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Abstract

Understanding the connections between galaxy stellar mass, star formation rate, and dark matter halo mass
represents a key goal of the theory of galaxy formation. Cosmological simulations that include hydrodynamics,
physical treatments of star formation, feedback from supernovae, and the radiative transfer of ionizing photons can
capture the processes relevant for establishing these connections. The complexity of these physics can prove
difficult to disentangle and obfuscate how mass-dependent trends in the galaxy population originate. Here, we train
a machine-learning method called Explainable Boosting Machines (EBMs) to infer how the stellar mass and star
formation rate of nearly 6 million galaxies simulated by the Cosmic Reionization on Computers project depend on
the physical properties of halo mass, the peak circular velocity of the galaxy during its formation history vpeak,
cosmic environment, and redshift. The resulting EBM models reveal the relative importance of these properties in
setting galaxy stellar mass and star formation rate, with vpeak providing the most dominant contribution.
Environmental properties provide substantial improvements for modeling the stellar mass and star formation rate in
only 10% of the simulated galaxies. We also provide alternative formulations of EBM models that enable low-
resolution simulations, which cannot track the interior structure of dark matter halos, to predict the stellar mass and
star formation rate of galaxies computed by high-resolution simulations with detailed baryonic physics.

Unified Astronomy Thesaurus concepts: Galaxy formation (595); Galaxy dark matter halos (1880); Large-scale
structure of the universe (902); N-body simulations (1083)

1. Introduction

Numerical simulation enables theoretical models of galaxy
formation to include detailed physical models for baryonic
processes. Simulations can capture the physics of cooling,
supernova feedback, radiative feedback, and ionization, and the
role of dynamics simultaneously while tracking the growth of
cosmological structure formation (e.g., Schaye et al. 2015;
Pillepich et al. 2018; Davé et al. 2019). The simulated galaxy
populations that result from these models reproduce observed
stellar mass sequences such as the main sequence of star-
forming galaxies (Brinchmann et al. 2004; Noeske et al. 2007)
or the red sequence of quiescent galaxies (Faber et al. 2007).
The quest for realism in modeling these observed trends has
also added substantial complexity, such that understanding
which physical properties of a galaxy most influence its stellar
mass and star formation rate (SFR) can prove challenging.
Many theoretical frameworks to describe these relations have
been developed (e.g., Wechsler & Tinker 2018), including halo
occupation distribution models (e.g., Jing et al. 1998), subhalo
abundance matching (Vale & Ostriker 2004; Conroy et al.
2006), and semi-analytic models (for a review, see Somerville
& Davé 2015). The complex physics encoded by these models
and simulations can be difficult to interpret, and the relative
contribution of baryonic feedback, dark matter halo formation,

and environment in setting galaxy properties remains challen-
ging to disentangle.
This complexity extends to cosmological models of galaxy

formation in the reionization epoch. To capture the distribution
of sizes of ionized regions with converged simulations (Iliev
et al. 2014) and the largest observed features, such as dark gaps
(Zhu et al. 2021), the volume of reionization simulations
should extend to a least several hundred megaparsecs.
Modeling such large volumes in a single simulation while
maintaining the spatial resolution needed to include the
complex physics of the current state-of-the-art projects, such
as Cosmic Reionization on Computers (CROC; Gnedin 2014),
THESAN (Kannan et al. 2022), and Cosmic Dawn (Ocvirk
et al. 2016, 2020), remains computationally infeasible. Instead,
we desire an intermediate approach where large volumes are
simulated and the physics of galaxy formation are implemented
with an approximate model that recovers the mean trends for
galaxy baryonic properties predicted by more detailed calcula-
tions. With this goal in mind, a model for reionization sources
that encapsulates the results of projects like CROC in a simple
module is the first necessary step for deploying lower-
resolution simulations with much larger (L∼ 500 cMpc)
simulation volumes. If the stellar mass and SFRs of ionizing
sources can be predicted from their dark matter halo properties
and environment, then we can account for the ionizing photons
produced by these sources in large-box simulations of the
reionization process without resolving the baryonic physics in
detail.
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This work employs a machine-learning method called
Explainable Boosting Machines (EBMs; Lou et al. 2013) to
infer how stellar mass Må and SFR depend on the physical
parameters θ of a host galaxy. In this work, we use the galaxy
populations from the CROC simulations to provide our training
and test data that populate samples in the multidimensional
parameter space of Må-SFR-θ. For the additional parameters θ,
we use a wide range of physical characteristics measured for
galaxies in CROC, including the virial mass Mvir, redshift z,
environmental properties averaged on a length scale R, and the
maximum peak circular velocity vpeak. We can then use this
approximate machine-learning-based EBM model for galaxy
formation as a basis for future development to incorporate the
CROC galaxy population as sources in lower-resolution, large-
volume reionization simulations.

EBMs represent a form of generalized additive models
(GAMs; Hastie & Tibshirani 1986) where the dependencies of
a target quantity, such as Må or SFR, on each physical
parameter θi are encapsulated by feature functions of one
parameter (e.g., f i(θi)) or interaction functions of two
parameters (e.g., f ij(θi, θj)). An EBM model is trained to fit
these functions from a provided multidimensional data set. The
predicted value of the target quantity given the parameters (e.g.,
γ(Må|θ)) is then a sum of the functions f i and f ij. EBM models
are often described as interpretable because the magnitudes of
the functions f i and f ij directly indicate the relative importance
of θ in determining the target quantity. If a given parameter θi is
unimportant for determining the target quantity, the EBM will
find f i→ 0. A formal definition of the EBM is provided in
Section 2.1.

Previous works have applied machine-learning models to
infer connections between simulated galaxy properties. Lovell
et al. (2022) use a tree-based learning method called extremely
randomized trees to map baryon information to dark matter
halos in the EAGLE simulations. Xu et al. (2021) train a
random forest to predict the number of central and satellite
galaxies in dark matter halos in the Millennium simulation.
Machado Poletti Valle et al. (2021) used an XGBoost model to
predict gas shapes in dark matter halos in the IllustrisTNG
simulations. Bluck et al. (2022) used random forest classifiers
to study quenching mechanisms in observations, semi-analy-
tical models, and cosmological simulations. Piotrowska et al.
(2022) also used random forest classifiers to examine how
supermassive black hole feedback quenches central galaxies in
the EAGLE, Illustris, and IllustrisTNG simulations. McGibbon
& Khochfar (2022) used extremely randomized trees to predict
the baryonic properties of subhalos in the IllustrisTNG
simulations. Our approach complements these prior works by
studying the detailed connection between the halo and
environmental properties, SFR, and stellar mass in a model
that can be directly implemented in future large-volume
cosmological simulations with limited spatial resolution.

The paper is organized as follows. In Section 2, we review
the EBM methodology, define our training data set and
procedure, and introduce the evaluation metrics used to assess
the performance of the model. In Section 3, we present the
average contribution of each parameter to the target quantities,
the best-fit feature and interaction functions, and the perfor-
mance of the model in determining the distributions of stellar
mass and SFR as a function of halo virial mass. We then
explore in Section 4 methods for constructing composite EBM
(CEBM) models to recover the stellar mass and SFR of

simulated galaxies that only use instantaneous halo virial
properties and environmental measures (i.e., excluding vpeak).
We discuss our results in Section 5, and summarize them and
conclude in Section 6. The appendices of the paper provide
detailed model results for the EBM for Må (Appendix A), the
mathematical formalism of the CEBM model (Appendix B),
and detailed CEBM model results for SFR (Appendix C), and
stellar mass (Appendix D).

2. Methods

To infer the connection betweenMå, SFR, and other physical
properties of simulated galaxies, we apply EBM models to the
CROC simulated galaxy catalogs. In Section 2.1, we define the
EBM model. We select our model parameters and describe the
simulated galaxy catalog used to train the model in Section 2.2.
The training procedure is outlined in Section 2.3.

2.1. EBMs

EBM (Lou et al. 2013) models provide a fitted representation
of the relationship between the target quantities y and the
parameters θ. EBMs are an extension of GAMs (Hastie &
Tibshirani 1986), which represent target quantities y as the sum
of learned univariate functions f i(θi) that depend on only one
parameter θi. EBMs extend GAMs by including both univariate
functions f i(θi) and bivariate functions f ij(θi, θj) that represent
dependencies on pairs of features (θi, θj) beyond the
dependence of the target quantity on either feature indepen-
dently. Both EBMs and GAMs are forms of regression where
the feature functions f i and f ij can be quite general.
The EBM aims to encode the average dependence of a target

quantity y on the parameters θ. Mathematically, an EBM can
therefore be represented as
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where γ(y|θ) is the predicted value of the target quantity y
given np parameters q Î n from the data set. We will refer to
learned parameter βy as the baseline value of the target quantity
y. Though fy

i and fy
ij can be any interpretable function (e.g.,

linear regression, splines, etc.), Lou et al. (2012) found that
gradient boosted trees (Friedman 2001) work best in practice.
Using gradient boosted trees, the functions fy

i and fy
ij will be

piecewise one- and two-dimensional functions, respectively.
By expressing the dependence of y on θ directly through the
functions fy

i and fy
ij, EBMs are interpretable and decompo-

sable. Further, after training is complete the learned tree-based
functions fy

i and fy
ij can be formulated as look-up tables for

performant inference.

