For the millisecond pulsar PSR J0030+0451 we

use the joint mass-radius posterior P(M,R|OJ0030) in-
ferred by the NICER collaboration, which has carried
out two independent studies of the stellar spectroscopic
observations, obtaining consistent results. The mass-
radius constraints provided by the two collaborations led
to M = 1.34+0.15

−0.16M� and R = 12.71+1.14
−1.19km [3], and

M = 1.44+0.15
−0.14M� and R = 13.02+1.24

−1.06km [4] respec-
tively (68% credibility). Here we use the data publicly
available in [74], for which the likelihood can be derived
straightforwardly from P(M,R|OJ0030) because the joint
prior on {M,R} is flat,

L(OJ0030|M,R) ∝ P(M,R|OJ0030) . (15)

3 More specifically, we compute m2 from m1(α, p
(1)
c ) andM? and

then we solve m2 ≡ m2(α, p
(2)
c ) for p

(2)
c .

4 Note that the likelihood we use here for GW170817 is different
from the one of Ref. [53] in which a three-dimensional distribu-
tion LGW(q, Λ1, Λ2) was considered, with q = m1/m2.

(iii) — PSR J0740+6620 [5, 6] is the most massive pul-
sar discovered so far. Previous observations of this source
constrained its mass to M = 2.08+0.072

−0.069M� (68.3% cred-
ibility) [2]. This measurement, combined with data ob-
tained from the XMM Newton European Photon Imaging
Camera to improve the NICER background, was used in
[5, 75] and [6, 76] to infer the pulsar radius, with the two
teams obtaining R = 12.39+1.30

−0.98km and R = 13.7+2.62
−1.50km

[6] respectively (68% credibility). Here we use the data in
[77], for which the likelihood can be immediately inferred
from the posterior due to uniform priors,

L(OJ0740|M,R) ∝ P(M,R|OJ0740) . (16)

B. Simulations for 2G and 3G detectors

We simulate5 30 binary neutron star events for two
choices of the three-body strength, α = 1 and α = 1.3,
either for a network (HLV) composed by the LIGO Han-
ford, LIGO Livingston, and Virgo detectors at design
sensitivity [79], or for the future third-generation interfer-
ometer Einstein Telescope in its ET-D configuration [58].
We inject 64-second long waveforms into a zero-noise con-
figuration as described in [80], with sky location and incli-
nation uniformily distributed over the sky. Posterior pa-
rameters are recovered using the bilby software [81, 82]
for GW injections and parameter estimation. For both
injection and recovery, we model binary neutron star
signals with the IMRPhenomPv2 NRTidal waveform tem-
plate [83, 84]. Injected binaries are nonspinning, while
component spins are recovered imposing a low-spin prior
χ1,2 ∈ [−0.05, 0.05] and assuming that spins are (anti-)
aligned.

We assume that tidal parameters are recovered uni-
formly w.r.t. Λ̃ and the tidal parameter δΛ which con-
tributes at higher post-Newtonian order in the waveform
phase expansion [85], with the additional constraint that
the individual deformabilities Λ1,2 of the binary compo-
nents lie between 0 and 5000.

IV. RESULTS

We start the discussion of our results by focusing first
on the the Bayesian analysis applied to the three real
observations described in the previous section.

The inferred probability distributions for α are sum-
marized by the density plots in the left column of Fig. 3,
together with their median values and 90% confidence in-
tervals. The analyses for GW170817 and for J0030+0451

5 We limit our catalogue to 30 events because the recovery of the
EOS is expected to be biased by a mismodelling of the underlying
BNS population distribution if the number of sources exceeds
∼ 30 [78].
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FIG. 2. Component masses, luminosity distance, chirp mass,
and tidal parameter for the catalogue of NS binaries simulated
for HLV and ET observations. Full and empty dots in the left
bottom panel correspond to values of m1 and m2, with m1 ≥
m2. Full and empty markers in the bottom right plot identify
the tidal parameter for the two values of α we considered,
α = 1 and α = 1.3, respectively.

have been already presented in [53], while the novel mass-
radius measurement obtained by NICER allows us to per-
form an independent study of the three-body strength for
J0740+6620, and a direct comparison with other obser-
vations. Interestingly the posterior densities of Fig. (3)
show very similar results for the two EM observations,
with a nearly identical median around α ' 1.4. The
probability distribution for J0740+6620 peaks around
a slightly larger value compared to the lighter pulsar,
J0030+0451, since larger values of α tend to support
more massive configurations. Moreover, even if P(α)
shows support for the baseline model α = 1, which lies
within the 90% CL of the distributions, EM observa-
tions seem to consistently favour larger values of the 3-
body amplitude, reflecting stronger repulsive NNN inter-
actions. As observed in [53], the distribution of α in-
ferred by GW data alone is unconstrained, with the pos-
terior rallying against the lower prior at α = 0.7, while
the multi-messenger analysis is dominated by the pulsar
measurements, and in particular by J0740+6620, leading
to values of α� 1.

