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A B S T R A C T   

The development of new advanced constructs resembling structural and functional properties of human organs 
and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular 
matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bio-
printing represent valuable tools for this purpose. This review will describe how morphological and biochemical 
properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with 
the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the 
polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as “inks” in the 3D 
printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with 
signaling molecules to develop bio-responsive and bio-instructive ECM mimics.   

1. Introduction 

With the advent of 3D printing, new opportunities for tissue engi-
neering and 3D in vitro advanced tissue models are opened. The basic 
concept of 3D bioprinting takes inspiration from fundamental ap-
proaches employed in tissue engineering and regenerative medicine, 
based on the capacity to develop hydrogels able to host different cell 
populations, crosstalk with them and induce their fate by controlling 
both physical and biochemical signals. 

These hydrogels exploited for 3D printing are known as “inks” or 
“bioinks”. An ink has been defined by Groll et al. as ‘a biomaterial is used 
for printing and cell-contact occurs post-fabrication’, whereas the bioink 
has been defined as ‘a formulation of cells suitable for processing by an 
automated biofabrication technology that may also contain biologically 
active components and biomaterials’ [1]. 

One of the major gaps in the production of advanced 3D tissue 
models is related to the difficulty to generate inks suitable for the 3D 
bioprinting process and at the same time able to provide the signals 
inducing different cells to produce new matrix, ideally reproducing the 

specific in vivo cell environment of interest. Indeed, the traditional 
approach employed to develop inks and bioinks is mainly focused on the 
control of the physical properties of the hydrogels, neglecting the 
biochemical signals. 

The first 3D bioprinted models were based on alginate in which the 
hydrogel formation occurs by physical crosslinking employing divalent 
cations [2]. More recently, a variety of natural and synthetic polymers 
have been exploited, functionalising and crosslinking them in order to 
generate hydrogels able to generate personalized artificial 3D tissue 
models with superior biochemical and physical properties and with the 
capacity to undergo dynamic modulation. This review will collect the 
latest concepts on hydrogels suitable for the development of static and 
dynamic 3D printable ECM mimics for tissues engineering. Noteworthy, 
the artificial tissues generated with the 3D printing approaches can 
incorporate drugs and allow their controlled release to avoid local in-
fections during the regenerative processes, or even to kill residual cancer 
cells if implanted in tumor resections. 
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2. ECM: one of the major players of the microenvironment 

The ECM components include structural proteins (i.e. collagens and 
elastin), glycoproteins (i.e. fibronectin, laminin), glycosaminoglycans 
(GAGs) (i.e hyaluronic acid) and proteoglycans (PGs) (i.e. Heparan 
sulphate proteoglycans (HSPGs), Chondroitin sulphate proteoglycans 
(CSPGs)) [3,4]. Around 30% of proteins in the human body are consti-
tuted by collagens, a family of ubiquitous proteins with 28 identified 
subtypes [5]. Collagens includes proteins with differential structural 
organization [3], post-translational modifications [6], parental re-
ceptors / proteins [6] and consequently biological functions [7]. 

Furthermore, the extracellular space is rich of several macromole-
cules like enzymes and growth factors that actively participate in ECM 
remodelling, with an impressive impact in cell signalling and microen-
vironmental regulation [8,9]. The most representative examples of ECM 
enzymes include metalloproteinases (MMPs) and tissue inhibitor met-
alloproteinases (TIMPs), involved respectively in ECM degradation and 
proteinases regulation [10]. 

All these components, and their balance contribute to the develop-
ment of healthy and pathological states. Even if several ECM macro-
molecular components have been characterized and extensively 
reported in literature [11–19], our knowledge on ECM composition, 
remodelling and instructive role is still limited. The concept of “matri-
some” is acquiring importance, it refers to ECM signatures related to 
specific diseases or aberrant phenomena like fibrosis or inflammation 
[12,15,20]. The ECM signature, however, is related and responsible not 
only of pathological events, but also, and equally important, to the 
evolution of the tissues in terms of morphogenesis [10]. 

The identity of ECM components, their concentrations and their 
structural organization varies in different tissues and organs and in 
different developmental stages of the same tissue. 

In tumour microenvironment (TME) the mechanical properties and 
architecture of the ECM are strongly related to tumour malignancy and 
metastatic potential [21]. Even in fibrosis the ECM play a key role being 
one of the main driver of the aberrant deposition of ECM components 
with consequential organ functionality impairment [22]. The mechan-
ical role of ECM is well studied and the impact of ECM stiffness in 
mechanotrasduction pathways is well recognized. Several works high-
lighted the importance of physical forces in driving cell adhesion, or-
ganization, metabolism and signalling [23–25] . The 
mechanotrasduction process is one of the most studied ECM-cell inter-
action mechanism regulated by cell surface integrins [26]. It is a dy-
namic mechanism regulating newly synthetized ECM components with a 
fine control of deposition rate and identity [23]. The instructive role of 
ECM in the maintenance of tissue homeostasis or in the induction of 
pathological conditions is exploited also through other mechanism of 
control, including cell receptor interactions [27]. It is well known that 
significant mutations of genes encoding for ECM components result in 
pathological phenomena with disruptive effect for organ and tissues 
functionalities [13]. Misfolded ECM proteins are associated to dysre-
gulation of tissue functions and affect the physiological crosstalk with 
cell surface receptors [28,29]. Furthermore, both aberrant proteolytic 
phenomena or over expression of specific components induce aberrant 
cell fates or unfunctional cell development through physical and 
biochemical signalling [30]. The ECM proteins interact with cell re-
ceptors exploiting: a) functional structural organization, b) peptide se-
quences, and c) post-translational modifications (PTMs). Collagens are 
the most abundant components of ECM and the GFOGER hexapeptide 
interacts with different integrins including α2β1, α1β1, α10β1 and α11β1 
[31]. These interactions are fundamentals for the maintenance of cell 
adhesion, migration and spreading, and disruption of these interactions 
are observed in several pathologies, including cancer and inflammation 
or fibrosis [32]. A large plethora of ECM-cell interactions are mediated 
by other proteinaceous components of ECM, including the glycoproteins 
fibronectin and laminin. Both are characterized by peptide sequences, 
like RGD for fibronectin and IKVAV for laminin, recognized by cell 

surface receptors. RGD, discovered for the first time in fibronectin but 
present also in other proteins of the ECM, acts as adhesive sequence 
interacting with a subset of integrins [33]. IKVAV has multiple functions 
spanning from cell adhesion to neurite outgrowth in primary neuronal 
cell lines [34]. Hyaluronic acid (HA) is ECM polysaccharidic component 
interacting with CD44 and RHAMM cell receptors involved in both 
physiological or pathological processes [35]. CD44 acts as mediator 
between extracellular space and intracellular cytoskeleton, inducing 
multiple functions like pericellular matrix assembling, wound healing in 
physiological conditions, cell spreading and metastasis in pathological 
niches [36]. RHAMM is a multifunctional receptor involved in control of 
differential cell responses including cell motility and cell signalling 
pathways during injuries and pathological phenomena [37,38]. 