2.2. Simulated Galaxy Catalog Training Set

To engineer an EBM that describes the connection between
simulated galaxy properties, their host dark matter halos, and
features of the extrinsic environment, we turn to established
observations and theoretical modeling to inform our choices for
constructing a training data set.
The stellar-to-halo mass relation has been directly con-

strained out to redshifts z 0.05 and galaxy masses
Mvir> 1012Me using galaxy kinematics (e.g., More et al.
2009; Li et al. 2012), X-ray observations (e.g., Lin et al. 2004;
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Kravtsov et al. 2018) and gravitational lensing (e.g., Mandel-
baum et al. 2005; Velander et al. 2014). These constraints can
be extended to higher redshifts (z< 10) and lower masses
(Mvir< 1010) by including halo–galaxy connection modeling
(e.g., Nelson et al. 2015; Croton et al. 2016; Rodríguez-Puebla
et al. 2017; Behroozi et al. 2019; Girelli et al. 2020). Such
models consistently infer that the average stellar mass of
galaxies increases with halo mass.

At fixed redshift and halo mass, average galaxy masses of
central galaxies differ from satellite galaxies. Halos grow
through hierarchical merging, in which small halos merge to
form larger halos. As subhalos merge into larger halos, tidal
heating and stripping reduce the mass of the more extended
dark matter halo, while the satellite galaxy mass remains
largely unaffected. For this reason, galaxy mass often correlates
better with halo properties at the time of accretion than the
current halo mass (e.g., Conroy et al. 2006; Vale &
Ostriker 2006; Moster et al. 2010; Reddick et al. 2013). In
particular, SHAM models find that using the halo peak circular
velocity, vpeak, to assign galaxy mass and/or luminosity best
reproduces observed galaxy clustering (e.g., Hearin et al. 2013;
Reddick et al. 2013; Lehmann et al. 2017).

SFRs correlate tightly with galaxy masses, and increase with
redshift at fixed stellar mass (e.g., Noeske et al. 2007; Stark
et al. 2009; Bouwens et al. 2012). While these trends hold on
average, there is a distinct bimodal distribution in the SFRs of
galaxies, corresponding to star-forming and quiescent popula-
tions (e.g., Balogh et al. 2004). The observed fraction of
quiescent galaxies increases as the universe evolves (e.g.,
Tomczak et al. 2014), with the interpretation that some
mechanism turns off star formation in galaxies. Many
quenching mechanisms have been proposed, including secu-
lar/mass quenching (e.g., Kauffmann et al. 2004; Contini et al.
2020) and environmental quenching (e.g., Davies et al. 2016;
Trussler et al. 2020). Which of these processes dominate may
vary with redshift (Kalita et al. 2021).

Overdense environments may cause environmental quench-
ing, by providing close pairs that can suppress gas accretion
(strangulation), removing gas through ram pressure stripping,
or disrupting by interactions with other galaxies (harassment).
Environment thereby influences SFRs, and low-mass satellite
galaxies are typically the most prone to environmental
quenching (e.g., Davies et al. 2019).

Given these established trends, galaxy mass and SFR may
depend on redshift, halo mass, peak circular velocity, and
environmental properties. We will therefore select corresp-
onding parameters from the CROC simulated galaxy catalogs
to provide our data set for training the EBM models. The
CROC simulations are cosmological simulations with volumes
of up 100 comoving megaparsecs and spatial resolutions in
physical units approaching 100 pc. Further details of the
simulations can be found in Gnedin (2014). At a range of
redshifts z during the simulation, the computational grid and
particle properties are written to disk. These simulation
snapshots are post-processed to identify virialized galaxies, as
described in Zhu et al. (2020), and the properties of the
simulated galaxies are recorded in catalogs. Merger trees are
used to identify the properties of simulated galaxies across
redshift.

For our target quantities y, in this work we will model stellar
mass Må [h−1M☉] and SFR [M☉ yr−1]. The parameters θ
selected from the simulated catalog include both intrinsic

properties of galaxies and extrinsic properties set by the large-
scale environment. For intrinsic properties, we include the
galaxy virial mass Mvir [h

−1M☉], the redshift z at which the
simulated galaxy properties were measured, and the maximum
peak circular velocity vpeak [km s−1] measured over the
formation history of each galaxy. The extrinsic properties used
are defined by a length scale R measured relative to each
simulated galaxy. We follow convention and substitute R with
a numerical value that indicates a number of comoving
megaparsecs (e.g., σ8 is the rms density fluctuations measured
in spheres of radius of R= 8Mpc). We compute an environ-
mental density ρ1≡ 1+Δ1, where Δ1 is the dimensionless
matter overdensity measured within 1 Mpc. We include an
environmental gas temperature T1 [K] averaged on 1 Mpc
scales. From each simulated galaxy we also find the virial mass
Mmax,0.1 of the most massive neighboring halo within 100 kpc.
We then define the mass ratio ¡ º + M M10.1 max,0.1 vir There
are many other measurable properties of simulated dark matter
halo that may correlate with the stellar mass and SFRs of the
simulated baryonic galaxies they contain. For instance,
Lehmann et al. (2017) found that at fixed halo mass,
concentration influenced the simulated stellar mass content.
In choosing which simulated data to fit when training our
model, we chose to fit vpeak instead of concentration because it
also reflects the shape of the galaxy potential and does not
share the same redshift dependence as concentration for a
given halo.
The simulated galaxy catalogs include roughly 8,426,327

objects covering a wide range of halo masses, stellar masses,
SFRs, redshifts, and other extrinsic properties. From the catalog
of simulated galaxies, objects with an SFR< 0.001 M☉ yr−1

were excluded owing to resolution effects artificially limiting
their SFRs. After this culling, the catalog contained 5,950,357
objects that formed our data set. At this stage, we constructed
the training and test data sets from our catalog using the
parameter vector θ= [Mvir, z, vpeak, ρ1, T1, ϒ0.1] to model the
target quantities y= [Må, SFR]. We use k-fold cross-validation
(Hastie et al. 2001) with k= 5, such that the test/training split
is 20%/80% for each k-folding.

2.3. Training Procedure

The calculations presented in this paper leverage the
InterpretML (Nori et al. 2019) implementation of EBMs, using
the hyperparameters in Table 1. These InterpretML hyperpara-
meters control the number of bins in the piecewise fy

i and fy
ij

functions (max, max,2D), the distribution of bins across the
fitted domain (), and the learning rate of the optimization
scheme (l). The hyperparameters were selected by testing

Table 1
Hyperparameters Used to Train the InterpretML (Nori et al. 2019)

Implementation of the EBM

EBM Training Hyperparameters

Hyperparameter Value
Binning  “uniform“

Maximum bins, univariatemax 256
Maximum bins, bivariatemax,2D 32 × 32

Learning rate l 0.01

Note. All other model hyperparameters were set to the default values for
InterpretML version 0.2.7.
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various combinations of the values. We find that setting
 = uniform improves model performance at the edges of the
data distribution where there are fewer samples. Further, higher
values of max and max,2D do not significantly improve
performance but do affect the training runtime. The Nori et al.
(2019) implementation trains an EBM in two phases. First, the
univariate functions are optimized using a gradient boosting
approach applied round-robin on each parameter, as detailed in
Lou et al. (2012). After the univariate functions have
converged, the interaction terms are computed and the bivariate
functions are optimized according to the GA2M/FAST
algorithms detailed in Lou et al. (2013). During training we
use k-fold cross validation, and merge the training and test data
sets for the final performance evaluation of the model.

We evaluate the EBM performance using the mean absolute
error (MAE), a variance metric r2, and the total outlier fraction
ζk. These statistics provide measures of how well the EBM
reproduces the mean trends in the target quantities y as a
function of the features θ, the width of the distribution about
the mean trends in the training data, and the tails of that
distribution.

We calculate the MAE of the model applied to the simulated
galaxy sample as

∣ ˆ ∣ ( )å= -
=

-

N
y yMAE

1
, 2

i

N

i i
0

1

where N is the number of objects, yi is the true value of the
target quantity for object i, and ŷi is the predicted value from
the model for object i.

We compute the r2ä (−∞ , 1] variance metric as
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which provides a measure of how well the model captures the
variance in the data relative to the mean y , with r2= 1
reflecting a perfect reproduction of the distribution of y in the
training data set. Note that the feature and interaction functions
fy

i and fy
ij have a finite range, and thus not all values yi can be

represented by Equation (1) even when the input parameters θ
vary about the mean trends with halo mass or environment.
Hence, even for high-quality EBM models r2< 1 and we
expect outliers. The ζk metric represents the fraction of the total
data set that lies outside the range of predicted values, { ˆ}y , as a
function of one of the features θk. We define

( ) ( )åz q=
=

-

N
g y

1
, , 4k

i

N

k i i k i
0

1

, ,

where the index i runs over the total number of samples N and
gk,i(yi, θk,i) is a function that returns 1 if the true target quantity
for object i lies outside the predicted range, i.e., { ˆ}Îy yi . In
practice, we compute the outlier fraction for feature

=k Mlog10 vir, and use 2D histograms of (yi, θk,i) and (ŷi,
θk,i) to calculate gk,i.