Constraints on α, i.e on the microscopic Hamilto-
nian (1), can be translated into bounds on the stellar
macroscopic observables. The right column of Fig. (3)
shows, for example, the maximum mass density distri-
butions predicted by the values of α inferred for each
dataset. All the observations lead to median values
of Mmax & 2.2M�, with the multi-messenger analysis
yielding a probability distribution with large support for
Mmax ∼ 2.5M�.

FIG. 3. (Left Row) Posterior probability densities for the
three-body strength α inferred from different astrophysical
datasets. (Right row) Posterior densities for the maximum
mass allowed by the EOS corresponding to the inferred distri-
bution of α. Bottom panels provide results with all datasets
stacked together. Vertical red and black lines identify the
median and the the 90% posterior density intervals of each
distribution, respectively.

In Fig. 4 we also show the M -R density distribu-
tion corresponding to the 90% CL of α for the multi-
messenger case. Light (dark) colors identify stellar pro-
files with high (low) probability. Pulsar observations
drive the profiles far from the α = 1 baseline, i.e. to-
wards stiffer NS configurations, with an expected radius
R & 12 km for a prototype NS with M = 1.4M�.

So far our analysis shows that, although the constrain-
ing power of current measurements is still limited, astro-
physical data are already sensitive to nucleon dynamics.
We will therefore explore the insights that can be inferred
on three-body nuclear forces exploiting future GW obser-
vations of binary inspirals.

As discussed in Sec. III B we have simulated two cat-
alogues of 30 binary NS mergers, observed either by 2G
network or by ET, assuming two different values of the
three-nucleon strength. Source parameters, i.e. masses
and tidal deformabilities, are first recovered with Bilby,
and then analyzed by our Bayesian pipeline which sam-
ples the posterior distribution of α.

Figure 5 shows the posterior densities P(α) of each
event, for injected NSs with α = 1, detected by the HLV
network. The ability of 2G detectors to discriminate the
actual value of the three-body strength substantially de-
pends on both the SNR and on the component masses of
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FIG. 4. Mass-radius profile density corresponding to the
90% confidence interval of α inferred for the GW-EM multi-
messenger analysis. Dark (light) regions correspond to stellar
profiles with small (large) probability. As for Fig. 1 red curves
identify configurations with specific values of the three-body
strength, while dashed black lines correspond to configura-
tions with constant compactness.

the binary. We find that observations with SNR smaller
than ∼ 25 lead α to be almost unconstrained, with the
true value always lying outside the 90% confidence inter-
val of the distribution. However, even for strong signals,
accurate measurements only occur for low-mass systems
with a chirp mass M . 1.4M�. This is particular evi-
dent for the event with the largest SNR (∼ 35) in our set.
Such binary features two heavy NSs with a chirp mass
M' 1.6M�, and provides loose bounds on α. Moreover,
Fig. 5 shows that, with the exception of four events with
SNR> 30 and M < 1.4M�, the remaining posteriors al-
ways prefer large values of the three-nucleon strength, at
the edge of the upper prior boundary. This particular
behavior reflects a systematic bias we find in the poste-
riors of Λ̃ inferred by GW observations for binaries with
heavy components, which tend to favour large values of
the tidal parameter. Its effect on the marginal distri-
bution of α becomes even more pronounced in the high
mass scenario where the tidal deformability becomes less
sensitive to variations of α. We believe such bias may be
induced by our choice of priors on the tidal parameters,
which has strong support against the BBH hypothesis
Λ̃ = 0, and reflects the physical assumption that compact
objects with m1,2 . 3M� are neutron stars. Moreover,
the stack of multiple GW signals only partially alleviate
the bias in favour of large three-body strength. We have
indeed combined different observations with SNR larger
than 20, finding a mild improvement of the posterior sup-
port towards the true value of α. The results discussed so
far hold qualitatively also when we consider binary NSs