Proteoglycans, enzymes, growth factors and a wide range of other 
bio- and macromolecules induce signalling cascades with regulatory 
roles as reported in Table 1 [39]. 

Even if the main and intrinsic role of ECM is cell hosting and cell fate 
modulation, not surprisingly it is also involved in microbial infection 
processes. The first stages of infections occur in the extracellular space 
through biomolecular interactions and lytic activities [71]. Pathogens 
interact and with several extracellular glycoproteins, structural proteins 
and proteoglycans, including collagen, fibronectin, laminin and decorin, 
to colonize tissues and evade the host immune system [72–75] . 

ECM remodelling is a dynamic mechanism which allows different 
cell populations to survive and exploit their functions in a more suitable 
microenvironment. Cell populations include stem and differentiates 
cells, cells of the immune system and even microbial populations. When 
the physiological interactions or remodelling of these components be-
comes aberrant, chronic or acute pathological phenomena occur [76]. It 
is more and more evident that the ECM properties are not just conse-
quences of specific tissue stages but have a pivotal role in the progres-
sion of tissues morphogenesis and in the maintenance of functionalities. 
Table 2 reports examples of ECM characteristics related to different 
pathologies. In this view, the design of 3D bioprinted constructs to 
generate artificial tissues must find inspiration from the properties of 
ECM in different organs, in physiological and pathological states, and 
requires a panel of “inks” and chemical protocols for a tailor-made 
construction. 

The capacity to generate mimetics of pathological tissues in a per-
sonalised way, once the properties of their ECM are known, allows to 
perform in vitro drug screening in 3D tissue models more adherent to the 
specific human pathology, with respect to the tests performed on mice 

Table 1 
Major biomolecules with regulatory roles.  

Signalling 
molecules 

Regulatory roles Refs. 

HSPG pluripotent cells self-renewal maintenance; cell fate 
modulation 

[40,41] 

Agrin HSCs survival and proliferation; cell interactions and 
synaptogenesis; epithelial-to-mesenchymal transition 
in heart development 

[42–44] 

Decorin Pathways regulation in kidney, muscle, 
hematopoietic, and neural stem cells 

[45–50] 

Perlecan Intestinal stem cells proliferation; regulation of 
neural stem cells. 

[51,52] 

Tenascins Multiple functions in hemapotoietic, neural, and skin 
microenvironment 

[53–55] 

MMPs ECM degradation and remodelling; multiple signals [8,56] 
ADAM and 

ADAMTs 
ECM degradation and remodelling; tissue 
morphogenesis; multiple roles. 

[57,58] 

galectins cell proliferation, differentiation, migration, and 
survival 

[59–61] 

VEGF Angiogenesis, cell development; multiple functions [62–64] 
FGF Cell development, cell fate induction, differentiation [65,66] 
TGF-β Cell proliferation, cell differentiation and migration, 

ECM remodelling 
[67,68] 

HGF Stem cell differentiation, cell migration [69,70]  
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models. 
The characterization of ECM properties, in physiological and path-

ological states, is not an easy task and is still limited due to the many 
variables involved. Information is required on: a) the identity of ECM 
components for different organs and at different ages; b) the interactions 
occurring at the extracellular level; c) PTMs modifications affecting cell- 
ECM and ECM-ECM interaction. Even if in the last years proteomic 
[4,20,93] and biochemical [79,94,95] approaches revealed important 
information, the intricate puzzle of “matrisome” [20] is still unresolved 

being characterized by a plethora of actors with different biomolecular 
codes. 

3. Cell-friendly polymers: the importance of biomaterials nature 
and crosslinking 

The selection of polymers employable to develop 3D bioprinted 
constructs is guided by their compatibility with different cell pop-
ulations. With the advancement of 3D printing processes and 

Table 2 
Examples of ECM modulation in pathological conditions.  

Tissue / Organ Δ selected ECM components Pathology Source Refs 

Brain Increase of hyaluronic acid, brevican, tenascin-C, fibronectin and 
thrombospondin. Decrease of versican. 

Glioma various [77], 
[78] 

Breast Increase of type I and III collagen, fibronectin, tenascin C, periostin, 
osteopontin, SPARC, thrombospondin-1, syndecan I, MMP-2, − 3, − 9 
and − 14 Decrease of type IV collagen, Laminin-11 

Breast Cancer various [79] 

Colon Increase of Type I Collagen; MMP-2, and MMP-9. Decrease of ype IV 
collagen and TIMP-3 

Colorectal cancer (CRC) ECM obtained by human CRC samples 
(acellular technology) 

[80] 

Colon Increase of heparan and chondroitin sulphate. 
Decrease of decorin. 

Colorectal cancer (CRC) Fixed tissues from human samples [81] 

Gastric Increase of Type I and Type IV Collagen, Laminin, Fibronectin; 
Tenascin, Versican, Decorin, Byglican; MMP-2, MMP-9, MMP7; 
Galectin-1 

Gastric cancer (GC) Various [82] 

Gastrointestinal 
system 

a) Increase of, fibronectin-3, 
Tenascin precursor, 
EMILIN-1 precursor, Vimentin 
Decrease of ADAMSTS1 
b) increase of hyaluronic acid; total and type III and V collagen. 

Inflammatory Bowel 
Diseases -Crohn’s disease 
(CD) 

a) intestinal fibroblast–derived ECM; 
b) various 

a) [83], 
b) [84] 

Ileum Increase of neutrophil collagenases, MMP-9, MMP-10. Decrease of 
elastin and collagen 

Inflammatory Bowel 
Diseases -Ulcerative Colitis 
(UC) 

Colonic 
intestinal biopsies from UC patients – 
extraction of protein content for 
proteomic analysis 

[84] 

Liver a) increased elastin and collagen. b) in liver metastasis: increased 
Type IV collagen, tenascin, laminin-511, hyaluronic acid 

Cancer a) surgically resected hepatocellular 
carcinoma (HCCs); b) various 

a) [85], 
b) [86] 

Liver Increase of Type I and type III collagen, laminin fibronectin. In HCV 
infection fibrosis increase of type I and II collagen, elastin, MMP-2 and 
versican 

Chronic liver diseases / 
liver fibrosis 

various [87] 
[88] 
[89] 

Lung Increased type IV collagen (NSCLCs), laminins, galectin-1; 
fibromodulin (SCLC); hyaluronic acid. Decrease of decorin. 

Cancer various [90] 

Pancreas Increase of collagens I and III; collagen VI; Fibrillin-1 (FBN-1), 
fibronectin (FN1), fibrinogens (FGA, FGB, and FGG), and periostin 
(POSTN) 

Pancreatic adenocarcinoma Human PDAC tissues – extraction of 
protein content for proteomic analysis 
(ECM enriched) 

[91] 

Pancreas a) Increase of extra-islet deposition of the glycosaminoglycan HA. 
Decrease of heparan sulfate (HS) b) Reduced laminin α5 

Type 1 diabetes (T1D) Various a) [19]; 
b) [92]  

Fig. 1. Selected examples of natural (polysaccharides and proteins) and synthetic polymers employed for the formulation of inks and bioinks. Adapted from [118].  
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instruments, also a large number “inks” based on natural and synthetic 
polymers (Fig. 1) have been classified, defined and standardized [2–4]. 
The classification of polymers is based on their origin, including natural 
and synthetic polymers. 