In Table 2, we present the evaluation metrics for our
EBM model fully trained on the simulated galaxy catalog.
For the EBM model for SFR (y= SFR), we find an

☉~ -MMAE 0.14 log yr10
1, a variance metric r2∼ 0.9, and

an outlier fraction of <3%. For the EBM model for stellar mass
(y=Må), we report an ☉~ -MMAE 0.19 log yr10

1, a variance

metric r2∼ 0.88, and an outlier fraction of <1%. The good
performance of the EBM models in these metrics reflects the
ability of the EBMs to capture both the mean trends and full
distributions of the target quantities y= [Må, SFR] in the
training set given the parameters θ= [Mvir, z, vpeak, ρ1, T1,
ϒ0.1]. We describe the detailed model results in Section 3.

3. Results

After training the EBM model to reproduce the dependence
of the target quantities Må and SFR on the parameters θ, the
relationships between the target quantities and the parameters
can be analyzed. Below, we provide several analyses that
quantify how the target quantities relate to the parameters and
illustrate the performance of the EBM for our astrophysical
applications.

3.1. Average Contribution

A key advantage of using EBM models over black box
models (e.g., neural networks) is their clear interpretability (see
Section 2.1). The contribution of each parameter θi to the
model of the target quantity y is provided by the output
functions fy

i and fy
ij.

Since these functions are vectors or two-dimensional
matrices with a number of elements equal to the number of bins
nb in the piecewise function (see Table 1), a summary scalar
quantity for each feature function is helpful for comparing their
relative importance. We can define the average contribution f̄ y

i

that provides the average absolute value of fy
i or fy

ij, with the
average computed over the number of bins nb and weighted by
the number of samples in each bin. Mathematically, we can
write

¯ ∣ ( )∣
( )

q
=

å

å
=
-

=
-f
f N

N
, 5y

i j
n

i j j

j
n

j

0
1
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0
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b

b

where f is the feature function being averaged ( fy
i or fy

ij from
Equation (1)), θi,j is the value of the parameter θi in the jth bin,
and Nj is the number of samples in bin j. Intuitively, the
average contribution f̄ y

i summarizes the importance of each
parameter θi for determining the target quantities when
averaged over the samples in the final, merged data set.
The average contributions of each feature ( fy

i) or combina-

tion of features ( fy
ij) are computed from the EBM. In each case,

we rank order the features by decreasing average contribution
and focus on the seven features or feature combinations with
the largest average contribution. In each case, the most

Table 2
Training Results for the EBM Using k-fold Cross-validation

EBM Training Results

Metrics γ(SFR|θ) γ(Må|θ)
r2 0.898 ± 0.0003 0.882 ± 0.0001
ζ 0.029 ± 0.004 0.008 ± 0.0010

log SFR10 [Me yr−1] Mlog10 [Me]

MAE 0.144 ± 0.0001 0.189 ± 0.0001

Note. See Section 2.3 for more information on the training process. Reported
are values for the variance metric r2, the outlier fraction ζ, and the MAE.
Uncertainties are computed from the variation among the k-fold trials.
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important feature has an average contribution more than an
order of magnitude larger than the seventh-ranked feature.

3.1.1. EBM Model Targeting SFR

Figure 1 shows the average contribution of the top seven
features for the EBM model targeting SFR log SFR10 . In
decreasing order, the seven most important features in determining
SFR are maximum peak circular velocity vpeak, virial mass Mvir,
environmental density ρ1, redshift z, environmental temperature
T1, mass ratio of nearby halos ϒ0.1, and the interaction between
Mvir and ϒ0.1. The numerical values for the average contributions
are provided in Table 3. The baseline value of SFR is

[ ]☉b = - -M2.1151 log yrlog SFR 10
1

10
, typical of halos with

~Mlog 910 vir . The average contribution of vpeak and Mvir are
quite similar, providingD >log SFR 0.210 on average, but their
interaction term is small with ¯ ( )f v Mlog , log 0.0110 peak 10 vir .
Therefore, peak circular velocity and virial mass provide
important contributions to determining the SFR, and the univariate
dependence of the SFR on these properties accounts for most of
their contribution. At the few-percent level, environmental
density, redshift, environmental gas temperature, and the presence
of nearby massive halos also contribute.

The feature functions fy
i for each feature are plotted in

Figure 2. The functions indicate that there are positive
correlations between the SFR log SFR10 and either the peak
circular velocity vpeak, virial mass Mvir, or environmental
density ρ1. The SFR increases with increasing environmental
temperature Tlog10 1, but near T1≈ 104 K the univariate function
shows an enhancement just as hydrogen becomes mostly

neutral and a deficit near the temperature at which it becomes
ionized. SFR increases with decreasing redshift over the range
z∼ 5–15, becoming more efficient after reionization.
The interaction functions fy

ij learned by the EBM γ(SFR|θ)
targeting the SFR are plotted as heat maps in Figure 3. Most
interaction functions do not contribute significantly to the SFR,
and change the SFR by D log SFR 0.0510 . However, halos
with low neighboring halo mass ratios ϒ0.1 and large peak
circular velocity vpeak have their SFR enhanced by
D »log SFR 0.1510 . Rephrased, locally dominant halos with
large peak circular velocity show enhanced star formation.
Such enhancements likely owe to recent merger activity.
While Equation (1) represents a complex, multidimensional

manifold that provides the SFR as a function of the parameters
θ, the distributions of simulated and predicted SFR as a
function of a single parameter provide a graphical summary of
the EBM model performance. Figure 4 shows the simulated
and predicted SFR as a function of virial mass Mlog10 vir, and
we refer to this figure as the model summary. Shown in this
model summary are the distributions of SFR in the CROC
simulated galaxy catalogs with virial mass and the SFR
predicted by the EBM model γ(SFR|θ) using the parameters θ
measured for each simulated galaxy. The EBM model captures
roughly 97% of the simulated distribution of SFR with virial
mass. The predicted range of the EBM model then corresponds
to the range of SFR values successfully recovered as shown in
panel (c) of Figure 4, while panel (d) shows the range of SFR
values that are not recovered by the EBM model.
Given the combined complexity of the average contribution

measures, univariate feature functions, and bivariate interaction
functions, in what follows we will show the summary figure for
other EBM models in the main text. For completeness, the
average contribution, feature function, and interaction function
figures for each model will be presented in the appendices.

3.1.2. EBM Model Targeting Stellar Mass Må

An EBM model γ(Må|θ) targeting stellar mass Må using the
properties θ can be constructed through simple retraining. Using
the simulated galaxy catalogs from CROC, we retrain the EBM to
model Må against θ. We report the average contribution,
univariate feature functions, and bivariate interaction functions for
γ(Må|θ) in Appendix A. For reference, the baseline value ofMå is

Figure 1. Top seven features with the highest average contribution in the EBM
γ(SFR|θ) targeting the SFR. In order of decreasing importance, these features
include peak circular velocity vpeak, virial mass Mvir, environmental density ρ1,
redshift z, environmental temperature T1, the mass ratio of nearby halos ϒ0.1,
and the interaction between virial mass Mvir and ϒ0.1. The average contribution
is calculated using the average of the absolute value of the feature functions
weighted by the number of samples in each bin (see Equation (5)).

Table 3
Summary of the EBM Model Trained to Predict SFR

Average Contributions for the γ(Må|θ) EBM

Feature Value [ ☉
-Mlog yr10

1]

b Mlog10
−2.1151

¯ ( )f vlog10 peak 0.2380
¯ ( )f Mlog10 vir 0.2224
¯ ( )rf log10 1 0.0475
¯ ( )f z 0.0343
¯ ( )f Tlog10 1 0.0252
¯ ( )¡f log10 0.1 0.0202
¯ ( )¡f Mlog , log10 vir 10 0.1 0.0052

Note. The first entry, blog SFR10 , is the baseline value learned model (see
Section 2.1). The next seven entries are the average contributions of the most
important feature functions listed in descending order (see Equation (5)).
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[ ]☉b = -


M5.9629 log yrMlog 10
1

10
(see Table 7in Appendix A)

typical of halos with ☉ ~M Mlog 910 vir .
Figure 5 shows the model summary for the EBM model

γ(Må|θ). The EBM model provides an excellent representation
of the distribution of stellar masses for the CROC simulated
galaxy catalog. As the lower right panel of Figure 5 indicates,
the γ(Må|θ) model results in few outliers for the CROC
simulated galaxies and has an outlier fraction of 1%. Given
the galaxy properties θ= [Mvir, z, vpeak, ρ1, T1, ϒ0.1], the
distribution of stellar masses for CROC simulated galaxies can
be recovered to 99% accuracy.

4. CEBMs for Restricted Parameter Sets

The EBM models γ(SFR|θ) and γ(Må|θ) presented in
Sections 3.1.1 and 3.1.2 are constructed using the parameter set
θ= [Mvir, z, vpeak, ρ1, T1, ϒ0.1]. Our results show that the full
distribution of SFR and stellar mass in the simulated CROC
galaxy catalogs can be recovered accurately with only ≈1%–

3% outliers. These EBM models can therefore be applied to
cosmological simulations using the parameters θ measured
from simulated galaxy catalogs to recover the distribution of
SFR and stellar mass computed by CROC.

