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Abstract: In this paper, a single-chip front-end (SCFE) operating in Ku-band (12–17 GHz) is presented.
It is designed exploiting a GaN on SiC technology featured by 150 nm gate length provided by UMS
foundry. This MMIC integrates high power and low noise amplification functions enabled by a single-
pole double-throw (SPDT) switch, occupying a total area of 20 mm2. The transmitting chain (Tx)
presents a 39 dBm output power, a power added efficiency (PAE) higher than 30% and a 22 dB power
gain. The receive path (Rx) offers a low noise figure (NF) lower than 2.8 dB with 25 dB of linear gain.
The Rx port output power leakage is limited on chip to be below 15 dBm even at high compression
levels. Finally, a complete characterization of the SCFE in the Rx and Tx modes is presented, also
showing the measurement of the recovery time in the presence of large-signal interferences.

Keywords: single-chip front-end (SCFE); gallium nitride (GaN); switch; high-power amplifier (HPA);
low-noise amplifier (LNA); transmit/receive module (TRM); small- and large-signal characterization

1. Introduction

All current operators and engineers working in the field of the transmit (Tx)/receive
(Rx) modules (TRMs) and antennas are very familiar with the concept of the single-chip
front-end (SCFE) [1–7]. It integrates and replaces the main sections and functionalities of
the RF front end in the current TRMs (driver, HPA, LNA, limiter and circulator) in a single
monolithic microwave integrated circuit (MMIC).

With respect to the current architectures, the SCFE breakthrough is enabled by the
well-consolidated GaN technology and is proven successful from the S- to Ka-band [1–7].
In fact, the very high-power density and the quite good noise characteristics allow one
to integrate both the high-power amplifier (HPA), exploited along the Tx section, and
the low-noise amplifier (LNA), on the receiving path, into a small MMIC. In addition,
GaN electrical and thermal robustness makes possible the replacement of the two main
cumbersome and bulky components: the ferrite circulator and the PIN limiter that are
used in conventional systems. Indeed, the SCFE is based on the integration of a power
single-pole double-throw (SPDT) switch, which isolates the transmitting and the receiving
paths during the Tx or Rx period to comply, jointly with the more robust LNA, with the
overall robustness requirements of the receiving chain.

In this paper, we present a Ku-band SCFE in GaN MMIC technology. It is worth
mentioning that the Ku-band is being exploited in radars for remote sensing in Earth
observation, for which single-chip front-ends are an added value. The Ku-band, in particu-
lar, is beneficial in altimeters for ice and snow detection (e.g., ESA CRISTAL mission [8]),
in glaciology measurements, in the estimation of ocean currents, in crop control and in
defense applications.
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After a description of the adopted SCFE architecture, the MMIC module is detailed
in its main circuit parts, discussing the chosen design strategies. Then, a full experi-
mental section is provided to validate the measured performance. Besides the extensive
characterization of the Tx and Rx chains of the chip, we also describe the experimental char-
acterization of the recovery time in receive mode [9–11]. In fact, this figure is of paramount
importance in the event of large signals applied to the antenna during the receiving cycle.
Such large signals may come from two different sources: either nearby modules in the
antenna that reflect back signals having non-negligible energy content, or external sources.

2. Ku-Band GaN MMIC SCFE Design
2.1. SCFE Architecture

The chosen architecture of the Ku-band SCFE is shown in Figure 1a. A three-stage
HPA and a three-stage LNA are connected by a SPDT switching circuit controlling the
antenna connection to the Tx and Rx ports, improving the isolation between the Tx and
Rx paths. A balanced topology has been chosen for the HPA because it is useful in both
guaranteeing a good Tx port matching and a good termination to the off arm of the switch
during the Rx operation. This is quite important to avoid the reflective loading of the
switched-off HPA upsetting the LNA performance during the Rx cycle.
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Figure 1. Ku-band SCFE architecture: (a) Schematic; (b) MMIC photograph.

2.2. MMIC Technology and Design

The GaN technology chosen for the MMIC SCFE design is the space-qualified GH15
HEMT process by UMS. By exploiting a gate length of 150 nm, it offers high power, low
noise and switching devices, as well as the usual MMIC passives with two layers of metals.
The chip photograph is shown in Figure 1b. A total die area of 20 mm2 has been occupied.
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The balanced HPA of the Tx section uses 3.2 mm of active periphery in the output
stage, 1.2 mm in the driver stage and 0.6 mm in the first stage. The HPA quadrature
operation was obtained by exploiting a Lange coupler at the input and output ports. The
final-stage periphery was chosen so that it was possible to target 10 W of output power to
cope with the losses of the output combiner, Lange coupler and Tx path of the SPDT. The
driver to final-stage periphery ratio was carefully selected to have enough drive margin
available in the worst-case scenario, without sacrificing the overall efficiency. The HPA
drain bias voltage and current density were set to 17.5 V and 80 mA/mm, respectively,
after a careful tradeoff with operating temperature and antenna mismatch to make sure
that the space de-rating maximum channel temperature of 160 ◦C was ensured at 100 ◦C of
MMIC backside temperature and with an antenna VSWR of 2:1. The rest of the HPA design
was focused on high-efficiency operation.