Natural polymers include polysaccharides [94,96], like hyaluronic 
acid [97,98], alginate [99], chitosan [100], cellulose [101], gellam gum 
[102], and proteins [103,104] like collagen [105], gelatin [106], elastin 
[107] and elastin like peptides (ELPs) [108], fibrinogen [109] and silk 
fibroin [110]. Biocompatible synthetic polymers with adequate hydro-
philic properties, like polyethylene glycol (PEG) [111], Pluronic-127 
[112], polycaprolactone (PCL) [113], polylactic acid (PLA) [114], pol-
yglutamic acid (PGA) [115], are also largely employed for the genera-
tion of printable constructs [116,117]. 

Natural and synthetic polymers have different properties, advan-
tages and limitations. The advantage of natural polymers, with respect 
to synthetic ones, consists of their intrinsic biocompatibility and 
appropriate cell crosstalk. Synthetic polymers lack biomolecular motifs 
needed for cell fate modulation, but offer improved control of me-
chanical and structural properties [118]. 

Combining natural and synthetic polymers different hybrid inks for 
3D printing and bioprinting have been developed, suitable to generate 
3D ECM mimetics with the required tailorable morphological and cell- 
specific properties [119–125]. 

In the bioprinting approach, cell populations or organoids are 
embedded in the hydrogel or hydrogel precursors (Fig. 2 A) before, 
during or after the printing process [1,126]. Cell viability must be 
guaranteed during the bioprinting process and, on the other and, the 
presence of leaving cells in the ink can compromise his correct print-
ability and finally the structural fidelity of the construct. Accurate 
control is required and the crosslinking methodologies, properly 
selected and balanced, can increase the printing fidelity. In some cases, 
the cells can be added after the printing process once the scaffold has 
been generated (Fig. 2 B). 

The rheological properties of the polymers are mostly important for 
the selection of the printability window and the reliability of 3D bio-
printing process [127]; on the other hand, the biocompatibility of and 
capacity to crosstalk with cells are essential for the functionality of the 
final construct [128,129]. The morphology of the construct must be 
sufficiently stable over the time but at the same time must allow future 
modifications. The extracellular matrix is a dynamic environment, in 
which matrix metalloproteases (MMPs) are responsible for dynamic 
remodelling [5,96,97]. Dynamic bioresponsive ECM mimic can be 
generated by selection of adequate crosslinking strategies involving not 
only biodegradable interconnections but also week interactions and 
reversible covalent linkages [130]. 

3.1. Physical and chemical crosslinking of bioprintable polymers 

The first of 3D bioprinted constructs were generated using bioinks 
able to generate physical crosslinking, defined “physical hydrogels”. 
Physical hydrogels are obtained from polymers interconnected by 
different interactions, including ionic and hydrophobic interactions or 
thermal transitions [118]. Alginates have been extensively employed as 
physical hydrogel, also in combination with other polysaccharides and 
crosslinked by addition of divalent cations (Ca2+, Ba2+ and Mg2+) 
[99,131]. Self-assembling peptides have been recently explored as 
biocompatible bioinks allowing an easy control of gelling varying the pH 
or adding divalent ions [132]. Synthetic polymers like Pluronic F127 
[133] were employed for their ability to form hydrogels by controllable 
thermal transition [134]. Pluronic F127 shows an inverse thermal jel-
lification, becoming hydrogel with the increase of temperature, the 
hydrogel properties can be tailored varying the polymer concentration 
and the molecular weight. Furthermore, the mechanical properties of 
the obtained hydrogels can be improved by covalent crosslinking, as 
reported for example by its functionalization at the extremities as 
acrylate esters and UV induced polymerization [112]. The ability of 
Pluronic F127 to form hydrogels at 37◦ degrees is also optimal as 
sacrificial structures to generate 3D constructs with separate channels 
and compartments [133]. 

Even if physical hydrogels present clear advantages in the ease of 
preparation of the constructs, the limited number of polymers employ-
able and the difficulty to control accurately mechanical and biochemical 
properties compromises the applications. Recent efforts are mostly 
focussed on the development of hybrid or multicomponent biomaterials 
in which physical and chemical crosslinking strategies are combined, 
also taking advantage of reversible covalent bonds, will know in organic 
chemistry, and supramolecular chemistry, to generate dynamic hydro-
gels [119,127,132,135,136]. The accurate selection of crosslinking 
methods is dictated by the final application, for example in vivo im-
plantation for regenerative medicine could require scaffold biodegrad-
able once implanted. Dynamic cross-linkages, reversible in specific cell 
culture conditions, provide dynamic ECM mimetics more similar to the 
in vivo ones, improving also cell motility and cell fate modulation and 
morphogenesis [136]. Self-repairing materials are based on supramo-
lecular or reversible linkages, showing mechanical dynamic and cus-
tomizable properties [120,121]. The combination of static and dynamic 
linkages was employed in implantable biomaterials to improve the 
scaffold integration in tissues and the adaptation in the implant site. 
Amaral et al. described a bioink based on the dynamic linkage between 
laminarin functionalized with boronic acid and alginate (Fig. 3A) [137]. 
The obtained hydrogel showed improved morphological and rheological 
properties and high biocompatibility with different cell lines, including 
MC3T3-E1 osteoblast precursors, L929 fibroblasts and MDA breast 
cancer cells. Interesting dynamics bioinks were developed employing 
nanocomposites based on amine functionalized silica nanoparticles 
combined with oxidized alginate and gellan gum [138]. In this case a 
covalent dynamic reversible crosslinking occurred by reaction of the 
amino groups of silica nanoparticles and the aldehyde of oxidized algi-
nate, whereas gellan gum provided thermal gelation. The developed 
hybrid system showed improved rheological properties, advanced 
printing fidelity and in vitro and in vivo compatibility with chondrocytes. 

Tallia et al. developed 3D printable scaffolds with porous channels of 
~200 μm using inks based on silica, poly(tetrahydrofuran and poly 
(γ-caprolactone) with superior mechanical and self-healing properties 
employable for cartilage tissue engineering applications (Fig. 3B) [139]. 

New multifunctional biomaterials with superior dynamic properties 
have been generated exploiting dynamic reversible linkages [140]. 

The validation of cell-compatible crosslinking and conjugation 
methodologies represent an essential toolbox for the development of 
advanced customizable inks. Table 3 collect examples of physical and 
covalent crosslinking methodologies, including the dynamic and 
reversible ones. Fig. 2. A) Bioink and B) Ink. Adapted from reference [1].  
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The many variables that can be adopted to generate 3D printed 
artificial tissues foresee the development of a combinatorial approach, 
in which the nature and ratio of polymeric components, the crosslinking 
nature and degree, differently combined, will generate a library of 
constructs ideally resembling the ECMs of different tissues in healthy 
and pathological states. 