The parameters θ include the peak circular velocity vpeak,
which requires both time-dependent tracking of formation
histories for individual galaxies and high spatial resolution to
capture the peak of the rotation curve for each object. As a
result, as expressed above the models γ(SFR|θ) and γ(Må|θ)
cannot be applied directly to cosmological simulations with

low spatial resolution or without merger trees to capture
formation histories.
Instead of fitting EBM models using the full parameter set θ,

consider the construction of an EBM model using the restricted
parameter set [ ]q r¢ = ¡M z T, , , ,vir 1 1 0.1 that does not include
vpeak. The parameters q¢ can all be measured directly in
cosmological simulations with sufficient resolution to capture
individual galaxy-mass halos without the need to track merger
trees. The EBM models ( ∣ )qg ¢SFR and ( ∣ )qg ¢M using the
restricted parameter set q¢ perform substantially less well than
the models γ(SFR|θ) and γ(Må|θ) trained on the full parameter
set θ that includes vpeak. With the restricted parameter set q¢, the
EBM model shows 7.6% outliers when targeting SFR and
2.8% when targeting Må. Comparing with the outlier fractions
reported in Table 2 for the full parameter set including vpeak, the
EBM model trained on the restricted data set has degraded its
performance by a factor of ∼2–3. Further, the R2 of the EBM
trained on q¢ degraded by 0.068 and 0.052 for Må and SFR,
respectively. The improved performance of a single EBM
model, including vpeak, in predicting Må should not be
surprising. Given that dark matter is stripped from subhalos
preferentially relative to their stellar mass, while vpeak reflects
the maximum peak circular velocity of the subhalo’s potential
at a time when most of its stellar mass was in place, we expect
vpeak to be informative in fitting to stellar mass.
To ameliorate the poorer performance of the EBM models

trained on restricted parameter sets, we use a CEBM model.
Given a target quantity y and a parameter set q¢, we fit a base
EBM ( ∣ )qg ¢y in the same manner as fitting the EBMs γ(SFR|θ)
or γ(Må|θ). We construct a data set from the galaxies whose y

Figure 2. Learned univariate feature functions fy
i for the EBM γ(SFR|θ) trained to predict the SFR. Shown (left to right) are the feature functions for peak circular

velocity vpeak, virial mass Mvir, environmental density ρ1, redshift z, environmental temperature T1, and nearby halo mass ratio ϒ0.1. Light blue areas indicate regions
where >f 0y

i and dark blue areas indicate regions where <f 0y
i . The shaded areas show the variation in fy

i between the k-fold iterations.
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values lie outside the predictions from ( ∣ )qg ¢y , and then fit an
outlier EBM ( ∣ )qd ¢y to these discrepant samples. We then
weight the base and outlier EBMs to construct the CEBM
model ( ∣ )qG ¢M using a classifier EBM ( )qf ¢y . Instead of
fitting the change in SFR or stellar mass at a given sample in q¢,
the classifier EBM fits the log odds that a given sample in q¢ is
an outlier. We then define ( )qf ¢y to be the sigmoid of these log
odds, such that ( ) [ ]qf ¢ Î 0, 1y . The CEBM can then be written
as

( ∣ ) [ ( )] ( ∣ ) ( ) ( ∣ ) ( )q q q q qf g f dG ¢ = - ¢ ¢ + ¢ ¢M y y1 . 6y y

We describe the CEBM approach in more detail in
Appendix B, and provide information on the CEBMs

( ∣ )qG ¢SFR and ( ∣ )qG ¢M in Appendices C and D.
Table 4 lists the evaluation metrics for the training of CEBM

models targeting SFR and stellar mass without using vpeak. The
outlier fraction has improved to ≈5% for CEBM model

( ∣ )qG ¢SFR and to 2% for ( ∣ )qG ¢M . The average parameter
contributions and baseline value blog SFR10

from ( ∣ )qG ¢SFR are
provided in Table 5 and for the CEBM targeting stellar mass in

Table 6. The univariate feature functions and bivariate
interaction functions for the CEBM models ( ∣ )qG ¢SFR and

( ∣ )qG ¢M are provided in Appendices C and D.
Figure 6 shows the model summary for the CEBM targeting

SFR, and Figure 7 shows the model summary for the CEBM
targeting stellar mass. As both models demonstrate, the CEBM
model accurately recovers the distribution of SFR and stellar
mass in the CROC simulated galaxy sample. Between the
models, the outlier fraction is only ≈2%–5% despite using the
restricted set of parameters q¢ that does not include vpeak or any
time-dependent tracking of individual systems.

5. Discussion

EBM models provide a method to statistically infer
relationships present in high-dimensional data. Given their
statistical nature, EBM models remain ignorant of the physics
that generate the connection between SFR, stellar mass, and the
properties of dark matter halos that host galaxies. Nonetheless,
given the results of detailed physical modeling in the form of
simulated galaxy catalogs from cosmological simulations, the

Figure 3.Most important learned interaction functions fy
ij for the EBM model γ(SFR|θ) targeting the SFR, as a function of their parameter pairs. Each panel shows the

contribution of the bivariate interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of each function  f max.
Light blue areas indicate regions of joint parameter space where the feature interactions contribute positively to the SFR, while dark blue areas indicate regions with
negative contributions. The table lists f max for the interaction functions, each with units ☉

-Mlog yr10
1. In absolute terms, the largest interaction occurs for halos with

large peak circular velocity vpeak and no large neighboring halos (ϒ0.1 ≈ 0). The other interaction functions are relatively weak, and contribute changes
to log SFR 0.05.
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EBM correctly identifies halo mass and maximum peak circular
velocity as the most important halo properties for determining
SFR and Må (e.g., Figure 1). The EBM correctly infers that
SFR and Må increase with increasing halo mass or vpeak, and
the EBM univariate feature functions correctly identify the gas
temperature at which star formation efficiency changes. To the
extent that the physical connection between galaxy and halo
properties are recorded in statistical relationships, the EBM
models effectively recover some fraction of those relations. For
instance, if we fit instead to sSFR ≡ SFR/Må we find that
redshift z becomes the most important feature, followed by Må

and vpeak, as expected from the trends in both our simulations
and observations (e.g., Feulner et al. 2005).

EBM models also provide a means to implement a sub-grid
prescription for galaxy formation based on the properties of
halos and their environments. The EBM models γ(SFR|θ) and
γ(Må|θ) capture better than 97% of the SFR and Må

distributions measured for simulated galaxies in the CROC
simulations. The stellar masses and SFRs of galaxies in CROC
could be accurately recovered by using only the halo and
environmental parameters in θ= [Mvir, z, vpeak, ρ1, T1, ϒ0.1].

Using the CEBM model trained on the restricted parameter
set [ ]q r¢ = ¡M z T, , , ,vir 1 1 0.1 , ≈95%–98% of the distribution of
SFR and Må of the CROC galaxies is recovered. One
advantage of this parameter set is that the spatial resolution
in the simulations required to compute them is less demanding
than for vpeak. A simulation with coarser resolution than CROC,

such that the details of the star formation and feedback
processes cannot be resolved, may still leverage the CEBM
models ( ∣ )qG ¢SFR and ( ∣ )qG ¢M to model the SFR and stellar
masses in dark matter halos. Further, the quantities q¢ used to
train the CEBM models are measured at distinct redshifts such
that no merger trees are required to recover accurately the
CROC SFR and Må distributions from halo and environmental
properties. We note that for both the EBM and CEBM models
the outlier fractions not well captured by the model are roughly
percent level or less in the SFR or Må distributions, and we
expect that corresponding inaccuracies induced in, e.g., the

Figure 4. Summary of the EBM model γ(SFR|θ) targeting SFR as a function
of virial mass. The upper left panel shows the two-dimensional distribution of
SFR with Mvir for galaxies in the CROC simulations, with the color scale
showing the number of simulated galaxies at each [SFR, Mvir] location. The
lower left panel shows the EBM model results for the distribution of SFR with
Mvir, where the SFR is computed from the EBM using the parameters
θ = [Mvir, vpeak, z, ρ1, T1, ϒ0.1]. The upper right panel shows the residuals
between the simulated CROC galaxy SFRs and the EBM model results. The
lower right panel shows the simulated CROC galaxy SFRs that lie outside the
EBM model predictions. These outliers represent 3% of simulated CROC
galaxies.

Figure 5. Summary of the EBM model γ(Må|θ) targeting stellar mass Må as a
function of virial mass. The upper left panel shows the distribution of Må with
virial mass Mvir in the CROC simulated galaxy catalogs, with the coloration
indicating the number of galaxies at each [Må, Mvir] location. The lower left
panel shows the EBM model prediction of the stellar mass distribution with
virial mass given in the input parameters θ = [Mvir, z, vpeak, ρ1, T1, ϒ0.1]. The
upper right panel shows the residuals between the simulated and predicted Må

vs. Mvir distribution, and the lower right panel shows the outliers in the
simulated distribution not captured by the EBM model γ(Må|θ). The fraction of
outliers is 1%.

Table 4
Training Results for CEBM Models for SFR and Må Using k-fold Cross-

validation

CEBM Training Results

Metrics γ(SFR|θ) γ(Må|θ)
r2 0.868 ± 0.0002 0.830 ± 0.0003
ζ 0.052 ± 0.0053 0.018 ± 0.0031

log SFR10 [Meyr
−1] Mlog10 [Me]

MAE 0.165 ± 0.0001 0.233 ± 0.0002

Note. See Section 2.3 for more information on the training process. Reported
are values for the variance metric r2, the outlier fraction ζ, and the MAE.
Uncertainties are computed from the variation among the k-fold trials.
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ionizing photon budget or topology of reionization will be
minimal.