The LNA is a three-stage amplifier: the first stage was designed for the best noise
and stability by exploiting negative inductive feedback on the source of the device; the
second and third stages were designed for the best tradeoff between the noise figure, power
gain and gain flatness using a conventional RLC feedback between the drain and the
gate of the device. All three stages exploited the same 4 × 30-µm device, biased at 10 V
and 100 mA/mm, which is the best drain-current density for noise. Resistive elements
were exploited on the drain of each stage, appropriately tapered to guarantee the proper
saturation of the LNA output power to 15 dBm in the presence of signals having very large
amplitude. This was a fundamental design requirement of the LNA to protect the Rx path
of the beamformer, which will eventually load the SCFE Rx port.

The SPDT circuit within the SCFE is a reflective design. The schematic is reported
in Figure 2. The Tx arm of the SPDT makes use of two shunt devices of 4 × 40 µm and
4 × 100 µm, T1 and T2 in Figure 2, to sustain the output power of the HPA without entering
in compression and to not increase the insertion loss. The Rx arm, instead, makes use
of a 4 × 140-µm series device and a 4 × 50-µm shunt device, T3 and T4, respectively, in
Figure 2. The series device was mandatory to increase the isolation during the Tx cycle,
keeping the LNA safe when there is the highest power at the antenna. The chosen topology
requires two complementary control voltages working at 0 V and −20 V in on and off
conditions, respectively.
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Figure 2. Schematic of the SPDT circuit.

3. SCFE Experimental Characterization

Table 1 summarizes the bias and control signals applied to the SCFE depending on the
Tx and Rx modes. A full characterization, at the ambient temperature of 25 ◦C, was carried
out on the test fixture, shown in Figure 3, which was designed to accommodate the SCFE
as well as launching lines to calibrate the measurements so that they include the effect of
the actual bonding wire transitions to the external circuitry.
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Table 1. SCFE bias requirements in the different modes.

Symbol Tx Mode Rx Mode Unit

VHPA
D 17.5 17.5 V

IHPA
DQ 400 0 mA

VHPA
G −2.75 −5 V

HPA mode Pulsed Pulsed
Pulse width 150 / µs
Duty cycle 40 / %

VLNA
D 10 10 V

ILNA
DQ 36 0 mA

VLNA
G −2.6 −7 V

VC1, VC2 −20, 0 0, −20 V
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It is worth noting that the presence of trapping and thermal effects [12–14] makes the
modeling and, consequently, the design of GaN MMICs extremely challenging with respect
to other technologies such as gallium arsenide and silicon.

3.1. MMIC SCFE Measured Performance

Figure 4 shows the measured performance of the Ku-band SCFE in Tx mode. A linear
gain of 35 dB with a good input and output return loss of 15 dB is reported. Let us consider
the power added efficiency (PAE), calculated as

PAE = 100 · Pout − Pin
PDC

(1)

where Pout is the output power, Pin is the input power and PDC is the DC-supplied power.
The operating point at the maximum PAE is reached with 14 dBm of available input power.
At this drive level, the SCFE gives the antenna port more than 39.5 dBm of output power
with a PAE higher than 33%; such a performance is achieved in the frequency band from
13 GHz to 16 GHz. The corresponding operating gain is higher than 23 dB. The Tx–Rx
port isolation is higher than 30 dB, and the leakage output power measured at the Rx port
during the Tx mode is always lower than −15 dBm.

Figure 5 shows the measured performance of the Ku-band SCFE in the Rx mode. A
linear gain of 25 dB with a good input and output return loss of 12 dB is reported for the
receiving chain, in the frequency band from 12 to 17 GHz. In the same band, the measured
noise figure, calculated as

NF = 10 log10

(
SNRi
SNRo

)
(2)
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where SNRi and SNRo are the input and output signal-to-noise ratios, respectively. It is
always lower than 2.8 dB. The swept power measurements in Figure 5b show that up to
30 dB of gain compression can be reached with a limited output power of 15 dBm.
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Figure 4. Ku-band SCFE-measured performance in Tx mode. (a) Measured S-parameters; (b) output
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(d) Tx–Rx port isolation and Rx port leakage output power at fixed available power Pavs = 14 dBm as
a function of frequency. Bias and control voltages are set according to Table 1.
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Bias and control voltages are set according to Table 1.