3.2. Control of hydrogel properties 

The “instructive” role of ECM in cell fate is being exercised not only 
by the physical properties of the material but also by its chemical 
composition and by the presence of different biomolecules providing 
specific interactions and signal cascade. The development of functional 
ECM mimetics therefore must include such bioactive entities, the con-
tent, concentration and gradient of which will strongly modify the 
functionality of the construct [184]. In this perspective, a wide range of 
signalling biomolecules must be included in the construct, taking in-
structions from the natural ECMs of specific tissues, a further variable 
increasing the complexity of the scenario. In this context Nature exploits 
two main actors: fragments of polymeric molecules, in particular pep-
tide sequences such as the well-known RGD, and effector proteins such 
as grow factors or enzymes. Their role is multifarious including the 
correct cell-matrix adhesion, essential for cell survival, the interaction 
with cell receptors (integrins, selectins, …) to start a signal cascade, or 
even an enzymatic process inducing functional changes. GAG hydro-
lases, for example, are responsible for the release in the ECM of growth 
factors sequestrated by GAG [185]. Examples of bioactive motifs, that 
can be conjugated to synthetic or natural polymers for the induction of a 
plethora of biological functions, includes peptides derived from ECM 
proteins or paracrine factors in the extracellular space. The most 
employed peptide sequences, inducting fundamental biological events 
like cell adhesion or differentiation, or specific morphological and 
functional features, are reported in Table 4. 

Peptide sequences can be employed also to assist and promote the 
physiological ECM remodelling through the action of proteolytic en-
zymes. With this aim several inks containing MMP sensitive sequences 
like GCRDGPQGIWGQDRCG or CGPQGIWGQC have been developed 
[186,187]. 

Peptide sequences are largely present in commercially available 
proteinaceous biopolymers (collagen, elastin, ….) that can be used in 
different ratio to generate bioinks with their required content in the 
construct. Alternatively, such sequences can be conjugated to not pro-
teinaceous polymers, exploiting different strategies depending on the 
functional groups available for the conjugation to the polymer 
backbone. 

Among the other signalling molecules, enzymes should maintain 
their integrity to guarantee the functionality (even if synthetic enzymes 
have been developed), receptor proteins need the integrity of the re-
ceptor site. If the signalling biomacromolecule is commercially avail-
able, the easiest way consists in its absorption into the biomaterial. This 
approach is very easy but do not impede the progressive release with loss 
of its activity over the time. An alternative strategy consists in the 
conjugation of the entire biomacromolecules or eventually their active/ 
functional fragments, a more complex and expensive approach that 
guarantee more reliable and structurally controlled constructs. Different 
conjugation methodologies can be applied taking inspiration by che-
moselective reactions already employed for chemical biology and bio-
materials related applications [205]. 

One of the major challenges still occurring for the development of in 
vitro tissue consists in the vascularization of the obtained constructs. 
Several authors reported the integration of vascular components, such as 
VEGF, in different stages of the 3D bioprinting process [206,207] . 

To improve the biocompatibility of biomaterials or increase the 
adhesion of embedded cells, also other strategies have been adopted, 
including the conjugation of the selected polymers with adhesive mol-
ecules like dopamine [208,209]. 

The glycans content of ECM is acquiring importance, several evi-
dence indicate that glycans are main actors in the induction of cell fate 
[206,207] and gained a leading role in nanomedicine [206]. N- and O- 
glycosylation of ECM and associated proteins is a dynamic process and 
its role in cell development, morphogenesis and pathological events is 
more and more evident [210–212]. The term glycosignature has been 
coined to define the great variety of glycan contents at cell surfaces, ECM 
and circulating proteins (including Ig) in different conditions. The gly-
cosignature vary with organs, individuals, age, diet, healthy of patho-
logical states [213,214] in a cause effect relation still to be fully 

Fig. 3. A) Reproduced with permission from Amaral et al. [137], i) Printing conditions tested and phase diagram for optimal ink development in terms of print-
ability, extrudability and homogeneity. ii) Digital photographs and bright-field micrograph of LAM-PBA5/ALG2.5 disk-shaped cell-laden constructs illustrating the 
strut concentric pattern still evident after three days in culture and fluorescence microscopy conjugated with bright-field imaging of MC3T3-E1 cells within LAM- 
PBA5/ALG2.5 hydrogel following live/dead staining. iii) 3D bioprinting of well-defined solid filaments with a spiral pattern. iv) Bioprinted tubular construct 
demonstrating the potential of the bioink to fabricate 3D structures. B) reproduce with permission from Tallia et al. [139] v) example of a scaffold with a grid-like 3D 
porous structure and vi) SEM image of a horizontal section showing the interaction among struts belonging to three different layers; vii) example μCT image of a 3D 
printed Si80-CL scaffold; viii-x) 3D rendering of the struts used for the μCT image analyses; xi-xiii) SEM images of top surface, horizontal (x–y) section and vertical 
(z–y) section, respectively, of a 3D printed Si80-CL scaffold. Scale bars: 100 μm in (vi); 250 μm in (vii-ix); 200 μm in (xi-xiii). 
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Table 3 
Conjugation methods employed for the static and dynamic crosslinking of inks and hydrogels.  

Static Covalent Crosslinking Conditions Refs 

UV (365 nm), 
photoinitiators 

[65], [98], [141], [142], [143], 
[144], [145] and many others 

UV (365 nm), 
photoinitiators 

[146] [147] [148] [149] [150] 
[151] and many others 

UV (365 nm), 
photoinitiators 

[151], [152] 

pH 5.5–7.4 [151], [153], [154], [155] 

pH 7.4–8.0 [151], [156], [157], [111] 

pH 5.5–7.4, 
reversible at high 
temperatures, 
tailorable kinetics 
(diene selection) 

[158], [159], [160], [161], 

pH 7.4 [162] 

(continued on next page) 
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Table 3 (continued ) 

Static Covalent Crosslinking Conditions Refs 

Enzymatic Crosslinking   
pH 7.4 5 U/mL HRP [163] [164] 

37 ◦C [165] [166] 

Dynamic Covalent Crosslinking Conditions Refs 
pH 4.5–7.0, 
reversible  [167] 

pH 4.5–6.5 [168] 

pH 6.5–7.5, 
reversible at acidic pH 

[137] [169] 

pH 6.5–7.6 
red-ox, thiol exchange 

[170] 

Dynamic Physical Crosslinking   
Divalent cations, pH 
control 

[171] 

[172] [173] 

(continued on next page) 
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characterized. Clarifying the role of glycans in cell fate induction is 
therefore very complex and requires many data obtainable first 
observing the different cell behaviour in ECM mimics varying only for 
the glycan content. Glucose and galactose conjugated to 2D collagen 
films showed the ability to induce morphological and functional dif-
ferentiation of F11 neuroblastoma cells [197]. 3D collagen hydrogels 
conjugated with glucose and galactose were employed with cells 
extracted from the ventral mesencephalon of Sprague–Dawley embryos. 
Galactose conjugated hydrogels resulted in an increase of astrocyte 
populations, with larger shape and greater width. In parallel, a signifi-
cative decrease of astrocytes abundance was observed for glucose 
functionalised hydrogels [198]. Collagen functionalized with Neu5-
Acα2–3-Galβ1–4Glc and Neu5Acα2–6-Galβ1–4Glc induced respectively 
the up-regulation of chondrogenic and osteogenic markers with hMSCs 
[199]. Whereases, tested in vivo with an osteoarthritic rat models, 
glucose and galactose functionalized collagens induced the recovery of 
functional motility as demonstrated by walking track analysis (WTA) 
[200]. Thanks to its ability to link the parental asialoglycoprotein re-
ceptor (ASGPR), β-galactose has been extensively employed for liver- 
based tissue engineering strategies using different biopolymers [215]. 
Arai et al. used alginate conjugated galactose to produce 3D culture 
platform for hepatocytes adhesion [203]. 