By editing the data set and retraining, the impact of
environment on the performance of the EBM models can be
estimated. Relative to γ(SFR|θ) and γ(Må|θ) that use the full
data set θ, including all environmental parameters, EBM
models trained only on maximum peak circular velocity vpeak,
halo virial mass Mvir, and redshift z has an outlier fraction
increased by only ∼1% when modeling Må and ∼10% when
modeling SFR. Further, removing vpeak and training only on
[Mvir, z] substantially degrades the model performance, and the
outlier fractions increase to ∼20% when modeling Må and
∼40% when modeling SFR. The importance of including vpeak
in the training data set is much larger than the importance of
accounting for the environmental measures selected in this
analysis.

The EBM models enable an approximate translation of the
galaxy formation model from one simulation to another.
Provided the parameter sets θ or q¢ can be measured in both
simulations, an EBM can recover the connection between SFR,
stellar masses, halo properties, and environment from the
training simulation and then be used to instill those relations in

a different simulation. Since the q¢ parameter set does not
require very high spatial resolution to capture, the net results
for SFR and stellar mass from a high-resolution simulation
accurately tracking detailed baryonic physics can be translated
into a simulation with resolution insufficient to capture those
physics directly. In future work, we plan to transfer the CROC
baryonic galaxy formation model into Cholla cosmological
simulations (e.g., Villasenor et al. 2021, 2022) via the EBM
models presented here. Such a transferred model could be used
to build models of feedback from galaxy formation on resolved
scales that incorporate the regulatory effects of feedback on
small-scale star formation. We expect that such transferred
models may have some limitations. For instance, the EBM
models are deterministic and while the scatter in the properties
predicted by the EBM originates from the scatter of the
physical properties of the simulated galaxies, two galaxies with
the same physical properties will have identical target
quantities predicted by the EBM. These possible limitations
of transferred models can be explored in future work.
The ability of the EBM models to recover the SFR and Må

distributions using only halo and environmental properties
allows for the rapid replacement of galaxy formation models
based on EBMs. Models can be trained on the simulated galaxy
catalogs from a variety of expensive, high-resolution training
simulations, including a wide range of physics. These EBM
models can then be used interchangeably as effective galaxy
formation models in the target simulations, and can also be

Table 5
Average Contribution to the CEBM Model ( ∣ )qG ¢SFR Trained to Predict SFR

from the Parameter Set q¢

Overview of CEBM ( ∣ )qG ¢SFR

Feature Value [ ☉
-Mlog yr10

1]

blog SFR10
−1.7466

˜ ( )f Mlog10 vir 0.4327
˜ ( )rf log10 1 0.0625
˜ ( )f Tlog10 1 0.0327
˜ ( )¡f log10 0.1 0.0215
˜ ( )f z 0.0190
˜ ( )rf z, log10 1 0.0077
˜ ( )¡f Mlog , log10 vir 10 0.1 0.0056

Note. The first entry, blog SFR10
, is the learned baseline of the model. The next

seven entries are the feature functions with the highest average contribution
listed in descending order. The average contribution is calculated using the
average of the absolute value of the base EBM function values weighted by the
number of samples in each bin and the output of the classification EBM for
each sample (see Appendix B.2 for more details).

Table 6
Summary of the CEBM γ(Må|θ′) Trained to Predict Må Using the Restricted

Parameter Set θ′

1Average Contributions for the CEBM γ(Må|θ′)g

Feature Value [log10 M☉]
βlog10 Må 6.6995
f ̃ (log10 Mvir) 0.5008
f ̃ (z) 0.0961
f ̃ (log10 ρ1) 0.0902
f ̃ (log10 T1) 0.0576
f ̃ (log10 ϒ0.1) 0.0336
f ̃ (z, log10 ρ1) 0.0172
f ̃ (log10 Mvir, log10 ρ1) 0.010

Note. The first entry, β log10 Må, is the learned baseline of the model. The next
seven entries are the learned functions with the highest average contribution in
descending order. The average contribution is computed via Equation (B2) (see
Appendix B.2 for more details)

Figure 6. Summary of the CEBM model ( ∣ )qG ¢SFR targeting SFR as a
function of virial mass. The upper left panel shows the two-dimensional
distribution of SFR with Mvir for galaxies in the CROC simulations, with the
color scale showing the number of simulated galaxies at each [SFR, Mvir]
location. The lower left panel shows the CEBM model results for the
distribution of SFR with Mvir, where the SFR is computed from the CEBM
using the parameters [ ]q r¢ = ¡M z T, , , ,vir 1 1 0.1 . The upper right panel shows
the residuals between the simulated CROC galaxy SFRs and the CEBM model
results. The lower right panel shows the simulated CROC galaxy SFRs that lie
outside the CEBM model predictions. These outliers represent ≈5% of
simulated CROC galaxies.
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modified posteriori to allow a broad parameter search or correct
the inaccuracies of the training simulation. Such an approach
could reduce the sensitivity of conclusions about, e.g., the
reionization process on the detailed SFR and Må distributions
as multiple EBM models for these properties could be trained
and implemented in the target simulations.

Lastly, the assumptions of EBMs and EBM-based models
enable a higher level of interpretability than other models, but
may come at the cost of performance. In particular, when
modeling data that are discrepant from the mean trend of the
distribution for most or all input features, more flexible models,
such as the random forest and its variants (see Section 1 for a
summary of recent works) or neural networks, may perform
better than EBM-based models but at the cost of interpret-
ability. We suspect that using interpretable models like the
EBM in tandem with more flexible models could offer the best
of both approaches. We leave exploring the efficacy of
ensembles of EBMs and more flexible models for future work.

6. Summary

A complex interplay of physical processes gives rise to the
distribution of SFRs and stellar masses Må of galaxies over
cosmic time. Cosmological simulations provide powerful
methods for modeling these physical processes, but the
connection between SFR, Må, and other galaxy properties

can be obfuscated by complexity. Leveraging machine-learning
techniques, we use a variation of the GAM (Hastie &
Tibshirani 1986) called EBM (Nori et al. 2019) to infer the
dependence of SFR and Må in the CROC simulations
(Gnedin 2014) on dark matter halo properties, including virial
mass Mvir, peak maximum circular velocity vpeak, redshift,
environmental density, environmental gas temperature, and the
mass of neighboring halos. Our findings include:

1. SFR and Må primarily depend on Mvir and vpeak, followed
by redshift, environmental density, and environmental
gas temperature.

2. When including Mvir and vpeak in the parameter set used
to train the EBM, the model recovers better than 97% of
the distribution of Må or SFR with virial mass Mvir in the
CROC simulations.

3. If the model fit excludes vpeak, the fraction of outliers in
the CROC data relative to the predicted model distribu-
tion increases to 7.6% for SFR and 2.8% for Må.

4. To ameliorate the degradation of the model performance
when excluding vpeak, we define a CEBM model
comprised of a weighted sum of the base EBM model
fit to the main trend of SFR and Må with the halo
properties and a second EBM model to fit the outliers not
represented in the base EBM. The weighting coefficients
are themselves determined by an EBM model fit.

5. The CEBM model improves the performance to ≈95%–

98% accuracy in the distribution of SFR or Må with virial
mass, even when excluding vpeak measurements from the
training data set.

The EBM models quantify the relative importance of halo
properties like virial mass and maximum peak circular velocity
for determining the stellar mass and SFR of the galaxy it hosts.
Through these models, the physics of baryonic galaxy
formation can be connected to the properties of dark matter
halos and enable galaxy formation to be implemented as a sub-
grid prescription in dark matter-only simulations or hydro-
dynamical simulations that do not resolve the small-scale
details of star formation and feedback.
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Figure 7. Summary of the CEBM model ( ∣ )qG ¢M targeting stellar mass Må as
a function of virial mass. The upper left panel shows the distribution ofMå with
virial mass Mvir in the CROC simulated galaxy catalogs, with the coloration
indicating the number of galaxies at each [Må, Mvir] location. The lower left
panel shows the CEBM model prediction of the stellar mass distribution with
virial mass given in the input parameters [ ]q r¢ = ¡M z T, , , ,vir 1 1 0.1 . The upper
right panel shows the residuals between the simulated and predictedMå vs.Mvir

distribution, and the lower right panel shows the outliers in the simulated
distribution not captured by the CEBM model ( ∣ )qG ¢M . The fraction of
outliers is 2%.
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Appendix A
Detailed Results for the Må EBM

While the performance of the EBM model γ(Må|θ) targeting
Må is summarized in Figure 5, a more detailed view of the
model is provided by the average contributions provided by
each parameter, the univariate feature functions dependent on
the parameters, and the bivariate interaction functions. The
results of the model are presented below.

A.1. Average Contribution

Figure 8 shows the average contribution of the seven most
important features and interactions in the EBM model γ(Må|θ).
In order of decreasing importance, these features include peak
circular velocity, virial mass, redshift, environmental density,
environmental temperature, the mass ratio of nearby halos, and
the interaction between redshift and peak circular velocity.
Peak circular velocity is about 50% more important than virial
mass, which in turn is roughly a factor of 2 more important
than redshift. The other features and interactions contribute to
stellar mass at the 0.1 dex level. For reference, the numerical
values for the average contributions are provided in Table 7.