simulated with α = 1.3.
This picture changes dramatically when signals are ob-

served by the Einstein Telescope. Figure 6 shows indeed
the distributions of the three-nucleon strength inferred
by the 3G detector, for both families of events simulated
with α = 1 and α = 1.3. The exquisite sensitivity of
ET allows to gauge away the bias arising from the 2G
network. All the posteriors peak around the injected val-
ues of α, showing no support on the prior boundaries.
In the best (worse) case scenario we find that α can be
constrained with ∼ 2% (∼ 30%) of accuracy at 68% con-
fidence level. Such accuracy allows to disentangle the two
values of the three-body strength we consider. Even in
the most pessimistic cases, where the inferred P(α) are
not narrow enough to identify a specific value of α, stack-
ing of few events would render the distributions clearly
distinguishable. Figure 7 shows the posteriors obtained
by combining six events of our catalogue6 leading to loose
constraints on α. The final posteriors for α = 1 and
α = 1.3 are clearly separated, with a negligible overlap
on the tails.

Such accuracy translates into very narrow constraints
on the mass-radius (or equivalently mass-tidal deforma-
bility) diagram. As an example, we show in Fig. (8) the
M -R profile density computed from the values of α in-
ferred from event number 17 of our dataset. A direct
comparison with Fig. 4, where a similar plot was made
for data from current facilities, provides a clear hint on
the possibility to use ET as a new laboratory to study
the dynamics of nucleon interactions in the stellar cores.

V. CONCLUSIONS

We have investigated the sensitivity of NS observa-
tions to the strength of repulsive three-nucleon forces,
which are known to be critical in determining the stiff-
ness of the nuclear matter EOS at supranuclear densities.
Our analysis is based on the AV18 + δv + UIX∗ nuclear
Hamiltonian and involves a single free parameter, to be
constrained by data, determining the coupling constant
appearing in the repulsive contribution to the UIX∗ po-
tential.

We have performed hierarchical bayesian inference em-
ploying the current available multimessenger datasets in
order to constrain this parameter. We have then repeated
the analysis with a set of simulated GW observations that
could be performed by both current (LIGO/Virgo) and
future (Einstein Telescope) interferometers at design sen-
sitivity. This analysis has the main purpose to explore
the potential of near and next generation facilities into
inferring crucial information about the microscopic dy-
namics of nuclear matter.

The analysis with real data has been carried out em-
ploying some of the dataset used in a previous work [53].

6 We choose the events number 7,15,16,18,19 and 25 of Fig. 6.
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FIG. 5. Posterior densities P(α) inferred from simulated GW data, assuming α = 1 (dashed horizontal line). Yellow (green)
colors identify region with high (low) probability. Signals are observed by a network HLV of three advanced detectors, with a
combined SNR given in the top axis of the plot. Labels in the bottom axis provide the values of the binary chirp masses.

FIG. 6. Same as Fig. 5 but assuming that binary NS are observed by the Einstein Telescope. We show results for signals
simulated with both α = 1 and α = 1.3. Injected values of the three body amplitude are identified by the horizontal dashed
lines.

Our results suggest that even if current facilities show a
clear sensitivity to small variation of the NNN repulsive
potential, they are not accurate enough to capture sig-
nificant insights. This picture is cross-validated by the
population analysis performed with mocked LIGO/Virgo
data, with binaries generated with two different values of
the three-body strength, α = 1 and α = 1.3. Only few,
low-mass and high SNR events provide a meaningful con-
straint on α, with posterior distributions correctly peaked
around the injected values. Moreover, even for the most
constraining event, the inferred posteriors do not allow
a clear disentanglement between the two values of α we
considered. The picture improves only slightly with the
stacking of multiple observations.

These results exhibit a striking upgrade when we as-
sume that the population of binaries is observed by the
Einstein Telescope. In most of the cases, the large SNRs
obtained by such events in combination with the 3G de-
tector allow the posteriors for the injected values of α
to be clearly separated, and only a single observation is
needed to resolve them.

Moreover, in the few cases where posteriors overlap,
stacking of ∼ 2 − 3 observations would allow to unam-
biguously distinguish between α = 1 and α = 1.3. The
same conclusion would apply assuming that binaries are
detected by the proposed Cosmic Explorer [86, 87]. The
large SNRs expected in the 3G era also require a care-
ful assessment of waveform systematics which could bias
the parameter reconstruction [85, 88–90]. However, our
results strongly support the evidence that with the up-
coming third generation detectors, our understanding of
neutron star matter will make a great step forward into
the direction of using NS observations to probe funda-
mental physics at the fermi scale.