Others powerful glycans with signalling ability, includes sulphated 
oligosaccharides that in the ECM are involved in many fundamental 
roles, including the regulation of growth factors recruiting and release. 
To mimic the bioactive fragments of heparan and heparin sulphate (HS), 
Chopra et al. produced hydrogels modified with synthetic HS oligosac-
charides to study their effect on induced pluripotent cell-derived neural 

stem cells (HIP-NSCs) modulation. The authors demonstrated the ability 
to control cell fate modulation tailoring oligosaccharides features [202]. 
Considering glycans as bioactive signalling molecules, it is important to 
take in mind that the glycosignature identity and abundance vary across 
different cells and tissues, physiological and pathological conditions, 
and different aging stages. 2D collagen functionalized with glucose has 
been evaluated for the ability to modulate the effect of glycosignature in 
lung tumour microenvironment. Glycosylated 2D collagens were 
employed to study the modulation of CD133+ Cancer Stem Cell with 
A549 lung adenocarcinoma, H460 large cell lung carcinoma, LT73 pri-
mary lung adenocarcinoma cells. An increased modulation of CD133+

CSC was observed with glucose functionalized collagen, demonstrating 
that the same glycan in a different microenvironment can induce 
different cell signals [201]. Recently Cadamuro et al. [204] showed that 
bioinks generated using clickable HA and glycosylated gelatin func-
tionalized respectively with 3′-Sialylgalactose, 6′-Sialylgalactose and 2′- 
Fucosylgalactose with embedded HT29 cells induce diverse alteration of 
single cell proteome. Furthermore, patient derived tumoroids bioprinted 
with 6′-Sialylgalactose based ink induced higher expression of CD133 
and LGR5 compared to the control, indicating that the specific glyco-
signature induces respectively a modulation of stemness phenotype and 
a correlation with cancer migration and metastases in colorectal cancer 
(CRC). 

Even if the role of the ECM glycosignature is becoming more clear, 
particular attention on glycans identity is required representing a 
fundamental parameter to produce effective inks able to modulate cell 
fate. Furthermore, glycans conjugation strategy must be carefully 
designed in order to control their correct exposition for the interaction 

Table 3 (continued ) 

Static Covalent Crosslinking Conditions Refs 

Thermal control (+ or – 
37 ◦C) 

various [174], [175] 

pH 5.00–10.00 [176], [177], [178], [179] 

pH 6.0–9.00 [180], [181] 

various [182], [182], [183]  
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with the parental receptor, their functionalization density, and the 
spatio-temporal presentation of their signal. 

4. Natural ECM in printable inks 

One of the most innovative approaches for the generation of func-
tional ECM mimics is based on the use of a natural ECM or on the 
incorporation of its powdered fragments in the printable biopolymer. 
The natural ECM contains many of the components useful to host the 
cells at the best and to modulate their fate. Organ decellularization 
protocols allow to obtain the entire architecture of the tissue of interest, 
however this approach has some relevant limitations. One is related to 
the difficulty to control the re-cellularization process, in which different 
cell types need to reach specific locations in the organ [216]. Further-
more, the efficacy of decellularization processes is tissue-dependent, and 
can result in partial loss of functional ECM biomacromolecules, structure 
variation, and tissue integrity with a consequent reduction in terms of 
functional biological properties [217]. 

Decellularized ECM (dECM) are becoming promising candidate as 
components of printable bioinks thanks to their content of ECM com-
ponents, including the main structural protein, glycoproteins and 
growth factors. Nevertheless, the difficulty to control the 3D architec-
ture and the morphology of the final construct limits the use of dECM 
alone for tissue engineering purposes [218]. Jakus et al. reported the 
production of “tissue papers” obtained combining freeze dried 
powdered dECM from different porcine and bovine sources and PLGA. 
The authors employed dECM obtained without enzymatic treatment to 
preserve the structural integrity and compared their properties with 
those of the original ECMs (Fig. 4). The results demonstrated the 
versatility of dECM based materials however, also in this case, limited 
re-cellularization efficacy was observed and the solvent casting method, 
which employs organic solvents, represented a further limitations [216]. 

3D Bioprinting offers a unique opportunity for homogeneous cell 
distribution during the manufacturing process, and therefore is the most 
promising methodological approach to employ dECM in combination 
with other polymers (Table 5). De Santis et al. reported the generation of 
a 3D bioprintable matrix based on alginate reinforced with dECM [219]; 
Pati et al. employed dECM obtained respectively from porcine cartilage 
and heart to produce bioinks for different 3D constructs. In detail, as 
showed in Fig. 5 the authors produced heart constructs, cartilage con-
structs and adipose constructs using respectively heart dECM (hdECM), 
cartilage dECM (cdECM) and adipose dECM (adECM) in combination 
with polycaprolactone (PCL). All the obtained constructs allowed the 
production of tissues analogues with increasing homogeneous cell dis-
tribution, and with adipogenic and chondrogenic potential [220]. To 
overcome the low printability of dECM and generate constructs with 
tailorable mechanical properties, alternative approaches using hydrogel 
based on different polymers and crosslinking methodologies of dECM 
are under study. Kim et al. proposed the reinforcement of liver porcine 
dECM with gelatin [221]. The developed dECM powder-based bio-ink 
(dECM pBio-ink) was compared with gelatin and dECM based inks 
(Fig. 5 ii) showing enhanced of mechanical properties and printability 
and maintaining a biocompatibility with endothelial cells and primary 
hepatocytes comparable to the conventional dECM. To better control the 
degradation rate and the mechanical properties of dECM reinforced 
inks, the dECM components were functionalized to obtain a photo-
polymerizable mixture. Lee et al. proposed a bioink based on alginate, 
methacrylate dECM (MA-dECM) and human adipose derived stem cells 
(hASCs) to generate bone constructs. With this approach the author 
demonstrated that the introduction of MA-dECM induces higher cell 
proliferation and osteogenic activity compared to alginate without 
dECM, even if the increase of MA-dECM reduced cell viability [222]. 
Also, enzymatic crosslinking methodologies are under study to improve 
the properties of dECM based inks. Sobreiro-Almeid employed dECM 
from porcine kidney using transglutaminase for the enzymatic cross-
linking of ECM components taking advantage of an agarose 

Table 4 
Bioactive and bioresponsive inks and bioinks.  