A.2. Feature Functions

The univariate functions determined by the EBM targeting
stellar mass Må are shown in Figure 9. Stellar mass increases
with increasing peak circular velocity, virial mass, environ-
mental density, and neighboring halo mass ratio. Stellar mass
increases with decreasing redshift. As with SFR, the stellar
mass increases with increasing environmental temperature T1,
with a sharp enhancement near the temperature where
hydrogen becomes neutral and a sharp deficit near where
hydrogen ionizes.

Figure 8. Features with the highest average contribution for the EBM γ(Må|θ) trained to predict Må. Average contribution is calculated using the average of the
absolute value of the learned functions weighted by the number of samples in each bin (see Equation (5)). The features with the largest contribution are vpeak and Mvir,
followed by redshift z, environmental density ρ1, environmental temperature T1, and mass ratio of nearby halos ϒ0.1. The interaction with the largest average
contribution involves [z, vpeak].

Table 7
Summary of the EBM Model γ(Må|θ) Trained to Predict Må as a Function of

the Full Parameter Set θ

Average Contributions for the γ(Må|θ) EBM

Feature Value [ ]☉Mlog10

b Mlog10
5.9629

¯ ( )f vlog10 peak 0.3284
¯ ( )f Mlog10 vir 0.2123
¯ ( )f z 0.1238
¯ ( )rf log10 1 0.0722
¯ ( )f Tlog10 1 0.0545
¯ ( )¡f log10 0.1 0.0359
¯ ( )f z v, log10 peak 0.0135

Note. The first entry, b Mlog10
, is the learned baseline value of the model (see

Section 2.1). The next seven entries are the feature functions with the highest
average contribution in descending order. The average contribution is
calculated using the average of the absolute value of the feature functions
weighted by the number of samples in each bin (see Equation (5)).
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A.3. Interaction Functions

The bivariate interaction functions fy
ij (see Equation (1))

learned by the EBM when targeting stellar mass Må are plotted
as heat maps in Figure 10. On average most interaction
functions do not contribute significantly to galaxy stellar mass,
but there are regions of parameter space where the interaction
functions are important. For instance, halos with low environ-
mental temperatures and high environmental densities have
suppressed stellar mass. Large virial mass halos with small
neighboring halo mass ratios ¡log10 0.1, indicating halos that
dominate their local environment, have stellar mass enhanced
by ≈0.3 dex. This effect exceeds the maximum univariate
contribution of ¡log10 0.1 alone. The deficit of stellar mass at
environmental temperatures where hydrogen is becoming
ionized is increased at high redshifts.

Appendix B
CEBM

The CEBM models we present consist of a base EBM model
trained to recover the main trend ( ∣ )qg ¢y of the targeted
property y with the input parameters q¢, an outlier EBM model

that captures the outlying values of y not recovered by ( ∣ )qg ¢y ,
and a classification EBM model ( )qf ¢y that interpolates
between them (see Section 4). Given a CEBM, we wish to
construct analogs of the average contribution, feature functions,
and interaction functions determined for a single EBM. We
define these quantities for the CEBM function in Sections B.2
and B.3 below.

B.1. CEBM Feature and Interaction Functions

The feature functions of a single EBM are univariate and
indicate directly how the expectation value of the targeted
quantity depends on each parameter θi ä θ. With a CEBM
comprised of a weighted sum of two base EBMs, we define the
analog of the feature function to be the weighted sum of the
base EBM feature functions. We can write that

  ˜ ( ) ( ) ( )å q qf=
=

ff
N

1
, B1y

i

j

N

j y
i

j
0

1

where e is the Hadamard or element-wise product operation and
the sum is over the number of samples N. The quantity fy

i is the

Figure 9. Learned univariate feature functions, fy
i in Equation (1), for the EBM γ(Må|θ) trained to predict Må. Areas highlighted in orange indicate portions of the

function that contribute positively to the predicted Må and areas in red contribute negatively. Stellar mass increases with peak circular velocity and virial mass,
increases with decreasing redshift, and increases with environmental density. Temperature correlates positively with stellar mass, with a strong feature near T1 ≈ 104 K
where hydrogen ionizes. Stellar mass also increases with the mass ratio of neighboring halos.
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vector of the individual EBM feature functions fy
i. While the base

EBM feature functions are individually univariate, by weighting
the sum of these feature functions with the classifier EBM the
resulting feature function analog in Equation (B1) is not univariate.

The interaction functions f̃y
ij
are defined as in Equation (B1)

but with the vector of the individual EBM interaction functions
fy

ij substituted for fy
i. While the interaction functions for a

single EBM are bivariate, the CEBM interaction functions are
not bivariate.

B.2. CEBM Average Contribution

The average contribution of each feature in a CEBM can be
defined in a manner analogous to the average contribution

computed for a single EBM (Equation (5)). The CEBM average
contribution can be written as

¯
˜ ( )

( )
q

=
å

å
=
-

=
-f
f N

N
, B2y

i j
n

i j j

j
n

j

0
1

,

0
1

b

b

where f̃ is either the CEBM feature function f̃y
i
or the CEBM

interaction function f̃ ijy . Equation (B2) characterizes how
important the parameter θi is for modeling the target quantity y.

B.3. Visualizing CEBM Feature and Interaction Functions

The feature and interaction functions f̃y
i
and f̃y

ij
are not

univariate or bivariate by design, which allows them to model

Figure 10. Learned bivariate interaction functions fy
ij for the EBM γ(Må|θ) trained to predict Må. Areas highlighted in orange indicate portions of the functions that

contribute positively to the predicted Må while areas in red contribute negatively. Halos with large environmental temperatures T1 at high redshift z show enhanced
stellar mass. The stellar masses of halos with low environmental temperature T1 < 104 K correlate with environmental density, increasing with increasing ρ1. Massive
halos with no comparable large neighboring halos (ϒ0.1 ≈ 0) also show enhanced stellar mass.
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the outlier distribution about the base EBM model ( ∣ )qg ¢y . To
visualize the feature and interaction functions for CEBM
models in a manner similar to the univariate feature and
bivariate interaction functions for single EBM, we can average
the values of fy

i and fy
ij. For the feature function averaged over

N samples, consider nb bins along the θi direction, with central
values θi,b and bin widths Δθi,b. The bin-averaged CEBM
feature and interaction functions are then

( ) ( ) ( ) ( )å q qa q q q f= D
=

-

ff
N

1
, , , B3y

i b

j

N

i b i b j i j j
,

0

1

, , ,

where θj,i is the ith parameter of the jth sample θj and the
function α(θi,b, Δθi,b, θj,i)= 1 if θi,b−Δθi,b/2� θj,i
� θi,b+Δθi,b/2, and α= 0 otherwise. The quantity f is either
the vector of EBM feature functions fy

i or the EBM interaction

functions fy
ij. Equation (B3) calculates the mean of the f values

in each of the nb bins, and can be modified to calculate its
standard deviation.

Appendix C
Composite EBM Model for SFR

The CEBM model ( ∣ )qG ¢SFR for the SFR consists of a base
EBM ( ∣ )qg ¢SFR , a residual EBM ( ∣ )qd ¢SFR that attempts to
capture the outlying values of SFR not recovered by

( ∣ )qg ¢SFR , and the classifier EBM ( )qf ¢SFR . For each of these
individual EBMs that form the CEBM model, we plot the
average contribution, feature functions, and interaction
functions.

Figure 11 shows the average contribution, feature functions,
and interaction functions for the EBM model ( ∣ )qg ¢SFR that
forms the base of the CEBM model. The differences between γ
(SFR|θ) and ( ∣ )qg ¢SFR reflect the additional information
provided by the maximum peak circular velocity vpeak. Without
access to vpeak, the base EBM ( ∣ )qg ¢SFR upweights ¯ ( )f Mvir
such that its importance roughly equals the combined
importance of Mvir and vpeak in determining γ(SFR|θ). The
average contribution of ρ1, T1, z, ϒ0.1, and (Mvir, ϒ0.1) is similar
between the models. The additional interaction term in the top
seven average contributions is (z, ρ1), with a percent-level
contribution to SFR relative to Mvir. The feature functions for

( ∣ )qg ¢SFR have shapes similar to the feature functions for γ

(SFR|θ), but their minimum and maximum contributions to
SFR are adjusted to account for the missing vpeak contribution.
The feature function ¯ ( )f z is noisier overall. For the interaction
functions, the largest contributors now involve Mvir rather than
the missing parameter vpeak, and the set of available functions is
substantially different than with γ(SFR|θ).
Figure 12 shows the average contribution, feature functions,

and interaction functions for the outlier EBM ( ∣ )qd ¢SFR fit to
the deviant samples not captured by the base EBM ( ∣ )qg ¢SFR .
The outlier EBM receives the highest contribution from virial
mass, with an average contribution more than an order of
magnitude larger than the next most important feature ρ1. The
redshift z and environmental temperature T1 have comparable
importance to ρ1. The remaining features provide only percent-
level contributions relative to Mvir.
Figure 13 shows the average contribution, feature functions,

and interaction functions for the classifier EBM ( ∣ )qd ¢SFR that
interpolates between the base and outlier EBMs when
calculating the CEBM model. For the classifier EBM, the
most important features are ρ1, Mvir, and ϒ0.1. Redshift z has
middling importance, followed by T1, [ρ1, ϒ0.1], and [Mvir, ρ1].
The feature functions show strong dependencies on ρ1, Mvir,
ϒ0.1, z, and T1. The largest interaction functions involve the
environmental temperature T1, redshift z, and virial mass Mvir.
By weighting the base and outlier EBM models with the

classifier EBM, we construct the CEBM for SFR as
( ∣ ) [ ( )] ( ∣ )q q qf gG ¢ º - ¢ ¢SFR 1 SFRSFR + ( ) ( ∣ )q qf d¢ ¢SFRSFR .