Table 2 compares the Ku-band SCFE presented in this work with similar SCFEs either
found in the literature or as components-of-the-shelf. Since it is quite a new concept, it
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was not possible to limit the comparison with components in the same Ku-band, because
none have been found either in the literature or as a commercial product. As can be
seen, the SCFE concept has been applied to all of the main interesting frequency bands
with performance ranging from a few watts to 40 watts of output power. Our design
compares well in terms of performance to the two commercial products included in the
comparison [15,16].

Table 2. Comparison between the presented SCFE and other state-of-the-art SCFEs.

Reference
Tx Mode Rx Mode Chip

Area
(mm2)Frequency

(GHz)
Pout

(dBm)
PAE
(%)

Gain
(dB)

Tx–Rx Iso
(dB)

NF
(dB)

Gain
(dB)

[1] 10.5 38.2 30 19 30 * 3 ** 18 ** 11.88
[2] 8.6–11.2 39 25 13 40 2.5 15 9.00
[3] 7.7–12.2 41.2 24 26 - 3.2 14 12.96
[4] 5.2–5.6 46 36 18.5 - 2.4 31.5 36.00

[5] 13% in
S-band 46 42 35 - 1.75 30 49.00

[6] 5.25–5.75 46 30 36 - 3.2 35 49.00
[7] 35–36.5 34 # 25 # 20 # - 3.15 # 31.5 # 12.96 #

[15] 8.5–10.5 34.5 32 25 18 2.2 24.5 25.00 ##

[16] 9–10.5 36 38 23 50 2.7 21 25.00 ##

This work 13–16 39.5 33 23 30 2.8 25 19.96

* SPDT only, ** LNA only, # simulation only, ## packaged product.

3.2. Receiver Recovery Time Test Setup

To characterize the recovery time of the receive section, we implemented the dedicated
measurement setup that is reported in Figure 6. The RF signal is driven to the DUT by a
small-signal source (Anritsu, USA, MG3694B, 2–40 GHz) combined with a pulsed large-
signal source (Anritsu, USA, 68347C, 0.01–20 GHz), which is controlled by a pulse generator
(Rigol, USA, AWG DG1032Z) to mimic a disturbance. In a real scenario, such large-signal
disturbances may come from two different sources: either nearby modules in the antenna
that reflect back signals having non-negligible energy content or external sources. The DC
supply is used to properly set the DUT in the Rx mode. A DC power analyzer (Keysight,
USA, N6705A) is adopted to provide the bias condition to both the HPA and LNA sections.
The input and output signals on the Rx path are detected through two directional couplers
(1–26 GHz, 10 dB) and measured using two channels of the high-frequency real-time
oscilloscope (Tektronix, Germany, DPO75002SX, 33 GHz, 100 GSa/s) [17,18]. A circulator
(7–18 GHz) connected to the input of the DUT improves the input matching of the system.

The waveform acquisition is synchronized with the interferer pulse by triggering the
oscilloscope using the pulse generator as a reference.

The RF paths between the oscilloscope and the DUT have been preliminarily charac-
terized by means of their S-parameters for evaluating insertion losses and delays, which
allow the shift of the measurement reference plane from the oscilloscope channels to the
DUT ports.

3.3. Receiver Recovery Time Experimental Results

To test the SCFE receiver section for the recovery time, a pulsed large-signal interferer
of about 20 dBm was superimposed to the nominal input signal at the same frequency.
A pulse repetition frequency of 100 kHz with a duty cycle of 50% was set up for the
experiment. The measurement was carried out with an RF frequency of 13 GHz.
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In Figure 7, we report the input and output measured signals, focusing on the transition
between the saturated operation, due to the interferer pulse, and the return to the small-
signal operation. Looking at the edges of the transient, the delay in the output response
becomes clear when compared to the input transition. It is also interesting that, during the
interferer pulse, the input signal has an amplitude considerably higher than the output
signal, confirming the deeply saturated operation. To evaluate the recovery time, the
transients have been approximated by a conventional exponential function:

x(t) = X0 exp
(

t − t0

τ

)
, (3)

where X0, t0 and τ are constants properly tuned to fit the transient edges.
The results of the fitting are shown in Figure 8, where the estimated time constants (τ)

have also been reported. It is interesting that their values are not the same for the input and
output transients, which can be ascribed to the nonlinear dynamic behavior of the active
devices as well as to the circuit-matching networks.
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By comparing the input and output transients, we can provide an estimation of the
recovery time. In Figure 9, we report the optimized exponential functions normalized with
respect to their amplitudes. We use the point at 36.8% (i.e., after one time constant from the
beginning of the transient) as a reference point in both the transient edges. The recovery
time can be assumed as the time difference between these points, which, in this case, results
in 3.3 ns, which is an excellent performance for the SCFE.
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A Ku-band SCFE operating in the frequency range between 12 GHz and 17 GHz has
been presented. More than 39 dBm of output power with 30% PAE and 22 dB of power
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