Bioactive/bioresponsive 
factors 

Polymers Cells/applications Refs 

RGD 
GCRDGPQGIWGQDRCG 

acrylated poly 
(ethylene glycol) 
(PEG) 

hMSCs 
osteochondral 
regeneration 

[186] 

CGGGGRGDSP 
CGPQGIWGQC 

pectin norbornene fibroblasts [187] 

CRGDS or MMP sensitive 
gelatine-norborene 
(GelNB) 

Methylcellulose mMSCs [188] 

OGP PCL BMSCs, bone 
regeneration 

[189] 

GGGGRGDSP, VEGF and 
BMP-2 

2:1 (w/w) alginate: 
methylcellulose, 
PCL 

BMSCs, 
BALB/c OlaHsd- 
Foxn 1nu nude 
mice 
bone regeneration 

[190] 

VEGF GelMA NIH 3 T3, human 
umbilical vein 
endothelial cells; 
pig skin wound 
model, wound 
healing 

[191] 

KIPKASSVPTELSAISTLYL 
bone morphogenetic 
protein (BMP) peptide 

GelMA hDPSCs, 
dental tissue 
constructs 

[192] 

dopamine GelMA NSCs, Neural 
Regeneration 

[193] 

VEGF peptide mimic QK 
Cys-PEG6- 
KLTWQELYQLKYKGI 

GelNB-GelSH HUVECs, 
fibroblasts, iPSC- 
CM 

[194] 

Hydroxyapatite Hydroxyapatite/ 
polycaprolactone 
nanoparticles NPs 
in gelatin, PVA 

tibial bone defect 
model of New 
Zeland rabbit 

[195] 

Bioactive glass (45S5 
Bioglass®) 

Silk fibroin, gelatin TVA-BMSCs, bone 
regeneration 

[196] 

α-glucose and β-galactose 2D and 3D type I 
collagens 

F11, VM from 
(E14) 
Sprague–Dawley 
rats, neuronal 
regeneration 

[197], 
[198] 

Neu5Acα2–3-Galβ1–4Glc 
and Neu5Acα2–6- 
Galβ1–4Glc 

2D type I collagens hMSC, 
osteochondral 
regeneration 

[199] 

allyl-α-D-glucopyranoside 
allyl-β-D- 
galactopyranoside 

2D type I collagens Induced 
osteoarthritic 
Wistar rats, 
Cartilage 
regeneration 

[200] 

α-glucose 2D type I collagens A549 lung 
adenocarcinoma, 
H460 large cell 
lung carcinoma, 
LT73 primary lung 
adenocarcinoma. 
Cancer stem cell 
modulation 

[201] 

HS oligosaccharides PEG HIP-NSCs, stem 
cell fate 
modulation 

[202] 

β-galactose alginate Murine primary 
hepatocytes, liver 
3D cultures 

[203] 

3′-Sialylgalactose, 6′- 
Sialylgalactose and 2′- 
Fucosylgalactose 

3D collagen and 
hyaluronic acid 
hydrogel 

HT29 human 
colorectal 
adenocarcinoma, 
patient derived 
tumoroids. Colon 
cancer models 

[204]  
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microparticle bath support. The developed methodology allowed to 
obtain a 3D bioprinted construct with defined morphology, high 
viability and differentiation of encapsulated renal progenitor cells 
(Figure 5iii) [223]. (See Fig. 6.) 

Decellularization protocols and enzymatic treatments employed to 
obtain printable dECM partially disrupt the interactions between ECM 
components and remove biomolecules with important signaling role (i. 
e. sulphated glycans, proteoglycans), reducing the physical integrity and 
the functional activity of the final construct [224]. Batch-to-batch 
variation and limited availability of dECM from whole organs are 
further significant limitations. Noteworthy, dECM lacks specific PTMs (i. 
e. N- and O-glycosylation of proteins, sulphation patterns of PGs), the 
importance of which in cell fate modulation and pathological occur-
rence is now well established. Finally, the reproducibility of dECM, 
obtained by different sources and exploiting different protocols, remains 
an open challenge. 

5. Applications of 3D printed and bioprinted models 

The progress of 3D printing technologies and the increased knowl-
edge of ECM features in both pathological and healthy states is leading 
to bioprinted constructs able to better mimic the morphological, 
biochemical and functional features of the tissues [124]. 

Initially, biomaterials-based approaches were limited to maintain 
the viability of cell cultures for regenerative treatments, in the last de-
cades the objective were extended with the capacity to induce cell dif-
ferentiation in 3D tissue in vitro models, in other words morphogenesis. 
New multifunctional biomaterials are employed today for 3D in vitro 
culture applications, as alternative to the traditional Matrigel®. 3D 
bioprinted models, tailorable upon request, present significantly higher 
performances if compared with traditional 2D cultures and tissue–like 
models, that are still in the market. The 3D bioprinted models are 
certainly much compliant with the in vivo situation, but their adherence 
to a specific healthy and pathological tissue, properly dosing all the 

Fig. 4. A) Decellularized tissues from porcine (p) and bovine (b) sources stained with H&E. The decellularized extracellular matrix, which remain after the removal 
of cellular material, appears in pink. B) Scanning electron images of each decellularized tissue type prior to milling, highlighting the distinct, porous, and fibrous 
structures. C) Scanning electron images of dECM powder pieces that result from milling and which are used for the tissue paper fabrication. Reproduce with 
permission from [216]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
ECM mimics generated with dECM.  

dECM Polymers Crosslinking Cells/tissue model Refs 

mouse and human lung dECM alginate ionic - Ca2+ MLE12 and A549, bEnd.3, HLSMCs, 
HBECs 
bioprinted airways 

[219] 

Porcine heart, cartilage and adipose 
dECM 

PCL thermal hASCs and hTMSCs, L6, ATCC CRL-1458 [220] 

porcine liver dECM gelatin thermal HUVEC and primary mouse hepatocytes [221] 
Porcine bone methacrylated dECM alginate ionic – Ca2+

photopolymerization 
hASCs 
bone 

[222] 

porcine kidney dECM agarose supporting bath enzymatic, transglutaminase hRPCs, HRPCs [223] 
porcine cardiac dECM collagen thermal Cardiac model -Neonatal rat 

cardiomyocytes (NRCM) 
[225] 

porcine liver dECM sacrificial pluronic F-127 thermal HUH7 spheroids [226] 
porcine cardiac dECM Peg-diacrylate, 

Laponite-XLG nanoclay 
photo-polymerization and ionic HCFs, hiPSC derived cardiomyocytes, 

HS27A. Heart 
[227] 

Porcine auricular cartilage 
methacrylated dECM 

– photopolymerization Auricular chondrocytes [228] 

Porcine pancreatic dECM Alginate/dECM (pancreatic 
structure) 
Alginate/ 
Fibrinogen (vascular 
structure) 

ionic – Ca2+ Pancreatic islets, HMSC and MSCs. 
Vascularized pancreas construct 

[229] 

bovine Achilles’ tendon dECM – thermal NIH 3 T3 [230] 
porcine heart, liver, and colon dECM – photocatalytic (ruthenium/sodium persulfate 

(dERS)) and thermal 
hiPSCs, HepG2 cell line and human Caco- 
2 

[231] 

Porcine cornea and heart dECM – photocatalytic (ruthenium/sodium persulfate 
(dERS)) and thermal 

hTMSCs and hiPSC-CMs [232]  
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structural and biomolecular requirements, remains still challenging. 