Figure 14 shows the average contribution, feature functions,
and interaction functions for the SFR CEBM. The most
important feature is Mvir, which dominates by a factor of
∼4–10 over environmental density ρ1, environmental temper-
ature T1, ϒ0.1, and redshift z. The interaction terms are roughly
percent-level effects relative to Mvir. The feature functions
show a strongly increasing SFR with Mvir, and enhanced SFR
with environmental density ρ1. The temperature dependence
shows the feature at »Tlog 410 1 seen with the EBM model γ
(SFR|θ). The interaction functions provide only important
contributions over very limited areas of parameter space, with
the most important adjustments occurring at low redshift and
large virial mass, or for large temperatures and virial masses.
For reference, the model summary Figure 6 illustrates the
overall performance of the model.
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Figure 11. Details for the base EBM model ( ∣ )qg ¢SFR component of the CEBM ( ∣ )qG ¢SFR trained to predict SFR. Panel (a) displays the average contribution of
features. The dominant feature is virial mass Mvir, with an average contribution to log SFR10 roughly 8–10 × larger than environmental density ρ1 and temperature T1.
Compared with the average contributions to the EBM γ(SFR|θ) (see Figure 1), Mvir subsumes the contribution provided by the missing vpeak parameter. Panel (b)
shows the feature functions contributing to the base EBM model. The SFR increases with Mvir, which provides the dominant contribution. A secondary contribution
comes from environmental density ρ1. Environmental temperature T1 has a minor contribution, but shows the same feature at T1 ≈ 104 K where hydrogen ionizes. The
mass ratio of nearby halos ϒ0.1 and redshift z provide minor contributions. Panel (c) presents the interaction functions for the base EBM ( ∣ )qg ¢SFR . Each panel shows
the contribution of the bivariate interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of each function f max.
Purple indicates negative contributions and blue indicates positive contributions. The table lists f max for the interaction functions, each with units ☉

-Mlog yr10
1. In

absolute terms, the largest interaction occurs for large virial mass Mvir and environmental temperature T1. SFR is partially reduced for low environmental temperature
T1 and either low environmental density ρ1 or redshift z.
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Figure 12. Details for the outlier EBM model ( ∣ )qd ¢SFR component of the CEBM ( ∣ )qG ¢SFR trained to predict SFR. Panel (a) displays the average contribution of
features. As with the base EBM ( ∣ )qg ¢SFR , the feature with the largest average contribution is virial mass Mvir, with roughly 10 × larger contribution to log SFR10
than environmental density ρ1, redshift z, or temperature T1. The average contributions of ϒ0.1 or interactions are small. Panel (b) shows the feature functions for the
outlier EBM ( ∣ )qd ¢SFR . The feature function for virial mass Mvir has the largest contribution to ( ∣ )qd ¢SFR , similar to the virial mass dependence of the base EBM

( ∣ )qg ¢SFR (see panel (b) of Figure 11). The SFR of outliers increases with increasing environmental density ρ1, with a large enhancement at very large ρ1. Unlike the
base EBM ( ∣ )qg ¢SFR , SFR for the outliers increases with increasing redshift. The feature function for the nearby halo mass ratio ϒ0.1 is weak and noisy. Panel (c)
presents the interaction functions for the outlier EBM ( ∣ )qd ¢SFR . Each panel shows the contribution of the bivariate interaction terms, normalized such that the color
map ranges between plus or minus the maximum of the norm of each function f max. Purple indicates negative contributions and blue indicates positive contributions.
The table lists f max for the interaction functions, each with units ☉

-Mlog yr10
1. For outliers, the SFR increases at low environmental density ρ1 and large neighboring

halo mass ratios ϒ0.1, suggesting dynamical interactions increase SFR in low-density environments. The other interaction functions are relatively weak.
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Figure 13. Details for the classification EBM model ( )qf ¢SFR that interpolates between the base EBM ( ∣ )qg ¢SFR and the outlier EBM ( ∣ )qd ¢SFR for creating the
CEBM ( ∣ )qG ¢SFR . Panel (a) displays the average contribution of features to the classification EBM model ( )qf ¢SFR . The most important features for determining
whether a galaxy is an outlier in the SFR distribution are environmental density ρ1, virial mass Mvir, and nearby halo mass ratio ϒ0.1. The average contributions are
unit-free, and represent changes to the log odds of a galaxy being an outlier in the SFR distribution. Panel (b) shows the feature functions contributing to the classifier
EBM ( )qf ¢SFR . These feature functions represent the change in log odds that a given galaxy will be an outlier in SFR. Outliers tend to occur at high environmental
density ρ1 or very low or high virial masses Mvir. Galaxies with massive neighbors, reflected by ϒ0.1, or high environmental temperature T1, are also more likely to be
outliers. The lowest redshift galaxies in the data set are additionally likely be outliers in SFR. Panel (c) presents the interaction functions for the classifier EBM

( )qf ¢SFR . Each panel shows the contributions of the interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of
each function  f max. Purple indicates negative log odds and blue indicates positive log odds that a given galaxy is an outlier in SFR. The table lists  f max for the
interaction functions, listed as the corresponding change in log odds. Galaxies with large environmental temperature T1 and with high environmental density ρ1, at
high redshift z, or with large virial mass Mvir are more likely to be outliers. Massive galaxies in high environmental densities or at high redshift also are more likely
outliers in SFR.
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Figure 14. Details for the CEBM model ( ∣ )qG ¢SFR trained to predict SFR. Panel (a) displays the average contribution of features to the CEBM. Virial mass Mvir

provides the largest average contribution to the SFR. The environmental density ρ1 provides a ∼6 × smaller average contribution. The environmental temperature T1,
nearby galaxy-mass ratio ϒ0.1, and redshift z provide a relative contribution roughly 10 × smaller than Mvir. Panel (b) shows the feature functions contributing to the
CEBM ( ∣ )qG ¢SFR . The SFR increases with Mvir, which provides the largest contribution. A secondary contribution comes from environmental density ρ1.
Environmental temperature T1 has a minor contribution, but shows the familiar feature at T1 ≈ 104 K where hydrogen ionizes. The mass ratio of nearby halos ϒ0.1 and
redshift z provide minor contributions. As expected, the CEBM feature functions are similar to the base EBM feature functions that represent the parameter
dependence of SFR for most galaxies in the data set (see panel (b) of Figure 11). Panel (c) presents the interaction functions for the CEBM ( ∣ )qG ¢SFR . Each panel
shows the contribution of the interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of each function f max.
Purple indicates negative contributions and blue indicates positive contributions. The table lists f max for the interaction functions, each with units ☉

-Mlog yr10
1. As

for the interaction functions for the base EBM ( ∣ )qg ¢SFR , the largest interaction occurs for large virial mass Mvir and large environmental temperature T1 or low
redshift z.
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Appendix D
CEBM Model for Stellar Mass

The CEBM model ( ∣ )qG ¢M for stellar mass is comprised of
a base EBM ( ∣ )qg ¢M , an outlier EBM that attempts to model
the Må of samples not recovered by ( ∣ )qg ¢M , and the classifier
EBM function ( )qf ¢

M that interpolates between them. The
average contribution, feature functions, and interaction func-
tions from these component EBM models are presented below.

Figures 15 shows the average contribution, feature functions,
and interaction functions for the base EBM model ( ∣ )qg ¢M .
By removing vpeak from the data set used to train the EBM, the
base EBM model for the Må CEBM replaces the dependence
on vpeak with an additional dependence on Mvir. The relative
ordering and importance of redshift z, environmental density
ρ1, environmental temperature T1, and ϒ0.1 are approximately
maintained. For the feature functions, the results shown for

( ∣ )qg ¢M in panel (b) of Figure 15 can be compared with the
results for γ(Må|θ) shown in Figure 8. As reflected by average
contributions, the amplitude of the feature function ¯ ( )f Mvir

increases to account for the removal of vpeak. The feature
functions for z, ρ1, T1, and ϒ0.1 are modified and remain similar
in shape to those computed for the EBM γ(Må|θ). The
interaction functions shared between ( ∣ )qg ¢M and γ(Må|θ) are
similar. There is an increase in Må contribution for large [Mvir,
T1] and a decrease in the amplitude of [Mvir, ϒ0.1].

Figure 16 shows the average contribution, feature functions,
and interaction functions for the outlier EBM model ( ∣ )qd ¢M .
The average contribution is dominated by Mvir, with the
contributions from all other single parameters lower by a factor
of ≈10 with the order of importance maintained relative to

( ∣ )qg ¢M . For the feature functions, the redshift dependence
changes dramatically and now increases with increasing
redshift. The feature function for environmental density ˜ ( )rf 1
becomes much weaker over a wide range of ρ1, but increases
dramatically at high ρ1. Relative to the ( ∣ )qg ¢M feature
functions, the feature function ˜ ( )¡f 0.1 for ( ∣ )qd ¢M is weak and
noisy. The interaction functions show increased contributions
at large [z, ρ1], and for low T1 and large ρ1.