Further applications of our approach can be pursued
following multiple directions, and in particular consid-
ering how constraints on nucleon dynamics would im-
prove by joint analyses of the inspiral and of the post-
merger phase, exploiting for the latter either GW os-
cillation modes [91–93], or electromagnetic counterparts
emitted by the binary remnant [94].
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FIG. 7. Probability distribution P(α) obtained by stacking
six events of our dataset as measured by the Einstein Tele-
scope. Empty histograms refer to the full stacked posteriors
for signals injected with α = 1 and α = 1.3. Empty shaded
histograms on the background correspond to the individual
posteriors. The vertical dashed lines identify the injected val-
ues of α.

FIG. 8. Same as Fig. 4 but for simulated events observed
by the Einstein Telescope. The values of α used to build the
mass-radius profiles correspond correspond to event number
17 of our catalogue. We show results for both α = 1 and
α = 1.3. Solid and dashed red curves identify the profiles
corresponding to prior boundaries and to the injected values
of α, respectively.α
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Appendix: Parametrisation of energy density

In this Appendix, we report the explicit expression of
the energy density of nuclear matter employed to carry
out our analysis. This expression was originally derived
from a fit to the EOSs of SNM and PNM obtained by
Akmal et al. [54] using the AV18 + δv + UIX∗ nuclear
Hamiltonian and the variational FHNC/SOC formalism.

The energy density of nuclear matter at baryon density
% and proton fraction xp is written according to Eqs. (4)
and (5)

ε(%, xp) =
[ ~2

2m
+ f(%, xp)

]
τp

+
[ ~2

2m
+ f(%, 1− xp)

]
τn (A.1)

+ g(%, 1/2)
[
1− (1− 2xp)

2
]

+ g(ρ, 0)(1− 2xp)
2,

with

τp = %xp
3

5
(3π2%xp)

2/3 , (A.2)

τn = %(1− xp)
3

5
[(3π2%(1− xp)]2/3 . (A.3)

The explicit form of the functions f(%, xp) and g(%, xp)
appearing in Eq. (A.1) are

f(%, xp) = (a1 + xpa2) %e−a3% (A.4)

and

g(%, xp) =

{
gL(%, xp) % ≤ %̄
gH(%, xp) % ≥ %̄

, (A.5)

where

gL(%, 1/2) = −%2
[
a4 + a5%+ a6%

2 + (a7 + a8%)e−a
2
9%

2
]
,

gL(ρ, 0) = −%2
(
a10%

−1 + a11 + a12%
)
, (A.6)

gH(%, 1/2) = gL(%, 1/2)− %2a13(%− a14)ea15(ρ−a14),

gH(ρ, 0) = gL(ρ, 0)− %2a16(%− a17)ea18(%−a17) .

The density %̄ . 2%0 corresponds to the onset of the
high-density phase—featuring spin-isospin density waves
associated with neutral pion condensation—predicted by
the study of Ref. [54].

The values of the parameters appearing in the above
equations are given in Table II
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TABLE II. Values of the parameters appearing in the definition of the energy density of nuclear matter of Eqs. (A.1)- (A.6),
expressed in MeV fm−3.

a1 a2 a3 a4 a5 a6

[MeV fm5] [MeV fm5] [fm3] [MeV fm3] [MeV fm6] [MeV fm9]

89.8 -59.0 0.457 337.2 -382. -19.1

a7 a8 a9 a10 a11 a12

[MeV fm3] [MeV fm6] [fm3] [MeV] [MeV fm3] [MeV fm6]

69.0 -33.0 6.4 0.35 214.6 -384.0

a13 a14 a15 a16 a17 a18

[MeV fm6] [fm−3] [MeV fm6] [MeV fm6] [MeV] [fm3]

175.0 0.32 -1.45 287.0 0.195 -1.54


	Sensitivity of Neutron Star Observations to Three-nucleon Forces
	Abstract
	I Introduction
	II Modelling Nuclear Dynamics Beyond Nuclear Density
	III Methods and observations
	A Astrophysical datasets
	B Simulations for 2G and 3G detectors

	IV Results
	V Conclusions
	 Acknowledgments
	 Parametrisation of energy density
	 References