5.1. In vitro modeling applications 

The capacity to reproduce 3D tissue models populated with human 
cells, controlling their physical and biomolecular properties, and 
determining the associated cell fate, will strongly contribute to our 
knowledge of key players in the pathogenesis of several diseases [118]. 
Furthermore, translational applications in regenerative medicine 
exploiting human cell cultures or even preformed tissues are evident. 
Finally, the availability of 3D in vitro engineered tissues models for both 
healthy and pathological conditions, can significantly contribute to the 
development of “animal free” protocols for drug discovery and testing. 
Noteworthy, the capacity to develop 3D tissue models reproducing the 
feature and containing the cells of a diseased organ of a specific patient, 
will move towards personalized therapeutic approaches. 

In cancer research, the traditional 2D in vitro models fail to replicate 
the major tumor-stroma interactions and the heterogeneity of tumor 
components, whereas models obtained by 3D bioprinting include more 
sophisticate constructs better mimicking these interactions and the 

tumor microenvironment (TME) dynamics. 3D Bioprinted cancer 
models are revealing optimal solutions for personalized medicine ap-
plications using patient derived cells [233]. Mao et al. produced a 3D 
bioprinted intrahepatic cholangiocarcinoma (IC) model employing a 
bioink based on patient derived IC cells (ICCs) encapsulated in gelatin- 
alginate-Matrigel® hydrogel. The obtained 3D bioprinted IC model 
showed invasive and metastatic properties typical of IC, including stem- 
like properties of ICCs and cancer associated markers typical of 
epithelial to mesenchymal transition (EMT) [234]. Neufeld et al. pro-
posed a 3D bioprinted brain tumor resembling different components of 
the TME and including perfusable blood vessels. With this aim, murine 
and patient derived glioblastoma cells, astrocyte and microglia 
embedded in fibrin-gelatin hydrogel were employed as bioink, whereas 
brain pericytes and endothelial cells were employed to build up blood 
vessels through the employment of Pluronic F127 as sacrificial ink. The 
developed model showed the ability to mimic cell invasion, gene profile 
and therapeutic response, resembling in this way many aspects typical of 
the in vivo models [235]. Many other examples of 3D bioprinted tumor 
models are under study, introducing several cellular components and 
analyzing the effect of different polymers used in the printing process 

Fig. 5. i) Reproduce with permission from [220] Cell laden construct made of dECM and PCL employed as Bioinks ii) reproduce with permission from [221] Mi-
croscope image (E) (scale bar: 200 μm) and measured shape fidelity (F) of printed lattice patterns with varying pore sizes of 2% dECM pBio-ink. (G) Printing results of 
liver shaped structure with the three bio-inks. iii) Reproduce with permission from [223] Development of a pre-glomerular model. (a) Schematic representation of the 
renal corpuscle, where mesangial cells are represented in purple, endothelial cells are represented in red and podocytes are represented in blue. (b) representation of 
the model used as a printing code for the development of the model. (c) macroscopic image of the glomerular model after printing. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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[236], [237], including the use of dECM [238]. 
The reproduction of healthy tissue models finds useful applications 

for cell cultures and regenerative medicine. Complex structural and 
functional tissues, like human intestinal tissues, are under study to 
produce functional 3D in vitro models. Human primary intestinal cells 
and myofibroblast thermo-responsive Novogel® Bioink, were employed 
to generated 3D intestinal tissues with physiological barrier function 
and the expression of functional transporters useful for toxicity studies 
and drug screening applications [173]. 3D bioprinted models have been 

exploited to study infections and tissue inflammations, for examples, 3D 
bioprinted models of mature biofilm constructs have been developed 
using alginate and bacteria based bioinks. The constructs were used for 
antimicrobial testing [240]. 

5.2. Regenerative medicine applications 

The application of 3D bioprinting strategies for regenerative medi-
cine represents an attractive and challenging topic [210,241,242]. 3D 

Fig. 6. i) Reproduce with permission from [235]; fibrin brain-mimicking 3D-bioink integrated with 3D engineered printed perfusable vascular network; ii) 
Reproduce with permission from [239] 3D bioprinting of photocrosslinkable liver dECM-based hydrogel: (A) Decellularization of porcine liver and processing into a 
printable solution; (B) Representative H&E stains and SEM images of the native liver and liver dECM showing full decellularization via removal of cells (scale bar =
100 μm) and preservation of intact collagen fibrils and ultrastructure (scale bar = 10 μm). (C) Schematic diagram showing the bioprinting of the dECM-based 
hexagonal scaffolds. 

Table 6 
Examples of tissue and in vitro models obtain by bioprinting.  

Polymers (MW) Tissue model Crosslinking Cell Populations Refs 

gelatin-alginate-Matrigel™ intrahepatic 
cholangiocarcinoma tumor 
model 

ionic patient-derived ICC cells [234] 

Fibrinogen and gelatin metastatic glioblastoma model Enzymatic, transglutaminase. 
Vascularization in sacrificial Pluronic 

U-87MG, T98G, U373 and HUVEC [235] 

decellularized cephalic parts 
of pig and collagen 

glioblastoma model Thermal U-87MG and HUVEC [238] 

rat-tail collagen human breast cancer Thermo-responsive MCF-12A, MCF-7 and MDA-MB-468 [244] 
fibrinogen, alginate and 

gelatin 
cervical tumor physically crosslinked at 25 ◦C Hela cells [245] 

Novogel® Primary Human Intestinal 
Tissues Model 

Thermo-responsive Human intestinal epithelial cells (hIEC), Caco-2, Adult 
human intestinal myofibroblast (IMF) 

[173] 

Gelatin-metylfuran and 
chitosan methylfuran 

glioblastoma model Diels Alder U87 [246] 

Matrigel™ Lung air blood barrier model thermal A549 and EA.hy926 [247] 
GelMa Hepatic model photopolymerization HepaRG, LX-2, HUVECs [248] 
Collagen heart model thermal in gelatin microsphere bath 

(FRESH) 
hESC-CMs, cardiac fibroblasts [249] 

GelMA & methacrylated 
hyaluronic acid (HAMA) 

human heart valve photopolymerization VICs [250] 

alginate, gelatin and pectin renal in vitro model ionic pmTEC, endothelial cells and fibroblasts from K8-YFP 
transgenic mice 

[251] 

alginate Biofilm Ionic (Ca2+) (Escherichia coli, Staphylococcus aureus (MSSA), Methicillin- 
resistant Staphylococcus aureus (MRSA) and Pseudomonas 
aeruginosa) 

[240] 

Fibrinogen, collagen Skin wound repair Enzymatic (thrombin) Fibroblasts and keratinocytes [243] 
Gelatin and alginate gastric wound repair Ionic (Ca2+) and thermal GES-1, HGSMCs [252]  
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Bioprinting applications in regenerative medicine are mostly focused on 
osteochondral and cardiovascular diseases, even if also many other tis-
sues are and can be generated (Table 6). 