Figure 17 shows the average contribution, feature functions,
and interaction functions for the classifier EBM ( )qf ¢

M . For
each of these properties, we note that in determining ( )qf ¢

M a

sigmoid function σ is applied to the sum of β, fy
i, and fy

ij that
model the log odds that a galaxy is an outlier in stellar mass. In
determining Må, the features with the largest average contrib-
ution are environmental density ρ1, redshift z, ϒ0.1, and virial
mass Mvir. The interaction terms with the largest contribution
are (z, ρ1) and (ρ1, T1). Clearly, environmental density plays an
important role in determining whether a given simulated galaxy
is an outlier relative to the base EBM ( ∣ )qg ¢M . The feature
functions show that galaxies with large environmental densities
ρ1, at low redshift z, or with a large neighboring galaxy
(expressed by ϒ0.1) have an enhanced probability of being
outliers relative to ( ∣ )qg ¢M . Galaxies at both high and lowMvir

or large environmental temperature T1 are also more likely to
be outliers.
We construct the stellar mass CEBM with the sum

( ∣ ) [ ( )] ( ∣ ) ( ) ( ∣ )q q q q qf g f dG ¢ º - ¢ ¢ + ¢ ¢   
M M M1 M M .

Figure 18 shows the average contribution, feature functions,
and interaction functions for ( ∣ )qG ¢M . The feature with the
largest average contribution is Mvir, with redshift z, environ-
mental density ρ1, environmental temperature T1, and the mass
ratio of nearby galaxies ϒ0.1 having a lower average
contribution by a factor of ∼5–10. Relative to Mvir, the
interactions [z, ρ1] and [Mvir, ρ1] contribute at level of a few
percent. The Må CEBM feature function ˜ ( )f Mvir has increased
in amplitude relative to the Må EBM feature function f (Mvir),
subsuming some of the dependence on the missing vpeak
feature. The remaining feature functions for ( ∣ )qG ¢M are
similar in shape and amplitude to those for γ(Må|θ), although
the contribution at large T1 and ρ1 is increased and the
dependence on redshift z is decreased. The interaction functions
are similar between ( ∣ )qG ¢M and ( ∣ )qg ¢M , although there is a
larger enhancement of Må for large [Mvir, T1] and a smaller
enhancement for large Mvir and small ϒ0.1 for the CEBM

( ∣ )qG ¢M . For reference, the model summary Figure 7
illustrates the overall performance of the model.
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Figure 15. Details for the base EBM model ( ∣ )qg ¢M component of the CEBM ( ∣ )qG ¢M trained to predict stellar mass Må. Panel (a) displays the average contribution
of features to the base EBM model ( ∣ )qg ¢M . The feature with the highest average contribution is virial mass Mvir, with an average contribution to Mlog10 roughly
5 × larger than that from redshift z or environmental density ρ1. The environmental temperature T1 and nearby halo mass ratio ϒ0.1 provide smaller average
contributions, and interactions between features are yet smaller. Panel (b) shows the feature functions contributing to the base EBM model ( ∣ )qg ¢M . The stellar mass
increases with Mvir, which provides the largest contribution. Secondary contributions come from redshift z, which increasesMå at later times, and the positive correlate
environmental density ρ1. comes from environmental density ρ1. Environmental temperature T1 has a small contribution, and shows the familiar feature at T1 ≈ 104 K
where hydrogen ionizes. The mass ratio of nearby halos ϒ0.1 provides a minor contribution. Panel (c) presents the interaction functions for the base EBM ( ∣ )qg ¢M .
Each panel shows the contribution of the bivariate interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of
each function  f max. Teal indicates negative contributions and green indicates positive contributions. The table lists  f max for the interaction functions, each with
units ☉Mlog10 . In absolute terms, the largest interaction occurs for large virial mass Mvir and environmental temperature T1 (same as for the base EBM ( ∣ )qg ¢SFR
modeling SFR, see panel (c) of Figure 11). Stellar mass is partially reduced for low environmental temperature T1 and either high environmental density ρ1 or high
redshift z.
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Figure 16. Details for the outlier EBM model ( ∣ )qd ¢M component of the CEBM ( ∣ )qG ¢M trained to predictMå. Panel (a) displays the average contribution of features
to the outlier EBM model ( ∣ )qd ¢M . As with the base EBM ( ∣ )qg ¢M , the feature with the largest average contribution is virial mass Mvir, with roughly 10 × larger
contribution to Mlog10 than redshift z, environmental density ρ1, or temperature T1. The average contributions of ϒ0.1 or interactions are small. Panel (b) shows the
feature functions for the outlier EBM ( ∣ )qd ¢M . The feature function for virial mass Mvir has the largest contribution to ( ∣ )qd ¢SFR , similar to the virial mass
dependence of the base EBM ( ∣ )qg ¢M (see panel (b) of Figure 15). The stellar mass of outliers increases with increasing environmental density ρ1, with a large
enhancement at very large ρ1. Unlike the base EBM ( ∣ )qg ¢M , the stellar mass of the outliers increases with increasing redshift. The feature function for the nearby
halo mass ratio ϒ0.1 is weak and noisy. Panel (c) presents the interaction functions for the outlier EBM ( ∣ )qd ¢M . Each panel shows the contribution of the interaction
terms, normalized such that the color map ranges between plus or minus the maximum of the norm of each function f max. Teal indicates negative contributions and
green indicates positive contributions. The table lists  f max for the interaction functions, each with units ☉Mlog10 . For outliers, stellar mass increases at high
environmental density ρ1 with low environmental temperature T1 or high redshift z.
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Figure 17. Details for the classification EBM model ( )qf ¢
M that interpolates between the base EBM ( ∣ )qg ¢M and the outlier EBM ( ∣ )qd ¢M for creating the CEBM

( ∣ )qG ¢M . Panel (a) displays the average contribution of features to the classification EBM model ( )qf ¢
M . The most important features for determining whether a

galaxy is an outlier in the stellar mass distribution are environmental density ρ1, redshift z, nearby halo mass ratio ϒ0.1, and virial mass Mvir. The average contributions
are unit-free, and represent changes to the log odds of a galaxy being an outlier in the stellar mass distribution. Panel (b) shows the feature functions contributing to the
classifier EBM ( )qf ¢

M . These feature functions represent the change in log odds that a given galaxy will be an outlier in Må. Outliers tend to occur at high
environmental density ρ1 or very low or high virial masses Mvir. Galaxies with massive neighbors, reflected by ϒ0.1, or high environmental temperature T1 are also
more likely to be outliers. The lowest redshift galaxies in the data set are additionally likely to be outliers in stellar mass. These trends are similar to the feature
functions for the classifier EBM ( )qf ¢SFR (see panel (b) of Figure 13). Panel (c) presents the interaction functions for the classifier EBM ( )qf ¢

M . Each panel shows the
contributions of the interaction terms, normalized such that the color map ranges between plus or minus the maximum of the norm of each function  f max. Teal
indicates negative log odds and green indicates positive log odds that a given galaxy is an outlier in stellar mass. The table lists  f max for the interaction functions,
listed as the corresponding change in log odds. Galaxies with large environmental temperature T1 and at high redshift z are more likely to be outliers. Massive galaxies
at high environmental density ρ1 or with large nearby halos (large ϒ0.1) also tend to be outliers. Galaxies at low environmental density but with large nearby halos also
have an increased likelihood of being outliers in stellar mass.
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Figure 18. Details for the CEBM model ( ∣ )qG ¢M trained to predict stellar mass Må. Panel (a) displays the average contribution of features to the CEBM model
( ∣ )qG ¢M . Virial mass Mvir provides the largest average contribution to the stellar mass. The environmental density ρ1 and redshift z provide ∼5× smaller average

contributions. The environmental temperature T1 and nearby galaxy-mass ratio ϒ0.1 provide a relative contribution to stellar mass roughly 10× smaller than Mvir.
Panel (b) shows the feature functions contributing to the CEBM ( ∣ )qG ¢M . The stellar mass increases with Mvir, which provides the largest contribution. Secondary
contributions come from environmental density ρ1 and redshift z. Environmental temperature T1 has a smaller contribution, but shows the familiar feature at
T1 ≈ 104K where hydrogen ionizes. The mass ratio of nearby halos ϒ0.1 provides a minor contribution. As expected, the CEBM feature functions resemble the base
EBM feature functions that represent the parameter dependence of stellar mass for most galaxies in the data set (see panel (b) of Figure 15). Panel (c) presents the
interaction functions for the CEBM ( ∣ )qG ¢M . Each panel shows the contribution of the interaction terms, normalized such that the color map ranges between plus or
minus the maximum of the norm of each function f max. Teal indicates negative contributions and green indicates positive contributions. The table lists f max for the
interaction functions, each with units ☉Mlog10 . As for the interaction functions for the base EBM ( ∣ )qg ¢M , the largest interaction occurs for large virial mass Mvir and
large environmental temperature T1. Stellar mass is partially reduced for low environmental temperature T1 and high environmental density ρ1. These trends are similar
to those for the base EBM ( ∣ )qg ¢M modeling stellar mass (see panel (c) of Figure 15).
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