The ability to build up multicellular constructs with tailorable 
morphology can be advantageous for the generation of functional tissues 
and organ substitutes, even if tissue scalability and functionality still 
represent an open challenge. Furthermore, morphogenesis and tissue 
functionality are linked to different parameters, including structural 
features, type of cells embedded, and nature of the biomaterials 
employed in the 3D printing process. New trends in the field include the 
3D bioprinting directly performed in vivo, the IntraOperative Bio-
printing (IOB) - or in situ bioprinting - is showing interesting results for 
different tissues, including cartilage, skin and bone [211]. IOB provides 
3D bioprinting directly in vivo, in the defective site, reducing both the 
manipulation of tissue graft and the implantation site. The development 
of IOB applications integrated with automated robotic and AI-assisted 
systems could effectively increase the translation opportunity of 3D 
bioprinting in therapies, taking advantage by the personalized medicine 
approach [212]. 

Albanna et al. applied 3D bioprinting system for autologous or 
allogenic dermal graft in murine and porcine models. Here 3D bio-
printed dermal fibroblast and dermal keratinocytes embedded in bovine 
fibrin and type I collagen hydrogels, were bioprinted layer-by-layer in 
large injured sites leading to fasten regeneration of the skin [243]. Even 
if the authors observed differences between early formed and mature 
dermis layers, the proposed approach opens the way to new therapeutic 
opportunities with high translation potential (Fig. 7). 

6. Drug release and drug screening applications 

The exploitation of biomaterials for drug release has been widely 
described in recent reviews, to which we refer the readers [253–255]. 
Furthermore, the 3D printing technology has been recently exploited to 
develop drug delivery systems employing polymeric inks of different 
nature [256–260]. Here we want to highlight that the regenerative 
medicine applications can be implemented with the possibility to 
incorporate a drug during the 3D printing process, and the capacity of 
the obtained construct to release the drug even in a controlled manner. 
Key factors to control the drug release are the diffusive properties of the 
drug through the scaffold, which depends on the chemical and physical 
properties of both, and the biodegradability of the scaffold, eventually 
upon chemical, enzymatic and physical stimuli. Worthy of note is also 
the possibility to covalently link the drug to the polymeric components 
of the scaffold exploiting linkers cleavable upon specific stimuli 
[261–263]. 

Recently, there is a growing interest in 3D bioprinted tissue models 
employable for the development of patient-personalized drug screening 
and bioassay platforms [264]. In this context, even if 2D in vitro systems 
are still fundamental in drug screening and drug discovery processes, 
they lack important features of human tissues - including the ECM 
components and the 3D structural organization - that play fundamental 
role in drug permeation, delivery and efficacy [265]. Matsusaki et al. 
developed a 3D human micro-tissue chips platform using inkjet printing 
technology. The 3D tissue mimetics were layer-by-layer (LBL) printed 
using bionks based on fibronectin and gelatin with hepatocytes and 
endothelial cells, and allowed to obtain 3D liver constructs preliminary 
employed for drug screening applications [266]. 3D printed kidney 

Fig. 7. Skin bioprinter prototype and in situ bioprinting concept: i) schematic demonstrating scale of the skin bioprinter; ii) Main components of the system; iii) skin 
bioprinting concept; iv and v) example of skin bioprinting process. Reproduce with permission from [243]. 
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proximal tubule with epithelium lumen and surrounding stroma was 
generated by Homan et al. [267] using a silicone printed chamber with a 
bioink based on fibrinogen-gelatin with embedded fibroblasts and PF 
127, as fugitive ink to form the tubular shape of the construct. The 
engineered 3D model was characterized and tested with the adminis-
tration of cyclosporine A, in a dose-dependent manner demonstrating 
the epithelium disruption. In cancer related research, considering the 
importance of cell-ECM interaction in the tumorigenic microenviron-
ment, 3D bioprinted models are currently under study. Zhao et al. 
developed human cervical cancer 3D bioprinted model using fibrinogen- 
gelatin-alginate bioinks loaded with cancer cells that showed a less 
sensitive response to paclitaxel, compared to the traditional 2D-in vitro 
cultures [245]. Dai et al. developed a 3D bioprinted model of glioma 
using a bioink solution based on fibrinogen, gelatin, and alginate with 
embedded glioma stem cells. Also in this case, the 3D bioprinted glioma 
model showed higher resistance to temozolomide compared to the 2D in 
vitro system [268]. Taiarol et al. employed 3D bioprinted glioblastoma 
models generated using gelatin-chitosan bioinks loaded with different 
glioblastoma cells to characterize the efficacy of liposomes loaded with 
Givinostat, a pan-HDAC inhibitor [269]. 

7. Open challenges and future perspectives 

3D Printing and bioprinting processes are emerging as powerful 
technologies applicable to different biomedical fields. In the field of 
regenerative medicine, these technologies allowed the development of 
more accurate and functional 3D tissue models and even organ mimetics 
employable in advanced biological assays and in personalized drug 
testing. It is now clear that the progress in the field require a deeper 
knowledge on the physical and biomolecular features governing the 
ECM properties and functions, in different tissues/organs, healthy and 
pathological states, and even age, diet and environmental conditions. 
This knowledge must conduct to the capacity to generate by 3D bio-
printing personalized human tissue models for the many applications 
reported in this chapter and future imaginative ones, including the 
reproduction of functional organs. The challenge consists in the capacity 
to rationalise the correlation between cell fate and the many variables of 
the ECM construct, and in the accurate reproduction of the multifarious 
structural and biomolecular features in 3D models. It is noteworthy that 
there are two actors in the 3D tissue construction process: the scientists 
with their capacity to generate appropriate biomaterials and 3D 
manufacturing process, and the cells that, “properly educated” by the 
manufactured construct, will proceed in the construction like an expert 
architect. 
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the hepatitis C virus and the extracellular matrix in liver fibrogenesis and early 
carcinogenesis, Cancers (Basel). 13 (2021), https://doi.org/10.3390/ 
CANCERS13092270. 

[89] M.A. Karsdal, T. Manon-Jensen, F. Genovese, J.H. Kristensen, M.J. Nielsen, J.M. 
B. Sand, N.U.B. Hansen, A.C. Bay-Jensen, C.L. Bager, A. Krag, A. Blanchard, 
H. Krarup, D.J. Leeming, D. Schuppan, Novel insights into the function and 
dynamics of extracellular matrix in liver fibrosis, Am. J. Physiol. Gastrointest. 
Liver Physiol. 308 (2015) G807, https://doi.org/10.1152/AJPGI.00447.2014. 

[90] M. Götte, I. Kovalszky, Extracellular matrix functions in lung cancer, Matrix Biol. 
73 (2018) 105–121, https://doi.org/10.1016/j.matbio.2018.02.018. 
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G. Tymicki, A. Berman, M. Wierzbicki, S. Jaworski, M. Costantini, A. Kępczyńska, 
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